2 * Perf support for the Statistical Profiling Extension, introduced as
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 * Copyright (C) 2016 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
22 #define PMUNAME "arm_spe"
23 #define DRVNAME PMUNAME "_pmu"
24 #define pr_fmt(fmt) DRVNAME ": " fmt
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
50 #include <asm/sysreg.h>
52 #define ARM_SPE_BUF_PAD_BYTE 0
54 struct arm_spe_pmu_buf
{
62 struct platform_device
*pdev
;
63 cpumask_t supported_cpus
;
64 struct hlist_node hotplug_node
;
71 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
75 #define SPE_PMU_FEAT_LDS (1UL << 4)
76 #define SPE_PMU_FEAT_ERND (1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
82 struct perf_output_handle __percpu
*handle
;
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online
;
93 enum arm_spe_pmu_buf_fault_action
{
94 SPE_PMU_BUF_FAULT_ACT_SPURIOUS
,
95 SPE_PMU_BUF_FAULT_ACT_FATAL
,
96 SPE_PMU_BUF_FAULT_ACT_OK
,
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities
{
101 SPE_PMU_CAP_ARCH_INST
= 0,
103 SPE_PMU_CAP_FEAT_MAX
,
104 SPE_PMU_CAP_CNT_SZ
= SPE_PMU_CAP_FEAT_MAX
,
105 SPE_PMU_CAP_MIN_IVAL
,
108 static int arm_spe_pmu_feat_caps
[SPE_PMU_CAP_FEAT_MAX
] = {
109 [SPE_PMU_CAP_ARCH_INST
] = SPE_PMU_FEAT_ARCH_INST
,
110 [SPE_PMU_CAP_ERND
] = SPE_PMU_FEAT_ERND
,
113 static u32
arm_spe_pmu_cap_get(struct arm_spe_pmu
*spe_pmu
, int cap
)
115 if (cap
< SPE_PMU_CAP_FEAT_MAX
)
116 return !!(spe_pmu
->features
& arm_spe_pmu_feat_caps
[cap
]);
119 case SPE_PMU_CAP_CNT_SZ
:
120 return spe_pmu
->counter_sz
;
121 case SPE_PMU_CAP_MIN_IVAL
:
122 return spe_pmu
->min_period
;
124 WARN(1, "unknown cap %d\n", cap
);
130 static ssize_t
arm_spe_pmu_cap_show(struct device
*dev
,
131 struct device_attribute
*attr
,
134 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
135 struct dev_ext_attribute
*ea
=
136 container_of(attr
, struct dev_ext_attribute
, attr
);
137 int cap
= (long)ea
->var
;
139 return snprintf(buf
, PAGE_SIZE
, "%u\n",
140 arm_spe_pmu_cap_get(spe_pmu
, cap
));
143 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
144 &((struct dev_ext_attribute[]) { \
145 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
148 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
149 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
151 static struct attribute
*arm_spe_pmu_cap_attr
[] = {
152 SPE_CAP_EXT_ATTR_ENTRY(arch_inst
, SPE_PMU_CAP_ARCH_INST
),
153 SPE_CAP_EXT_ATTR_ENTRY(ernd
, SPE_PMU_CAP_ERND
),
154 SPE_CAP_EXT_ATTR_ENTRY(count_size
, SPE_PMU_CAP_CNT_SZ
),
155 SPE_CAP_EXT_ATTR_ENTRY(min_interval
, SPE_PMU_CAP_MIN_IVAL
),
159 static struct attribute_group arm_spe_pmu_cap_group
= {
161 .attrs
= arm_spe_pmu_cap_attr
,
165 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
166 #define ATTR_CFG_FLD_ts_enable_LO 0
167 #define ATTR_CFG_FLD_ts_enable_HI 0
168 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
169 #define ATTR_CFG_FLD_pa_enable_LO 1
170 #define ATTR_CFG_FLD_pa_enable_HI 1
171 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
172 #define ATTR_CFG_FLD_pct_enable_LO 2
173 #define ATTR_CFG_FLD_pct_enable_HI 2
174 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
175 #define ATTR_CFG_FLD_jitter_LO 16
176 #define ATTR_CFG_FLD_jitter_HI 16
177 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
178 #define ATTR_CFG_FLD_branch_filter_LO 32
179 #define ATTR_CFG_FLD_branch_filter_HI 32
180 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
181 #define ATTR_CFG_FLD_load_filter_LO 33
182 #define ATTR_CFG_FLD_load_filter_HI 33
183 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
184 #define ATTR_CFG_FLD_store_filter_LO 34
185 #define ATTR_CFG_FLD_store_filter_HI 34
187 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
188 #define ATTR_CFG_FLD_event_filter_LO 0
189 #define ATTR_CFG_FLD_event_filter_HI 63
191 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
192 #define ATTR_CFG_FLD_min_latency_LO 0
193 #define ATTR_CFG_FLD_min_latency_HI 11
195 /* Why does everything I do descend into this? */
196 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
197 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
199 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
200 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
202 #define GEN_PMU_FORMAT_ATTR(name) \
203 PMU_FORMAT_ATTR(name, \
204 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
205 ATTR_CFG_FLD_##name##_LO, \
206 ATTR_CFG_FLD_##name##_HI))
208 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
209 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
211 #define ATTR_CFG_GET_FLD(attr, name) \
212 _ATTR_CFG_GET_FLD(attr, \
213 ATTR_CFG_FLD_##name##_CFG, \
214 ATTR_CFG_FLD_##name##_LO, \
215 ATTR_CFG_FLD_##name##_HI)
217 GEN_PMU_FORMAT_ATTR(ts_enable
);
218 GEN_PMU_FORMAT_ATTR(pa_enable
);
219 GEN_PMU_FORMAT_ATTR(pct_enable
);
220 GEN_PMU_FORMAT_ATTR(jitter
);
221 GEN_PMU_FORMAT_ATTR(branch_filter
);
222 GEN_PMU_FORMAT_ATTR(load_filter
);
223 GEN_PMU_FORMAT_ATTR(store_filter
);
224 GEN_PMU_FORMAT_ATTR(event_filter
);
225 GEN_PMU_FORMAT_ATTR(min_latency
);
227 static struct attribute
*arm_spe_pmu_formats_attr
[] = {
228 &format_attr_ts_enable
.attr
,
229 &format_attr_pa_enable
.attr
,
230 &format_attr_pct_enable
.attr
,
231 &format_attr_jitter
.attr
,
232 &format_attr_branch_filter
.attr
,
233 &format_attr_load_filter
.attr
,
234 &format_attr_store_filter
.attr
,
235 &format_attr_event_filter
.attr
,
236 &format_attr_min_latency
.attr
,
240 static struct attribute_group arm_spe_pmu_format_group
= {
242 .attrs
= arm_spe_pmu_formats_attr
,
245 static ssize_t
arm_spe_pmu_get_attr_cpumask(struct device
*dev
,
246 struct device_attribute
*attr
,
249 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
251 return cpumap_print_to_pagebuf(true, buf
, &spe_pmu
->supported_cpus
);
253 static DEVICE_ATTR(cpumask
, S_IRUGO
, arm_spe_pmu_get_attr_cpumask
, NULL
);
255 static struct attribute
*arm_spe_pmu_attrs
[] = {
256 &dev_attr_cpumask
.attr
,
260 static struct attribute_group arm_spe_pmu_group
= {
261 .attrs
= arm_spe_pmu_attrs
,
264 static const struct attribute_group
*arm_spe_pmu_attr_groups
[] = {
266 &arm_spe_pmu_cap_group
,
267 &arm_spe_pmu_format_group
,
271 /* Convert between user ABI and register values */
272 static u64
arm_spe_event_to_pmscr(struct perf_event
*event
)
274 struct perf_event_attr
*attr
= &event
->attr
;
277 reg
|= ATTR_CFG_GET_FLD(attr
, ts_enable
) << SYS_PMSCR_EL1_TS_SHIFT
;
278 reg
|= ATTR_CFG_GET_FLD(attr
, pa_enable
) << SYS_PMSCR_EL1_PA_SHIFT
;
279 reg
|= ATTR_CFG_GET_FLD(attr
, pct_enable
) << SYS_PMSCR_EL1_PCT_SHIFT
;
281 if (!attr
->exclude_user
)
282 reg
|= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT
);
284 if (!attr
->exclude_kernel
)
285 reg
|= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT
);
287 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR
) && capable(CAP_SYS_ADMIN
))
288 reg
|= BIT(SYS_PMSCR_EL1_CX_SHIFT
);
293 static void arm_spe_event_sanitise_period(struct perf_event
*event
)
295 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
296 u64 period
= event
->hw
.sample_period
;
297 u64 max_period
= SYS_PMSIRR_EL1_INTERVAL_MASK
298 << SYS_PMSIRR_EL1_INTERVAL_SHIFT
;
300 if (period
< spe_pmu
->min_period
)
301 period
= spe_pmu
->min_period
;
302 else if (period
> max_period
)
305 period
&= max_period
;
307 event
->hw
.sample_period
= period
;
310 static u64
arm_spe_event_to_pmsirr(struct perf_event
*event
)
312 struct perf_event_attr
*attr
= &event
->attr
;
315 arm_spe_event_sanitise_period(event
);
317 reg
|= ATTR_CFG_GET_FLD(attr
, jitter
) << SYS_PMSIRR_EL1_RND_SHIFT
;
318 reg
|= event
->hw
.sample_period
;
323 static u64
arm_spe_event_to_pmsfcr(struct perf_event
*event
)
325 struct perf_event_attr
*attr
= &event
->attr
;
328 reg
|= ATTR_CFG_GET_FLD(attr
, load_filter
) << SYS_PMSFCR_EL1_LD_SHIFT
;
329 reg
|= ATTR_CFG_GET_FLD(attr
, store_filter
) << SYS_PMSFCR_EL1_ST_SHIFT
;
330 reg
|= ATTR_CFG_GET_FLD(attr
, branch_filter
) << SYS_PMSFCR_EL1_B_SHIFT
;
333 reg
|= BIT(SYS_PMSFCR_EL1_FT_SHIFT
);
335 if (ATTR_CFG_GET_FLD(attr
, event_filter
))
336 reg
|= BIT(SYS_PMSFCR_EL1_FE_SHIFT
);
338 if (ATTR_CFG_GET_FLD(attr
, min_latency
))
339 reg
|= BIT(SYS_PMSFCR_EL1_FL_SHIFT
);
344 static u64
arm_spe_event_to_pmsevfr(struct perf_event
*event
)
346 struct perf_event_attr
*attr
= &event
->attr
;
347 return ATTR_CFG_GET_FLD(attr
, event_filter
);
350 static u64
arm_spe_event_to_pmslatfr(struct perf_event
*event
)
352 struct perf_event_attr
*attr
= &event
->attr
;
353 return ATTR_CFG_GET_FLD(attr
, min_latency
)
354 << SYS_PMSLATFR_EL1_MINLAT_SHIFT
;
357 static void arm_spe_pmu_pad_buf(struct perf_output_handle
*handle
, int len
)
359 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
360 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
362 memset(buf
->base
+ head
, ARM_SPE_BUF_PAD_BYTE
, len
);
364 perf_aux_output_skip(handle
, len
);
367 static u64
arm_spe_pmu_next_snapshot_off(struct perf_output_handle
*handle
)
369 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
370 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
371 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
372 u64 limit
= buf
->nr_pages
* PAGE_SIZE
;
375 * The trace format isn't parseable in reverse, so clamp
376 * the limit to half of the buffer size in snapshot mode
377 * so that the worst case is half a buffer of records, as
378 * opposed to a single record.
380 if (head
< limit
>> 1)
384 * If we're within max_record_sz of the limit, we must
385 * pad, move the head index and recompute the limit.
387 if (limit
- head
< spe_pmu
->max_record_sz
) {
388 arm_spe_pmu_pad_buf(handle
, limit
- head
);
389 handle
->head
= PERF_IDX2OFF(limit
, buf
);
390 limit
= ((buf
->nr_pages
* PAGE_SIZE
) >> 1) + handle
->head
;
396 static u64
__arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
398 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
399 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
400 const u64 bufsize
= buf
->nr_pages
* PAGE_SIZE
;
402 u64 head
, tail
, wakeup
;
405 * The head can be misaligned for two reasons:
407 * 1. The hardware left PMBPTR pointing to the first byte after
408 * a record when generating a buffer management event.
410 * 2. We used perf_aux_output_skip to consume handle->size bytes
411 * and CIRC_SPACE was used to compute the size, which always
412 * leaves one entry free.
414 * Deal with this by padding to the next alignment boundary and
415 * moving the head index. If we run out of buffer space, we'll
416 * reduce handle->size to zero and end up reporting truncation.
418 head
= PERF_IDX2OFF(handle
->head
, buf
);
419 if (!IS_ALIGNED(head
, spe_pmu
->align
)) {
420 unsigned long delta
= roundup(head
, spe_pmu
->align
) - head
;
422 delta
= min(delta
, handle
->size
);
423 arm_spe_pmu_pad_buf(handle
, delta
);
424 head
= PERF_IDX2OFF(handle
->head
, buf
);
427 /* If we've run out of free space, then nothing more to do */
431 /* Compute the tail and wakeup indices now that we've aligned head */
432 tail
= PERF_IDX2OFF(handle
->head
+ handle
->size
, buf
);
433 wakeup
= PERF_IDX2OFF(handle
->wakeup
, buf
);
436 * Avoid clobbering unconsumed data. We know we have space, so
437 * if we see head == tail we know that the buffer is empty. If
438 * head > tail, then there's nothing to clobber prior to
442 limit
= round_down(tail
, PAGE_SIZE
);
445 * Wakeup may be arbitrarily far into the future. If it's not in
446 * the current generation, either we'll wrap before hitting it,
447 * or it's in the past and has been handled already.
449 * If there's a wakeup before we wrap, arrange to be woken up by
450 * the page boundary following it. Keep the tail boundary if
453 if (handle
->wakeup
< (handle
->head
+ handle
->size
) && head
<= wakeup
)
454 limit
= min(limit
, round_up(wakeup
, PAGE_SIZE
));
459 arm_spe_pmu_pad_buf(handle
, handle
->size
);
461 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
462 perf_aux_output_end(handle
, 0);
466 static u64
arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
468 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
469 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
470 u64 limit
= __arm_spe_pmu_next_off(handle
);
471 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
474 * If the head has come too close to the end of the buffer,
475 * then pad to the end and recompute the limit.
477 if (limit
&& (limit
- head
< spe_pmu
->max_record_sz
)) {
478 arm_spe_pmu_pad_buf(handle
, limit
- head
);
479 limit
= __arm_spe_pmu_next_off(handle
);
485 static void arm_spe_perf_aux_output_begin(struct perf_output_handle
*handle
,
486 struct perf_event
*event
)
489 struct arm_spe_pmu_buf
*buf
;
491 /* Start a new aux session */
492 buf
= perf_aux_output_begin(handle
, event
);
494 event
->hw
.state
|= PERF_HES_STOPPED
;
496 * We still need to clear the limit pointer, since the
497 * profiler might only be disabled by virtue of a fault.
500 goto out_write_limit
;
503 limit
= buf
->snapshot
? arm_spe_pmu_next_snapshot_off(handle
)
504 : arm_spe_pmu_next_off(handle
);
506 limit
|= BIT(SYS_PMBLIMITR_EL1_E_SHIFT
);
508 limit
+= (u64
)buf
->base
;
509 base
= (u64
)buf
->base
+ PERF_IDX2OFF(handle
->head
, buf
);
510 write_sysreg_s(base
, SYS_PMBPTR_EL1
);
513 write_sysreg_s(limit
, SYS_PMBLIMITR_EL1
);
516 static void arm_spe_perf_aux_output_end(struct perf_output_handle
*handle
)
518 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
521 offset
= read_sysreg_s(SYS_PMBPTR_EL1
) - (u64
)buf
->base
;
522 size
= offset
- PERF_IDX2OFF(handle
->head
, buf
);
525 handle
->head
= offset
;
527 perf_aux_output_end(handle
, size
);
530 static void arm_spe_pmu_disable_and_drain_local(void)
532 /* Disable profiling at EL0 and EL1 */
533 write_sysreg_s(0, SYS_PMSCR_EL1
);
536 /* Drain any buffered data */
540 /* Disable the profiling buffer */
541 write_sysreg_s(0, SYS_PMBLIMITR_EL1
);
546 static enum arm_spe_pmu_buf_fault_action
547 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle
*handle
)
551 enum arm_spe_pmu_buf_fault_action ret
;
554 * Ensure new profiling data is visible to the CPU and any external
555 * aborts have been resolved.
560 /* Ensure hardware updates to PMBPTR_EL1 are visible */
563 /* Service required? */
564 pmbsr
= read_sysreg_s(SYS_PMBSR_EL1
);
565 if (!(pmbsr
& BIT(SYS_PMBSR_EL1_S_SHIFT
)))
566 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS
;
569 * If we've lost data, disable profiling and also set the PARTIAL
570 * flag to indicate that the last record is corrupted.
572 if (pmbsr
& BIT(SYS_PMBSR_EL1_DL_SHIFT
))
573 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
|
574 PERF_AUX_FLAG_PARTIAL
);
576 /* Report collisions to userspace so that it can up the period */
577 if (pmbsr
& BIT(SYS_PMBSR_EL1_COLL_SHIFT
))
578 perf_aux_output_flag(handle
, PERF_AUX_FLAG_COLLISION
);
580 /* We only expect buffer management events */
581 switch (pmbsr
& (SYS_PMBSR_EL1_EC_MASK
<< SYS_PMBSR_EL1_EC_SHIFT
)) {
582 case SYS_PMBSR_EL1_EC_BUF
:
585 case SYS_PMBSR_EL1_EC_FAULT_S1
:
586 case SYS_PMBSR_EL1_EC_FAULT_S2
:
587 err_str
= "Unexpected buffer fault";
590 err_str
= "Unknown error code";
594 /* Buffer management event */
596 (SYS_PMBSR_EL1_BUF_BSC_MASK
<< SYS_PMBSR_EL1_BUF_BSC_SHIFT
)) {
597 case SYS_PMBSR_EL1_BUF_BSC_FULL
:
598 ret
= SPE_PMU_BUF_FAULT_ACT_OK
;
601 err_str
= "Unknown buffer status code";
605 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
606 err_str
, smp_processor_id(), pmbsr
,
607 read_sysreg_s(SYS_PMBPTR_EL1
),
608 read_sysreg_s(SYS_PMBLIMITR_EL1
));
609 ret
= SPE_PMU_BUF_FAULT_ACT_FATAL
;
612 arm_spe_perf_aux_output_end(handle
);
616 static irqreturn_t
arm_spe_pmu_irq_handler(int irq
, void *dev
)
618 struct perf_output_handle
*handle
= dev
;
619 struct perf_event
*event
= handle
->event
;
620 enum arm_spe_pmu_buf_fault_action act
;
622 if (!perf_get_aux(handle
))
625 act
= arm_spe_pmu_buf_get_fault_act(handle
);
626 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
630 * Ensure perf callbacks have completed, which may disable the
631 * profiling buffer in response to a TRUNCATION flag.
636 case SPE_PMU_BUF_FAULT_ACT_FATAL
:
638 * If a fatal exception occurred then leaving the profiling
639 * buffer enabled is a recipe waiting to happen. Since
640 * fatal faults don't always imply truncation, make sure
641 * that the profiling buffer is disabled explicitly before
642 * clearing the syndrome register.
644 arm_spe_pmu_disable_and_drain_local();
646 case SPE_PMU_BUF_FAULT_ACT_OK
:
648 * We handled the fault (the buffer was full), so resume
649 * profiling as long as we didn't detect truncation.
650 * PMBPTR might be misaligned, but we'll burn that bridge
653 if (!(handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
)) {
654 arm_spe_perf_aux_output_begin(handle
, event
);
658 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS
:
659 /* We've seen you before, but GCC has the memory of a sieve. */
663 /* The buffer pointers are now sane, so resume profiling. */
664 write_sysreg_s(0, SYS_PMBSR_EL1
);
669 static int arm_spe_pmu_event_init(struct perf_event
*event
)
672 struct perf_event_attr
*attr
= &event
->attr
;
673 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
675 /* This is, of course, deeply driver-specific */
676 if (attr
->type
!= event
->pmu
->type
)
679 if (event
->cpu
>= 0 &&
680 !cpumask_test_cpu(event
->cpu
, &spe_pmu
->supported_cpus
))
683 if (arm_spe_event_to_pmsevfr(event
) & SYS_PMSEVFR_EL1_RES0
)
686 if (attr
->exclude_idle
)
690 * Feedback-directed frequency throttling doesn't work when we
691 * have a buffer of samples. We'd need to manually count the
692 * samples in the buffer when it fills up and adjust the event
693 * count to reflect that. Instead, just force the user to specify
699 reg
= arm_spe_event_to_pmsfcr(event
);
700 if ((reg
& BIT(SYS_PMSFCR_EL1_FE_SHIFT
)) &&
701 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_EVT
))
704 if ((reg
& BIT(SYS_PMSFCR_EL1_FT_SHIFT
)) &&
705 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_TYP
))
708 if ((reg
& BIT(SYS_PMSFCR_EL1_FL_SHIFT
)) &&
709 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_LAT
))
712 reg
= arm_spe_event_to_pmscr(event
);
713 if (!capable(CAP_SYS_ADMIN
) &&
714 (reg
& (BIT(SYS_PMSCR_EL1_PA_SHIFT
) |
715 BIT(SYS_PMSCR_EL1_CX_SHIFT
) |
716 BIT(SYS_PMSCR_EL1_PCT_SHIFT
))))
722 static void arm_spe_pmu_start(struct perf_event
*event
, int flags
)
725 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
726 struct hw_perf_event
*hwc
= &event
->hw
;
727 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
730 arm_spe_perf_aux_output_begin(handle
, event
);
734 reg
= arm_spe_event_to_pmsfcr(event
);
735 write_sysreg_s(reg
, SYS_PMSFCR_EL1
);
737 reg
= arm_spe_event_to_pmsevfr(event
);
738 write_sysreg_s(reg
, SYS_PMSEVFR_EL1
);
740 reg
= arm_spe_event_to_pmslatfr(event
);
741 write_sysreg_s(reg
, SYS_PMSLATFR_EL1
);
743 if (flags
& PERF_EF_RELOAD
) {
744 reg
= arm_spe_event_to_pmsirr(event
);
745 write_sysreg_s(reg
, SYS_PMSIRR_EL1
);
747 reg
= local64_read(&hwc
->period_left
);
748 write_sysreg_s(reg
, SYS_PMSICR_EL1
);
751 reg
= arm_spe_event_to_pmscr(event
);
753 write_sysreg_s(reg
, SYS_PMSCR_EL1
);
756 static void arm_spe_pmu_stop(struct perf_event
*event
, int flags
)
758 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
759 struct hw_perf_event
*hwc
= &event
->hw
;
760 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
762 /* If we're already stopped, then nothing to do */
763 if (hwc
->state
& PERF_HES_STOPPED
)
766 /* Stop all trace generation */
767 arm_spe_pmu_disable_and_drain_local();
769 if (flags
& PERF_EF_UPDATE
) {
771 * If there's a fault pending then ensure we contain it
772 * to this buffer, since we might be on the context-switch
775 if (perf_get_aux(handle
)) {
776 enum arm_spe_pmu_buf_fault_action act
;
778 act
= arm_spe_pmu_buf_get_fault_act(handle
);
779 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
780 arm_spe_perf_aux_output_end(handle
);
782 write_sysreg_s(0, SYS_PMBSR_EL1
);
786 * This may also contain ECOUNT, but nobody else should
787 * be looking at period_left, since we forbid frequency
790 local64_set(&hwc
->period_left
, read_sysreg_s(SYS_PMSICR_EL1
));
791 hwc
->state
|= PERF_HES_UPTODATE
;
794 hwc
->state
|= PERF_HES_STOPPED
;
797 static int arm_spe_pmu_add(struct perf_event
*event
, int flags
)
800 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
801 struct hw_perf_event
*hwc
= &event
->hw
;
802 int cpu
= event
->cpu
== -1 ? smp_processor_id() : event
->cpu
;
804 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
807 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
809 if (flags
& PERF_EF_START
) {
810 arm_spe_pmu_start(event
, PERF_EF_RELOAD
);
811 if (hwc
->state
& PERF_HES_STOPPED
)
818 static void arm_spe_pmu_del(struct perf_event
*event
, int flags
)
820 arm_spe_pmu_stop(event
, PERF_EF_UPDATE
);
823 static void arm_spe_pmu_read(struct perf_event
*event
)
827 static void *arm_spe_pmu_setup_aux(struct perf_event
*event
, void **pages
,
828 int nr_pages
, bool snapshot
)
830 int i
, cpu
= event
->cpu
;
831 struct page
**pglist
;
832 struct arm_spe_pmu_buf
*buf
;
834 /* We need at least two pages for this to work. */
839 * We require an even number of pages for snapshot mode, so that
840 * we can effectively treat the buffer as consisting of two equal
841 * parts and give userspace a fighting chance of getting some
842 * useful data out of it.
844 if (!nr_pages
|| (snapshot
&& (nr_pages
& 1)))
848 cpu
= raw_smp_processor_id();
850 buf
= kzalloc_node(sizeof(*buf
), GFP_KERNEL
, cpu_to_node(cpu
));
854 pglist
= kcalloc(nr_pages
, sizeof(*pglist
), GFP_KERNEL
);
858 for (i
= 0; i
< nr_pages
; ++i
) {
859 struct page
*page
= virt_to_page(pages
[i
]);
861 if (PagePrivate(page
)) {
862 pr_warn("unexpected high-order page for auxbuf!");
863 goto out_free_pglist
;
866 pglist
[i
] = virt_to_page(pages
[i
]);
869 buf
->base
= vmap(pglist
, nr_pages
, VM_MAP
, PAGE_KERNEL
);
871 goto out_free_pglist
;
873 buf
->nr_pages
= nr_pages
;
874 buf
->snapshot
= snapshot
;
886 static void arm_spe_pmu_free_aux(void *aux
)
888 struct arm_spe_pmu_buf
*buf
= aux
;
894 /* Initialisation and teardown functions */
895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu
*spe_pmu
)
897 static atomic_t pmu_idx
= ATOMIC_INIT(-1);
901 struct device
*dev
= &spe_pmu
->pdev
->dev
;
903 spe_pmu
->pmu
= (struct pmu
) {
904 .module
= THIS_MODULE
,
905 .capabilities
= PERF_PMU_CAP_EXCLUSIVE
| PERF_PMU_CAP_ITRACE
,
906 .attr_groups
= arm_spe_pmu_attr_groups
,
908 * We hitch a ride on the software context here, so that
909 * we can support per-task profiling (which is not possible
910 * with the invalid context as it doesn't get sched callbacks).
911 * This requires that userspace either uses a dummy event for
912 * perf_event_open, since the aux buffer is not setup until
913 * a subsequent mmap, or creates the profiling event in a
914 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915 * once the buffer has been created.
917 .task_ctx_nr
= perf_sw_context
,
918 .event_init
= arm_spe_pmu_event_init
,
919 .add
= arm_spe_pmu_add
,
920 .del
= arm_spe_pmu_del
,
921 .start
= arm_spe_pmu_start
,
922 .stop
= arm_spe_pmu_stop
,
923 .read
= arm_spe_pmu_read
,
924 .setup_aux
= arm_spe_pmu_setup_aux
,
925 .free_aux
= arm_spe_pmu_free_aux
,
928 idx
= atomic_inc_return(&pmu_idx
);
929 name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_%d", PMUNAME
, idx
);
931 dev_err(dev
, "failed to allocate name for pmu %d\n", idx
);
935 return perf_pmu_register(&spe_pmu
->pmu
, name
, -1);
938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu
*spe_pmu
)
940 perf_pmu_unregister(&spe_pmu
->pmu
);
943 static void __arm_spe_pmu_dev_probe(void *info
)
947 struct arm_spe_pmu
*spe_pmu
= info
;
948 struct device
*dev
= &spe_pmu
->pdev
->dev
;
950 fld
= cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1
),
951 ID_AA64DFR0_PMSVER_SHIFT
);
954 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
955 fld
, smp_processor_id());
959 /* Read PMBIDR first to determine whether or not we have access */
960 reg
= read_sysreg_s(SYS_PMBIDR_EL1
);
961 if (reg
& BIT(SYS_PMBIDR_EL1_P_SHIFT
)) {
963 "profiling buffer owned by higher exception level\n");
967 /* Minimum alignment. If it's out-of-range, then fail the probe */
968 fld
= reg
>> SYS_PMBIDR_EL1_ALIGN_SHIFT
& SYS_PMBIDR_EL1_ALIGN_MASK
;
969 spe_pmu
->align
= 1 << fld
;
970 if (spe_pmu
->align
> SZ_2K
) {
971 dev_err(dev
, "unsupported PMBIDR.Align [%d] on CPU %d\n",
972 fld
, smp_processor_id());
976 /* It's now safe to read PMSIDR and figure out what we've got */
977 reg
= read_sysreg_s(SYS_PMSIDR_EL1
);
978 if (reg
& BIT(SYS_PMSIDR_EL1_FE_SHIFT
))
979 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_EVT
;
981 if (reg
& BIT(SYS_PMSIDR_EL1_FT_SHIFT
))
982 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_TYP
;
984 if (reg
& BIT(SYS_PMSIDR_EL1_FL_SHIFT
))
985 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_LAT
;
987 if (reg
& BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT
))
988 spe_pmu
->features
|= SPE_PMU_FEAT_ARCH_INST
;
990 if (reg
& BIT(SYS_PMSIDR_EL1_LDS_SHIFT
))
991 spe_pmu
->features
|= SPE_PMU_FEAT_LDS
;
993 if (reg
& BIT(SYS_PMSIDR_EL1_ERND_SHIFT
))
994 spe_pmu
->features
|= SPE_PMU_FEAT_ERND
;
996 /* This field has a spaced out encoding, so just use a look-up */
997 fld
= reg
>> SYS_PMSIDR_EL1_INTERVAL_SHIFT
& SYS_PMSIDR_EL1_INTERVAL_MASK
;
1000 spe_pmu
->min_period
= 256;
1003 spe_pmu
->min_period
= 512;
1006 spe_pmu
->min_period
= 768;
1009 spe_pmu
->min_period
= 1024;
1012 spe_pmu
->min_period
= 1536;
1015 spe_pmu
->min_period
= 2048;
1018 spe_pmu
->min_period
= 3072;
1021 dev_warn(dev
, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1025 spe_pmu
->min_period
= 4096;
1028 /* Maximum record size. If it's out-of-range, then fail the probe */
1029 fld
= reg
>> SYS_PMSIDR_EL1_MAXSIZE_SHIFT
& SYS_PMSIDR_EL1_MAXSIZE_MASK
;
1030 spe_pmu
->max_record_sz
= 1 << fld
;
1031 if (spe_pmu
->max_record_sz
> SZ_2K
|| spe_pmu
->max_record_sz
< 16) {
1032 dev_err(dev
, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1033 fld
, smp_processor_id());
1037 fld
= reg
>> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT
& SYS_PMSIDR_EL1_COUNTSIZE_MASK
;
1040 dev_warn(dev
, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1044 spe_pmu
->counter_sz
= 12;
1048 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1049 cpumask_pr_args(&spe_pmu
->supported_cpus
),
1050 spe_pmu
->max_record_sz
, spe_pmu
->align
, spe_pmu
->features
);
1052 spe_pmu
->features
|= SPE_PMU_FEAT_DEV_PROBED
;
1056 static void __arm_spe_pmu_reset_local(void)
1059 * This is probably overkill, as we have no idea where we're
1060 * draining any buffered data to...
1062 arm_spe_pmu_disable_and_drain_local();
1064 /* Reset the buffer base pointer */
1065 write_sysreg_s(0, SYS_PMBPTR_EL1
);
1068 /* Clear any pending management interrupts */
1069 write_sysreg_s(0, SYS_PMBSR_EL1
);
1073 static void __arm_spe_pmu_setup_one(void *info
)
1075 struct arm_spe_pmu
*spe_pmu
= info
;
1077 __arm_spe_pmu_reset_local();
1078 enable_percpu_irq(spe_pmu
->irq
, IRQ_TYPE_NONE
);
1081 static void __arm_spe_pmu_stop_one(void *info
)
1083 struct arm_spe_pmu
*spe_pmu
= info
;
1085 disable_percpu_irq(spe_pmu
->irq
);
1086 __arm_spe_pmu_reset_local();
1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu
, struct hlist_node
*node
)
1091 struct arm_spe_pmu
*spe_pmu
;
1093 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1094 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1097 __arm_spe_pmu_setup_one(spe_pmu
);
1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu
, struct hlist_node
*node
)
1103 struct arm_spe_pmu
*spe_pmu
;
1105 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1106 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1109 __arm_spe_pmu_stop_one(spe_pmu
);
1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu
*spe_pmu
)
1116 cpumask_t
*mask
= &spe_pmu
->supported_cpus
;
1118 /* Make sure we probe the hardware on a relevant CPU */
1119 ret
= smp_call_function_any(mask
, __arm_spe_pmu_dev_probe
, spe_pmu
, 1);
1120 if (ret
|| !(spe_pmu
->features
& SPE_PMU_FEAT_DEV_PROBED
))
1123 /* Request our PPIs (note that the IRQ is still disabled) */
1124 ret
= request_percpu_irq(spe_pmu
->irq
, arm_spe_pmu_irq_handler
, DRVNAME
,
1130 * Register our hotplug notifier now so we don't miss any events.
1131 * This will enable the IRQ for any supported CPUs that are already
1134 ret
= cpuhp_state_add_instance(arm_spe_pmu_online
,
1135 &spe_pmu
->hotplug_node
);
1137 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu
*spe_pmu
)
1144 cpuhp_state_remove_instance(arm_spe_pmu_online
, &spe_pmu
->hotplug_node
);
1145 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1148 /* Driver and device probing */
1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu
*spe_pmu
)
1151 struct platform_device
*pdev
= spe_pmu
->pdev
;
1152 int irq
= platform_get_irq(pdev
, 0);
1155 dev_err(&pdev
->dev
, "failed to get IRQ (%d)\n", irq
);
1159 if (!irq_is_percpu(irq
)) {
1160 dev_err(&pdev
->dev
, "expected PPI but got SPI (%d)\n", irq
);
1164 if (irq_get_percpu_devid_partition(irq
, &spe_pmu
->supported_cpus
)) {
1165 dev_err(&pdev
->dev
, "failed to get PPI partition (%d)\n", irq
);
1173 static const struct of_device_id arm_spe_pmu_of_match
[] = {
1174 { .compatible
= "arm,statistical-profiling-extension-v1", .data
= (void *)1 },
1178 static int arm_spe_pmu_device_dt_probe(struct platform_device
*pdev
)
1181 struct arm_spe_pmu
*spe_pmu
;
1182 struct device
*dev
= &pdev
->dev
;
1185 * If kernelspace is unmapped when running at EL0, then the SPE
1186 * buffer will fault and prematurely terminate the AUX session.
1188 if (arm64_kernel_unmapped_at_el0()) {
1189 dev_warn_once(dev
, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1193 spe_pmu
= devm_kzalloc(dev
, sizeof(*spe_pmu
), GFP_KERNEL
);
1195 dev_err(dev
, "failed to allocate spe_pmu\n");
1199 spe_pmu
->handle
= alloc_percpu(typeof(*spe_pmu
->handle
));
1200 if (!spe_pmu
->handle
)
1203 spe_pmu
->pdev
= pdev
;
1204 platform_set_drvdata(pdev
, spe_pmu
);
1206 ret
= arm_spe_pmu_irq_probe(spe_pmu
);
1208 goto out_free_handle
;
1210 ret
= arm_spe_pmu_dev_init(spe_pmu
);
1212 goto out_free_handle
;
1214 ret
= arm_spe_pmu_perf_init(spe_pmu
);
1216 goto out_teardown_dev
;
1221 arm_spe_pmu_dev_teardown(spe_pmu
);
1223 free_percpu(spe_pmu
->handle
);
1227 static int arm_spe_pmu_device_remove(struct platform_device
*pdev
)
1229 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
1231 arm_spe_pmu_perf_destroy(spe_pmu
);
1232 arm_spe_pmu_dev_teardown(spe_pmu
);
1233 free_percpu(spe_pmu
->handle
);
1237 static struct platform_driver arm_spe_pmu_driver
= {
1240 .of_match_table
= of_match_ptr(arm_spe_pmu_of_match
),
1242 .probe
= arm_spe_pmu_device_dt_probe
,
1243 .remove
= arm_spe_pmu_device_remove
,
1246 static int __init
arm_spe_pmu_init(void)
1250 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, DRVNAME
,
1251 arm_spe_pmu_cpu_startup
,
1252 arm_spe_pmu_cpu_teardown
);
1255 arm_spe_pmu_online
= ret
;
1257 ret
= platform_driver_register(&arm_spe_pmu_driver
);
1259 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1264 static void __exit
arm_spe_pmu_exit(void)
1266 platform_driver_unregister(&arm_spe_pmu_driver
);
1267 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1270 module_init(arm_spe_pmu_init
);
1271 module_exit(arm_spe_pmu_exit
);
1273 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1274 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1275 MODULE_LICENSE("GPL v2");