2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #define REG_DBG_PRINT(args...)
69 * enum reg_request_treatment - regulatory request treatment
71 * @REG_REQ_OK: continue processing the regulatory request
72 * @REG_REQ_IGNORE: ignore the regulatory request
73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74 * be intersected with the current one.
75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76 * regulatory settings, and no further processing is required.
77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
78 * further processing is required, i.e., not need to update last_request
79 * etc. This should be used for user hints that do not provide an alpha2
80 * but some other type of regulatory hint, i.e., indoor operation.
82 enum reg_request_treatment
{
87 REG_REQ_USER_HINT_HANDLED
,
90 static struct regulatory_request core_request_world
= {
91 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
96 .country_ie_env
= ENVIRON_ANY
,
100 * Receipt of information from last regulatory request,
101 * protected by RTNL (and can be accessed with RCU protection)
103 static struct regulatory_request __rcu
*last_request
=
104 (void __rcu
*)&core_request_world
;
106 /* To trigger userspace events */
107 static struct platform_device
*reg_pdev
;
110 * Central wireless core regulatory domains, we only need two,
111 * the current one and a world regulatory domain in case we have no
112 * information to give us an alpha2.
113 * (protected by RTNL, can be read under RCU)
115 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
118 * Number of devices that registered to the core
119 * that support cellular base station regulatory hints
120 * (protected by RTNL)
122 static int reg_num_devs_support_basehint
;
125 * State variable indicating if the platform on which the devices
126 * are attached is operating in an indoor environment. The state variable
127 * is relevant for all registered devices.
128 * (protected by RTNL)
130 static bool reg_is_indoor
;
132 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
134 return rtnl_dereference(cfg80211_regdomain
);
137 static const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
139 return rtnl_dereference(wiphy
->regd
);
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
144 switch (dfs_region
) {
145 case NL80211_DFS_UNSET
:
147 case NL80211_DFS_FCC
:
149 case NL80211_DFS_ETSI
:
157 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
159 const struct ieee80211_regdomain
*regd
= NULL
;
160 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
162 regd
= get_cfg80211_regdom();
166 wiphy_regd
= get_wiphy_regdom(wiphy
);
170 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
173 REG_DBG_PRINT("%s: device specific dfs_region "
174 "(%s) disagrees with cfg80211's "
175 "central dfs_region (%s)\n",
176 dev_name(&wiphy
->dev
),
177 reg_dfs_region_str(wiphy_regd
->dfs_region
),
178 reg_dfs_region_str(regd
->dfs_region
));
181 return regd
->dfs_region
;
184 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
188 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
191 static struct regulatory_request
*get_last_request(void)
193 return rcu_dereference_rtnl(last_request
);
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list
);
198 static spinlock_t reg_requests_lock
;
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons
);
202 static spinlock_t reg_pending_beacons_lock
;
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list
);
208 struct list_head list
;
209 struct ieee80211_channel chan
;
212 static void reg_todo(struct work_struct
*work
);
213 static DECLARE_WORK(reg_work
, reg_todo
);
215 static void reg_timeout_work(struct work_struct
*work
);
216 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom
= {
223 /* IEEE 802.11b/g, channels 1..11 */
224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 /* IEEE 802.11b/g, channels 12..13. */
226 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 /* IEEE 802.11 channel 14 - Only JP enables
229 * this and for 802.11b only */
230 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_OFDM
),
233 /* IEEE 802.11a, channel 36..48 */
234 REG_RULE(5180-10, 5240+10, 160, 6, 20,
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 160, 6, 20,
242 /* IEEE 802.11a, channel 100..144 - DFS required */
243 REG_RULE(5500-10, 5720+10, 160, 6, 20,
247 /* IEEE 802.11a, channel 149..165 */
248 REG_RULE(5745-10, 5825+10, 80, 6, 20,
251 /* IEEE 802.11ad (60gHz), channels 1..3 */
252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
260 static char *ieee80211_regdom
= "00";
261 static char user_alpha2
[2];
263 module_param(ieee80211_regdom
, charp
, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
266 static void reg_free_request(struct regulatory_request
*request
)
268 if (request
!= get_last_request())
272 static void reg_free_last_request(void)
274 struct regulatory_request
*lr
= get_last_request();
276 if (lr
!= &core_request_world
&& lr
)
277 kfree_rcu(lr
, rcu_head
);
280 static void reg_update_last_request(struct regulatory_request
*request
)
282 struct regulatory_request
*lr
;
284 lr
= get_last_request();
288 reg_free_last_request();
289 rcu_assign_pointer(last_request
, request
);
292 static void reset_regdomains(bool full_reset
,
293 const struct ieee80211_regdomain
*new_regdom
)
295 const struct ieee80211_regdomain
*r
;
299 r
= get_cfg80211_regdom();
301 /* avoid freeing static information or freeing something twice */
302 if (r
== cfg80211_world_regdom
)
304 if (cfg80211_world_regdom
== &world_regdom
)
305 cfg80211_world_regdom
= NULL
;
306 if (r
== &world_regdom
)
310 rcu_free_regdom(cfg80211_world_regdom
);
312 cfg80211_world_regdom
= &world_regdom
;
313 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
318 reg_update_last_request(&core_request_world
);
322 * Dynamic world regulatory domain requested by the wireless
323 * core upon initialization
325 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
327 struct regulatory_request
*lr
;
329 lr
= get_last_request();
333 reset_regdomains(false, rd
);
335 cfg80211_world_regdom
= rd
;
338 bool is_world_regdom(const char *alpha2
)
342 return alpha2
[0] == '0' && alpha2
[1] == '0';
345 static bool is_alpha2_set(const char *alpha2
)
349 return alpha2
[0] && alpha2
[1];
352 static bool is_unknown_alpha2(const char *alpha2
)
357 * Special case where regulatory domain was built by driver
358 * but a specific alpha2 cannot be determined
360 return alpha2
[0] == '9' && alpha2
[1] == '9';
363 static bool is_intersected_alpha2(const char *alpha2
)
368 * Special case where regulatory domain is the
369 * result of an intersection between two regulatory domain
372 return alpha2
[0] == '9' && alpha2
[1] == '8';
375 static bool is_an_alpha2(const char *alpha2
)
379 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
382 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
384 if (!alpha2_x
|| !alpha2_y
)
386 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
389 static bool regdom_changes(const char *alpha2
)
391 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
395 return !alpha2_equal(r
->alpha2
, alpha2
);
399 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
400 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
401 * has ever been issued.
403 static bool is_user_regdom_saved(void)
405 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
408 /* This would indicate a mistake on the design */
409 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
410 "Unexpected user alpha2: %c%c\n",
411 user_alpha2
[0], user_alpha2
[1]))
417 static const struct ieee80211_regdomain
*
418 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
420 struct ieee80211_regdomain
*regd
;
425 sizeof(struct ieee80211_regdomain
) +
426 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
428 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
430 return ERR_PTR(-ENOMEM
);
432 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
434 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
435 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
436 sizeof(struct ieee80211_reg_rule
));
441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
442 struct reg_regdb_search_request
{
444 struct list_head list
;
447 static LIST_HEAD(reg_regdb_search_list
);
448 static DEFINE_MUTEX(reg_regdb_search_mutex
);
450 static void reg_regdb_search(struct work_struct
*work
)
452 struct reg_regdb_search_request
*request
;
453 const struct ieee80211_regdomain
*curdom
, *regdom
= NULL
;
458 mutex_lock(®_regdb_search_mutex
);
459 while (!list_empty(®_regdb_search_list
)) {
460 request
= list_first_entry(®_regdb_search_list
,
461 struct reg_regdb_search_request
,
463 list_del(&request
->list
);
465 for (i
= 0; i
< reg_regdb_size
; i
++) {
466 curdom
= reg_regdb
[i
];
468 if (alpha2_equal(request
->alpha2
, curdom
->alpha2
)) {
469 regdom
= reg_copy_regd(curdom
);
476 mutex_unlock(®_regdb_search_mutex
);
478 if (!IS_ERR_OR_NULL(regdom
))
484 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
486 static void reg_regdb_query(const char *alpha2
)
488 struct reg_regdb_search_request
*request
;
493 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
497 memcpy(request
->alpha2
, alpha2
, 2);
499 mutex_lock(®_regdb_search_mutex
);
500 list_add_tail(&request
->list
, ®_regdb_search_list
);
501 mutex_unlock(®_regdb_search_mutex
);
503 schedule_work(®_regdb_work
);
506 /* Feel free to add any other sanity checks here */
507 static void reg_regdb_size_check(void)
509 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
510 WARN_ONCE(!reg_regdb_size
, "db.txt is empty, you should update it...");
513 static inline void reg_regdb_size_check(void) {}
514 static inline void reg_regdb_query(const char *alpha2
) {}
515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
518 * This lets us keep regulatory code which is updated on a regulatory
519 * basis in userspace.
521 static int call_crda(const char *alpha2
)
524 char *env
[] = { country
, NULL
};
526 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
527 alpha2
[0], alpha2
[1]);
529 if (!is_world_regdom((char *) alpha2
))
530 pr_info("Calling CRDA for country: %c%c\n",
531 alpha2
[0], alpha2
[1]);
533 pr_info("Calling CRDA to update world regulatory domain\n");
535 /* query internal regulatory database (if it exists) */
536 reg_regdb_query(alpha2
);
538 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
541 static enum reg_request_treatment
542 reg_call_crda(struct regulatory_request
*request
)
544 if (call_crda(request
->alpha2
))
545 return REG_REQ_IGNORE
;
549 bool reg_is_valid_request(const char *alpha2
)
551 struct regulatory_request
*lr
= get_last_request();
553 if (!lr
|| lr
->processed
)
556 return alpha2_equal(lr
->alpha2
, alpha2
);
559 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
561 struct regulatory_request
*lr
= get_last_request();
564 * Follow the driver's regulatory domain, if present, unless a country
565 * IE has been processed or a user wants to help complaince further
567 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
568 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
570 return get_wiphy_regdom(wiphy
);
572 return get_cfg80211_regdom();
575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
576 const struct ieee80211_reg_rule
*rule
)
578 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
579 const struct ieee80211_freq_range
*freq_range_tmp
;
580 const struct ieee80211_reg_rule
*tmp
;
581 u32 start_freq
, end_freq
, idx
, no
;
583 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
584 if (rule
== &rd
->reg_rules
[idx
])
587 if (idx
== rd
->n_reg_rules
)
594 tmp
= &rd
->reg_rules
[--no
];
595 freq_range_tmp
= &tmp
->freq_range
;
597 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
600 freq_range
= freq_range_tmp
;
603 start_freq
= freq_range
->start_freq_khz
;
606 freq_range
= &rule
->freq_range
;
609 while (no
< rd
->n_reg_rules
- 1) {
610 tmp
= &rd
->reg_rules
[++no
];
611 freq_range_tmp
= &tmp
->freq_range
;
613 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
616 freq_range
= freq_range_tmp
;
619 end_freq
= freq_range
->end_freq_khz
;
621 return end_freq
- start_freq
;
624 /* Sanity check on a regulatory rule */
625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
627 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
630 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
633 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
636 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
638 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
639 freq_range
->max_bandwidth_khz
> freq_diff
)
645 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
647 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
650 if (!rd
->n_reg_rules
)
653 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
656 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
657 reg_rule
= &rd
->reg_rules
[i
];
658 if (!is_valid_reg_rule(reg_rule
))
665 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
666 u32 center_freq_khz
, u32 bw_khz
)
668 u32 start_freq_khz
, end_freq_khz
;
670 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
671 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
673 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
674 end_freq_khz
<= freq_range
->end_freq_khz
)
681 * freq_in_rule_band - tells us if a frequency is in a frequency band
682 * @freq_range: frequency rule we want to query
683 * @freq_khz: frequency we are inquiring about
685 * This lets us know if a specific frequency rule is or is not relevant to
686 * a specific frequency's band. Bands are device specific and artificial
687 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
688 * however it is safe for now to assume that a frequency rule should not be
689 * part of a frequency's band if the start freq or end freq are off by more
690 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
692 * This resolution can be lowered and should be considered as we add
693 * regulatory rule support for other "bands".
695 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
698 #define ONE_GHZ_IN_KHZ 1000000
700 * From 802.11ad: directional multi-gigabit (DMG):
701 * Pertaining to operation in a frequency band containing a channel
702 * with the Channel starting frequency above 45 GHz.
704 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
705 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
706 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
708 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
711 #undef ONE_GHZ_IN_KHZ
715 * Later on we can perhaps use the more restrictive DFS
716 * region but we don't have information for that yet so
717 * for now simply disallow conflicts.
719 static enum nl80211_dfs_regions
720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
721 const enum nl80211_dfs_regions dfs_region2
)
723 if (dfs_region1
!= dfs_region2
)
724 return NL80211_DFS_UNSET
;
729 * Helper for regdom_intersect(), this does the real
730 * mathematical intersection fun
732 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
733 const struct ieee80211_regdomain
*rd2
,
734 const struct ieee80211_reg_rule
*rule1
,
735 const struct ieee80211_reg_rule
*rule2
,
736 struct ieee80211_reg_rule
*intersected_rule
)
738 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
739 struct ieee80211_freq_range
*freq_range
;
740 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
741 struct ieee80211_power_rule
*power_rule
;
742 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
744 freq_range1
= &rule1
->freq_range
;
745 freq_range2
= &rule2
->freq_range
;
746 freq_range
= &intersected_rule
->freq_range
;
748 power_rule1
= &rule1
->power_rule
;
749 power_rule2
= &rule2
->power_rule
;
750 power_rule
= &intersected_rule
->power_rule
;
752 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
753 freq_range2
->start_freq_khz
);
754 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
755 freq_range2
->end_freq_khz
);
757 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
758 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
760 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
761 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
762 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
763 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
765 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
767 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
770 * In case NL80211_RRF_AUTO_BW requested for both rules
771 * set AUTO_BW in intersected rule also. Next we will
772 * calculate BW correctly in handle_channel function.
773 * In other case remove AUTO_BW flag while we calculate
774 * maximum bandwidth correctly and auto calculation is
777 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
778 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
779 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
781 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
783 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
784 if (freq_range
->max_bandwidth_khz
> freq_diff
)
785 freq_range
->max_bandwidth_khz
= freq_diff
;
787 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
788 power_rule2
->max_eirp
);
789 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
790 power_rule2
->max_antenna_gain
);
792 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
795 if (!is_valid_reg_rule(intersected_rule
))
802 * regdom_intersect - do the intersection between two regulatory domains
803 * @rd1: first regulatory domain
804 * @rd2: second regulatory domain
806 * Use this function to get the intersection between two regulatory domains.
807 * Once completed we will mark the alpha2 for the rd as intersected, "98",
808 * as no one single alpha2 can represent this regulatory domain.
810 * Returns a pointer to the regulatory domain structure which will hold the
811 * resulting intersection of rules between rd1 and rd2. We will
812 * kzalloc() this structure for you.
814 static struct ieee80211_regdomain
*
815 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
816 const struct ieee80211_regdomain
*rd2
)
820 unsigned int num_rules
= 0, rule_idx
= 0;
821 const struct ieee80211_reg_rule
*rule1
, *rule2
;
822 struct ieee80211_reg_rule
*intersected_rule
;
823 struct ieee80211_regdomain
*rd
;
824 /* This is just a dummy holder to help us count */
825 struct ieee80211_reg_rule dummy_rule
;
831 * First we get a count of the rules we'll need, then we actually
832 * build them. This is to so we can malloc() and free() a
833 * regdomain once. The reason we use reg_rules_intersect() here
834 * is it will return -EINVAL if the rule computed makes no sense.
835 * All rules that do check out OK are valid.
838 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
839 rule1
= &rd1
->reg_rules
[x
];
840 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
841 rule2
= &rd2
->reg_rules
[y
];
842 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
851 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
852 num_rules
* sizeof(struct ieee80211_reg_rule
);
854 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
858 for (x
= 0; x
< rd1
->n_reg_rules
&& rule_idx
< num_rules
; x
++) {
859 rule1
= &rd1
->reg_rules
[x
];
860 for (y
= 0; y
< rd2
->n_reg_rules
&& rule_idx
< num_rules
; y
++) {
861 rule2
= &rd2
->reg_rules
[y
];
863 * This time around instead of using the stack lets
864 * write to the target rule directly saving ourselves
867 intersected_rule
= &rd
->reg_rules
[rule_idx
];
868 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
871 * No need to memset here the intersected rule here as
872 * we're not using the stack anymore
880 if (rule_idx
!= num_rules
) {
885 rd
->n_reg_rules
= num_rules
;
888 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
895 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
896 * want to just have the channel structure use these
898 static u32
map_regdom_flags(u32 rd_flags
)
900 u32 channel_flags
= 0;
901 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
902 channel_flags
|= IEEE80211_CHAN_NO_IR
;
903 if (rd_flags
& NL80211_RRF_DFS
)
904 channel_flags
|= IEEE80211_CHAN_RADAR
;
905 if (rd_flags
& NL80211_RRF_NO_OFDM
)
906 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
907 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
908 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
909 return channel_flags
;
912 static const struct ieee80211_reg_rule
*
913 freq_reg_info_regd(struct wiphy
*wiphy
, u32 center_freq
,
914 const struct ieee80211_regdomain
*regd
)
917 bool band_rule_found
= false;
918 bool bw_fits
= false;
921 return ERR_PTR(-EINVAL
);
923 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
924 const struct ieee80211_reg_rule
*rr
;
925 const struct ieee80211_freq_range
*fr
= NULL
;
927 rr
= ®d
->reg_rules
[i
];
928 fr
= &rr
->freq_range
;
931 * We only need to know if one frequency rule was
932 * was in center_freq's band, that's enough, so lets
933 * not overwrite it once found
935 if (!band_rule_found
)
936 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
938 bw_fits
= reg_does_bw_fit(fr
, center_freq
, MHZ_TO_KHZ(20));
940 if (band_rule_found
&& bw_fits
)
944 if (!band_rule_found
)
945 return ERR_PTR(-ERANGE
);
947 return ERR_PTR(-EINVAL
);
950 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
953 const struct ieee80211_regdomain
*regd
;
955 regd
= reg_get_regdomain(wiphy
);
957 return freq_reg_info_regd(wiphy
, center_freq
, regd
);
959 EXPORT_SYMBOL(freq_reg_info
);
961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
964 case NL80211_REGDOM_SET_BY_CORE
:
966 case NL80211_REGDOM_SET_BY_USER
:
968 case NL80211_REGDOM_SET_BY_DRIVER
:
970 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
977 EXPORT_SYMBOL(reg_initiator_name
);
979 #ifdef CONFIG_CFG80211_REG_DEBUG
980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain
*regd
,
981 struct ieee80211_channel
*chan
,
982 const struct ieee80211_reg_rule
*reg_rule
)
984 const struct ieee80211_power_rule
*power_rule
;
985 const struct ieee80211_freq_range
*freq_range
;
986 char max_antenna_gain
[32], bw
[32];
988 power_rule
= ®_rule
->power_rule
;
989 freq_range
= ®_rule
->freq_range
;
991 if (!power_rule
->max_antenna_gain
)
992 snprintf(max_antenna_gain
, sizeof(max_antenna_gain
), "N/A");
994 snprintf(max_antenna_gain
, sizeof(max_antenna_gain
), "%d",
995 power_rule
->max_antenna_gain
);
997 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
998 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
999 freq_range
->max_bandwidth_khz
,
1000 reg_get_max_bandwidth(regd
, reg_rule
));
1002 snprintf(bw
, sizeof(bw
), "%d KHz",
1003 freq_range
->max_bandwidth_khz
);
1005 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1008 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1009 freq_range
->start_freq_khz
, freq_range
->end_freq_khz
,
1010 bw
, max_antenna_gain
,
1011 power_rule
->max_eirp
);
1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain
*regd
,
1015 struct ieee80211_channel
*chan
,
1016 const struct ieee80211_reg_rule
*reg_rule
)
1023 * Note that right now we assume the desired channel bandwidth
1024 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1025 * per channel, the primary and the extension channel).
1027 static void handle_channel(struct wiphy
*wiphy
,
1028 enum nl80211_reg_initiator initiator
,
1029 struct ieee80211_channel
*chan
)
1031 u32 flags
, bw_flags
= 0;
1032 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1033 const struct ieee80211_power_rule
*power_rule
= NULL
;
1034 const struct ieee80211_freq_range
*freq_range
= NULL
;
1035 struct wiphy
*request_wiphy
= NULL
;
1036 struct regulatory_request
*lr
= get_last_request();
1037 const struct ieee80211_regdomain
*regd
;
1038 u32 max_bandwidth_khz
;
1040 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1042 flags
= chan
->orig_flags
;
1044 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1045 if (IS_ERR(reg_rule
)) {
1047 * We will disable all channels that do not match our
1048 * received regulatory rule unless the hint is coming
1049 * from a Country IE and the Country IE had no information
1050 * about a band. The IEEE 802.11 spec allows for an AP
1051 * to send only a subset of the regulatory rules allowed,
1052 * so an AP in the US that only supports 2.4 GHz may only send
1053 * a country IE with information for the 2.4 GHz band
1054 * while 5 GHz is still supported.
1056 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1057 PTR_ERR(reg_rule
) == -ERANGE
)
1060 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1061 request_wiphy
&& request_wiphy
== wiphy
&&
1062 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1063 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1065 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1066 chan
->flags
= chan
->orig_flags
;
1068 REG_DBG_PRINT("Disabling freq %d MHz\n",
1070 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1075 regd
= reg_get_regdomain(wiphy
);
1076 chan_reg_rule_print_dbg(regd
, chan
, reg_rule
);
1078 power_rule
= ®_rule
->power_rule
;
1079 freq_range
= ®_rule
->freq_range
;
1081 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1082 /* Check if auto calculation requested */
1083 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1084 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1086 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1087 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1088 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1089 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1090 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1091 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1093 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1094 request_wiphy
&& request_wiphy
== wiphy
&&
1095 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1097 * This guarantees the driver's requested regulatory domain
1098 * will always be used as a base for further regulatory
1101 chan
->flags
= chan
->orig_flags
=
1102 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1103 chan
->max_antenna_gain
= chan
->orig_mag
=
1104 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1105 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1106 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1108 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1109 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1110 if (reg_rule
->dfs_cac_ms
)
1111 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1117 chan
->dfs_state
= NL80211_DFS_USABLE
;
1118 chan
->dfs_state_entered
= jiffies
;
1120 chan
->beacon_found
= false;
1121 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1122 chan
->max_antenna_gain
=
1123 min_t(int, chan
->orig_mag
,
1124 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1125 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1127 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1128 if (reg_rule
->dfs_cac_ms
)
1129 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1131 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1134 if (chan
->orig_mpwr
) {
1136 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1137 * will always follow the passed country IE power settings.
1139 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1140 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1141 chan
->max_power
= chan
->max_reg_power
;
1143 chan
->max_power
= min(chan
->orig_mpwr
,
1144 chan
->max_reg_power
);
1146 chan
->max_power
= chan
->max_reg_power
;
1149 static void handle_band(struct wiphy
*wiphy
,
1150 enum nl80211_reg_initiator initiator
,
1151 struct ieee80211_supported_band
*sband
)
1158 for (i
= 0; i
< sband
->n_channels
; i
++)
1159 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1162 static bool reg_request_cell_base(struct regulatory_request
*request
)
1164 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1166 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1169 static bool reg_request_indoor(struct regulatory_request
*request
)
1171 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1173 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_INDOOR
;
1176 bool reg_last_request_cell_base(void)
1178 return reg_request_cell_base(get_last_request());
1181 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1182 /* Core specific check */
1183 static enum reg_request_treatment
1184 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1186 struct regulatory_request
*lr
= get_last_request();
1188 if (!reg_num_devs_support_basehint
)
1189 return REG_REQ_IGNORE
;
1191 if (reg_request_cell_base(lr
) &&
1192 !regdom_changes(pending_request
->alpha2
))
1193 return REG_REQ_ALREADY_SET
;
1198 /* Device specific check */
1199 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1201 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1204 static int reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1206 return REG_REQ_IGNORE
;
1209 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1215 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1217 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1218 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1223 static bool ignore_reg_update(struct wiphy
*wiphy
,
1224 enum nl80211_reg_initiator initiator
)
1226 struct regulatory_request
*lr
= get_last_request();
1229 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1230 "since last_request is not set\n",
1231 reg_initiator_name(initiator
));
1235 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1236 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1237 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1238 "since the driver uses its own custom "
1239 "regulatory domain\n",
1240 reg_initiator_name(initiator
));
1245 * wiphy->regd will be set once the device has its own
1246 * desired regulatory domain set
1248 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1249 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1250 !is_world_regdom(lr
->alpha2
)) {
1251 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1252 "since the driver requires its own regulatory "
1253 "domain to be set first\n",
1254 reg_initiator_name(initiator
));
1258 if (reg_request_cell_base(lr
))
1259 return reg_dev_ignore_cell_hint(wiphy
);
1264 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1266 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1267 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1268 struct regulatory_request
*lr
= get_last_request();
1270 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1273 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1274 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1280 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1281 struct reg_beacon
*reg_beacon
)
1283 struct ieee80211_supported_band
*sband
;
1284 struct ieee80211_channel
*chan
;
1285 bool channel_changed
= false;
1286 struct ieee80211_channel chan_before
;
1288 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1289 chan
= &sband
->channels
[chan_idx
];
1291 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1294 if (chan
->beacon_found
)
1297 chan
->beacon_found
= true;
1299 if (!reg_is_world_roaming(wiphy
))
1302 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1305 chan_before
.center_freq
= chan
->center_freq
;
1306 chan_before
.flags
= chan
->flags
;
1308 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1309 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1310 channel_changed
= true;
1313 if (channel_changed
)
1314 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1318 * Called when a scan on a wiphy finds a beacon on
1321 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1322 struct reg_beacon
*reg_beacon
)
1325 struct ieee80211_supported_band
*sband
;
1327 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1330 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1332 for (i
= 0; i
< sband
->n_channels
; i
++)
1333 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1337 * Called upon reg changes or a new wiphy is added
1339 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1342 struct ieee80211_supported_band
*sband
;
1343 struct reg_beacon
*reg_beacon
;
1345 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1346 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1348 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1349 for (i
= 0; i
< sband
->n_channels
; i
++)
1350 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1354 /* Reap the advantages of previously found beacons */
1355 static void reg_process_beacons(struct wiphy
*wiphy
)
1358 * Means we are just firing up cfg80211, so no beacons would
1359 * have been processed yet.
1363 wiphy_update_beacon_reg(wiphy
);
1366 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1370 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1372 /* This would happen when regulatory rules disallow HT40 completely */
1373 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1378 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1379 struct ieee80211_channel
*channel
)
1381 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1382 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1385 if (!is_ht40_allowed(channel
)) {
1386 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1391 * We need to ensure the extension channels exist to
1392 * be able to use HT40- or HT40+, this finds them (or not)
1394 for (i
= 0; i
< sband
->n_channels
; i
++) {
1395 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1397 if (c
->center_freq
== (channel
->center_freq
- 20))
1399 if (c
->center_freq
== (channel
->center_freq
+ 20))
1404 * Please note that this assumes target bandwidth is 20 MHz,
1405 * if that ever changes we also need to change the below logic
1406 * to include that as well.
1408 if (!is_ht40_allowed(channel_before
))
1409 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1411 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1413 if (!is_ht40_allowed(channel_after
))
1414 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1416 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1419 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1420 struct ieee80211_supported_band
*sband
)
1427 for (i
= 0; i
< sband
->n_channels
; i
++)
1428 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
1431 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1433 enum ieee80211_band band
;
1438 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1439 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
1442 static void reg_call_notifier(struct wiphy
*wiphy
,
1443 struct regulatory_request
*request
)
1445 if (wiphy
->reg_notifier
)
1446 wiphy
->reg_notifier(wiphy
, request
);
1449 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1450 enum nl80211_reg_initiator initiator
)
1452 enum ieee80211_band band
;
1453 struct regulatory_request
*lr
= get_last_request();
1455 if (ignore_reg_update(wiphy
, initiator
)) {
1457 * Regulatory updates set by CORE are ignored for custom
1458 * regulatory cards. Let us notify the changes to the driver,
1459 * as some drivers used this to restore its orig_* reg domain.
1461 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1462 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1463 reg_call_notifier(wiphy
, lr
);
1467 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
1469 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1470 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
1472 reg_process_beacons(wiphy
);
1473 reg_process_ht_flags(wiphy
);
1474 reg_call_notifier(wiphy
, lr
);
1477 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1479 struct cfg80211_registered_device
*rdev
;
1480 struct wiphy
*wiphy
;
1484 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1485 wiphy
= &rdev
->wiphy
;
1486 wiphy_update_regulatory(wiphy
, initiator
);
1490 static void handle_channel_custom(struct wiphy
*wiphy
,
1491 struct ieee80211_channel
*chan
,
1492 const struct ieee80211_regdomain
*regd
)
1495 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1496 const struct ieee80211_power_rule
*power_rule
= NULL
;
1497 const struct ieee80211_freq_range
*freq_range
= NULL
;
1498 u32 max_bandwidth_khz
;
1500 reg_rule
= freq_reg_info_regd(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
1503 if (IS_ERR(reg_rule
)) {
1504 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1506 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1507 chan
->flags
= chan
->orig_flags
;
1511 chan_reg_rule_print_dbg(regd
, chan
, reg_rule
);
1513 power_rule
= ®_rule
->power_rule
;
1514 freq_range
= ®_rule
->freq_range
;
1516 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1517 /* Check if auto calculation requested */
1518 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1519 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1521 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1522 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1523 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1524 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1525 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1526 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1528 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1529 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1530 chan
->max_reg_power
= chan
->max_power
=
1531 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1534 static void handle_band_custom(struct wiphy
*wiphy
,
1535 struct ieee80211_supported_band
*sband
,
1536 const struct ieee80211_regdomain
*regd
)
1543 for (i
= 0; i
< sband
->n_channels
; i
++)
1544 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
1547 /* Used by drivers prior to wiphy registration */
1548 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1549 const struct ieee80211_regdomain
*regd
)
1551 enum ieee80211_band band
;
1552 unsigned int bands_set
= 0;
1554 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
1555 "wiphy should have REGULATORY_CUSTOM_REG\n");
1556 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
1558 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1559 if (!wiphy
->bands
[band
])
1561 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
1566 * no point in calling this if it won't have any effect
1567 * on your device's supported bands.
1569 WARN_ON(!bands_set
);
1571 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1573 static void reg_set_request_processed(void)
1575 bool need_more_processing
= false;
1576 struct regulatory_request
*lr
= get_last_request();
1578 lr
->processed
= true;
1580 spin_lock(®_requests_lock
);
1581 if (!list_empty(®_requests_list
))
1582 need_more_processing
= true;
1583 spin_unlock(®_requests_lock
);
1585 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1586 cancel_delayed_work(®_timeout
);
1588 if (need_more_processing
)
1589 schedule_work(®_work
);
1593 * reg_process_hint_core - process core regulatory requests
1594 * @pending_request: a pending core regulatory request
1596 * The wireless subsystem can use this function to process
1597 * a regulatory request issued by the regulatory core.
1599 * Returns one of the different reg request treatment values.
1601 static enum reg_request_treatment
1602 reg_process_hint_core(struct regulatory_request
*core_request
)
1605 core_request
->intersect
= false;
1606 core_request
->processed
= false;
1608 reg_update_last_request(core_request
);
1610 return reg_call_crda(core_request
);
1613 static enum reg_request_treatment
1614 __reg_process_hint_user(struct regulatory_request
*user_request
)
1616 struct regulatory_request
*lr
= get_last_request();
1618 if (reg_request_indoor(user_request
)) {
1619 reg_is_indoor
= true;
1620 return REG_REQ_USER_HINT_HANDLED
;
1623 if (reg_request_cell_base(user_request
))
1624 return reg_ignore_cell_hint(user_request
);
1626 if (reg_request_cell_base(lr
))
1627 return REG_REQ_IGNORE
;
1629 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1630 return REG_REQ_INTERSECT
;
1632 * If the user knows better the user should set the regdom
1633 * to their country before the IE is picked up
1635 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1637 return REG_REQ_IGNORE
;
1639 * Process user requests only after previous user/driver/core
1640 * requests have been processed
1642 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1643 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1644 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
1645 regdom_changes(lr
->alpha2
))
1646 return REG_REQ_IGNORE
;
1648 if (!regdom_changes(user_request
->alpha2
))
1649 return REG_REQ_ALREADY_SET
;
1655 * reg_process_hint_user - process user regulatory requests
1656 * @user_request: a pending user regulatory request
1658 * The wireless subsystem can use this function to process
1659 * a regulatory request initiated by userspace.
1661 * Returns one of the different reg request treatment values.
1663 static enum reg_request_treatment
1664 reg_process_hint_user(struct regulatory_request
*user_request
)
1666 enum reg_request_treatment treatment
;
1668 treatment
= __reg_process_hint_user(user_request
);
1669 if (treatment
== REG_REQ_IGNORE
||
1670 treatment
== REG_REQ_ALREADY_SET
||
1671 treatment
== REG_REQ_USER_HINT_HANDLED
) {
1672 reg_free_request(user_request
);
1676 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1677 user_request
->processed
= false;
1679 reg_update_last_request(user_request
);
1681 user_alpha2
[0] = user_request
->alpha2
[0];
1682 user_alpha2
[1] = user_request
->alpha2
[1];
1684 return reg_call_crda(user_request
);
1687 static enum reg_request_treatment
1688 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
1690 struct regulatory_request
*lr
= get_last_request();
1692 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1693 if (regdom_changes(driver_request
->alpha2
))
1695 return REG_REQ_ALREADY_SET
;
1699 * This would happen if you unplug and plug your card
1700 * back in or if you add a new device for which the previously
1701 * loaded card also agrees on the regulatory domain.
1703 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1704 !regdom_changes(driver_request
->alpha2
))
1705 return REG_REQ_ALREADY_SET
;
1707 return REG_REQ_INTERSECT
;
1711 * reg_process_hint_driver - process driver regulatory requests
1712 * @driver_request: a pending driver regulatory request
1714 * The wireless subsystem can use this function to process
1715 * a regulatory request issued by an 802.11 driver.
1717 * Returns one of the different reg request treatment values.
1719 static enum reg_request_treatment
1720 reg_process_hint_driver(struct wiphy
*wiphy
,
1721 struct regulatory_request
*driver_request
)
1723 const struct ieee80211_regdomain
*regd
, *tmp
;
1724 enum reg_request_treatment treatment
;
1726 treatment
= __reg_process_hint_driver(driver_request
);
1728 switch (treatment
) {
1731 case REG_REQ_IGNORE
:
1732 case REG_REQ_USER_HINT_HANDLED
:
1733 reg_free_request(driver_request
);
1735 case REG_REQ_INTERSECT
:
1737 case REG_REQ_ALREADY_SET
:
1738 regd
= reg_copy_regd(get_cfg80211_regdom());
1740 reg_free_request(driver_request
);
1741 return REG_REQ_IGNORE
;
1744 tmp
= get_wiphy_regdom(wiphy
);
1745 rcu_assign_pointer(wiphy
->regd
, regd
);
1746 rcu_free_regdom(tmp
);
1750 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1751 driver_request
->processed
= false;
1753 reg_update_last_request(driver_request
);
1756 * Since CRDA will not be called in this case as we already
1757 * have applied the requested regulatory domain before we just
1758 * inform userspace we have processed the request
1760 if (treatment
== REG_REQ_ALREADY_SET
) {
1761 nl80211_send_reg_change_event(driver_request
);
1762 reg_set_request_processed();
1766 return reg_call_crda(driver_request
);
1769 static enum reg_request_treatment
1770 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
1771 struct regulatory_request
*country_ie_request
)
1773 struct wiphy
*last_wiphy
= NULL
;
1774 struct regulatory_request
*lr
= get_last_request();
1776 if (reg_request_cell_base(lr
)) {
1777 /* Trust a Cell base station over the AP's country IE */
1778 if (regdom_changes(country_ie_request
->alpha2
))
1779 return REG_REQ_IGNORE
;
1780 return REG_REQ_ALREADY_SET
;
1782 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
1783 return REG_REQ_IGNORE
;
1786 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
1789 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1792 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1794 if (last_wiphy
!= wiphy
) {
1796 * Two cards with two APs claiming different
1797 * Country IE alpha2s. We could
1798 * intersect them, but that seems unlikely
1799 * to be correct. Reject second one for now.
1801 if (regdom_changes(country_ie_request
->alpha2
))
1802 return REG_REQ_IGNORE
;
1803 return REG_REQ_ALREADY_SET
;
1806 if (regdom_changes(country_ie_request
->alpha2
))
1808 return REG_REQ_ALREADY_SET
;
1812 * reg_process_hint_country_ie - process regulatory requests from country IEs
1813 * @country_ie_request: a regulatory request from a country IE
1815 * The wireless subsystem can use this function to process
1816 * a regulatory request issued by a country Information Element.
1818 * Returns one of the different reg request treatment values.
1820 static enum reg_request_treatment
1821 reg_process_hint_country_ie(struct wiphy
*wiphy
,
1822 struct regulatory_request
*country_ie_request
)
1824 enum reg_request_treatment treatment
;
1826 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
1828 switch (treatment
) {
1831 case REG_REQ_IGNORE
:
1832 case REG_REQ_USER_HINT_HANDLED
:
1834 case REG_REQ_ALREADY_SET
:
1835 reg_free_request(country_ie_request
);
1837 case REG_REQ_INTERSECT
:
1838 reg_free_request(country_ie_request
);
1840 * This doesn't happen yet, not sure we
1841 * ever want to support it for this case.
1843 WARN_ONCE(1, "Unexpected intersection for country IEs");
1844 return REG_REQ_IGNORE
;
1847 country_ie_request
->intersect
= false;
1848 country_ie_request
->processed
= false;
1850 reg_update_last_request(country_ie_request
);
1852 return reg_call_crda(country_ie_request
);
1855 /* This processes *all* regulatory hints */
1856 static void reg_process_hint(struct regulatory_request
*reg_request
)
1858 struct wiphy
*wiphy
= NULL
;
1859 enum reg_request_treatment treatment
;
1861 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
1862 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1864 switch (reg_request
->initiator
) {
1865 case NL80211_REGDOM_SET_BY_CORE
:
1866 reg_process_hint_core(reg_request
);
1868 case NL80211_REGDOM_SET_BY_USER
:
1869 treatment
= reg_process_hint_user(reg_request
);
1870 if (treatment
== REG_REQ_IGNORE
||
1871 treatment
== REG_REQ_ALREADY_SET
||
1872 treatment
== REG_REQ_USER_HINT_HANDLED
)
1874 queue_delayed_work(system_power_efficient_wq
,
1875 ®_timeout
, msecs_to_jiffies(3142));
1877 case NL80211_REGDOM_SET_BY_DRIVER
:
1880 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
1882 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1885 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
1888 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
1892 /* This is required so that the orig_* parameters are saved */
1893 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
1894 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
)
1895 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
1900 reg_free_request(reg_request
);
1904 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1905 * Regulatory hints come on a first come first serve basis and we
1906 * must process each one atomically.
1908 static void reg_process_pending_hints(void)
1910 struct regulatory_request
*reg_request
, *lr
;
1912 lr
= get_last_request();
1914 /* When last_request->processed becomes true this will be rescheduled */
1915 if (lr
&& !lr
->processed
) {
1916 reg_process_hint(lr
);
1920 spin_lock(®_requests_lock
);
1922 if (list_empty(®_requests_list
)) {
1923 spin_unlock(®_requests_lock
);
1927 reg_request
= list_first_entry(®_requests_list
,
1928 struct regulatory_request
,
1930 list_del_init(®_request
->list
);
1932 spin_unlock(®_requests_lock
);
1934 reg_process_hint(reg_request
);
1937 /* Processes beacon hints -- this has nothing to do with country IEs */
1938 static void reg_process_pending_beacon_hints(void)
1940 struct cfg80211_registered_device
*rdev
;
1941 struct reg_beacon
*pending_beacon
, *tmp
;
1943 /* This goes through the _pending_ beacon list */
1944 spin_lock_bh(®_pending_beacons_lock
);
1946 list_for_each_entry_safe(pending_beacon
, tmp
,
1947 ®_pending_beacons
, list
) {
1948 list_del_init(&pending_beacon
->list
);
1950 /* Applies the beacon hint to current wiphys */
1951 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1952 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1954 /* Remembers the beacon hint for new wiphys or reg changes */
1955 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1958 spin_unlock_bh(®_pending_beacons_lock
);
1961 static void reg_todo(struct work_struct
*work
)
1964 reg_process_pending_hints();
1965 reg_process_pending_beacon_hints();
1969 static void queue_regulatory_request(struct regulatory_request
*request
)
1971 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1972 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1974 spin_lock(®_requests_lock
);
1975 list_add_tail(&request
->list
, ®_requests_list
);
1976 spin_unlock(®_requests_lock
);
1978 schedule_work(®_work
);
1982 * Core regulatory hint -- happens during cfg80211_init()
1983 * and when we restore regulatory settings.
1985 static int regulatory_hint_core(const char *alpha2
)
1987 struct regulatory_request
*request
;
1989 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1993 request
->alpha2
[0] = alpha2
[0];
1994 request
->alpha2
[1] = alpha2
[1];
1995 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1997 queue_regulatory_request(request
);
2003 int regulatory_hint_user(const char *alpha2
,
2004 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2006 struct regulatory_request
*request
;
2008 if (WARN_ON(!alpha2
))
2011 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2015 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2016 request
->alpha2
[0] = alpha2
[0];
2017 request
->alpha2
[1] = alpha2
[1];
2018 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2019 request
->user_reg_hint_type
= user_reg_hint_type
;
2021 queue_regulatory_request(request
);
2026 int regulatory_hint_indoor_user(void)
2028 struct regulatory_request
*request
;
2030 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2034 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2035 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2036 request
->user_reg_hint_type
= NL80211_USER_REG_HINT_INDOOR
;
2037 queue_regulatory_request(request
);
2043 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2045 struct regulatory_request
*request
;
2047 if (WARN_ON(!alpha2
|| !wiphy
))
2050 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2052 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2056 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2058 request
->alpha2
[0] = alpha2
[0];
2059 request
->alpha2
[1] = alpha2
[1];
2060 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2062 queue_regulatory_request(request
);
2066 EXPORT_SYMBOL(regulatory_hint
);
2068 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum ieee80211_band band
,
2069 const u8
*country_ie
, u8 country_ie_len
)
2072 enum environment_cap env
= ENVIRON_ANY
;
2073 struct regulatory_request
*request
= NULL
, *lr
;
2075 /* IE len must be evenly divisible by 2 */
2076 if (country_ie_len
& 0x01)
2079 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2082 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
2086 alpha2
[0] = country_ie
[0];
2087 alpha2
[1] = country_ie
[1];
2089 if (country_ie
[2] == 'I')
2090 env
= ENVIRON_INDOOR
;
2091 else if (country_ie
[2] == 'O')
2092 env
= ENVIRON_OUTDOOR
;
2095 lr
= get_last_request();
2101 * We will run this only upon a successful connection on cfg80211.
2102 * We leave conflict resolution to the workqueue, where can hold
2105 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2106 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2109 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2110 request
->alpha2
[0] = alpha2
[0];
2111 request
->alpha2
[1] = alpha2
[1];
2112 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2113 request
->country_ie_env
= env
;
2115 queue_regulatory_request(request
);
2122 static void restore_alpha2(char *alpha2
, bool reset_user
)
2124 /* indicates there is no alpha2 to consider for restoration */
2128 /* The user setting has precedence over the module parameter */
2129 if (is_user_regdom_saved()) {
2130 /* Unless we're asked to ignore it and reset it */
2132 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2133 user_alpha2
[0] = '9';
2134 user_alpha2
[1] = '7';
2137 * If we're ignoring user settings, we still need to
2138 * check the module parameter to ensure we put things
2139 * back as they were for a full restore.
2141 if (!is_world_regdom(ieee80211_regdom
)) {
2142 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2143 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2144 alpha2
[0] = ieee80211_regdom
[0];
2145 alpha2
[1] = ieee80211_regdom
[1];
2148 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2149 user_alpha2
[0], user_alpha2
[1]);
2150 alpha2
[0] = user_alpha2
[0];
2151 alpha2
[1] = user_alpha2
[1];
2153 } else if (!is_world_regdom(ieee80211_regdom
)) {
2154 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2155 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2156 alpha2
[0] = ieee80211_regdom
[0];
2157 alpha2
[1] = ieee80211_regdom
[1];
2159 REG_DBG_PRINT("Restoring regulatory settings\n");
2162 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
2164 struct ieee80211_supported_band
*sband
;
2165 enum ieee80211_band band
;
2166 struct ieee80211_channel
*chan
;
2169 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
2170 sband
= wiphy
->bands
[band
];
2173 for (i
= 0; i
< sband
->n_channels
; i
++) {
2174 chan
= &sband
->channels
[i
];
2175 chan
->flags
= chan
->orig_flags
;
2176 chan
->max_antenna_gain
= chan
->orig_mag
;
2177 chan
->max_power
= chan
->orig_mpwr
;
2178 chan
->beacon_found
= false;
2184 * Restoring regulatory settings involves ingoring any
2185 * possibly stale country IE information and user regulatory
2186 * settings if so desired, this includes any beacon hints
2187 * learned as we could have traveled outside to another country
2188 * after disconnection. To restore regulatory settings we do
2189 * exactly what we did at bootup:
2191 * - send a core regulatory hint
2192 * - send a user regulatory hint if applicable
2194 * Device drivers that send a regulatory hint for a specific country
2195 * keep their own regulatory domain on wiphy->regd so that does does
2196 * not need to be remembered.
2198 static void restore_regulatory_settings(bool reset_user
)
2201 char world_alpha2
[2];
2202 struct reg_beacon
*reg_beacon
, *btmp
;
2203 struct regulatory_request
*reg_request
, *tmp
;
2204 LIST_HEAD(tmp_reg_req_list
);
2205 struct cfg80211_registered_device
*rdev
;
2209 reg_is_indoor
= false;
2211 reset_regdomains(true, &world_regdom
);
2212 restore_alpha2(alpha2
, reset_user
);
2215 * If there's any pending requests we simply
2216 * stash them to a temporary pending queue and
2217 * add then after we've restored regulatory
2220 spin_lock(®_requests_lock
);
2221 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
2222 if (reg_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
2224 list_move_tail(®_request
->list
, &tmp_reg_req_list
);
2226 spin_unlock(®_requests_lock
);
2228 /* Clear beacon hints */
2229 spin_lock_bh(®_pending_beacons_lock
);
2230 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
2231 list_del(®_beacon
->list
);
2234 spin_unlock_bh(®_pending_beacons_lock
);
2236 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
2237 list_del(®_beacon
->list
);
2241 /* First restore to the basic regulatory settings */
2242 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
2243 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
2245 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2246 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
2247 restore_custom_reg_settings(&rdev
->wiphy
);
2250 regulatory_hint_core(world_alpha2
);
2253 * This restores the ieee80211_regdom module parameter
2254 * preference or the last user requested regulatory
2255 * settings, user regulatory settings takes precedence.
2257 if (is_an_alpha2(alpha2
))
2258 regulatory_hint_user(user_alpha2
, NL80211_USER_REG_HINT_USER
);
2260 spin_lock(®_requests_lock
);
2261 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
2262 spin_unlock(®_requests_lock
);
2264 REG_DBG_PRINT("Kicking the queue\n");
2266 schedule_work(®_work
);
2269 void regulatory_hint_disconnect(void)
2271 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2272 restore_regulatory_settings(false);
2275 static bool freq_is_chan_12_13_14(u16 freq
)
2277 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
2278 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
2279 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
2284 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
2286 struct reg_beacon
*pending_beacon
;
2288 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
2289 if (beacon_chan
->center_freq
==
2290 pending_beacon
->chan
.center_freq
)
2295 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2296 struct ieee80211_channel
*beacon_chan
,
2299 struct reg_beacon
*reg_beacon
;
2302 if (beacon_chan
->beacon_found
||
2303 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
2304 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
2305 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
2308 spin_lock_bh(®_pending_beacons_lock
);
2309 processing
= pending_reg_beacon(beacon_chan
);
2310 spin_unlock_bh(®_pending_beacons_lock
);
2315 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2319 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2320 beacon_chan
->center_freq
,
2321 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2324 memcpy(®_beacon
->chan
, beacon_chan
,
2325 sizeof(struct ieee80211_channel
));
2328 * Since we can be called from BH or and non-BH context
2329 * we must use spin_lock_bh()
2331 spin_lock_bh(®_pending_beacons_lock
);
2332 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2333 spin_unlock_bh(®_pending_beacons_lock
);
2335 schedule_work(®_work
);
2340 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2343 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2344 const struct ieee80211_freq_range
*freq_range
= NULL
;
2345 const struct ieee80211_power_rule
*power_rule
= NULL
;
2346 char bw
[32], cac_time
[32];
2348 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2350 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2351 reg_rule
= &rd
->reg_rules
[i
];
2352 freq_range
= ®_rule
->freq_range
;
2353 power_rule
= ®_rule
->power_rule
;
2355 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
2356 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
2357 freq_range
->max_bandwidth_khz
,
2358 reg_get_max_bandwidth(rd
, reg_rule
));
2360 snprintf(bw
, sizeof(bw
), "%d KHz",
2361 freq_range
->max_bandwidth_khz
);
2363 if (reg_rule
->flags
& NL80211_RRF_DFS
)
2364 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
2365 reg_rule
->dfs_cac_ms
/1000);
2367 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
2371 * There may not be documentation for max antenna gain
2372 * in certain regions
2374 if (power_rule
->max_antenna_gain
)
2375 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2376 freq_range
->start_freq_khz
,
2377 freq_range
->end_freq_khz
,
2379 power_rule
->max_antenna_gain
,
2380 power_rule
->max_eirp
,
2383 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2384 freq_range
->start_freq_khz
,
2385 freq_range
->end_freq_khz
,
2387 power_rule
->max_eirp
,
2392 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
2394 switch (dfs_region
) {
2395 case NL80211_DFS_UNSET
:
2396 case NL80211_DFS_FCC
:
2397 case NL80211_DFS_ETSI
:
2398 case NL80211_DFS_JP
:
2401 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2407 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2409 struct regulatory_request
*lr
= get_last_request();
2411 if (is_intersected_alpha2(rd
->alpha2
)) {
2412 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2413 struct cfg80211_registered_device
*rdev
;
2414 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
2416 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2417 rdev
->country_ie_alpha2
[0],
2418 rdev
->country_ie_alpha2
[1]);
2420 pr_info("Current regulatory domain intersected:\n");
2422 pr_info("Current regulatory domain intersected:\n");
2423 } else if (is_world_regdom(rd
->alpha2
)) {
2424 pr_info("World regulatory domain updated:\n");
2426 if (is_unknown_alpha2(rd
->alpha2
))
2427 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2429 if (reg_request_cell_base(lr
))
2430 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2431 rd
->alpha2
[0], rd
->alpha2
[1]);
2433 pr_info("Regulatory domain changed to country: %c%c\n",
2434 rd
->alpha2
[0], rd
->alpha2
[1]);
2438 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
2442 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2444 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2448 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
2450 if (!is_world_regdom(rd
->alpha2
))
2452 update_world_regdomain(rd
);
2456 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
2457 struct regulatory_request
*user_request
)
2459 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2461 if (!regdom_changes(rd
->alpha2
))
2464 if (!is_valid_rd(rd
)) {
2465 pr_err("Invalid regulatory domain detected:\n");
2466 print_regdomain_info(rd
);
2470 if (!user_request
->intersect
) {
2471 reset_regdomains(false, rd
);
2475 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2476 if (!intersected_rd
)
2481 reset_regdomains(false, intersected_rd
);
2486 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
2487 struct regulatory_request
*driver_request
)
2489 const struct ieee80211_regdomain
*regd
;
2490 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2491 const struct ieee80211_regdomain
*tmp
;
2492 struct wiphy
*request_wiphy
;
2494 if (is_world_regdom(rd
->alpha2
))
2497 if (!regdom_changes(rd
->alpha2
))
2500 if (!is_valid_rd(rd
)) {
2501 pr_err("Invalid regulatory domain detected:\n");
2502 print_regdomain_info(rd
);
2506 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
2507 if (!request_wiphy
) {
2508 queue_delayed_work(system_power_efficient_wq
,
2513 if (!driver_request
->intersect
) {
2514 if (request_wiphy
->regd
)
2517 regd
= reg_copy_regd(rd
);
2519 return PTR_ERR(regd
);
2521 rcu_assign_pointer(request_wiphy
->regd
, regd
);
2522 reset_regdomains(false, rd
);
2526 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2527 if (!intersected_rd
)
2531 * We can trash what CRDA provided now.
2532 * However if a driver requested this specific regulatory
2533 * domain we keep it for its private use
2535 tmp
= get_wiphy_regdom(request_wiphy
);
2536 rcu_assign_pointer(request_wiphy
->regd
, rd
);
2537 rcu_free_regdom(tmp
);
2541 reset_regdomains(false, intersected_rd
);
2546 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
2547 struct regulatory_request
*country_ie_request
)
2549 struct wiphy
*request_wiphy
;
2551 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2552 !is_unknown_alpha2(rd
->alpha2
))
2556 * Lets only bother proceeding on the same alpha2 if the current
2557 * rd is non static (it means CRDA was present and was used last)
2558 * and the pending request came in from a country IE
2561 if (!is_valid_rd(rd
)) {
2562 pr_err("Invalid regulatory domain detected:\n");
2563 print_regdomain_info(rd
);
2567 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
2568 if (!request_wiphy
) {
2569 queue_delayed_work(system_power_efficient_wq
,
2574 if (country_ie_request
->intersect
)
2577 reset_regdomains(false, rd
);
2582 * Use this call to set the current regulatory domain. Conflicts with
2583 * multiple drivers can be ironed out later. Caller must've already
2584 * kmalloc'd the rd structure.
2586 int set_regdom(const struct ieee80211_regdomain
*rd
)
2588 struct regulatory_request
*lr
;
2589 bool user_reset
= false;
2592 if (!reg_is_valid_request(rd
->alpha2
)) {
2597 lr
= get_last_request();
2599 /* Note that this doesn't update the wiphys, this is done below */
2600 switch (lr
->initiator
) {
2601 case NL80211_REGDOM_SET_BY_CORE
:
2602 r
= reg_set_rd_core(rd
);
2604 case NL80211_REGDOM_SET_BY_USER
:
2605 r
= reg_set_rd_user(rd
, lr
);
2608 case NL80211_REGDOM_SET_BY_DRIVER
:
2609 r
= reg_set_rd_driver(rd
, lr
);
2611 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2612 r
= reg_set_rd_country_ie(rd
, lr
);
2615 WARN(1, "invalid initiator %d\n", lr
->initiator
);
2622 reg_set_request_processed();
2625 /* Back to world regulatory in case of errors */
2626 restore_regulatory_settings(user_reset
);
2633 /* This would make this whole thing pointless */
2634 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
2637 /* update all wiphys now with the new established regulatory domain */
2638 update_all_wiphy_regulatory(lr
->initiator
);
2640 print_regdomain(get_cfg80211_regdom());
2642 nl80211_send_reg_change_event(lr
);
2644 reg_set_request_processed();
2649 void wiphy_regulatory_register(struct wiphy
*wiphy
)
2651 struct regulatory_request
*lr
;
2653 if (!reg_dev_ignore_cell_hint(wiphy
))
2654 reg_num_devs_support_basehint
++;
2656 lr
= get_last_request();
2657 wiphy_update_regulatory(wiphy
, lr
->initiator
);
2660 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
2662 struct wiphy
*request_wiphy
= NULL
;
2663 struct regulatory_request
*lr
;
2665 lr
= get_last_request();
2667 if (!reg_dev_ignore_cell_hint(wiphy
))
2668 reg_num_devs_support_basehint
--;
2670 rcu_free_regdom(get_wiphy_regdom(wiphy
));
2671 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
2674 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2676 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2679 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
2680 lr
->country_ie_env
= ENVIRON_ANY
;
2683 static void reg_timeout_work(struct work_struct
*work
)
2685 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2687 restore_regulatory_settings(true);
2692 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2693 * UNII band definitions
2695 int cfg80211_get_unii(int freq
)
2698 if (freq
>= 5150 && freq
<= 5250)
2702 if (freq
> 5250 && freq
<= 5350)
2706 if (freq
> 5350 && freq
<= 5470)
2710 if (freq
> 5470 && freq
<= 5725)
2714 if (freq
> 5725 && freq
<= 5825)
2720 bool regulatory_indoor_allowed(void)
2722 return reg_is_indoor
;
2725 int __init
regulatory_init(void)
2729 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2730 if (IS_ERR(reg_pdev
))
2731 return PTR_ERR(reg_pdev
);
2733 spin_lock_init(®_requests_lock
);
2734 spin_lock_init(®_pending_beacons_lock
);
2736 reg_regdb_size_check();
2738 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
2740 user_alpha2
[0] = '9';
2741 user_alpha2
[1] = '7';
2743 /* We always try to get an update for the static regdomain */
2744 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
2749 * N.B. kobject_uevent_env() can fail mainly for when we're out
2750 * memory which is handled and propagated appropriately above
2751 * but it can also fail during a netlink_broadcast() or during
2752 * early boot for call_usermodehelper(). For now treat these
2753 * errors as non-fatal.
2755 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2759 * Finally, if the user set the module parameter treat it
2762 if (!is_world_regdom(ieee80211_regdom
))
2763 regulatory_hint_user(ieee80211_regdom
,
2764 NL80211_USER_REG_HINT_USER
);
2769 void regulatory_exit(void)
2771 struct regulatory_request
*reg_request
, *tmp
;
2772 struct reg_beacon
*reg_beacon
, *btmp
;
2774 cancel_work_sync(®_work
);
2775 cancel_delayed_work_sync(®_timeout
);
2777 /* Lock to suppress warnings */
2779 reset_regdomains(true, NULL
);
2782 dev_set_uevent_suppress(®_pdev
->dev
, true);
2784 platform_device_unregister(reg_pdev
);
2786 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
2787 list_del(®_beacon
->list
);
2791 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
2792 list_del(®_beacon
->list
);
2796 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
2797 list_del(®_request
->list
);