2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
42 * This is stored as mr->r_trans_private.
45 struct rds_iw_device
*device
;
46 struct rds_iw_mr_pool
*pool
;
47 struct rdma_cm_id
*cm_id
;
50 struct ib_fast_reg_page_list
*page_list
;
52 struct rds_iw_mapping mapping
;
53 unsigned char remap_count
;
57 * Our own little MR pool
59 struct rds_iw_mr_pool
{
60 struct rds_iw_device
*device
; /* back ptr to the device that owns us */
62 struct mutex flush_lock
; /* serialize fmr invalidate */
63 struct work_struct flush_worker
; /* flush worker */
65 spinlock_t list_lock
; /* protect variables below */
66 atomic_t item_count
; /* total # of MRs */
67 atomic_t dirty_count
; /* # dirty of MRs */
68 struct list_head dirty_list
; /* dirty mappings */
69 struct list_head clean_list
; /* unused & unamapped MRs */
70 atomic_t free_pinned
; /* memory pinned by free MRs */
71 unsigned long max_message_size
; /* in pages */
72 unsigned long max_items
;
73 unsigned long max_items_soft
;
74 unsigned long max_free_pinned
;
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool
*pool
, int free_all
);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct
*work
);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool
*pool
,
82 struct rds_iw_mr
*ibmr
,
83 struct scatterlist
*sg
, unsigned int nents
);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool
*pool
,
86 struct list_head
*unmap_list
,
87 struct list_head
*kill_list
,
89 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
91 static int rds_iw_get_device(struct sockaddr_in
*src
, struct sockaddr_in
*dst
,
92 struct rds_iw_device
**rds_iwdev
,
93 struct rdma_cm_id
**cm_id
)
95 struct rds_iw_device
*iwdev
;
96 struct rds_iw_cm_id
*i_cm_id
;
101 list_for_each_entry(iwdev
, &rds_iw_devices
, list
) {
102 spin_lock_irq(&iwdev
->spinlock
);
103 list_for_each_entry(i_cm_id
, &iwdev
->cm_id_list
, list
) {
104 struct sockaddr_in
*src_addr
, *dst_addr
;
106 src_addr
= (struct sockaddr_in
*)&i_cm_id
->cm_id
->route
.addr
.src_addr
;
107 dst_addr
= (struct sockaddr_in
*)&i_cm_id
->cm_id
->route
.addr
.dst_addr
;
109 rdsdebug("local ipaddr = %x port %d, "
110 "remote ipaddr = %x port %d"
111 "..looking for %x port %d, "
112 "remote ipaddr = %x port %d\n",
113 src_addr
->sin_addr
.s_addr
,
115 dst_addr
->sin_addr
.s_addr
,
117 src
->sin_addr
.s_addr
,
119 dst
->sin_addr
.s_addr
,
121 #ifdef WORKING_TUPLE_DETECTION
122 if (src_addr
->sin_addr
.s_addr
== src
->sin_addr
.s_addr
&&
123 src_addr
->sin_port
== src
->sin_port
&&
124 dst_addr
->sin_addr
.s_addr
== dst
->sin_addr
.s_addr
&&
125 dst_addr
->sin_port
== dst
->sin_port
) {
127 /* FIXME - needs to compare the local and remote
128 * ipaddr/port tuple, but the ipaddr is the only
129 * available information in the rds_sock (as the rest are
130 * zero'ed. It doesn't appear to be properly populated
131 * during connection setup...
133 if (src_addr
->sin_addr
.s_addr
== src
->sin_addr
.s_addr
) {
135 spin_unlock_irq(&iwdev
->spinlock
);
137 *cm_id
= i_cm_id
->cm_id
;
141 spin_unlock_irq(&iwdev
->spinlock
);
147 static int rds_iw_add_cm_id(struct rds_iw_device
*rds_iwdev
, struct rdma_cm_id
*cm_id
)
149 struct rds_iw_cm_id
*i_cm_id
;
151 i_cm_id
= kmalloc(sizeof *i_cm_id
, GFP_KERNEL
);
155 i_cm_id
->cm_id
= cm_id
;
157 spin_lock_irq(&rds_iwdev
->spinlock
);
158 list_add_tail(&i_cm_id
->list
, &rds_iwdev
->cm_id_list
);
159 spin_unlock_irq(&rds_iwdev
->spinlock
);
164 static void rds_iw_remove_cm_id(struct rds_iw_device
*rds_iwdev
,
165 struct rdma_cm_id
*cm_id
)
167 struct rds_iw_cm_id
*i_cm_id
;
169 spin_lock_irq(&rds_iwdev
->spinlock
);
170 list_for_each_entry(i_cm_id
, &rds_iwdev
->cm_id_list
, list
) {
171 if (i_cm_id
->cm_id
== cm_id
) {
172 list_del(&i_cm_id
->list
);
177 spin_unlock_irq(&rds_iwdev
->spinlock
);
181 int rds_iw_update_cm_id(struct rds_iw_device
*rds_iwdev
, struct rdma_cm_id
*cm_id
)
183 struct sockaddr_in
*src_addr
, *dst_addr
;
184 struct rds_iw_device
*rds_iwdev_old
;
185 struct rdma_cm_id
*pcm_id
;
188 src_addr
= (struct sockaddr_in
*)&cm_id
->route
.addr
.src_addr
;
189 dst_addr
= (struct sockaddr_in
*)&cm_id
->route
.addr
.dst_addr
;
191 rc
= rds_iw_get_device(src_addr
, dst_addr
, &rds_iwdev_old
, &pcm_id
);
193 rds_iw_remove_cm_id(rds_iwdev
, cm_id
);
195 return rds_iw_add_cm_id(rds_iwdev
, cm_id
);
198 void rds_iw_add_conn(struct rds_iw_device
*rds_iwdev
, struct rds_connection
*conn
)
200 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
202 /* conn was previously on the nodev_conns_list */
203 spin_lock_irq(&iw_nodev_conns_lock
);
204 BUG_ON(list_empty(&iw_nodev_conns
));
205 BUG_ON(list_empty(&ic
->iw_node
));
206 list_del(&ic
->iw_node
);
208 spin_lock(&rds_iwdev
->spinlock
);
209 list_add_tail(&ic
->iw_node
, &rds_iwdev
->conn_list
);
210 spin_unlock(&rds_iwdev
->spinlock
);
211 spin_unlock_irq(&iw_nodev_conns_lock
);
213 ic
->rds_iwdev
= rds_iwdev
;
216 void rds_iw_remove_conn(struct rds_iw_device
*rds_iwdev
, struct rds_connection
*conn
)
218 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
220 /* place conn on nodev_conns_list */
221 spin_lock(&iw_nodev_conns_lock
);
223 spin_lock_irq(&rds_iwdev
->spinlock
);
224 BUG_ON(list_empty(&ic
->iw_node
));
225 list_del(&ic
->iw_node
);
226 spin_unlock_irq(&rds_iwdev
->spinlock
);
228 list_add_tail(&ic
->iw_node
, &iw_nodev_conns
);
230 spin_unlock(&iw_nodev_conns_lock
);
232 rds_iw_remove_cm_id(ic
->rds_iwdev
, ic
->i_cm_id
);
233 ic
->rds_iwdev
= NULL
;
236 void __rds_iw_destroy_conns(struct list_head
*list
, spinlock_t
*list_lock
)
238 struct rds_iw_connection
*ic
, *_ic
;
241 /* avoid calling conn_destroy with irqs off */
242 spin_lock_irq(list_lock
);
243 list_splice(list
, &tmp_list
);
244 INIT_LIST_HEAD(list
);
245 spin_unlock_irq(list_lock
);
247 list_for_each_entry_safe(ic
, _ic
, &tmp_list
, iw_node
)
248 rds_conn_destroy(ic
->conn
);
251 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist
*sg
,
252 struct scatterlist
*list
, unsigned int sg_len
)
261 static u64
*rds_iw_map_scatterlist(struct rds_iw_device
*rds_iwdev
,
262 struct rds_iw_scatterlist
*sg
)
264 struct ib_device
*dev
= rds_iwdev
->dev
;
265 u64
*dma_pages
= NULL
;
268 WARN_ON(sg
->dma_len
);
270 sg
->dma_len
= ib_dma_map_sg(dev
, sg
->list
, sg
->len
, DMA_BIDIRECTIONAL
);
271 if (unlikely(!sg
->dma_len
)) {
272 printk(KERN_WARNING
"RDS/IW: dma_map_sg failed!\n");
273 return ERR_PTR(-EBUSY
);
280 for (i
= 0; i
< sg
->dma_len
; ++i
) {
281 unsigned int dma_len
= ib_sg_dma_len(dev
, &sg
->list
[i
]);
282 u64 dma_addr
= ib_sg_dma_address(dev
, &sg
->list
[i
]);
285 sg
->bytes
+= dma_len
;
287 end_addr
= dma_addr
+ dma_len
;
288 if (dma_addr
& PAGE_MASK
) {
291 dma_addr
&= ~PAGE_MASK
;
293 if (end_addr
& PAGE_MASK
) {
294 if (i
< sg
->dma_len
- 1)
296 end_addr
= (end_addr
+ PAGE_MASK
) & ~PAGE_MASK
;
299 sg
->dma_npages
+= (end_addr
- dma_addr
) >> PAGE_SHIFT
;
302 /* Now gather the dma addrs into one list */
303 if (sg
->dma_npages
> fastreg_message_size
)
306 dma_pages
= kmalloc(sizeof(u64
) * sg
->dma_npages
, GFP_ATOMIC
);
312 for (i
= j
= 0; i
< sg
->dma_len
; ++i
) {
313 unsigned int dma_len
= ib_sg_dma_len(dev
, &sg
->list
[i
]);
314 u64 dma_addr
= ib_sg_dma_address(dev
, &sg
->list
[i
]);
317 end_addr
= dma_addr
+ dma_len
;
318 dma_addr
&= ~PAGE_MASK
;
319 for (; dma_addr
< end_addr
; dma_addr
+= PAGE_SIZE
)
320 dma_pages
[j
++] = dma_addr
;
321 BUG_ON(j
> sg
->dma_npages
);
327 ib_dma_unmap_sg(rds_iwdev
->dev
, sg
->list
, sg
->len
, DMA_BIDIRECTIONAL
);
334 struct rds_iw_mr_pool
*rds_iw_create_mr_pool(struct rds_iw_device
*rds_iwdev
)
336 struct rds_iw_mr_pool
*pool
;
338 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
340 printk(KERN_WARNING
"RDS/IW: rds_iw_create_mr_pool alloc error\n");
341 return ERR_PTR(-ENOMEM
);
344 pool
->device
= rds_iwdev
;
345 INIT_LIST_HEAD(&pool
->dirty_list
);
346 INIT_LIST_HEAD(&pool
->clean_list
);
347 mutex_init(&pool
->flush_lock
);
348 spin_lock_init(&pool
->list_lock
);
349 INIT_WORK(&pool
->flush_worker
, rds_iw_mr_pool_flush_worker
);
351 pool
->max_message_size
= fastreg_message_size
;
352 pool
->max_items
= fastreg_pool_size
;
353 pool
->max_free_pinned
= pool
->max_items
* pool
->max_message_size
/ 4;
354 pool
->max_pages
= fastreg_message_size
;
356 /* We never allow more than max_items MRs to be allocated.
357 * When we exceed more than max_items_soft, we start freeing
358 * items more aggressively.
359 * Make sure that max_items > max_items_soft > max_items / 2
361 pool
->max_items_soft
= pool
->max_items
* 3 / 4;
366 void rds_iw_get_mr_info(struct rds_iw_device
*rds_iwdev
, struct rds_info_rdma_connection
*iinfo
)
368 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
370 iinfo
->rdma_mr_max
= pool
->max_items
;
371 iinfo
->rdma_mr_size
= pool
->max_pages
;
374 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool
*pool
)
376 flush_workqueue(rds_wq
);
377 rds_iw_flush_mr_pool(pool
, 1);
378 BUG_ON(atomic_read(&pool
->item_count
));
379 BUG_ON(atomic_read(&pool
->free_pinned
));
383 static inline struct rds_iw_mr
*rds_iw_reuse_fmr(struct rds_iw_mr_pool
*pool
)
385 struct rds_iw_mr
*ibmr
= NULL
;
388 spin_lock_irqsave(&pool
->list_lock
, flags
);
389 if (!list_empty(&pool
->clean_list
)) {
390 ibmr
= list_entry(pool
->clean_list
.next
, struct rds_iw_mr
, mapping
.m_list
);
391 list_del_init(&ibmr
->mapping
.m_list
);
393 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
398 static struct rds_iw_mr
*rds_iw_alloc_mr(struct rds_iw_device
*rds_iwdev
)
400 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
401 struct rds_iw_mr
*ibmr
= NULL
;
402 int err
= 0, iter
= 0;
405 ibmr
= rds_iw_reuse_fmr(pool
);
409 /* No clean MRs - now we have the choice of either
410 * allocating a fresh MR up to the limit imposed by the
411 * driver, or flush any dirty unused MRs.
412 * We try to avoid stalling in the send path if possible,
413 * so we allocate as long as we're allowed to.
415 * We're fussy with enforcing the FMR limit, though. If the driver
416 * tells us we can't use more than N fmrs, we shouldn't start
418 if (atomic_inc_return(&pool
->item_count
) <= pool
->max_items
)
421 atomic_dec(&pool
->item_count
);
424 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted
);
425 return ERR_PTR(-EAGAIN
);
428 /* We do have some empty MRs. Flush them out. */
429 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait
);
430 rds_iw_flush_mr_pool(pool
, 0);
433 ibmr
= kzalloc(sizeof(*ibmr
), GFP_KERNEL
);
439 spin_lock_init(&ibmr
->mapping
.m_lock
);
440 INIT_LIST_HEAD(&ibmr
->mapping
.m_list
);
441 ibmr
->mapping
.m_mr
= ibmr
;
443 err
= rds_iw_init_fastreg(pool
, ibmr
);
447 rds_iw_stats_inc(s_iw_rdma_mr_alloc
);
452 rds_iw_destroy_fastreg(pool
, ibmr
);
455 atomic_dec(&pool
->item_count
);
459 void rds_iw_sync_mr(void *trans_private
, int direction
)
461 struct rds_iw_mr
*ibmr
= trans_private
;
462 struct rds_iw_device
*rds_iwdev
= ibmr
->device
;
465 case DMA_FROM_DEVICE
:
466 ib_dma_sync_sg_for_cpu(rds_iwdev
->dev
, ibmr
->mapping
.m_sg
.list
,
467 ibmr
->mapping
.m_sg
.dma_len
, DMA_BIDIRECTIONAL
);
470 ib_dma_sync_sg_for_device(rds_iwdev
->dev
, ibmr
->mapping
.m_sg
.list
,
471 ibmr
->mapping
.m_sg
.dma_len
, DMA_BIDIRECTIONAL
);
477 * Flush our pool of MRs.
478 * At a minimum, all currently unused MRs are unmapped.
479 * If the number of MRs allocated exceeds the limit, we also try
480 * to free as many MRs as needed to get back to this limit.
482 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool
*pool
, int free_all
)
484 struct rds_iw_mr
*ibmr
, *next
;
485 LIST_HEAD(unmap_list
);
486 LIST_HEAD(kill_list
);
488 unsigned int nfreed
= 0, ncleaned
= 0, unpinned
= 0;
491 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush
);
493 mutex_lock(&pool
->flush_lock
);
495 spin_lock_irqsave(&pool
->list_lock
, flags
);
496 /* Get the list of all mappings to be destroyed */
497 list_splice_init(&pool
->dirty_list
, &unmap_list
);
499 list_splice_init(&pool
->clean_list
, &kill_list
);
500 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
502 /* Batched invalidate of dirty MRs.
503 * For FMR based MRs, the mappings on the unmap list are
504 * actually members of an ibmr (ibmr->mapping). They either
505 * migrate to the kill_list, or have been cleaned and should be
506 * moved to the clean_list.
507 * For fastregs, they will be dynamically allocated, and
508 * will be destroyed by the unmap function.
510 if (!list_empty(&unmap_list
)) {
511 ncleaned
= rds_iw_unmap_fastreg_list(pool
, &unmap_list
,
512 &kill_list
, &unpinned
);
513 /* If we've been asked to destroy all MRs, move those
514 * that were simply cleaned to the kill list */
516 list_splice_init(&unmap_list
, &kill_list
);
519 /* Destroy any MRs that are past their best before date */
520 list_for_each_entry_safe(ibmr
, next
, &kill_list
, mapping
.m_list
) {
521 rds_iw_stats_inc(s_iw_rdma_mr_free
);
522 list_del(&ibmr
->mapping
.m_list
);
523 rds_iw_destroy_fastreg(pool
, ibmr
);
528 /* Anything that remains are laundered ibmrs, which we can add
529 * back to the clean list. */
530 if (!list_empty(&unmap_list
)) {
531 spin_lock_irqsave(&pool
->list_lock
, flags
);
532 list_splice(&unmap_list
, &pool
->clean_list
);
533 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
536 atomic_sub(unpinned
, &pool
->free_pinned
);
537 atomic_sub(ncleaned
, &pool
->dirty_count
);
538 atomic_sub(nfreed
, &pool
->item_count
);
540 mutex_unlock(&pool
->flush_lock
);
544 static void rds_iw_mr_pool_flush_worker(struct work_struct
*work
)
546 struct rds_iw_mr_pool
*pool
= container_of(work
, struct rds_iw_mr_pool
, flush_worker
);
548 rds_iw_flush_mr_pool(pool
, 0);
551 void rds_iw_free_mr(void *trans_private
, int invalidate
)
553 struct rds_iw_mr
*ibmr
= trans_private
;
554 struct rds_iw_mr_pool
*pool
= ibmr
->device
->mr_pool
;
556 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr
->mapping
.m_sg
.len
);
560 /* Return it to the pool's free list */
561 rds_iw_free_fastreg(pool
, ibmr
);
563 /* If we've pinned too many pages, request a flush */
564 if (atomic_read(&pool
->free_pinned
) >= pool
->max_free_pinned
||
565 atomic_read(&pool
->dirty_count
) >= pool
->max_items
/ 10)
566 queue_work(rds_wq
, &pool
->flush_worker
);
569 if (likely(!in_interrupt())) {
570 rds_iw_flush_mr_pool(pool
, 0);
572 /* We get here if the user created a MR marked
573 * as use_once and invalidate at the same time. */
574 queue_work(rds_wq
, &pool
->flush_worker
);
579 void rds_iw_flush_mrs(void)
581 struct rds_iw_device
*rds_iwdev
;
583 list_for_each_entry(rds_iwdev
, &rds_iw_devices
, list
) {
584 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
587 rds_iw_flush_mr_pool(pool
, 0);
591 void *rds_iw_get_mr(struct scatterlist
*sg
, unsigned long nents
,
592 struct rds_sock
*rs
, u32
*key_ret
)
594 struct rds_iw_device
*rds_iwdev
;
595 struct rds_iw_mr
*ibmr
= NULL
;
596 struct rdma_cm_id
*cm_id
;
597 struct sockaddr_in src
= {
598 .sin_addr
.s_addr
= rs
->rs_bound_addr
,
599 .sin_port
= rs
->rs_bound_port
,
601 struct sockaddr_in dst
= {
602 .sin_addr
.s_addr
= rs
->rs_conn_addr
,
603 .sin_port
= rs
->rs_conn_port
,
607 ret
= rds_iw_get_device(&src
, &dst
, &rds_iwdev
, &cm_id
);
613 if (!rds_iwdev
->mr_pool
) {
618 ibmr
= rds_iw_alloc_mr(rds_iwdev
);
623 ibmr
->device
= rds_iwdev
;
625 ret
= rds_iw_map_fastreg(rds_iwdev
->mr_pool
, ibmr
, sg
, nents
);
627 *key_ret
= ibmr
->mr
->rkey
;
629 printk(KERN_WARNING
"RDS/IW: failed to map mr (errno=%d)\n", ret
);
634 rds_iw_free_mr(ibmr
, 0);
641 * iWARP fastreg handling
643 * The life cycle of a fastreg registration is a bit different from
645 * The idea behind fastreg is to have one MR, to which we bind different
646 * mappings over time. To avoid stalling on the expensive map and invalidate
647 * operations, these operations are pipelined on the same send queue on
648 * which we want to send the message containing the r_key.
650 * This creates a bit of a problem for us, as we do not have the destination
651 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
652 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
653 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
654 * before queuing the SEND. When completions for these arrive, they are
655 * dispatched to the MR has a bit set showing that RDMa can be performed.
657 * There is another interesting aspect that's related to invalidation.
658 * The application can request that a mapping is invalidated in FREE_MR.
659 * The expectation there is that this invalidation step includes ALL
660 * PREVIOUSLY FREED MRs.
662 static int rds_iw_init_fastreg(struct rds_iw_mr_pool
*pool
,
663 struct rds_iw_mr
*ibmr
)
665 struct rds_iw_device
*rds_iwdev
= pool
->device
;
666 struct ib_fast_reg_page_list
*page_list
= NULL
;
670 mr
= ib_alloc_fast_reg_mr(rds_iwdev
->pd
, pool
->max_message_size
);
674 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err
);
678 /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
681 page_list
= ib_alloc_fast_reg_page_list(rds_iwdev
->dev
, pool
->max_message_size
);
682 if (IS_ERR(page_list
)) {
683 err
= PTR_ERR(page_list
);
685 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err
);
690 ibmr
->page_list
= page_list
;
695 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping
*mapping
)
697 struct rds_iw_mr
*ibmr
= mapping
->m_mr
;
698 struct ib_send_wr f_wr
, *failed_wr
;
702 * Perform a WR for the fast_reg_mr. Each individual page
703 * in the sg list is added to the fast reg page list and placed
704 * inside the fast_reg_mr WR. The key used is a rolling 8bit
705 * counter, which should guarantee uniqueness.
707 ib_update_fast_reg_key(ibmr
->mr
, ibmr
->remap_count
++);
708 mapping
->m_rkey
= ibmr
->mr
->rkey
;
710 memset(&f_wr
, 0, sizeof(f_wr
));
711 f_wr
.wr_id
= RDS_IW_FAST_REG_WR_ID
;
712 f_wr
.opcode
= IB_WR_FAST_REG_MR
;
713 f_wr
.wr
.fast_reg
.length
= mapping
->m_sg
.bytes
;
714 f_wr
.wr
.fast_reg
.rkey
= mapping
->m_rkey
;
715 f_wr
.wr
.fast_reg
.page_list
= ibmr
->page_list
;
716 f_wr
.wr
.fast_reg
.page_list_len
= mapping
->m_sg
.dma_len
;
717 f_wr
.wr
.fast_reg
.page_shift
= PAGE_SHIFT
;
718 f_wr
.wr
.fast_reg
.access_flags
= IB_ACCESS_LOCAL_WRITE
|
719 IB_ACCESS_REMOTE_READ
|
720 IB_ACCESS_REMOTE_WRITE
;
721 f_wr
.wr
.fast_reg
.iova_start
= 0;
722 f_wr
.send_flags
= IB_SEND_SIGNALED
;
725 ret
= ib_post_send(ibmr
->cm_id
->qp
, &f_wr
, &failed_wr
);
726 BUG_ON(failed_wr
!= &f_wr
);
728 printk_ratelimited(KERN_WARNING
"RDS/IW: %s:%d ib_post_send returned %d\n",
729 __func__
, __LINE__
, ret
);
733 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr
*ibmr
)
735 struct ib_send_wr s_wr
, *failed_wr
;
738 if (!ibmr
->cm_id
->qp
|| !ibmr
->mr
)
741 memset(&s_wr
, 0, sizeof(s_wr
));
742 s_wr
.wr_id
= RDS_IW_LOCAL_INV_WR_ID
;
743 s_wr
.opcode
= IB_WR_LOCAL_INV
;
744 s_wr
.ex
.invalidate_rkey
= ibmr
->mr
->rkey
;
745 s_wr
.send_flags
= IB_SEND_SIGNALED
;
748 ret
= ib_post_send(ibmr
->cm_id
->qp
, &s_wr
, &failed_wr
);
750 printk_ratelimited(KERN_WARNING
"RDS/IW: %s:%d ib_post_send returned %d\n",
751 __func__
, __LINE__
, ret
);
758 static int rds_iw_map_fastreg(struct rds_iw_mr_pool
*pool
,
759 struct rds_iw_mr
*ibmr
,
760 struct scatterlist
*sg
,
763 struct rds_iw_device
*rds_iwdev
= pool
->device
;
764 struct rds_iw_mapping
*mapping
= &ibmr
->mapping
;
768 rds_iw_set_scatterlist(&mapping
->m_sg
, sg
, sg_len
);
770 dma_pages
= rds_iw_map_scatterlist(rds_iwdev
, &mapping
->m_sg
);
771 if (IS_ERR(dma_pages
)) {
772 ret
= PTR_ERR(dma_pages
);
777 if (mapping
->m_sg
.dma_len
> pool
->max_message_size
) {
782 for (i
= 0; i
< mapping
->m_sg
.dma_npages
; ++i
)
783 ibmr
->page_list
->page_list
[i
] = dma_pages
[i
];
785 ret
= rds_iw_rdma_build_fastreg(mapping
);
789 rds_iw_stats_inc(s_iw_rdma_mr_used
);
798 * "Free" a fastreg MR.
800 static void rds_iw_free_fastreg(struct rds_iw_mr_pool
*pool
,
801 struct rds_iw_mr
*ibmr
)
806 if (!ibmr
->mapping
.m_sg
.dma_len
)
809 ret
= rds_iw_rdma_fastreg_inv(ibmr
);
813 /* Try to post the LOCAL_INV WR to the queue. */
814 spin_lock_irqsave(&pool
->list_lock
, flags
);
816 list_add_tail(&ibmr
->mapping
.m_list
, &pool
->dirty_list
);
817 atomic_add(ibmr
->mapping
.m_sg
.len
, &pool
->free_pinned
);
818 atomic_inc(&pool
->dirty_count
);
820 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
823 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool
*pool
,
824 struct list_head
*unmap_list
,
825 struct list_head
*kill_list
,
828 struct rds_iw_mapping
*mapping
, *next
;
829 unsigned int ncleaned
= 0;
830 LIST_HEAD(laundered
);
832 /* Batched invalidation of fastreg MRs.
833 * Why do we do it this way, even though we could pipeline unmap
834 * and remap? The reason is the application semantics - when the
835 * application requests an invalidation of MRs, it expects all
836 * previously released R_Keys to become invalid.
838 * If we implement MR reuse naively, we risk memory corruption
839 * (this has actually been observed). So the default behavior
840 * requires that a MR goes through an explicit unmap operation before
841 * we can reuse it again.
843 * We could probably improve on this a little, by allowing immediate
844 * reuse of a MR on the same socket (eg you could add small
845 * cache of unused MRs to strct rds_socket - GET_MR could grab one
846 * of these without requiring an explicit invalidate).
848 while (!list_empty(unmap_list
)) {
851 spin_lock_irqsave(&pool
->list_lock
, flags
);
852 list_for_each_entry_safe(mapping
, next
, unmap_list
, m_list
) {
853 *unpinned
+= mapping
->m_sg
.len
;
854 list_move(&mapping
->m_list
, &laundered
);
857 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
860 /* Move all laundered mappings back to the unmap list.
861 * We do not kill any WRs right now - it doesn't seem the
862 * fastreg API has a max_remap limit. */
863 list_splice_init(&laundered
, unmap_list
);
868 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool
*pool
,
869 struct rds_iw_mr
*ibmr
)
872 ib_free_fast_reg_page_list(ibmr
->page_list
);
874 ib_dereg_mr(ibmr
->mr
);