2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits
*lim
)
111 lim
->max_segments
= BLK_MAX_SEGMENTS
;
112 lim
->max_integrity_segments
= 0;
113 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
114 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
115 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
116 lim
->max_write_same_sectors
= 0;
117 lim
->max_discard_sectors
= 0;
118 lim
->discard_granularity
= 0;
119 lim
->discard_alignment
= 0;
120 lim
->discard_misaligned
= 0;
121 lim
->discard_zeroes_data
= 0;
122 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
123 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
124 lim
->alignment_offset
= 0;
129 EXPORT_SYMBOL(blk_set_default_limits
);
132 * blk_set_stacking_limits - set default limits for stacking devices
133 * @lim: the queue_limits structure to reset
136 * Returns a queue_limit struct to its default state. Should be used
137 * by stacking drivers like DM that have no internal limits.
139 void blk_set_stacking_limits(struct queue_limits
*lim
)
141 blk_set_default_limits(lim
);
143 /* Inherit limits from component devices */
144 lim
->discard_zeroes_data
= 1;
145 lim
->max_segments
= USHRT_MAX
;
146 lim
->max_hw_sectors
= UINT_MAX
;
147 lim
->max_segment_size
= UINT_MAX
;
148 lim
->max_sectors
= UINT_MAX
;
149 lim
->max_write_same_sectors
= UINT_MAX
;
151 EXPORT_SYMBOL(blk_set_stacking_limits
);
154 * blk_queue_make_request - define an alternate make_request function for a device
155 * @q: the request queue for the device to be affected
156 * @mfn: the alternate make_request function
159 * The normal way for &struct bios to be passed to a device
160 * driver is for them to be collected into requests on a request
161 * queue, and then to allow the device driver to select requests
162 * off that queue when it is ready. This works well for many block
163 * devices. However some block devices (typically virtual devices
164 * such as md or lvm) do not benefit from the processing on the
165 * request queue, and are served best by having the requests passed
166 * directly to them. This can be achieved by providing a function
167 * to blk_queue_make_request().
170 * The driver that does this *must* be able to deal appropriately
171 * with buffers in "highmemory". This can be accomplished by either calling
172 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
173 * blk_queue_bounce() to create a buffer in normal memory.
175 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
180 q
->nr_requests
= BLKDEV_MAX_RQ
;
182 q
->make_request_fn
= mfn
;
183 blk_queue_dma_alignment(q
, 511);
184 blk_queue_congestion_threshold(q
);
185 q
->nr_batching
= BLK_BATCH_REQ
;
187 blk_set_default_limits(&q
->limits
);
190 * by default assume old behaviour and bounce for any highmem page
192 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
194 EXPORT_SYMBOL(blk_queue_make_request
);
197 * blk_queue_bounce_limit - set bounce buffer limit for queue
198 * @q: the request queue for the device
199 * @max_addr: the maximum address the device can handle
202 * Different hardware can have different requirements as to what pages
203 * it can do I/O directly to. A low level driver can call
204 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
205 * buffers for doing I/O to pages residing above @max_addr.
207 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
209 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
212 q
->bounce_gfp
= GFP_NOIO
;
213 #if BITS_PER_LONG == 64
215 * Assume anything <= 4GB can be handled by IOMMU. Actually
216 * some IOMMUs can handle everything, but I don't know of a
217 * way to test this here.
219 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
221 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
223 if (b_pfn
< blk_max_low_pfn
)
225 q
->limits
.bounce_pfn
= b_pfn
;
228 init_emergency_isa_pool();
229 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
230 q
->limits
.bounce_pfn
= b_pfn
;
233 EXPORT_SYMBOL(blk_queue_bounce_limit
);
236 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
237 * @limits: the queue limits
238 * @max_hw_sectors: max hardware sectors in the usual 512b unit
241 * Enables a low level driver to set a hard upper limit,
242 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
243 * the device driver based upon the combined capabilities of I/O
244 * controller and storage device.
246 * max_sectors is a soft limit imposed by the block layer for
247 * filesystem type requests. This value can be overridden on a
248 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
249 * The soft limit can not exceed max_hw_sectors.
251 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
253 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
254 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
255 printk(KERN_INFO
"%s: set to minimum %d\n",
256 __func__
, max_hw_sectors
);
259 limits
->max_hw_sectors
= max_hw_sectors
;
260 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
261 BLK_DEF_MAX_SECTORS
);
263 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
266 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
267 * @q: the request queue for the device
268 * @max_hw_sectors: max hardware sectors in the usual 512b unit
271 * See description for blk_limits_max_hw_sectors().
273 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
275 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
277 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
280 * blk_queue_max_discard_sectors - set max sectors for a single discard
281 * @q: the request queue for the device
282 * @max_discard_sectors: maximum number of sectors to discard
284 void blk_queue_max_discard_sectors(struct request_queue
*q
,
285 unsigned int max_discard_sectors
)
287 q
->limits
.max_discard_sectors
= max_discard_sectors
;
289 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
292 * blk_queue_max_write_same_sectors - set max sectors for a single write same
293 * @q: the request queue for the device
294 * @max_write_same_sectors: maximum number of sectors to write per command
296 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
297 unsigned int max_write_same_sectors
)
299 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
301 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
304 * blk_queue_max_segments - set max hw segments for a request for this queue
305 * @q: the request queue for the device
306 * @max_segments: max number of segments
309 * Enables a low level driver to set an upper limit on the number of
310 * hw data segments in a request.
312 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
316 printk(KERN_INFO
"%s: set to minimum %d\n",
317 __func__
, max_segments
);
320 q
->limits
.max_segments
= max_segments
;
322 EXPORT_SYMBOL(blk_queue_max_segments
);
325 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
326 * @q: the request queue for the device
327 * @max_size: max size of segment in bytes
330 * Enables a low level driver to set an upper limit on the size of a
333 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
335 if (max_size
< PAGE_CACHE_SIZE
) {
336 max_size
= PAGE_CACHE_SIZE
;
337 printk(KERN_INFO
"%s: set to minimum %d\n",
341 q
->limits
.max_segment_size
= max_size
;
343 EXPORT_SYMBOL(blk_queue_max_segment_size
);
346 * blk_queue_logical_block_size - set logical block size for the queue
347 * @q: the request queue for the device
348 * @size: the logical block size, in bytes
351 * This should be set to the lowest possible block size that the
352 * storage device can address. The default of 512 covers most
355 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
357 q
->limits
.logical_block_size
= size
;
359 if (q
->limits
.physical_block_size
< size
)
360 q
->limits
.physical_block_size
= size
;
362 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
363 q
->limits
.io_min
= q
->limits
.physical_block_size
;
365 EXPORT_SYMBOL(blk_queue_logical_block_size
);
368 * blk_queue_physical_block_size - set physical block size for the queue
369 * @q: the request queue for the device
370 * @size: the physical block size, in bytes
373 * This should be set to the lowest possible sector size that the
374 * hardware can operate on without reverting to read-modify-write
377 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
379 q
->limits
.physical_block_size
= size
;
381 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
382 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
384 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
385 q
->limits
.io_min
= q
->limits
.physical_block_size
;
387 EXPORT_SYMBOL(blk_queue_physical_block_size
);
390 * blk_queue_alignment_offset - set physical block alignment offset
391 * @q: the request queue for the device
392 * @offset: alignment offset in bytes
395 * Some devices are naturally misaligned to compensate for things like
396 * the legacy DOS partition table 63-sector offset. Low-level drivers
397 * should call this function for devices whose first sector is not
400 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
402 q
->limits
.alignment_offset
=
403 offset
& (q
->limits
.physical_block_size
- 1);
404 q
->limits
.misaligned
= 0;
406 EXPORT_SYMBOL(blk_queue_alignment_offset
);
409 * blk_limits_io_min - set minimum request size for a device
410 * @limits: the queue limits
411 * @min: smallest I/O size in bytes
414 * Some devices have an internal block size bigger than the reported
415 * hardware sector size. This function can be used to signal the
416 * smallest I/O the device can perform without incurring a performance
419 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
421 limits
->io_min
= min
;
423 if (limits
->io_min
< limits
->logical_block_size
)
424 limits
->io_min
= limits
->logical_block_size
;
426 if (limits
->io_min
< limits
->physical_block_size
)
427 limits
->io_min
= limits
->physical_block_size
;
429 EXPORT_SYMBOL(blk_limits_io_min
);
432 * blk_queue_io_min - set minimum request size for the queue
433 * @q: the request queue for the device
434 * @min: smallest I/O size in bytes
437 * Storage devices may report a granularity or preferred minimum I/O
438 * size which is the smallest request the device can perform without
439 * incurring a performance penalty. For disk drives this is often the
440 * physical block size. For RAID arrays it is often the stripe chunk
441 * size. A properly aligned multiple of minimum_io_size is the
442 * preferred request size for workloads where a high number of I/O
443 * operations is desired.
445 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
447 blk_limits_io_min(&q
->limits
, min
);
449 EXPORT_SYMBOL(blk_queue_io_min
);
452 * blk_limits_io_opt - set optimal request size for a device
453 * @limits: the queue limits
454 * @opt: smallest I/O size in bytes
457 * Storage devices may report an optimal I/O size, which is the
458 * device's preferred unit for sustained I/O. This is rarely reported
459 * for disk drives. For RAID arrays it is usually the stripe width or
460 * the internal track size. A properly aligned multiple of
461 * optimal_io_size is the preferred request size for workloads where
462 * sustained throughput is desired.
464 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
466 limits
->io_opt
= opt
;
468 EXPORT_SYMBOL(blk_limits_io_opt
);
471 * blk_queue_io_opt - set optimal request size for the queue
472 * @q: the request queue for the device
473 * @opt: optimal request size in bytes
476 * Storage devices may report an optimal I/O size, which is the
477 * device's preferred unit for sustained I/O. This is rarely reported
478 * for disk drives. For RAID arrays it is usually the stripe width or
479 * the internal track size. A properly aligned multiple of
480 * optimal_io_size is the preferred request size for workloads where
481 * sustained throughput is desired.
483 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
485 blk_limits_io_opt(&q
->limits
, opt
);
487 EXPORT_SYMBOL(blk_queue_io_opt
);
490 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
491 * @t: the stacking driver (top)
492 * @b: the underlying device (bottom)
494 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
496 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
498 EXPORT_SYMBOL(blk_queue_stack_limits
);
501 * blk_stack_limits - adjust queue_limits for stacked devices
502 * @t: the stacking driver limits (top device)
503 * @b: the underlying queue limits (bottom, component device)
504 * @start: first data sector within component device
507 * This function is used by stacking drivers like MD and DM to ensure
508 * that all component devices have compatible block sizes and
509 * alignments. The stacking driver must provide a queue_limits
510 * struct (top) and then iteratively call the stacking function for
511 * all component (bottom) devices. The stacking function will
512 * attempt to combine the values and ensure proper alignment.
514 * Returns 0 if the top and bottom queue_limits are compatible. The
515 * top device's block sizes and alignment offsets may be adjusted to
516 * ensure alignment with the bottom device. If no compatible sizes
517 * and alignments exist, -1 is returned and the resulting top
518 * queue_limits will have the misaligned flag set to indicate that
519 * the alignment_offset is undefined.
521 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
524 unsigned int top
, bottom
, alignment
, ret
= 0;
526 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
527 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
528 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
529 b
->max_write_same_sectors
);
530 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
532 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
533 b
->seg_boundary_mask
);
535 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
536 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
537 b
->max_integrity_segments
);
539 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
540 b
->max_segment_size
);
542 t
->misaligned
|= b
->misaligned
;
544 alignment
= queue_limit_alignment_offset(b
, start
);
546 /* Bottom device has different alignment. Check that it is
547 * compatible with the current top alignment.
549 if (t
->alignment_offset
!= alignment
) {
551 top
= max(t
->physical_block_size
, t
->io_min
)
552 + t
->alignment_offset
;
553 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
555 /* Verify that top and bottom intervals line up */
556 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
562 t
->logical_block_size
= max(t
->logical_block_size
,
563 b
->logical_block_size
);
565 t
->physical_block_size
= max(t
->physical_block_size
,
566 b
->physical_block_size
);
568 t
->io_min
= max(t
->io_min
, b
->io_min
);
569 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
571 t
->cluster
&= b
->cluster
;
572 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
574 /* Physical block size a multiple of the logical block size? */
575 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
576 t
->physical_block_size
= t
->logical_block_size
;
581 /* Minimum I/O a multiple of the physical block size? */
582 if (t
->io_min
& (t
->physical_block_size
- 1)) {
583 t
->io_min
= t
->physical_block_size
;
588 /* Optimal I/O a multiple of the physical block size? */
589 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
595 t
->raid_partial_stripes_expensive
=
596 max(t
->raid_partial_stripes_expensive
,
597 b
->raid_partial_stripes_expensive
);
599 /* Find lowest common alignment_offset */
600 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
601 & (max(t
->physical_block_size
, t
->io_min
) - 1);
603 /* Verify that new alignment_offset is on a logical block boundary */
604 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
609 /* Discard alignment and granularity */
610 if (b
->discard_granularity
) {
611 alignment
= queue_limit_discard_alignment(b
, start
);
613 if (t
->discard_granularity
!= 0 &&
614 t
->discard_alignment
!= alignment
) {
615 top
= t
->discard_granularity
+ t
->discard_alignment
;
616 bottom
= b
->discard_granularity
+ alignment
;
618 /* Verify that top and bottom intervals line up */
619 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
620 t
->discard_misaligned
= 1;
623 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
624 b
->max_discard_sectors
);
625 t
->discard_granularity
= max(t
->discard_granularity
,
626 b
->discard_granularity
);
627 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) %
628 t
->discard_granularity
;
633 EXPORT_SYMBOL(blk_stack_limits
);
636 * bdev_stack_limits - adjust queue limits for stacked drivers
637 * @t: the stacking driver limits (top device)
638 * @bdev: the component block_device (bottom)
639 * @start: first data sector within component device
642 * Merges queue limits for a top device and a block_device. Returns
643 * 0 if alignment didn't change. Returns -1 if adding the bottom
644 * device caused misalignment.
646 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
649 struct request_queue
*bq
= bdev_get_queue(bdev
);
651 start
+= get_start_sect(bdev
);
653 return blk_stack_limits(t
, &bq
->limits
, start
);
655 EXPORT_SYMBOL(bdev_stack_limits
);
658 * disk_stack_limits - adjust queue limits for stacked drivers
659 * @disk: MD/DM gendisk (top)
660 * @bdev: the underlying block device (bottom)
661 * @offset: offset to beginning of data within component device
664 * Merges the limits for a top level gendisk and a bottom level
667 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
670 struct request_queue
*t
= disk
->queue
;
672 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
673 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
675 disk_name(disk
, 0, top
);
676 bdevname(bdev
, bottom
);
678 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
682 EXPORT_SYMBOL(disk_stack_limits
);
685 * blk_queue_dma_pad - set pad mask
686 * @q: the request queue for the device
691 * Appending pad buffer to a request modifies the last entry of a
692 * scatter list such that it includes the pad buffer.
694 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
696 q
->dma_pad_mask
= mask
;
698 EXPORT_SYMBOL(blk_queue_dma_pad
);
701 * blk_queue_update_dma_pad - update pad mask
702 * @q: the request queue for the device
705 * Update dma pad mask.
707 * Appending pad buffer to a request modifies the last entry of a
708 * scatter list such that it includes the pad buffer.
710 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
712 if (mask
> q
->dma_pad_mask
)
713 q
->dma_pad_mask
= mask
;
715 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
718 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
719 * @q: the request queue for the device
720 * @dma_drain_needed: fn which returns non-zero if drain is necessary
721 * @buf: physically contiguous buffer
722 * @size: size of the buffer in bytes
724 * Some devices have excess DMA problems and can't simply discard (or
725 * zero fill) the unwanted piece of the transfer. They have to have a
726 * real area of memory to transfer it into. The use case for this is
727 * ATAPI devices in DMA mode. If the packet command causes a transfer
728 * bigger than the transfer size some HBAs will lock up if there
729 * aren't DMA elements to contain the excess transfer. What this API
730 * does is adjust the queue so that the buf is always appended
731 * silently to the scatterlist.
733 * Note: This routine adjusts max_hw_segments to make room for appending
734 * the drain buffer. If you call blk_queue_max_segments() after calling
735 * this routine, you must set the limit to one fewer than your device
736 * can support otherwise there won't be room for the drain buffer.
738 int blk_queue_dma_drain(struct request_queue
*q
,
739 dma_drain_needed_fn
*dma_drain_needed
,
740 void *buf
, unsigned int size
)
742 if (queue_max_segments(q
) < 2)
744 /* make room for appending the drain */
745 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
746 q
->dma_drain_needed
= dma_drain_needed
;
747 q
->dma_drain_buffer
= buf
;
748 q
->dma_drain_size
= size
;
752 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
755 * blk_queue_segment_boundary - set boundary rules for segment merging
756 * @q: the request queue for the device
757 * @mask: the memory boundary mask
759 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
761 if (mask
< PAGE_CACHE_SIZE
- 1) {
762 mask
= PAGE_CACHE_SIZE
- 1;
763 printk(KERN_INFO
"%s: set to minimum %lx\n",
767 q
->limits
.seg_boundary_mask
= mask
;
769 EXPORT_SYMBOL(blk_queue_segment_boundary
);
772 * blk_queue_dma_alignment - set dma length and memory alignment
773 * @q: the request queue for the device
774 * @mask: alignment mask
777 * set required memory and length alignment for direct dma transactions.
778 * this is used when building direct io requests for the queue.
781 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
783 q
->dma_alignment
= mask
;
785 EXPORT_SYMBOL(blk_queue_dma_alignment
);
788 * blk_queue_update_dma_alignment - update dma length and memory alignment
789 * @q: the request queue for the device
790 * @mask: alignment mask
793 * update required memory and length alignment for direct dma transactions.
794 * If the requested alignment is larger than the current alignment, then
795 * the current queue alignment is updated to the new value, otherwise it
796 * is left alone. The design of this is to allow multiple objects
797 * (driver, device, transport etc) to set their respective
798 * alignments without having them interfere.
801 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
803 BUG_ON(mask
> PAGE_SIZE
);
805 if (mask
> q
->dma_alignment
)
806 q
->dma_alignment
= mask
;
808 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
811 * blk_queue_flush - configure queue's cache flush capability
812 * @q: the request queue for the device
813 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
815 * Tell block layer cache flush capability of @q. If it supports
816 * flushing, REQ_FLUSH should be set. If it supports bypassing
817 * write cache for individual writes, REQ_FUA should be set.
819 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
821 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
823 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
826 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
828 EXPORT_SYMBOL_GPL(blk_queue_flush
);
830 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
832 q
->flush_not_queueable
= !queueable
;
834 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
836 static int __init
blk_settings_init(void)
838 blk_max_low_pfn
= max_low_pfn
- 1;
839 blk_max_pfn
= max_pfn
- 1;
842 subsys_initcall(blk_settings_init
);