2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
51 static int __init
init_dax_wait_table(void)
55 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
56 init_waitqueue_head(wait_table
+ i
);
59 fs_initcall(init_dax_wait_table
);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_pfn(void *entry
)
78 return (unsigned long)entry
>> RADIX_DAX_SHIFT
;
81 static void *dax_radix_locked_entry(unsigned long pfn
, unsigned long flags
)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
| flags
|
84 (pfn
<< RADIX_DAX_SHIFT
) | RADIX_DAX_ENTRY_LOCK
);
87 static unsigned int dax_radix_order(void *entry
)
89 if ((unsigned long)entry
& RADIX_DAX_PMD
)
90 return PMD_SHIFT
- PAGE_SHIFT
;
94 static int dax_is_pmd_entry(void *entry
)
96 return (unsigned long)entry
& RADIX_DAX_PMD
;
99 static int dax_is_pte_entry(void *entry
)
101 return !((unsigned long)entry
& RADIX_DAX_PMD
);
104 static int dax_is_zero_entry(void *entry
)
106 return (unsigned long)entry
& RADIX_DAX_ZERO_PAGE
;
109 static int dax_is_empty_entry(void *entry
)
111 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
115 * DAX radix tree locking
117 struct exceptional_entry_key
{
118 struct address_space
*mapping
;
122 struct wait_exceptional_entry_queue
{
123 wait_queue_entry_t wait
;
124 struct exceptional_entry_key key
;
127 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
128 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry
))
138 index
&= ~PG_PMD_COLOUR
;
140 key
->mapping
= mapping
;
141 key
->entry_start
= index
;
143 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
144 return wait_table
+ hash
;
147 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
148 int sync
, void *keyp
)
150 struct exceptional_entry_key
*key
= keyp
;
151 struct wait_exceptional_entry_queue
*ewait
=
152 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
154 if (key
->mapping
!= ewait
->key
.mapping
||
155 key
->entry_start
!= ewait
->key
.entry_start
)
157 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
165 static void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
166 pgoff_t index
, void *entry
, bool wake_all
)
168 struct exceptional_entry_key key
;
169 wait_queue_head_t
*wq
;
171 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
179 if (waitqueue_active(wq
))
180 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
184 * Check whether the given slot is locked. Must be called with the i_pages
187 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
189 unsigned long entry
= (unsigned long)
190 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
191 return entry
& RADIX_DAX_ENTRY_LOCK
;
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
197 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
199 unsigned long entry
= (unsigned long)
200 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
202 entry
|= RADIX_DAX_ENTRY_LOCK
;
203 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
204 return (void *)entry
;
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
210 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
212 unsigned long entry
= (unsigned long)
213 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
215 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
216 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
217 return (void *)entry
;
220 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
221 pgoff_t index
, void *entry
);
224 * Lookup entry in radix tree, wait for it to become unlocked if it is
225 * exceptional entry and return it. The caller must call
226 * put_unlocked_mapping_entry() when he decided not to lock the entry or
227 * put_locked_mapping_entry() when he locked the entry and now wants to
230 * Must be called with the i_pages lock held.
232 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
233 pgoff_t index
, void ***slotp
)
236 struct wait_exceptional_entry_queue ewait
;
237 wait_queue_head_t
*wq
;
239 init_wait(&ewait
.wait
);
240 ewait
.wait
.func
= wake_exceptional_entry_func
;
243 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
,
246 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)) ||
247 !slot_locked(mapping
, slot
)) {
253 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
254 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
255 TASK_UNINTERRUPTIBLE
);
256 xa_unlock_irq(&mapping
->i_pages
);
258 finish_wait(wq
, &ewait
.wait
);
259 xa_lock_irq(&mapping
->i_pages
);
264 * The only thing keeping the address space around is the i_pages lock
265 * (it's cycled in clear_inode() after removing the entries from i_pages)
266 * After we call xas_unlock_irq(), we cannot touch xas->xa.
268 static void wait_entry_unlocked(struct address_space
*mapping
, pgoff_t index
,
269 void ***slotp
, void *entry
)
271 struct wait_exceptional_entry_queue ewait
;
272 wait_queue_head_t
*wq
;
274 init_wait(&ewait
.wait
);
275 ewait
.wait
.func
= wake_exceptional_entry_func
;
277 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
279 * Unlike get_unlocked_entry() there is no guarantee that this
280 * path ever successfully retrieves an unlocked entry before an
281 * inode dies. Perform a non-exclusive wait in case this path
282 * never successfully performs its own wake up.
284 prepare_to_wait(wq
, &ewait
.wait
, TASK_UNINTERRUPTIBLE
);
285 xa_unlock_irq(&mapping
->i_pages
);
287 finish_wait(wq
, &ewait
.wait
);
290 static void unlock_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
294 xa_lock_irq(&mapping
->i_pages
);
295 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
, &slot
);
296 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
297 !slot_locked(mapping
, slot
))) {
298 xa_unlock_irq(&mapping
->i_pages
);
301 unlock_slot(mapping
, slot
);
302 xa_unlock_irq(&mapping
->i_pages
);
303 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
306 static void put_locked_mapping_entry(struct address_space
*mapping
,
309 unlock_mapping_entry(mapping
, index
);
313 * Called when we are done with radix tree entry we looked up via
314 * get_unlocked_mapping_entry() and which we didn't lock in the end.
316 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
317 pgoff_t index
, void *entry
)
322 /* We have to wake up next waiter for the radix tree entry lock */
323 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
326 static unsigned long dax_entry_size(void *entry
)
328 if (dax_is_zero_entry(entry
))
330 else if (dax_is_empty_entry(entry
))
332 else if (dax_is_pmd_entry(entry
))
338 static unsigned long dax_radix_end_pfn(void *entry
)
340 return dax_radix_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
344 * Iterate through all mapped pfns represented by an entry, i.e. skip
345 * 'empty' and 'zero' entries.
347 #define for_each_mapped_pfn(entry, pfn) \
348 for (pfn = dax_radix_pfn(entry); \
349 pfn < dax_radix_end_pfn(entry); pfn++)
352 * TODO: for reflink+dax we need a way to associate a single page with
353 * multiple address_space instances at different linear_page_index()
356 static void dax_associate_entry(void *entry
, struct address_space
*mapping
,
357 struct vm_area_struct
*vma
, unsigned long address
)
359 unsigned long size
= dax_entry_size(entry
), pfn
, index
;
362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
365 index
= linear_page_index(vma
, address
& ~(size
- 1));
366 for_each_mapped_pfn(entry
, pfn
) {
367 struct page
*page
= pfn_to_page(pfn
);
369 WARN_ON_ONCE(page
->mapping
);
370 page
->mapping
= mapping
;
371 page
->index
= index
+ i
++;
375 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
380 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
383 for_each_mapped_pfn(entry
, pfn
) {
384 struct page
*page
= pfn_to_page(pfn
);
386 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
387 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
388 page
->mapping
= NULL
;
393 static struct page
*dax_busy_page(void *entry
)
397 for_each_mapped_pfn(entry
, pfn
) {
398 struct page
*page
= pfn_to_page(pfn
);
400 if (page_ref_count(page
) > 1)
406 bool dax_lock_mapping_entry(struct page
*page
)
410 bool did_lock
= false;
411 void *entry
= NULL
, **slot
;
412 struct address_space
*mapping
;
416 mapping
= READ_ONCE(page
->mapping
);
418 if (!mapping
|| !dax_mapping(mapping
))
422 * In the device-dax case there's no need to lock, a
423 * struct dev_pagemap pin is sufficient to keep the
424 * inode alive, and we assume we have dev_pagemap pin
425 * otherwise we would not have a valid pfn_to_page()
428 inode
= mapping
->host
;
429 if (S_ISCHR(inode
->i_mode
)) {
434 xa_lock_irq(&mapping
->i_pages
);
435 if (mapping
!= page
->mapping
) {
436 xa_unlock_irq(&mapping
->i_pages
);
441 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
,
444 xa_unlock_irq(&mapping
->i_pages
);
446 } else if (slot_locked(mapping
, slot
)) {
448 wait_entry_unlocked(mapping
, index
, &slot
, entry
);
452 lock_slot(mapping
, slot
);
454 xa_unlock_irq(&mapping
->i_pages
);
462 void dax_unlock_mapping_entry(struct page
*page
)
464 struct address_space
*mapping
= page
->mapping
;
465 struct inode
*inode
= mapping
->host
;
467 if (S_ISCHR(inode
->i_mode
))
470 unlock_mapping_entry(mapping
, page
->index
);
474 * Find radix tree entry at given index. If it points to an exceptional entry,
475 * return it with the radix tree entry locked. If the radix tree doesn't
476 * contain given index, create an empty exceptional entry for the index and
477 * return with it locked.
479 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
480 * either return that locked entry or will return an error. This error will
481 * happen if there are any 4k entries within the 2MiB range that we are
484 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
485 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
486 * insertion will fail if it finds any 4k entries already in the tree, and a
487 * 4k insertion will cause an existing 2MiB entry to be unmapped and
488 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
489 * well as 2MiB empty entries.
491 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
492 * real storage backing them. We will leave these real 2MiB DAX entries in
493 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
495 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
496 * persistent memory the benefit is doubtful. We can add that later if we can
499 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
500 unsigned long size_flag
)
502 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
506 xa_lock_irq(&mapping
->i_pages
);
507 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
509 if (WARN_ON_ONCE(entry
&& !radix_tree_exceptional_entry(entry
))) {
510 entry
= ERR_PTR(-EIO
);
515 if (size_flag
& RADIX_DAX_PMD
) {
516 if (dax_is_pte_entry(entry
)) {
517 put_unlocked_mapping_entry(mapping
, index
,
519 entry
= ERR_PTR(-EEXIST
);
522 } else { /* trying to grab a PTE entry */
523 if (dax_is_pmd_entry(entry
) &&
524 (dax_is_zero_entry(entry
) ||
525 dax_is_empty_entry(entry
))) {
526 pmd_downgrade
= true;
531 /* No entry for given index? Make sure radix tree is big enough. */
532 if (!entry
|| pmd_downgrade
) {
537 * Make sure 'entry' remains valid while we drop
540 entry
= lock_slot(mapping
, slot
);
543 xa_unlock_irq(&mapping
->i_pages
);
545 * Besides huge zero pages the only other thing that gets
546 * downgraded are empty entries which don't need to be
549 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
550 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
553 err
= radix_tree_preload(
554 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
557 put_locked_mapping_entry(mapping
, index
);
560 xa_lock_irq(&mapping
->i_pages
);
564 * We needed to drop the i_pages lock while calling
565 * radix_tree_preload() and we didn't have an entry to
566 * lock. See if another thread inserted an entry at
567 * our index during this time.
569 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
,
572 radix_tree_preload_end();
573 xa_unlock_irq(&mapping
->i_pages
);
579 dax_disassociate_entry(entry
, mapping
, false);
580 radix_tree_delete(&mapping
->i_pages
, index
);
581 mapping
->nrexceptional
--;
582 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
586 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
588 err
= __radix_tree_insert(&mapping
->i_pages
, index
,
589 dax_radix_order(entry
), entry
);
590 radix_tree_preload_end();
592 xa_unlock_irq(&mapping
->i_pages
);
594 * Our insertion of a DAX entry failed, most likely
595 * because we were inserting a PMD entry and it
596 * collided with a PTE sized entry at a different
597 * index in the PMD range. We haven't inserted
598 * anything into the radix tree and have no waiters to
603 /* Good, we have inserted empty locked entry into the tree. */
604 mapping
->nrexceptional
++;
605 xa_unlock_irq(&mapping
->i_pages
);
608 entry
= lock_slot(mapping
, slot
);
610 xa_unlock_irq(&mapping
->i_pages
);
615 * dax_layout_busy_page - find first pinned page in @mapping
616 * @mapping: address space to scan for a page with ref count > 1
618 * DAX requires ZONE_DEVICE mapped pages. These pages are never
619 * 'onlined' to the page allocator so they are considered idle when
620 * page->count == 1. A filesystem uses this interface to determine if
621 * any page in the mapping is busy, i.e. for DMA, or other
622 * get_user_pages() usages.
624 * It is expected that the filesystem is holding locks to block the
625 * establishment of new mappings in this address_space. I.e. it expects
626 * to be able to run unmap_mapping_range() and subsequently not race
627 * mapping_mapped() becoming true.
629 struct page
*dax_layout_busy_page(struct address_space
*mapping
)
631 pgoff_t indices
[PAGEVEC_SIZE
];
632 struct page
*page
= NULL
;
638 * In the 'limited' case get_user_pages() for dax is disabled.
640 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
643 if (!dax_mapping(mapping
) || !mapping_mapped(mapping
))
651 * If we race get_user_pages_fast() here either we'll see the
652 * elevated page count in the pagevec_lookup and wait, or
653 * get_user_pages_fast() will see that the page it took a reference
654 * against is no longer mapped in the page tables and bail to the
655 * get_user_pages() slow path. The slow path is protected by
656 * pte_lock() and pmd_lock(). New references are not taken without
657 * holding those locks, and unmap_mapping_range() will not zero the
658 * pte or pmd without holding the respective lock, so we are
659 * guaranteed to either see new references or prevent new
660 * references from being established.
662 unmap_mapping_range(mapping
, 0, 0, 1);
664 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
665 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
667 pgoff_t nr_pages
= 1;
669 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
670 struct page
*pvec_ent
= pvec
.pages
[i
];
678 !radix_tree_exceptional_entry(pvec_ent
)))
681 xa_lock_irq(&mapping
->i_pages
);
682 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
684 page
= dax_busy_page(entry
);
686 * Account for multi-order entries at
687 * the end of the pagevec.
689 if (i
+ 1 >= pagevec_count(&pvec
))
690 nr_pages
= 1UL << dax_radix_order(entry
);
692 put_unlocked_mapping_entry(mapping
, index
, entry
);
693 xa_unlock_irq(&mapping
->i_pages
);
699 * We don't expect normal struct page entries to exist in our
700 * tree, but we keep these pagevec calls so that this code is
701 * consistent with the common pattern for handling pagevecs
702 * throughout the kernel.
704 pagevec_remove_exceptionals(&pvec
);
705 pagevec_release(&pvec
);
713 EXPORT_SYMBOL_GPL(dax_layout_busy_page
);
715 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
716 pgoff_t index
, bool trunc
)
720 struct radix_tree_root
*pages
= &mapping
->i_pages
;
723 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
724 if (!entry
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)))
727 (radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_DIRTY
) ||
728 radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
)))
730 dax_disassociate_entry(entry
, mapping
, trunc
);
731 radix_tree_delete(pages
, index
);
732 mapping
->nrexceptional
--;
735 put_unlocked_mapping_entry(mapping
, index
, entry
);
736 xa_unlock_irq(pages
);
740 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
741 * entry to get unlocked before deleting it.
743 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
745 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
748 * This gets called from truncate / punch_hole path. As such, the caller
749 * must hold locks protecting against concurrent modifications of the
750 * radix tree (usually fs-private i_mmap_sem for writing). Since the
751 * caller has seen exceptional entry for this index, we better find it
752 * at that index as well...
759 * Invalidate exceptional DAX entry if it is clean.
761 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
764 return __dax_invalidate_mapping_entry(mapping
, index
, false);
767 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
768 sector_t sector
, size_t size
, struct page
*to
,
776 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
780 id
= dax_read_lock();
781 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, NULL
);
786 vto
= kmap_atomic(to
);
787 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
794 * By this point grab_mapping_entry() has ensured that we have a locked entry
795 * of the appropriate size so we don't have to worry about downgrading PMDs to
796 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
797 * already in the tree, we will skip the insertion and just dirty the PMD as
800 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
801 struct vm_fault
*vmf
,
802 void *entry
, pfn_t pfn_t
,
803 unsigned long flags
, bool dirty
)
805 struct radix_tree_root
*pages
= &mapping
->i_pages
;
806 unsigned long pfn
= pfn_t_to_pfn(pfn_t
);
807 pgoff_t index
= vmf
->pgoff
;
811 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
813 if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_ZERO_PAGE
)) {
814 /* we are replacing a zero page with block mapping */
815 if (dax_is_pmd_entry(entry
))
816 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
819 unmap_mapping_pages(mapping
, vmf
->pgoff
, 1, false);
823 new_entry
= dax_radix_locked_entry(pfn
, flags
);
824 if (dax_entry_size(entry
) != dax_entry_size(new_entry
)) {
825 dax_disassociate_entry(entry
, mapping
, false);
826 dax_associate_entry(new_entry
, mapping
, vmf
->vma
, vmf
->address
);
829 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
831 * Only swap our new entry into the radix tree if the current
832 * entry is a zero page or an empty entry. If a normal PTE or
833 * PMD entry is already in the tree, we leave it alone. This
834 * means that if we are trying to insert a PTE and the
835 * existing entry is a PMD, we will just leave the PMD in the
836 * tree and dirty it if necessary.
838 struct radix_tree_node
*node
;
842 ret
= __radix_tree_lookup(pages
, index
, &node
, &slot
);
843 WARN_ON_ONCE(ret
!= entry
);
844 __radix_tree_replace(pages
, node
, slot
,
850 radix_tree_tag_set(pages
, index
, PAGECACHE_TAG_DIRTY
);
852 xa_unlock_irq(pages
);
856 static inline unsigned long
857 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
859 unsigned long address
;
861 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
862 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
866 /* Walk all mappings of a given index of a file and writeprotect them */
867 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
868 pgoff_t index
, unsigned long pfn
)
870 struct vm_area_struct
*vma
;
871 pte_t pte
, *ptep
= NULL
;
875 i_mmap_lock_read(mapping
);
876 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
877 unsigned long address
, start
, end
;
881 if (!(vma
->vm_flags
& VM_SHARED
))
884 address
= pgoff_address(index
, vma
);
887 * Note because we provide start/end to follow_pte_pmd it will
888 * call mmu_notifier_invalidate_range_start() on our behalf
889 * before taking any lock.
891 if (follow_pte_pmd(vma
->vm_mm
, address
, &start
, &end
, &ptep
, &pmdp
, &ptl
))
895 * No need to call mmu_notifier_invalidate_range() as we are
896 * downgrading page table protection not changing it to point
899 * See Documentation/vm/mmu_notifier.rst
902 #ifdef CONFIG_FS_DAX_PMD
905 if (pfn
!= pmd_pfn(*pmdp
))
907 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
910 flush_cache_page(vma
, address
, pfn
);
911 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
912 pmd
= pmd_wrprotect(pmd
);
913 pmd
= pmd_mkclean(pmd
);
914 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
919 if (pfn
!= pte_pfn(*ptep
))
921 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
924 flush_cache_page(vma
, address
, pfn
);
925 pte
= ptep_clear_flush(vma
, address
, ptep
);
926 pte
= pte_wrprotect(pte
);
927 pte
= pte_mkclean(pte
);
928 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
930 pte_unmap_unlock(ptep
, ptl
);
933 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
935 i_mmap_unlock_read(mapping
);
938 static int dax_writeback_one(struct dax_device
*dax_dev
,
939 struct address_space
*mapping
, pgoff_t index
, void *entry
)
941 struct radix_tree_root
*pages
= &mapping
->i_pages
;
942 void *entry2
, **slot
;
948 * A page got tagged dirty in DAX mapping? Something is seriously
951 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
955 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
956 /* Entry got punched out / reallocated? */
957 if (!entry2
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2
)))
960 * Entry got reallocated elsewhere? No need to writeback. We have to
961 * compare pfns as we must not bail out due to difference in lockbit
964 if (dax_radix_pfn(entry2
) != dax_radix_pfn(entry
))
966 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
967 dax_is_zero_entry(entry
))) {
972 /* Another fsync thread may have already written back this entry */
973 if (!radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
))
975 /* Lock the entry to serialize with page faults */
976 entry
= lock_slot(mapping
, slot
);
978 * We can clear the tag now but we have to be careful so that concurrent
979 * dax_writeback_one() calls for the same index cannot finish before we
980 * actually flush the caches. This is achieved as the calls will look
981 * at the entry only under the i_pages lock and once they do that
982 * they will see the entry locked and wait for it to unlock.
984 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_TOWRITE
);
985 xa_unlock_irq(pages
);
988 * Even if dax_writeback_mapping_range() was given a wbc->range_start
989 * in the middle of a PMD, the 'index' we are given will be aligned to
990 * the start index of the PMD, as will the pfn we pull from 'entry'.
991 * This allows us to flush for PMD_SIZE and not have to worry about
992 * partial PMD writebacks.
994 pfn
= dax_radix_pfn(entry
);
995 size
= PAGE_SIZE
<< dax_radix_order(entry
);
997 dax_mapping_entry_mkclean(mapping
, index
, pfn
);
998 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), size
);
1000 * After we have flushed the cache, we can clear the dirty tag. There
1001 * cannot be new dirty data in the pfn after the flush has completed as
1002 * the pfn mappings are writeprotected and fault waits for mapping
1006 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_DIRTY
);
1007 xa_unlock_irq(pages
);
1008 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
1009 put_locked_mapping_entry(mapping
, index
);
1013 put_unlocked_mapping_entry(mapping
, index
, entry2
);
1014 xa_unlock_irq(pages
);
1019 * Flush the mapping to the persistent domain within the byte range of [start,
1020 * end]. This is required by data integrity operations to ensure file data is
1021 * on persistent storage prior to completion of the operation.
1023 int dax_writeback_mapping_range(struct address_space
*mapping
,
1024 struct block_device
*bdev
, struct writeback_control
*wbc
)
1026 struct inode
*inode
= mapping
->host
;
1027 pgoff_t start_index
, end_index
;
1028 pgoff_t indices
[PAGEVEC_SIZE
];
1029 struct dax_device
*dax_dev
;
1030 struct pagevec pvec
;
1034 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
1037 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
1040 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
1044 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
1045 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
1047 trace_dax_writeback_range(inode
, start_index
, end_index
);
1049 tag_pages_for_writeback(mapping
, start_index
, end_index
);
1051 pagevec_init(&pvec
);
1053 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
1054 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
1055 pvec
.pages
, indices
);
1060 for (i
= 0; i
< pvec
.nr
; i
++) {
1061 if (indices
[i
] > end_index
) {
1066 ret
= dax_writeback_one(dax_dev
, mapping
, indices
[i
],
1069 mapping_set_error(mapping
, ret
);
1073 start_index
= indices
[pvec
.nr
- 1] + 1;
1077 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
1078 return (ret
< 0 ? ret
: 0);
1080 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
1082 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
1084 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
1087 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
1090 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1095 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
1098 id
= dax_read_lock();
1099 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
1106 if (PFN_PHYS(length
) < size
)
1108 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
1110 /* For larger pages we need devmap */
1111 if (length
> 1 && !pfn_t_devmap(*pfnp
))
1115 dax_read_unlock(id
);
1120 * The user has performed a load from a hole in the file. Allocating a new
1121 * page in the file would cause excessive storage usage for workloads with
1122 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1123 * If this page is ever written to we will re-fault and change the mapping to
1124 * point to real DAX storage instead.
1126 static vm_fault_t
dax_load_hole(struct address_space
*mapping
, void *entry
,
1127 struct vm_fault
*vmf
)
1129 struct inode
*inode
= mapping
->host
;
1130 unsigned long vaddr
= vmf
->address
;
1131 pfn_t pfn
= pfn_to_pfn_t(my_zero_pfn(vaddr
));
1134 dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
, RADIX_DAX_ZERO_PAGE
,
1136 ret
= vmf_insert_mixed(vmf
->vma
, vaddr
, pfn
);
1137 trace_dax_load_hole(inode
, vmf
, ret
);
1141 static bool dax_range_is_aligned(struct block_device
*bdev
,
1142 unsigned int offset
, unsigned int length
)
1144 unsigned short sector_size
= bdev_logical_block_size(bdev
);
1146 if (!IS_ALIGNED(offset
, sector_size
))
1148 if (!IS_ALIGNED(length
, sector_size
))
1154 int __dax_zero_page_range(struct block_device
*bdev
,
1155 struct dax_device
*dax_dev
, sector_t sector
,
1156 unsigned int offset
, unsigned int size
)
1158 if (dax_range_is_aligned(bdev
, offset
, size
)) {
1159 sector_t start_sector
= sector
+ (offset
>> 9);
1161 return blkdev_issue_zeroout(bdev
, start_sector
,
1162 size
>> 9, GFP_NOFS
, 0);
1168 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
1172 id
= dax_read_lock();
1173 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
, NULL
);
1175 dax_read_unlock(id
);
1178 memset(kaddr
+ offset
, 0, size
);
1179 dax_flush(dax_dev
, kaddr
+ offset
, size
);
1180 dax_read_unlock(id
);
1184 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
1187 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1188 struct iomap
*iomap
)
1190 struct block_device
*bdev
= iomap
->bdev
;
1191 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1192 struct iov_iter
*iter
= data
;
1193 loff_t end
= pos
+ length
, done
= 0;
1198 if (iov_iter_rw(iter
) == READ
) {
1199 end
= min(end
, i_size_read(inode
));
1203 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1204 return iov_iter_zero(min(length
, end
- pos
), iter
);
1207 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1211 * Write can allocate block for an area which has a hole page mapped
1212 * into page tables. We have to tear down these mappings so that data
1213 * written by write(2) is visible in mmap.
1215 if (iomap
->flags
& IOMAP_F_NEW
) {
1216 invalidate_inode_pages2_range(inode
->i_mapping
,
1218 (end
- 1) >> PAGE_SHIFT
);
1221 id
= dax_read_lock();
1223 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1224 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1225 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1230 if (fatal_signal_pending(current
)) {
1235 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1239 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1246 map_len
= PFN_PHYS(map_len
);
1249 if (map_len
> end
- pos
)
1250 map_len
= end
- pos
;
1253 * The userspace address for the memory copy has already been
1254 * validated via access_ok() in either vfs_read() or
1255 * vfs_write(), depending on which operation we are doing.
1257 if (iov_iter_rw(iter
) == WRITE
)
1258 xfer
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1261 xfer
= dax_copy_to_iter(dax_dev
, pgoff
, kaddr
,
1273 dax_read_unlock(id
);
1275 return done
? done
: ret
;
1279 * dax_iomap_rw - Perform I/O to a DAX file
1280 * @iocb: The control block for this I/O
1281 * @iter: The addresses to do I/O from or to
1282 * @ops: iomap ops passed from the file system
1284 * This function performs read and write operations to directly mapped
1285 * persistent memory. The callers needs to take care of read/write exclusion
1286 * and evicting any page cache pages in the region under I/O.
1289 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1290 const struct iomap_ops
*ops
)
1292 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1293 struct inode
*inode
= mapping
->host
;
1294 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1297 if (iov_iter_rw(iter
) == WRITE
) {
1298 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1299 flags
|= IOMAP_WRITE
;
1301 lockdep_assert_held(&inode
->i_rwsem
);
1304 while (iov_iter_count(iter
)) {
1305 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1306 iter
, dax_iomap_actor
);
1313 iocb
->ki_pos
+= done
;
1314 return done
? done
: ret
;
1316 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1318 static vm_fault_t
dax_fault_return(int error
)
1321 return VM_FAULT_NOPAGE
;
1322 if (error
== -ENOMEM
)
1323 return VM_FAULT_OOM
;
1324 return VM_FAULT_SIGBUS
;
1328 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1329 * flushed on write-faults (non-cow), but not read-faults.
1331 static bool dax_fault_is_synchronous(unsigned long flags
,
1332 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1334 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1335 && (iomap
->flags
& IOMAP_F_DIRTY
);
1338 static vm_fault_t
dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1339 int *iomap_errp
, const struct iomap_ops
*ops
)
1341 struct vm_area_struct
*vma
= vmf
->vma
;
1342 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1343 struct inode
*inode
= mapping
->host
;
1344 unsigned long vaddr
= vmf
->address
;
1345 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1346 struct iomap iomap
= { 0 };
1347 unsigned flags
= IOMAP_FAULT
;
1348 int error
, major
= 0;
1349 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1355 trace_dax_pte_fault(inode
, vmf
, ret
);
1357 * Check whether offset isn't beyond end of file now. Caller is supposed
1358 * to hold locks serializing us with truncate / punch hole so this is
1361 if (pos
>= i_size_read(inode
)) {
1362 ret
= VM_FAULT_SIGBUS
;
1366 if (write
&& !vmf
->cow_page
)
1367 flags
|= IOMAP_WRITE
;
1369 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1370 if (IS_ERR(entry
)) {
1371 ret
= dax_fault_return(PTR_ERR(entry
));
1376 * It is possible, particularly with mixed reads & writes to private
1377 * mappings, that we have raced with a PMD fault that overlaps with
1378 * the PTE we need to set up. If so just return and the fault will be
1381 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1382 ret
= VM_FAULT_NOPAGE
;
1387 * Note that we don't bother to use iomap_apply here: DAX required
1388 * the file system block size to be equal the page size, which means
1389 * that we never have to deal with more than a single extent here.
1391 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1393 *iomap_errp
= error
;
1395 ret
= dax_fault_return(error
);
1398 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1399 error
= -EIO
; /* fs corruption? */
1400 goto error_finish_iomap
;
1403 if (vmf
->cow_page
) {
1404 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1406 switch (iomap
.type
) {
1408 case IOMAP_UNWRITTEN
:
1409 clear_user_highpage(vmf
->cow_page
, vaddr
);
1412 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1413 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1422 goto error_finish_iomap
;
1424 __SetPageUptodate(vmf
->cow_page
);
1425 ret
= finish_fault(vmf
);
1427 ret
= VM_FAULT_DONE_COW
;
1431 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1433 switch (iomap
.type
) {
1435 if (iomap
.flags
& IOMAP_F_NEW
) {
1436 count_vm_event(PGMAJFAULT
);
1437 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1438 major
= VM_FAULT_MAJOR
;
1440 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1442 goto error_finish_iomap
;
1444 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1448 * If we are doing synchronous page fault and inode needs fsync,
1449 * we can insert PTE into page tables only after that happens.
1450 * Skip insertion for now and return the pfn so that caller can
1451 * insert it after fsync is done.
1454 if (WARN_ON_ONCE(!pfnp
)) {
1456 goto error_finish_iomap
;
1459 ret
= VM_FAULT_NEEDDSYNC
| major
;
1462 trace_dax_insert_mapping(inode
, vmf
, entry
);
1464 ret
= vmf_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1466 ret
= vmf_insert_mixed(vma
, vaddr
, pfn
);
1469 case IOMAP_UNWRITTEN
:
1472 ret
= dax_load_hole(mapping
, entry
, vmf
);
1483 ret
= dax_fault_return(error
);
1485 if (ops
->iomap_end
) {
1486 int copied
= PAGE_SIZE
;
1488 if (ret
& VM_FAULT_ERROR
)
1491 * The fault is done by now and there's no way back (other
1492 * thread may be already happily using PTE we have installed).
1493 * Just ignore error from ->iomap_end since we cannot do much
1496 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1499 put_locked_mapping_entry(mapping
, vmf
->pgoff
);
1501 trace_dax_pte_fault_done(inode
, vmf
, ret
);
1505 #ifdef CONFIG_FS_DAX_PMD
1506 static vm_fault_t
dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1509 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1510 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1511 struct inode
*inode
= mapping
->host
;
1512 struct page
*zero_page
;
1518 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1520 if (unlikely(!zero_page
))
1523 pfn
= page_to_pfn_t(zero_page
);
1524 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1525 RADIX_DAX_PMD
| RADIX_DAX_ZERO_PAGE
, false);
1527 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1528 if (!pmd_none(*(vmf
->pmd
))) {
1533 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1534 pmd_entry
= pmd_mkhuge(pmd_entry
);
1535 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1537 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1538 return VM_FAULT_NOPAGE
;
1541 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1542 return VM_FAULT_FALLBACK
;
1545 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1546 const struct iomap_ops
*ops
)
1548 struct vm_area_struct
*vma
= vmf
->vma
;
1549 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1550 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1551 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1553 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1554 struct inode
*inode
= mapping
->host
;
1555 vm_fault_t result
= VM_FAULT_FALLBACK
;
1556 struct iomap iomap
= { 0 };
1557 pgoff_t max_pgoff
, pgoff
;
1564 * Check whether offset isn't beyond end of file now. Caller is
1565 * supposed to hold locks serializing us with truncate / punch hole so
1566 * this is a reliable test.
1568 pgoff
= linear_page_index(vma
, pmd_addr
);
1569 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1571 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1574 * Make sure that the faulting address's PMD offset (color) matches
1575 * the PMD offset from the start of the file. This is necessary so
1576 * that a PMD range in the page table overlaps exactly with a PMD
1577 * range in the radix tree.
1579 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1580 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1583 /* Fall back to PTEs if we're going to COW */
1584 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1587 /* If the PMD would extend outside the VMA */
1588 if (pmd_addr
< vma
->vm_start
)
1590 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1593 if (pgoff
>= max_pgoff
) {
1594 result
= VM_FAULT_SIGBUS
;
1598 /* If the PMD would extend beyond the file size */
1599 if ((pgoff
| PG_PMD_COLOUR
) >= max_pgoff
)
1603 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1604 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1605 * is already in the tree, for instance), it will return -EEXIST and
1606 * we just fall back to 4k entries.
1608 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1613 * It is possible, particularly with mixed reads & writes to private
1614 * mappings, that we have raced with a PTE fault that overlaps with
1615 * the PMD we need to set up. If so just return and the fault will be
1618 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1619 !pmd_devmap(*vmf
->pmd
)) {
1625 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1626 * setting up a mapping, so really we're using iomap_begin() as a way
1627 * to look up our filesystem block.
1629 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1630 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1634 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1637 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1639 switch (iomap
.type
) {
1641 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1645 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1646 RADIX_DAX_PMD
, write
&& !sync
);
1649 * If we are doing synchronous page fault and inode needs fsync,
1650 * we can insert PMD into page tables only after that happens.
1651 * Skip insertion for now and return the pfn so that caller can
1652 * insert it after fsync is done.
1655 if (WARN_ON_ONCE(!pfnp
))
1658 result
= VM_FAULT_NEEDDSYNC
;
1662 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1663 result
= vmf_insert_pfn_pmd(vma
, vmf
->address
, vmf
->pmd
, pfn
,
1666 case IOMAP_UNWRITTEN
:
1668 if (WARN_ON_ONCE(write
))
1670 result
= dax_pmd_load_hole(vmf
, &iomap
, entry
);
1678 if (ops
->iomap_end
) {
1679 int copied
= PMD_SIZE
;
1681 if (result
== VM_FAULT_FALLBACK
)
1684 * The fault is done by now and there's no way back (other
1685 * thread may be already happily using PMD we have installed).
1686 * Just ignore error from ->iomap_end since we cannot do much
1689 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1693 put_locked_mapping_entry(mapping
, pgoff
);
1695 if (result
== VM_FAULT_FALLBACK
) {
1696 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1697 count_vm_event(THP_FAULT_FALLBACK
);
1700 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1704 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1705 const struct iomap_ops
*ops
)
1707 return VM_FAULT_FALLBACK
;
1709 #endif /* CONFIG_FS_DAX_PMD */
1712 * dax_iomap_fault - handle a page fault on a DAX file
1713 * @vmf: The description of the fault
1714 * @pe_size: Size of the page to fault in
1715 * @pfnp: PFN to insert for synchronous faults if fsync is required
1716 * @iomap_errp: Storage for detailed error code in case of error
1717 * @ops: Iomap ops passed from the file system
1719 * When a page fault occurs, filesystems may call this helper in
1720 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1721 * has done all the necessary locking for page fault to proceed
1724 vm_fault_t
dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1725 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1729 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1731 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1733 return VM_FAULT_FALLBACK
;
1736 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1739 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1740 * @vmf: The description of the fault
1741 * @pe_size: Size of entry to be inserted
1742 * @pfn: PFN to insert
1744 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1745 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1748 static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault
*vmf
,
1749 enum page_entry_size pe_size
,
1752 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1753 void *entry
, **slot
;
1754 pgoff_t index
= vmf
->pgoff
;
1757 xa_lock_irq(&mapping
->i_pages
);
1758 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
1759 /* Did we race with someone splitting entry or so? */
1761 (pe_size
== PE_SIZE_PTE
&& !dax_is_pte_entry(entry
)) ||
1762 (pe_size
== PE_SIZE_PMD
&& !dax_is_pmd_entry(entry
))) {
1763 put_unlocked_mapping_entry(mapping
, index
, entry
);
1764 xa_unlock_irq(&mapping
->i_pages
);
1765 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1767 return VM_FAULT_NOPAGE
;
1769 radix_tree_tag_set(&mapping
->i_pages
, index
, PAGECACHE_TAG_DIRTY
);
1770 entry
= lock_slot(mapping
, slot
);
1771 xa_unlock_irq(&mapping
->i_pages
);
1774 ret
= vmf_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1776 #ifdef CONFIG_FS_DAX_PMD
1778 ret
= vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1783 ret
= VM_FAULT_FALLBACK
;
1785 put_locked_mapping_entry(mapping
, index
);
1786 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, ret
);
1791 * dax_finish_sync_fault - finish synchronous page fault
1792 * @vmf: The description of the fault
1793 * @pe_size: Size of entry to be inserted
1794 * @pfn: PFN to insert
1796 * This function ensures that the file range touched by the page fault is
1797 * stored persistently on the media and handles inserting of appropriate page
1800 vm_fault_t
dax_finish_sync_fault(struct vm_fault
*vmf
,
1801 enum page_entry_size pe_size
, pfn_t pfn
)
1804 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1807 if (pe_size
== PE_SIZE_PTE
)
1809 else if (pe_size
== PE_SIZE_PMD
)
1813 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1815 return VM_FAULT_SIGBUS
;
1816 return dax_insert_pfn_mkwrite(vmf
, pe_size
, pfn
);
1818 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);