ARM: mvebu: update Ethernet compatible string for Armada XP
[linux/fpc-iii.git] / mm / mempolicy.c
blob0f7d73b3e4b1bfefb3214c9e33d72c5857757485
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126 struct mempolicy *get_task_policy(struct task_struct *p)
128 struct mempolicy *pol = p->mempolicy;
129 int node;
131 if (pol)
132 return pol;
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
142 return &default_policy;
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
167 return pol->flags & MPOL_MODE_FLAGS;
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
217 int ret;
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
256 struct mempolicy *policy;
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
266 VM_BUG_ON(!nodes);
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
292 return policy;
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
317 nodemask_t tmp;
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
339 if (nodes_empty(tmp))
340 tmp = *nodes;
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
362 nodemask_t tmp;
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
428 * Called with task's alloc_lock held.
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
434 mpol_rebind_policy(tsk->mempolicy, new, step);
438 * Rebind each vma in mm to new nodemask.
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
445 struct vm_area_struct *vma;
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
557 #ifdef CONFIG_NUMA_BALANCING
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
570 int nr_updated;
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
576 return nr_updated;
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
582 return 0;
584 #endif /* CONFIG_NUMA_BALANCING */
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
609 qp->prev = vma;
611 if (vma->vm_flags & VM_PFNMAP)
612 return 1;
614 if (flags & MPOL_MF_LAZY) {
615 /* Similar to task_numa_work, skip inaccessible VMAs */
616 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 change_prot_numa(vma, start, endvma);
618 return 1;
621 if ((flags & MPOL_MF_STRICT) ||
622 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 vma_migratable(vma)))
624 /* queue pages from current vma */
625 return 0;
626 return 1;
630 * Walk through page tables and collect pages to be migrated.
632 * If pages found in a given range are on a set of nodes (determined by
633 * @nodes and @flags,) it's isolated and queued to the pagelist which is
634 * passed via @private.)
636 static int
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 nodemask_t *nodes, unsigned long flags,
639 struct list_head *pagelist)
641 struct queue_pages qp = {
642 .pagelist = pagelist,
643 .flags = flags,
644 .nmask = nodes,
645 .prev = NULL,
647 struct mm_walk queue_pages_walk = {
648 .hugetlb_entry = queue_pages_hugetlb,
649 .pmd_entry = queue_pages_pte_range,
650 .test_walk = queue_pages_test_walk,
651 .mm = mm,
652 .private = &qp,
655 return walk_page_range(start, end, &queue_pages_walk);
659 * Apply policy to a single VMA
660 * This must be called with the mmap_sem held for writing.
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 struct mempolicy *pol)
665 int err;
666 struct mempolicy *old;
667 struct mempolicy *new;
669 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 vma->vm_ops, vma->vm_file,
672 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
674 new = mpol_dup(pol);
675 if (IS_ERR(new))
676 return PTR_ERR(new);
678 if (vma->vm_ops && vma->vm_ops->set_policy) {
679 err = vma->vm_ops->set_policy(vma, new);
680 if (err)
681 goto err_out;
684 old = vma->vm_policy;
685 vma->vm_policy = new; /* protected by mmap_sem */
686 mpol_put(old);
688 return 0;
689 err_out:
690 mpol_put(new);
691 return err;
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 unsigned long end, struct mempolicy *new_pol)
698 struct vm_area_struct *next;
699 struct vm_area_struct *prev;
700 struct vm_area_struct *vma;
701 int err = 0;
702 pgoff_t pgoff;
703 unsigned long vmstart;
704 unsigned long vmend;
706 vma = find_vma(mm, start);
707 if (!vma || vma->vm_start > start)
708 return -EFAULT;
710 prev = vma->vm_prev;
711 if (start > vma->vm_start)
712 prev = vma;
714 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
715 next = vma->vm_next;
716 vmstart = max(start, vma->vm_start);
717 vmend = min(end, vma->vm_end);
719 if (mpol_equal(vma_policy(vma), new_pol))
720 continue;
722 pgoff = vma->vm_pgoff +
723 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 vma->anon_vma, vma->vm_file, pgoff,
726 new_pol);
727 if (prev) {
728 vma = prev;
729 next = vma->vm_next;
730 if (mpol_equal(vma_policy(vma), new_pol))
731 continue;
732 /* vma_merge() joined vma && vma->next, case 8 */
733 goto replace;
735 if (vma->vm_start != vmstart) {
736 err = split_vma(vma->vm_mm, vma, vmstart, 1);
737 if (err)
738 goto out;
740 if (vma->vm_end != vmend) {
741 err = split_vma(vma->vm_mm, vma, vmend, 0);
742 if (err)
743 goto out;
745 replace:
746 err = vma_replace_policy(vma, new_pol);
747 if (err)
748 goto out;
751 out:
752 return err;
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 nodemask_t *nodes)
759 struct mempolicy *new, *old;
760 NODEMASK_SCRATCH(scratch);
761 int ret;
763 if (!scratch)
764 return -ENOMEM;
766 new = mpol_new(mode, flags, nodes);
767 if (IS_ERR(new)) {
768 ret = PTR_ERR(new);
769 goto out;
772 task_lock(current);
773 ret = mpol_set_nodemask(new, nodes, scratch);
774 if (ret) {
775 task_unlock(current);
776 mpol_put(new);
777 goto out;
779 old = current->mempolicy;
780 current->mempolicy = new;
781 if (new && new->mode == MPOL_INTERLEAVE &&
782 nodes_weight(new->v.nodes))
783 current->il_next = first_node(new->v.nodes);
784 task_unlock(current);
785 mpol_put(old);
786 ret = 0;
787 out:
788 NODEMASK_SCRATCH_FREE(scratch);
789 return ret;
793 * Return nodemask for policy for get_mempolicy() query
795 * Called with task's alloc_lock held
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
799 nodes_clear(*nodes);
800 if (p == &default_policy)
801 return;
803 switch (p->mode) {
804 case MPOL_BIND:
805 /* Fall through */
806 case MPOL_INTERLEAVE:
807 *nodes = p->v.nodes;
808 break;
809 case MPOL_PREFERRED:
810 if (!(p->flags & MPOL_F_LOCAL))
811 node_set(p->v.preferred_node, *nodes);
812 /* else return empty node mask for local allocation */
813 break;
814 default:
815 BUG();
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
821 struct page *p;
822 int err;
824 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
825 if (err >= 0) {
826 err = page_to_nid(p);
827 put_page(p);
829 return err;
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 unsigned long addr, unsigned long flags)
836 int err;
837 struct mm_struct *mm = current->mm;
838 struct vm_area_struct *vma = NULL;
839 struct mempolicy *pol = current->mempolicy;
841 if (flags &
842 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 return -EINVAL;
845 if (flags & MPOL_F_MEMS_ALLOWED) {
846 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
847 return -EINVAL;
848 *policy = 0; /* just so it's initialized */
849 task_lock(current);
850 *nmask = cpuset_current_mems_allowed;
851 task_unlock(current);
852 return 0;
855 if (flags & MPOL_F_ADDR) {
857 * Do NOT fall back to task policy if the
858 * vma/shared policy at addr is NULL. We
859 * want to return MPOL_DEFAULT in this case.
861 down_read(&mm->mmap_sem);
862 vma = find_vma_intersection(mm, addr, addr+1);
863 if (!vma) {
864 up_read(&mm->mmap_sem);
865 return -EFAULT;
867 if (vma->vm_ops && vma->vm_ops->get_policy)
868 pol = vma->vm_ops->get_policy(vma, addr);
869 else
870 pol = vma->vm_policy;
871 } else if (addr)
872 return -EINVAL;
874 if (!pol)
875 pol = &default_policy; /* indicates default behavior */
877 if (flags & MPOL_F_NODE) {
878 if (flags & MPOL_F_ADDR) {
879 err = lookup_node(mm, addr);
880 if (err < 0)
881 goto out;
882 *policy = err;
883 } else if (pol == current->mempolicy &&
884 pol->mode == MPOL_INTERLEAVE) {
885 *policy = current->il_next;
886 } else {
887 err = -EINVAL;
888 goto out;
890 } else {
891 *policy = pol == &default_policy ? MPOL_DEFAULT :
892 pol->mode;
894 * Internal mempolicy flags must be masked off before exposing
895 * the policy to userspace.
897 *policy |= (pol->flags & MPOL_MODE_FLAGS);
900 if (vma) {
901 up_read(&current->mm->mmap_sem);
902 vma = NULL;
905 err = 0;
906 if (nmask) {
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
909 } else {
910 task_lock(current);
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
916 out:
917 mpol_cond_put(pol);
918 if (vma)
919 up_read(&current->mm->mmap_sem);
920 return err;
923 #ifdef CONFIG_MIGRATION
925 * page migration
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 unsigned long flags)
931 * Avoid migrating a page that is shared with others.
933 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 if (!isolate_lru_page(page)) {
935 list_add_tail(&page->lru, pagelist);
936 inc_zone_page_state(page, NR_ISOLATED_ANON +
937 page_is_file_cache(page));
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
944 if (PageHuge(page))
945 return alloc_huge_page_node(page_hstate(compound_head(page)),
946 node);
947 else
948 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
952 * Migrate pages from one node to a target node.
953 * Returns error or the number of pages not migrated.
955 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
956 int flags)
958 nodemask_t nmask;
959 LIST_HEAD(pagelist);
960 int err = 0;
962 nodes_clear(nmask);
963 node_set(source, nmask);
966 * This does not "check" the range but isolates all pages that
967 * need migration. Between passing in the full user address
968 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
970 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
971 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
972 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
974 if (!list_empty(&pagelist)) {
975 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
976 MIGRATE_SYNC, MR_SYSCALL);
977 if (err)
978 putback_movable_pages(&pagelist);
981 return err;
985 * Move pages between the two nodesets so as to preserve the physical
986 * layout as much as possible.
988 * Returns the number of page that could not be moved.
990 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
991 const nodemask_t *to, int flags)
993 int busy = 0;
994 int err;
995 nodemask_t tmp;
997 err = migrate_prep();
998 if (err)
999 return err;
1001 down_read(&mm->mmap_sem);
1004 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1005 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1006 * bit in 'tmp', and return that <source, dest> pair for migration.
1007 * The pair of nodemasks 'to' and 'from' define the map.
1009 * If no pair of bits is found that way, fallback to picking some
1010 * pair of 'source' and 'dest' bits that are not the same. If the
1011 * 'source' and 'dest' bits are the same, this represents a node
1012 * that will be migrating to itself, so no pages need move.
1014 * If no bits are left in 'tmp', or if all remaining bits left
1015 * in 'tmp' correspond to the same bit in 'to', return false
1016 * (nothing left to migrate).
1018 * This lets us pick a pair of nodes to migrate between, such that
1019 * if possible the dest node is not already occupied by some other
1020 * source node, minimizing the risk of overloading the memory on a
1021 * node that would happen if we migrated incoming memory to a node
1022 * before migrating outgoing memory source that same node.
1024 * A single scan of tmp is sufficient. As we go, we remember the
1025 * most recent <s, d> pair that moved (s != d). If we find a pair
1026 * that not only moved, but what's better, moved to an empty slot
1027 * (d is not set in tmp), then we break out then, with that pair.
1028 * Otherwise when we finish scanning from_tmp, we at least have the
1029 * most recent <s, d> pair that moved. If we get all the way through
1030 * the scan of tmp without finding any node that moved, much less
1031 * moved to an empty node, then there is nothing left worth migrating.
1034 tmp = *from;
1035 while (!nodes_empty(tmp)) {
1036 int s,d;
1037 int source = NUMA_NO_NODE;
1038 int dest = 0;
1040 for_each_node_mask(s, tmp) {
1043 * do_migrate_pages() tries to maintain the relative
1044 * node relationship of the pages established between
1045 * threads and memory areas.
1047 * However if the number of source nodes is not equal to
1048 * the number of destination nodes we can not preserve
1049 * this node relative relationship. In that case, skip
1050 * copying memory from a node that is in the destination
1051 * mask.
1053 * Example: [2,3,4] -> [3,4,5] moves everything.
1054 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1057 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1058 (node_isset(s, *to)))
1059 continue;
1061 d = node_remap(s, *from, *to);
1062 if (s == d)
1063 continue;
1065 source = s; /* Node moved. Memorize */
1066 dest = d;
1068 /* dest not in remaining from nodes? */
1069 if (!node_isset(dest, tmp))
1070 break;
1072 if (source == NUMA_NO_NODE)
1073 break;
1075 node_clear(source, tmp);
1076 err = migrate_to_node(mm, source, dest, flags);
1077 if (err > 0)
1078 busy += err;
1079 if (err < 0)
1080 break;
1082 up_read(&mm->mmap_sem);
1083 if (err < 0)
1084 return err;
1085 return busy;
1090 * Allocate a new page for page migration based on vma policy.
1091 * Start by assuming the page is mapped by the same vma as contains @start.
1092 * Search forward from there, if not. N.B., this assumes that the
1093 * list of pages handed to migrate_pages()--which is how we get here--
1094 * is in virtual address order.
1096 static struct page *new_page(struct page *page, unsigned long start, int **x)
1098 struct vm_area_struct *vma;
1099 unsigned long uninitialized_var(address);
1101 vma = find_vma(current->mm, start);
1102 while (vma) {
1103 address = page_address_in_vma(page, vma);
1104 if (address != -EFAULT)
1105 break;
1106 vma = vma->vm_next;
1109 if (PageHuge(page)) {
1110 BUG_ON(!vma);
1111 return alloc_huge_page_noerr(vma, address, 1);
1114 * if !vma, alloc_page_vma() will use task or system default policy
1116 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1118 #else
1120 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121 unsigned long flags)
1125 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126 const nodemask_t *to, int flags)
1128 return -ENOSYS;
1131 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 return NULL;
1135 #endif
1137 static long do_mbind(unsigned long start, unsigned long len,
1138 unsigned short mode, unsigned short mode_flags,
1139 nodemask_t *nmask, unsigned long flags)
1141 struct mm_struct *mm = current->mm;
1142 struct mempolicy *new;
1143 unsigned long end;
1144 int err;
1145 LIST_HEAD(pagelist);
1147 if (flags & ~(unsigned long)MPOL_MF_VALID)
1148 return -EINVAL;
1149 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150 return -EPERM;
1152 if (start & ~PAGE_MASK)
1153 return -EINVAL;
1155 if (mode == MPOL_DEFAULT)
1156 flags &= ~MPOL_MF_STRICT;
1158 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159 end = start + len;
1161 if (end < start)
1162 return -EINVAL;
1163 if (end == start)
1164 return 0;
1166 new = mpol_new(mode, mode_flags, nmask);
1167 if (IS_ERR(new))
1168 return PTR_ERR(new);
1170 if (flags & MPOL_MF_LAZY)
1171 new->flags |= MPOL_F_MOF;
1174 * If we are using the default policy then operation
1175 * on discontinuous address spaces is okay after all
1177 if (!new)
1178 flags |= MPOL_MF_DISCONTIG_OK;
1180 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181 start, start + len, mode, mode_flags,
1182 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1184 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1186 err = migrate_prep();
1187 if (err)
1188 goto mpol_out;
1191 NODEMASK_SCRATCH(scratch);
1192 if (scratch) {
1193 down_write(&mm->mmap_sem);
1194 task_lock(current);
1195 err = mpol_set_nodemask(new, nmask, scratch);
1196 task_unlock(current);
1197 if (err)
1198 up_write(&mm->mmap_sem);
1199 } else
1200 err = -ENOMEM;
1201 NODEMASK_SCRATCH_FREE(scratch);
1203 if (err)
1204 goto mpol_out;
1206 err = queue_pages_range(mm, start, end, nmask,
1207 flags | MPOL_MF_INVERT, &pagelist);
1208 if (!err)
1209 err = mbind_range(mm, start, end, new);
1211 if (!err) {
1212 int nr_failed = 0;
1214 if (!list_empty(&pagelist)) {
1215 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218 if (nr_failed)
1219 putback_movable_pages(&pagelist);
1222 if (nr_failed && (flags & MPOL_MF_STRICT))
1223 err = -EIO;
1224 } else
1225 putback_movable_pages(&pagelist);
1227 up_write(&mm->mmap_sem);
1228 mpol_out:
1229 mpol_put(new);
1230 return err;
1234 * User space interface with variable sized bitmaps for nodelists.
1237 /* Copy a node mask from user space. */
1238 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239 unsigned long maxnode)
1241 unsigned long k;
1242 unsigned long nlongs;
1243 unsigned long endmask;
1245 --maxnode;
1246 nodes_clear(*nodes);
1247 if (maxnode == 0 || !nmask)
1248 return 0;
1249 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1250 return -EINVAL;
1252 nlongs = BITS_TO_LONGS(maxnode);
1253 if ((maxnode % BITS_PER_LONG) == 0)
1254 endmask = ~0UL;
1255 else
1256 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258 /* When the user specified more nodes than supported just check
1259 if the non supported part is all zero. */
1260 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1261 if (nlongs > PAGE_SIZE/sizeof(long))
1262 return -EINVAL;
1263 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1264 unsigned long t;
1265 if (get_user(t, nmask + k))
1266 return -EFAULT;
1267 if (k == nlongs - 1) {
1268 if (t & endmask)
1269 return -EINVAL;
1270 } else if (t)
1271 return -EINVAL;
1273 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1274 endmask = ~0UL;
1277 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1278 return -EFAULT;
1279 nodes_addr(*nodes)[nlongs-1] &= endmask;
1280 return 0;
1283 /* Copy a kernel node mask to user space */
1284 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1285 nodemask_t *nodes)
1287 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1288 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1290 if (copy > nbytes) {
1291 if (copy > PAGE_SIZE)
1292 return -EINVAL;
1293 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1294 return -EFAULT;
1295 copy = nbytes;
1297 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1300 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1301 unsigned long, mode, const unsigned long __user *, nmask,
1302 unsigned long, maxnode, unsigned, flags)
1304 nodemask_t nodes;
1305 int err;
1306 unsigned short mode_flags;
1308 mode_flags = mode & MPOL_MODE_FLAGS;
1309 mode &= ~MPOL_MODE_FLAGS;
1310 if (mode >= MPOL_MAX)
1311 return -EINVAL;
1312 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1313 (mode_flags & MPOL_F_RELATIVE_NODES))
1314 return -EINVAL;
1315 err = get_nodes(&nodes, nmask, maxnode);
1316 if (err)
1317 return err;
1318 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1321 /* Set the process memory policy */
1322 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1323 unsigned long, maxnode)
1325 int err;
1326 nodemask_t nodes;
1327 unsigned short flags;
1329 flags = mode & MPOL_MODE_FLAGS;
1330 mode &= ~MPOL_MODE_FLAGS;
1331 if ((unsigned int)mode >= MPOL_MAX)
1332 return -EINVAL;
1333 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1334 return -EINVAL;
1335 err = get_nodes(&nodes, nmask, maxnode);
1336 if (err)
1337 return err;
1338 return do_set_mempolicy(mode, flags, &nodes);
1341 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1342 const unsigned long __user *, old_nodes,
1343 const unsigned long __user *, new_nodes)
1345 const struct cred *cred = current_cred(), *tcred;
1346 struct mm_struct *mm = NULL;
1347 struct task_struct *task;
1348 nodemask_t task_nodes;
1349 int err;
1350 nodemask_t *old;
1351 nodemask_t *new;
1352 NODEMASK_SCRATCH(scratch);
1354 if (!scratch)
1355 return -ENOMEM;
1357 old = &scratch->mask1;
1358 new = &scratch->mask2;
1360 err = get_nodes(old, old_nodes, maxnode);
1361 if (err)
1362 goto out;
1364 err = get_nodes(new, new_nodes, maxnode);
1365 if (err)
1366 goto out;
1368 /* Find the mm_struct */
1369 rcu_read_lock();
1370 task = pid ? find_task_by_vpid(pid) : current;
1371 if (!task) {
1372 rcu_read_unlock();
1373 err = -ESRCH;
1374 goto out;
1376 get_task_struct(task);
1378 err = -EINVAL;
1381 * Check if this process has the right to modify the specified
1382 * process. The right exists if the process has administrative
1383 * capabilities, superuser privileges or the same
1384 * userid as the target process.
1386 tcred = __task_cred(task);
1387 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1388 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1389 !capable(CAP_SYS_NICE)) {
1390 rcu_read_unlock();
1391 err = -EPERM;
1392 goto out_put;
1394 rcu_read_unlock();
1396 task_nodes = cpuset_mems_allowed(task);
1397 /* Is the user allowed to access the target nodes? */
1398 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1399 err = -EPERM;
1400 goto out_put;
1403 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1404 err = -EINVAL;
1405 goto out_put;
1408 err = security_task_movememory(task);
1409 if (err)
1410 goto out_put;
1412 mm = get_task_mm(task);
1413 put_task_struct(task);
1415 if (!mm) {
1416 err = -EINVAL;
1417 goto out;
1420 err = do_migrate_pages(mm, old, new,
1421 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1423 mmput(mm);
1424 out:
1425 NODEMASK_SCRATCH_FREE(scratch);
1427 return err;
1429 out_put:
1430 put_task_struct(task);
1431 goto out;
1436 /* Retrieve NUMA policy */
1437 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1438 unsigned long __user *, nmask, unsigned long, maxnode,
1439 unsigned long, addr, unsigned long, flags)
1441 int err;
1442 int uninitialized_var(pval);
1443 nodemask_t nodes;
1445 if (nmask != NULL && maxnode < MAX_NUMNODES)
1446 return -EINVAL;
1448 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1450 if (err)
1451 return err;
1453 if (policy && put_user(pval, policy))
1454 return -EFAULT;
1456 if (nmask)
1457 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1459 return err;
1462 #ifdef CONFIG_COMPAT
1464 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1465 compat_ulong_t __user *, nmask,
1466 compat_ulong_t, maxnode,
1467 compat_ulong_t, addr, compat_ulong_t, flags)
1469 long err;
1470 unsigned long __user *nm = NULL;
1471 unsigned long nr_bits, alloc_size;
1472 DECLARE_BITMAP(bm, MAX_NUMNODES);
1474 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1475 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1477 if (nmask)
1478 nm = compat_alloc_user_space(alloc_size);
1480 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1482 if (!err && nmask) {
1483 unsigned long copy_size;
1484 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1485 err = copy_from_user(bm, nm, copy_size);
1486 /* ensure entire bitmap is zeroed */
1487 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1488 err |= compat_put_bitmap(nmask, bm, nr_bits);
1491 return err;
1494 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1495 compat_ulong_t, maxnode)
1497 long err = 0;
1498 unsigned long __user *nm = NULL;
1499 unsigned long nr_bits, alloc_size;
1500 DECLARE_BITMAP(bm, MAX_NUMNODES);
1502 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1503 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1505 if (nmask) {
1506 err = compat_get_bitmap(bm, nmask, nr_bits);
1507 nm = compat_alloc_user_space(alloc_size);
1508 err |= copy_to_user(nm, bm, alloc_size);
1511 if (err)
1512 return -EFAULT;
1514 return sys_set_mempolicy(mode, nm, nr_bits+1);
1517 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1518 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1519 compat_ulong_t, maxnode, compat_ulong_t, flags)
1521 long err = 0;
1522 unsigned long __user *nm = NULL;
1523 unsigned long nr_bits, alloc_size;
1524 nodemask_t bm;
1526 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529 if (nmask) {
1530 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1531 nm = compat_alloc_user_space(alloc_size);
1532 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1535 if (err)
1536 return -EFAULT;
1538 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1541 #endif
1543 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1544 unsigned long addr)
1546 struct mempolicy *pol = NULL;
1548 if (vma) {
1549 if (vma->vm_ops && vma->vm_ops->get_policy) {
1550 pol = vma->vm_ops->get_policy(vma, addr);
1551 } else if (vma->vm_policy) {
1552 pol = vma->vm_policy;
1555 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1556 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1557 * count on these policies which will be dropped by
1558 * mpol_cond_put() later
1560 if (mpol_needs_cond_ref(pol))
1561 mpol_get(pol);
1565 return pol;
1569 * get_vma_policy(@vma, @addr)
1570 * @vma: virtual memory area whose policy is sought
1571 * @addr: address in @vma for shared policy lookup
1573 * Returns effective policy for a VMA at specified address.
1574 * Falls back to current->mempolicy or system default policy, as necessary.
1575 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1576 * count--added by the get_policy() vm_op, as appropriate--to protect against
1577 * freeing by another task. It is the caller's responsibility to free the
1578 * extra reference for shared policies.
1580 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1581 unsigned long addr)
1583 struct mempolicy *pol = __get_vma_policy(vma, addr);
1585 if (!pol)
1586 pol = get_task_policy(current);
1588 return pol;
1591 bool vma_policy_mof(struct vm_area_struct *vma)
1593 struct mempolicy *pol;
1595 if (vma->vm_ops && vma->vm_ops->get_policy) {
1596 bool ret = false;
1598 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1599 if (pol && (pol->flags & MPOL_F_MOF))
1600 ret = true;
1601 mpol_cond_put(pol);
1603 return ret;
1606 pol = vma->vm_policy;
1607 if (!pol)
1608 pol = get_task_policy(current);
1610 return pol->flags & MPOL_F_MOF;
1613 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1615 enum zone_type dynamic_policy_zone = policy_zone;
1617 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1620 * if policy->v.nodes has movable memory only,
1621 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1623 * policy->v.nodes is intersect with node_states[N_MEMORY].
1624 * so if the following test faile, it implies
1625 * policy->v.nodes has movable memory only.
1627 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1628 dynamic_policy_zone = ZONE_MOVABLE;
1630 return zone >= dynamic_policy_zone;
1634 * Return a nodemask representing a mempolicy for filtering nodes for
1635 * page allocation
1637 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1639 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1640 if (unlikely(policy->mode == MPOL_BIND) &&
1641 apply_policy_zone(policy, gfp_zone(gfp)) &&
1642 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1643 return &policy->v.nodes;
1645 return NULL;
1648 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1649 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1650 int nd)
1652 switch (policy->mode) {
1653 case MPOL_PREFERRED:
1654 if (!(policy->flags & MPOL_F_LOCAL))
1655 nd = policy->v.preferred_node;
1656 break;
1657 case MPOL_BIND:
1659 * Normally, MPOL_BIND allocations are node-local within the
1660 * allowed nodemask. However, if __GFP_THISNODE is set and the
1661 * current node isn't part of the mask, we use the zonelist for
1662 * the first node in the mask instead.
1664 if (unlikely(gfp & __GFP_THISNODE) &&
1665 unlikely(!node_isset(nd, policy->v.nodes)))
1666 nd = first_node(policy->v.nodes);
1667 break;
1668 default:
1669 BUG();
1671 return node_zonelist(nd, gfp);
1674 /* Do dynamic interleaving for a process */
1675 static unsigned interleave_nodes(struct mempolicy *policy)
1677 unsigned nid, next;
1678 struct task_struct *me = current;
1680 nid = me->il_next;
1681 next = next_node(nid, policy->v.nodes);
1682 if (next >= MAX_NUMNODES)
1683 next = first_node(policy->v.nodes);
1684 if (next < MAX_NUMNODES)
1685 me->il_next = next;
1686 return nid;
1690 * Depending on the memory policy provide a node from which to allocate the
1691 * next slab entry.
1693 unsigned int mempolicy_slab_node(void)
1695 struct mempolicy *policy;
1696 int node = numa_mem_id();
1698 if (in_interrupt())
1699 return node;
1701 policy = current->mempolicy;
1702 if (!policy || policy->flags & MPOL_F_LOCAL)
1703 return node;
1705 switch (policy->mode) {
1706 case MPOL_PREFERRED:
1708 * handled MPOL_F_LOCAL above
1710 return policy->v.preferred_node;
1712 case MPOL_INTERLEAVE:
1713 return interleave_nodes(policy);
1715 case MPOL_BIND: {
1717 * Follow bind policy behavior and start allocation at the
1718 * first node.
1720 struct zonelist *zonelist;
1721 struct zone *zone;
1722 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1723 zonelist = &NODE_DATA(node)->node_zonelists[0];
1724 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1725 &policy->v.nodes,
1726 &zone);
1727 return zone ? zone->node : node;
1730 default:
1731 BUG();
1735 /* Do static interleaving for a VMA with known offset. */
1736 static unsigned offset_il_node(struct mempolicy *pol,
1737 struct vm_area_struct *vma, unsigned long off)
1739 unsigned nnodes = nodes_weight(pol->v.nodes);
1740 unsigned target;
1741 int c;
1742 int nid = NUMA_NO_NODE;
1744 if (!nnodes)
1745 return numa_node_id();
1746 target = (unsigned int)off % nnodes;
1747 c = 0;
1748 do {
1749 nid = next_node(nid, pol->v.nodes);
1750 c++;
1751 } while (c <= target);
1752 return nid;
1755 /* Determine a node number for interleave */
1756 static inline unsigned interleave_nid(struct mempolicy *pol,
1757 struct vm_area_struct *vma, unsigned long addr, int shift)
1759 if (vma) {
1760 unsigned long off;
1763 * for small pages, there is no difference between
1764 * shift and PAGE_SHIFT, so the bit-shift is safe.
1765 * for huge pages, since vm_pgoff is in units of small
1766 * pages, we need to shift off the always 0 bits to get
1767 * a useful offset.
1769 BUG_ON(shift < PAGE_SHIFT);
1770 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1771 off += (addr - vma->vm_start) >> shift;
1772 return offset_il_node(pol, vma, off);
1773 } else
1774 return interleave_nodes(pol);
1778 * Return the bit number of a random bit set in the nodemask.
1779 * (returns NUMA_NO_NODE if nodemask is empty)
1781 int node_random(const nodemask_t *maskp)
1783 int w, bit = NUMA_NO_NODE;
1785 w = nodes_weight(*maskp);
1786 if (w)
1787 bit = bitmap_ord_to_pos(maskp->bits,
1788 get_random_int() % w, MAX_NUMNODES);
1789 return bit;
1792 #ifdef CONFIG_HUGETLBFS
1794 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1795 * @vma: virtual memory area whose policy is sought
1796 * @addr: address in @vma for shared policy lookup and interleave policy
1797 * @gfp_flags: for requested zone
1798 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1799 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1801 * Returns a zonelist suitable for a huge page allocation and a pointer
1802 * to the struct mempolicy for conditional unref after allocation.
1803 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1804 * @nodemask for filtering the zonelist.
1806 * Must be protected by read_mems_allowed_begin()
1808 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1809 gfp_t gfp_flags, struct mempolicy **mpol,
1810 nodemask_t **nodemask)
1812 struct zonelist *zl;
1814 *mpol = get_vma_policy(vma, addr);
1815 *nodemask = NULL; /* assume !MPOL_BIND */
1817 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1818 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1819 huge_page_shift(hstate_vma(vma))), gfp_flags);
1820 } else {
1821 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1822 if ((*mpol)->mode == MPOL_BIND)
1823 *nodemask = &(*mpol)->v.nodes;
1825 return zl;
1829 * init_nodemask_of_mempolicy
1831 * If the current task's mempolicy is "default" [NULL], return 'false'
1832 * to indicate default policy. Otherwise, extract the policy nodemask
1833 * for 'bind' or 'interleave' policy into the argument nodemask, or
1834 * initialize the argument nodemask to contain the single node for
1835 * 'preferred' or 'local' policy and return 'true' to indicate presence
1836 * of non-default mempolicy.
1838 * We don't bother with reference counting the mempolicy [mpol_get/put]
1839 * because the current task is examining it's own mempolicy and a task's
1840 * mempolicy is only ever changed by the task itself.
1842 * N.B., it is the caller's responsibility to free a returned nodemask.
1844 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1846 struct mempolicy *mempolicy;
1847 int nid;
1849 if (!(mask && current->mempolicy))
1850 return false;
1852 task_lock(current);
1853 mempolicy = current->mempolicy;
1854 switch (mempolicy->mode) {
1855 case MPOL_PREFERRED:
1856 if (mempolicy->flags & MPOL_F_LOCAL)
1857 nid = numa_node_id();
1858 else
1859 nid = mempolicy->v.preferred_node;
1860 init_nodemask_of_node(mask, nid);
1861 break;
1863 case MPOL_BIND:
1864 /* Fall through */
1865 case MPOL_INTERLEAVE:
1866 *mask = mempolicy->v.nodes;
1867 break;
1869 default:
1870 BUG();
1872 task_unlock(current);
1874 return true;
1876 #endif
1879 * mempolicy_nodemask_intersects
1881 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1882 * policy. Otherwise, check for intersection between mask and the policy
1883 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1884 * policy, always return true since it may allocate elsewhere on fallback.
1886 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1888 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1889 const nodemask_t *mask)
1891 struct mempolicy *mempolicy;
1892 bool ret = true;
1894 if (!mask)
1895 return ret;
1896 task_lock(tsk);
1897 mempolicy = tsk->mempolicy;
1898 if (!mempolicy)
1899 goto out;
1901 switch (mempolicy->mode) {
1902 case MPOL_PREFERRED:
1904 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1905 * allocate from, they may fallback to other nodes when oom.
1906 * Thus, it's possible for tsk to have allocated memory from
1907 * nodes in mask.
1909 break;
1910 case MPOL_BIND:
1911 case MPOL_INTERLEAVE:
1912 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1913 break;
1914 default:
1915 BUG();
1917 out:
1918 task_unlock(tsk);
1919 return ret;
1922 /* Allocate a page in interleaved policy.
1923 Own path because it needs to do special accounting. */
1924 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1925 unsigned nid)
1927 struct zonelist *zl;
1928 struct page *page;
1930 zl = node_zonelist(nid, gfp);
1931 page = __alloc_pages(gfp, order, zl);
1932 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1933 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1934 return page;
1938 * alloc_pages_vma - Allocate a page for a VMA.
1940 * @gfp:
1941 * %GFP_USER user allocation.
1942 * %GFP_KERNEL kernel allocations,
1943 * %GFP_HIGHMEM highmem/user allocations,
1944 * %GFP_FS allocation should not call back into a file system.
1945 * %GFP_ATOMIC don't sleep.
1947 * @order:Order of the GFP allocation.
1948 * @vma: Pointer to VMA or NULL if not available.
1949 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1950 * @node: Which node to prefer for allocation (modulo policy).
1951 * @hugepage: for hugepages try only the preferred node if possible
1953 * This function allocates a page from the kernel page pool and applies
1954 * a NUMA policy associated with the VMA or the current process.
1955 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1956 * mm_struct of the VMA to prevent it from going away. Should be used for
1957 * all allocations for pages that will be mapped into user space. Returns
1958 * NULL when no page can be allocated.
1960 struct page *
1961 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1962 unsigned long addr, int node, bool hugepage)
1964 struct mempolicy *pol;
1965 struct page *page;
1966 unsigned int cpuset_mems_cookie;
1967 struct zonelist *zl;
1968 nodemask_t *nmask;
1970 retry_cpuset:
1971 pol = get_vma_policy(vma, addr);
1972 cpuset_mems_cookie = read_mems_allowed_begin();
1974 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
1975 pol->mode != MPOL_INTERLEAVE)) {
1977 * For hugepage allocation and non-interleave policy which
1978 * allows the current node, we only try to allocate from the
1979 * current node and don't fall back to other nodes, as the
1980 * cost of remote accesses would likely offset THP benefits.
1982 * If the policy is interleave, or does not allow the current
1983 * node in its nodemask, we allocate the standard way.
1985 nmask = policy_nodemask(gfp, pol);
1986 if (!nmask || node_isset(node, *nmask)) {
1987 mpol_cond_put(pol);
1988 page = alloc_pages_exact_node(node,
1989 gfp | __GFP_THISNODE, order);
1990 goto out;
1994 if (pol->mode == MPOL_INTERLEAVE) {
1995 unsigned nid;
1997 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1998 mpol_cond_put(pol);
1999 page = alloc_page_interleave(gfp, order, nid);
2000 goto out;
2003 nmask = policy_nodemask(gfp, pol);
2004 zl = policy_zonelist(gfp, pol, node);
2005 mpol_cond_put(pol);
2006 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2007 out:
2008 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2009 goto retry_cpuset;
2010 return page;
2014 * alloc_pages_current - Allocate pages.
2016 * @gfp:
2017 * %GFP_USER user allocation,
2018 * %GFP_KERNEL kernel allocation,
2019 * %GFP_HIGHMEM highmem allocation,
2020 * %GFP_FS don't call back into a file system.
2021 * %GFP_ATOMIC don't sleep.
2022 * @order: Power of two of allocation size in pages. 0 is a single page.
2024 * Allocate a page from the kernel page pool. When not in
2025 * interrupt context and apply the current process NUMA policy.
2026 * Returns NULL when no page can be allocated.
2028 * Don't call cpuset_update_task_memory_state() unless
2029 * 1) it's ok to take cpuset_sem (can WAIT), and
2030 * 2) allocating for current task (not interrupt).
2032 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2034 struct mempolicy *pol = &default_policy;
2035 struct page *page;
2036 unsigned int cpuset_mems_cookie;
2038 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2039 pol = get_task_policy(current);
2041 retry_cpuset:
2042 cpuset_mems_cookie = read_mems_allowed_begin();
2045 * No reference counting needed for current->mempolicy
2046 * nor system default_policy
2048 if (pol->mode == MPOL_INTERLEAVE)
2049 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2050 else
2051 page = __alloc_pages_nodemask(gfp, order,
2052 policy_zonelist(gfp, pol, numa_node_id()),
2053 policy_nodemask(gfp, pol));
2055 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2056 goto retry_cpuset;
2058 return page;
2060 EXPORT_SYMBOL(alloc_pages_current);
2062 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2064 struct mempolicy *pol = mpol_dup(vma_policy(src));
2066 if (IS_ERR(pol))
2067 return PTR_ERR(pol);
2068 dst->vm_policy = pol;
2069 return 0;
2073 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2074 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2075 * with the mems_allowed returned by cpuset_mems_allowed(). This
2076 * keeps mempolicies cpuset relative after its cpuset moves. See
2077 * further kernel/cpuset.c update_nodemask().
2079 * current's mempolicy may be rebinded by the other task(the task that changes
2080 * cpuset's mems), so we needn't do rebind work for current task.
2083 /* Slow path of a mempolicy duplicate */
2084 struct mempolicy *__mpol_dup(struct mempolicy *old)
2086 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2088 if (!new)
2089 return ERR_PTR(-ENOMEM);
2091 /* task's mempolicy is protected by alloc_lock */
2092 if (old == current->mempolicy) {
2093 task_lock(current);
2094 *new = *old;
2095 task_unlock(current);
2096 } else
2097 *new = *old;
2099 if (current_cpuset_is_being_rebound()) {
2100 nodemask_t mems = cpuset_mems_allowed(current);
2101 if (new->flags & MPOL_F_REBINDING)
2102 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2103 else
2104 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2106 atomic_set(&new->refcnt, 1);
2107 return new;
2110 /* Slow path of a mempolicy comparison */
2111 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2113 if (!a || !b)
2114 return false;
2115 if (a->mode != b->mode)
2116 return false;
2117 if (a->flags != b->flags)
2118 return false;
2119 if (mpol_store_user_nodemask(a))
2120 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2121 return false;
2123 switch (a->mode) {
2124 case MPOL_BIND:
2125 /* Fall through */
2126 case MPOL_INTERLEAVE:
2127 return !!nodes_equal(a->v.nodes, b->v.nodes);
2128 case MPOL_PREFERRED:
2129 return a->v.preferred_node == b->v.preferred_node;
2130 default:
2131 BUG();
2132 return false;
2137 * Shared memory backing store policy support.
2139 * Remember policies even when nobody has shared memory mapped.
2140 * The policies are kept in Red-Black tree linked from the inode.
2141 * They are protected by the sp->lock spinlock, which should be held
2142 * for any accesses to the tree.
2145 /* lookup first element intersecting start-end */
2146 /* Caller holds sp->lock */
2147 static struct sp_node *
2148 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2150 struct rb_node *n = sp->root.rb_node;
2152 while (n) {
2153 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2155 if (start >= p->end)
2156 n = n->rb_right;
2157 else if (end <= p->start)
2158 n = n->rb_left;
2159 else
2160 break;
2162 if (!n)
2163 return NULL;
2164 for (;;) {
2165 struct sp_node *w = NULL;
2166 struct rb_node *prev = rb_prev(n);
2167 if (!prev)
2168 break;
2169 w = rb_entry(prev, struct sp_node, nd);
2170 if (w->end <= start)
2171 break;
2172 n = prev;
2174 return rb_entry(n, struct sp_node, nd);
2177 /* Insert a new shared policy into the list. */
2178 /* Caller holds sp->lock */
2179 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2181 struct rb_node **p = &sp->root.rb_node;
2182 struct rb_node *parent = NULL;
2183 struct sp_node *nd;
2185 while (*p) {
2186 parent = *p;
2187 nd = rb_entry(parent, struct sp_node, nd);
2188 if (new->start < nd->start)
2189 p = &(*p)->rb_left;
2190 else if (new->end > nd->end)
2191 p = &(*p)->rb_right;
2192 else
2193 BUG();
2195 rb_link_node(&new->nd, parent, p);
2196 rb_insert_color(&new->nd, &sp->root);
2197 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2198 new->policy ? new->policy->mode : 0);
2201 /* Find shared policy intersecting idx */
2202 struct mempolicy *
2203 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2205 struct mempolicy *pol = NULL;
2206 struct sp_node *sn;
2208 if (!sp->root.rb_node)
2209 return NULL;
2210 spin_lock(&sp->lock);
2211 sn = sp_lookup(sp, idx, idx+1);
2212 if (sn) {
2213 mpol_get(sn->policy);
2214 pol = sn->policy;
2216 spin_unlock(&sp->lock);
2217 return pol;
2220 static void sp_free(struct sp_node *n)
2222 mpol_put(n->policy);
2223 kmem_cache_free(sn_cache, n);
2227 * mpol_misplaced - check whether current page node is valid in policy
2229 * @page: page to be checked
2230 * @vma: vm area where page mapped
2231 * @addr: virtual address where page mapped
2233 * Lookup current policy node id for vma,addr and "compare to" page's
2234 * node id.
2236 * Returns:
2237 * -1 - not misplaced, page is in the right node
2238 * node - node id where the page should be
2240 * Policy determination "mimics" alloc_page_vma().
2241 * Called from fault path where we know the vma and faulting address.
2243 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2245 struct mempolicy *pol;
2246 struct zone *zone;
2247 int curnid = page_to_nid(page);
2248 unsigned long pgoff;
2249 int thiscpu = raw_smp_processor_id();
2250 int thisnid = cpu_to_node(thiscpu);
2251 int polnid = -1;
2252 int ret = -1;
2254 BUG_ON(!vma);
2256 pol = get_vma_policy(vma, addr);
2257 if (!(pol->flags & MPOL_F_MOF))
2258 goto out;
2260 switch (pol->mode) {
2261 case MPOL_INTERLEAVE:
2262 BUG_ON(addr >= vma->vm_end);
2263 BUG_ON(addr < vma->vm_start);
2265 pgoff = vma->vm_pgoff;
2266 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2267 polnid = offset_il_node(pol, vma, pgoff);
2268 break;
2270 case MPOL_PREFERRED:
2271 if (pol->flags & MPOL_F_LOCAL)
2272 polnid = numa_node_id();
2273 else
2274 polnid = pol->v.preferred_node;
2275 break;
2277 case MPOL_BIND:
2279 * allows binding to multiple nodes.
2280 * use current page if in policy nodemask,
2281 * else select nearest allowed node, if any.
2282 * If no allowed nodes, use current [!misplaced].
2284 if (node_isset(curnid, pol->v.nodes))
2285 goto out;
2286 (void)first_zones_zonelist(
2287 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2288 gfp_zone(GFP_HIGHUSER),
2289 &pol->v.nodes, &zone);
2290 polnid = zone->node;
2291 break;
2293 default:
2294 BUG();
2297 /* Migrate the page towards the node whose CPU is referencing it */
2298 if (pol->flags & MPOL_F_MORON) {
2299 polnid = thisnid;
2301 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2302 goto out;
2305 if (curnid != polnid)
2306 ret = polnid;
2307 out:
2308 mpol_cond_put(pol);
2310 return ret;
2313 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2315 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2316 rb_erase(&n->nd, &sp->root);
2317 sp_free(n);
2320 static void sp_node_init(struct sp_node *node, unsigned long start,
2321 unsigned long end, struct mempolicy *pol)
2323 node->start = start;
2324 node->end = end;
2325 node->policy = pol;
2328 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2329 struct mempolicy *pol)
2331 struct sp_node *n;
2332 struct mempolicy *newpol;
2334 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2335 if (!n)
2336 return NULL;
2338 newpol = mpol_dup(pol);
2339 if (IS_ERR(newpol)) {
2340 kmem_cache_free(sn_cache, n);
2341 return NULL;
2343 newpol->flags |= MPOL_F_SHARED;
2344 sp_node_init(n, start, end, newpol);
2346 return n;
2349 /* Replace a policy range. */
2350 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2351 unsigned long end, struct sp_node *new)
2353 struct sp_node *n;
2354 struct sp_node *n_new = NULL;
2355 struct mempolicy *mpol_new = NULL;
2356 int ret = 0;
2358 restart:
2359 spin_lock(&sp->lock);
2360 n = sp_lookup(sp, start, end);
2361 /* Take care of old policies in the same range. */
2362 while (n && n->start < end) {
2363 struct rb_node *next = rb_next(&n->nd);
2364 if (n->start >= start) {
2365 if (n->end <= end)
2366 sp_delete(sp, n);
2367 else
2368 n->start = end;
2369 } else {
2370 /* Old policy spanning whole new range. */
2371 if (n->end > end) {
2372 if (!n_new)
2373 goto alloc_new;
2375 *mpol_new = *n->policy;
2376 atomic_set(&mpol_new->refcnt, 1);
2377 sp_node_init(n_new, end, n->end, mpol_new);
2378 n->end = start;
2379 sp_insert(sp, n_new);
2380 n_new = NULL;
2381 mpol_new = NULL;
2382 break;
2383 } else
2384 n->end = start;
2386 if (!next)
2387 break;
2388 n = rb_entry(next, struct sp_node, nd);
2390 if (new)
2391 sp_insert(sp, new);
2392 spin_unlock(&sp->lock);
2393 ret = 0;
2395 err_out:
2396 if (mpol_new)
2397 mpol_put(mpol_new);
2398 if (n_new)
2399 kmem_cache_free(sn_cache, n_new);
2401 return ret;
2403 alloc_new:
2404 spin_unlock(&sp->lock);
2405 ret = -ENOMEM;
2406 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2407 if (!n_new)
2408 goto err_out;
2409 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2410 if (!mpol_new)
2411 goto err_out;
2412 goto restart;
2416 * mpol_shared_policy_init - initialize shared policy for inode
2417 * @sp: pointer to inode shared policy
2418 * @mpol: struct mempolicy to install
2420 * Install non-NULL @mpol in inode's shared policy rb-tree.
2421 * On entry, the current task has a reference on a non-NULL @mpol.
2422 * This must be released on exit.
2423 * This is called at get_inode() calls and we can use GFP_KERNEL.
2425 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2427 int ret;
2429 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2430 spin_lock_init(&sp->lock);
2432 if (mpol) {
2433 struct vm_area_struct pvma;
2434 struct mempolicy *new;
2435 NODEMASK_SCRATCH(scratch);
2437 if (!scratch)
2438 goto put_mpol;
2439 /* contextualize the tmpfs mount point mempolicy */
2440 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2441 if (IS_ERR(new))
2442 goto free_scratch; /* no valid nodemask intersection */
2444 task_lock(current);
2445 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2446 task_unlock(current);
2447 if (ret)
2448 goto put_new;
2450 /* Create pseudo-vma that contains just the policy */
2451 memset(&pvma, 0, sizeof(struct vm_area_struct));
2452 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2453 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2455 put_new:
2456 mpol_put(new); /* drop initial ref */
2457 free_scratch:
2458 NODEMASK_SCRATCH_FREE(scratch);
2459 put_mpol:
2460 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2464 int mpol_set_shared_policy(struct shared_policy *info,
2465 struct vm_area_struct *vma, struct mempolicy *npol)
2467 int err;
2468 struct sp_node *new = NULL;
2469 unsigned long sz = vma_pages(vma);
2471 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2472 vma->vm_pgoff,
2473 sz, npol ? npol->mode : -1,
2474 npol ? npol->flags : -1,
2475 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2477 if (npol) {
2478 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2479 if (!new)
2480 return -ENOMEM;
2482 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2483 if (err && new)
2484 sp_free(new);
2485 return err;
2488 /* Free a backing policy store on inode delete. */
2489 void mpol_free_shared_policy(struct shared_policy *p)
2491 struct sp_node *n;
2492 struct rb_node *next;
2494 if (!p->root.rb_node)
2495 return;
2496 spin_lock(&p->lock);
2497 next = rb_first(&p->root);
2498 while (next) {
2499 n = rb_entry(next, struct sp_node, nd);
2500 next = rb_next(&n->nd);
2501 sp_delete(p, n);
2503 spin_unlock(&p->lock);
2506 #ifdef CONFIG_NUMA_BALANCING
2507 static int __initdata numabalancing_override;
2509 static void __init check_numabalancing_enable(void)
2511 bool numabalancing_default = false;
2513 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2514 numabalancing_default = true;
2516 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2517 if (numabalancing_override)
2518 set_numabalancing_state(numabalancing_override == 1);
2520 if (num_online_nodes() > 1 && !numabalancing_override) {
2521 pr_info("%s automatic NUMA balancing. "
2522 "Configure with numa_balancing= or the "
2523 "kernel.numa_balancing sysctl",
2524 numabalancing_default ? "Enabling" : "Disabling");
2525 set_numabalancing_state(numabalancing_default);
2529 static int __init setup_numabalancing(char *str)
2531 int ret = 0;
2532 if (!str)
2533 goto out;
2535 if (!strcmp(str, "enable")) {
2536 numabalancing_override = 1;
2537 ret = 1;
2538 } else if (!strcmp(str, "disable")) {
2539 numabalancing_override = -1;
2540 ret = 1;
2542 out:
2543 if (!ret)
2544 pr_warn("Unable to parse numa_balancing=\n");
2546 return ret;
2548 __setup("numa_balancing=", setup_numabalancing);
2549 #else
2550 static inline void __init check_numabalancing_enable(void)
2553 #endif /* CONFIG_NUMA_BALANCING */
2555 /* assumes fs == KERNEL_DS */
2556 void __init numa_policy_init(void)
2558 nodemask_t interleave_nodes;
2559 unsigned long largest = 0;
2560 int nid, prefer = 0;
2562 policy_cache = kmem_cache_create("numa_policy",
2563 sizeof(struct mempolicy),
2564 0, SLAB_PANIC, NULL);
2566 sn_cache = kmem_cache_create("shared_policy_node",
2567 sizeof(struct sp_node),
2568 0, SLAB_PANIC, NULL);
2570 for_each_node(nid) {
2571 preferred_node_policy[nid] = (struct mempolicy) {
2572 .refcnt = ATOMIC_INIT(1),
2573 .mode = MPOL_PREFERRED,
2574 .flags = MPOL_F_MOF | MPOL_F_MORON,
2575 .v = { .preferred_node = nid, },
2580 * Set interleaving policy for system init. Interleaving is only
2581 * enabled across suitably sized nodes (default is >= 16MB), or
2582 * fall back to the largest node if they're all smaller.
2584 nodes_clear(interleave_nodes);
2585 for_each_node_state(nid, N_MEMORY) {
2586 unsigned long total_pages = node_present_pages(nid);
2588 /* Preserve the largest node */
2589 if (largest < total_pages) {
2590 largest = total_pages;
2591 prefer = nid;
2594 /* Interleave this node? */
2595 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2596 node_set(nid, interleave_nodes);
2599 /* All too small, use the largest */
2600 if (unlikely(nodes_empty(interleave_nodes)))
2601 node_set(prefer, interleave_nodes);
2603 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2604 pr_err("%s: interleaving failed\n", __func__);
2606 check_numabalancing_enable();
2609 /* Reset policy of current process to default */
2610 void numa_default_policy(void)
2612 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2616 * Parse and format mempolicy from/to strings
2620 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2622 static const char * const policy_modes[] =
2624 [MPOL_DEFAULT] = "default",
2625 [MPOL_PREFERRED] = "prefer",
2626 [MPOL_BIND] = "bind",
2627 [MPOL_INTERLEAVE] = "interleave",
2628 [MPOL_LOCAL] = "local",
2632 #ifdef CONFIG_TMPFS
2634 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2635 * @str: string containing mempolicy to parse
2636 * @mpol: pointer to struct mempolicy pointer, returned on success.
2638 * Format of input:
2639 * <mode>[=<flags>][:<nodelist>]
2641 * On success, returns 0, else 1
2643 int mpol_parse_str(char *str, struct mempolicy **mpol)
2645 struct mempolicy *new = NULL;
2646 unsigned short mode;
2647 unsigned short mode_flags;
2648 nodemask_t nodes;
2649 char *nodelist = strchr(str, ':');
2650 char *flags = strchr(str, '=');
2651 int err = 1;
2653 if (nodelist) {
2654 /* NUL-terminate mode or flags string */
2655 *nodelist++ = '\0';
2656 if (nodelist_parse(nodelist, nodes))
2657 goto out;
2658 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2659 goto out;
2660 } else
2661 nodes_clear(nodes);
2663 if (flags)
2664 *flags++ = '\0'; /* terminate mode string */
2666 for (mode = 0; mode < MPOL_MAX; mode++) {
2667 if (!strcmp(str, policy_modes[mode])) {
2668 break;
2671 if (mode >= MPOL_MAX)
2672 goto out;
2674 switch (mode) {
2675 case MPOL_PREFERRED:
2677 * Insist on a nodelist of one node only
2679 if (nodelist) {
2680 char *rest = nodelist;
2681 while (isdigit(*rest))
2682 rest++;
2683 if (*rest)
2684 goto out;
2686 break;
2687 case MPOL_INTERLEAVE:
2689 * Default to online nodes with memory if no nodelist
2691 if (!nodelist)
2692 nodes = node_states[N_MEMORY];
2693 break;
2694 case MPOL_LOCAL:
2696 * Don't allow a nodelist; mpol_new() checks flags
2698 if (nodelist)
2699 goto out;
2700 mode = MPOL_PREFERRED;
2701 break;
2702 case MPOL_DEFAULT:
2704 * Insist on a empty nodelist
2706 if (!nodelist)
2707 err = 0;
2708 goto out;
2709 case MPOL_BIND:
2711 * Insist on a nodelist
2713 if (!nodelist)
2714 goto out;
2717 mode_flags = 0;
2718 if (flags) {
2720 * Currently, we only support two mutually exclusive
2721 * mode flags.
2723 if (!strcmp(flags, "static"))
2724 mode_flags |= MPOL_F_STATIC_NODES;
2725 else if (!strcmp(flags, "relative"))
2726 mode_flags |= MPOL_F_RELATIVE_NODES;
2727 else
2728 goto out;
2731 new = mpol_new(mode, mode_flags, &nodes);
2732 if (IS_ERR(new))
2733 goto out;
2736 * Save nodes for mpol_to_str() to show the tmpfs mount options
2737 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2739 if (mode != MPOL_PREFERRED)
2740 new->v.nodes = nodes;
2741 else if (nodelist)
2742 new->v.preferred_node = first_node(nodes);
2743 else
2744 new->flags |= MPOL_F_LOCAL;
2747 * Save nodes for contextualization: this will be used to "clone"
2748 * the mempolicy in a specific context [cpuset] at a later time.
2750 new->w.user_nodemask = nodes;
2752 err = 0;
2754 out:
2755 /* Restore string for error message */
2756 if (nodelist)
2757 *--nodelist = ':';
2758 if (flags)
2759 *--flags = '=';
2760 if (!err)
2761 *mpol = new;
2762 return err;
2764 #endif /* CONFIG_TMPFS */
2767 * mpol_to_str - format a mempolicy structure for printing
2768 * @buffer: to contain formatted mempolicy string
2769 * @maxlen: length of @buffer
2770 * @pol: pointer to mempolicy to be formatted
2772 * Convert @pol into a string. If @buffer is too short, truncate the string.
2773 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2774 * longest flag, "relative", and to display at least a few node ids.
2776 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2778 char *p = buffer;
2779 nodemask_t nodes = NODE_MASK_NONE;
2780 unsigned short mode = MPOL_DEFAULT;
2781 unsigned short flags = 0;
2783 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2784 mode = pol->mode;
2785 flags = pol->flags;
2788 switch (mode) {
2789 case MPOL_DEFAULT:
2790 break;
2791 case MPOL_PREFERRED:
2792 if (flags & MPOL_F_LOCAL)
2793 mode = MPOL_LOCAL;
2794 else
2795 node_set(pol->v.preferred_node, nodes);
2796 break;
2797 case MPOL_BIND:
2798 case MPOL_INTERLEAVE:
2799 nodes = pol->v.nodes;
2800 break;
2801 default:
2802 WARN_ON_ONCE(1);
2803 snprintf(p, maxlen, "unknown");
2804 return;
2807 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2809 if (flags & MPOL_MODE_FLAGS) {
2810 p += snprintf(p, buffer + maxlen - p, "=");
2813 * Currently, the only defined flags are mutually exclusive
2815 if (flags & MPOL_F_STATIC_NODES)
2816 p += snprintf(p, buffer + maxlen - p, "static");
2817 else if (flags & MPOL_F_RELATIVE_NODES)
2818 p += snprintf(p, buffer + maxlen - p, "relative");
2821 if (!nodes_empty(nodes))
2822 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2823 nodemask_pr_args(&nodes));