powerpc/pci: Remove VFs prior to PF
[linux/fpc-iii.git] / fs / dax.c
blobfc2e3141138b285321abdbe059e53dfd40162719
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
37 struct request_queue *q = bdev->bd_queue;
38 long rc = -EIO;
40 dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 if (blk_queue_enter(q, true) != 0)
42 return rc;
44 rc = bdev_direct_access(bdev, dax);
45 if (rc < 0) {
46 dax->addr = (void __pmem *) ERR_PTR(rc);
47 blk_queue_exit(q);
48 return rc;
50 return rc;
53 static void dax_unmap_atomic(struct block_device *bdev,
54 const struct blk_dax_ctl *dax)
56 if (IS_ERR(dax->addr))
57 return;
58 blk_queue_exit(bdev->bd_queue);
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
63 struct page *page = alloc_pages(GFP_KERNEL, 0);
64 struct blk_dax_ctl dax = {
65 .size = PAGE_SIZE,
66 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
68 long rc;
70 if (!page)
71 return ERR_PTR(-ENOMEM);
73 rc = dax_map_atomic(bdev, &dax);
74 if (rc < 0)
75 return ERR_PTR(rc);
76 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77 dax_unmap_atomic(bdev, &dax);
78 return page;
82 * dax_clear_blocks() is called from within transaction context from XFS,
83 * and hence this means the stack from this point must follow GFP_NOFS
84 * semantics for all operations.
86 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
88 struct block_device *bdev = inode->i_sb->s_bdev;
89 struct blk_dax_ctl dax = {
90 .sector = block << (inode->i_blkbits - 9),
91 .size = _size,
94 might_sleep();
95 do {
96 long count, sz;
98 count = dax_map_atomic(bdev, &dax);
99 if (count < 0)
100 return count;
101 sz = min_t(long, count, SZ_128K);
102 clear_pmem(dax.addr, sz);
103 dax.size -= sz;
104 dax.sector += sz / 512;
105 dax_unmap_atomic(bdev, &dax);
106 cond_resched();
107 } while (dax.size);
109 wmb_pmem();
110 return 0;
112 EXPORT_SYMBOL_GPL(dax_clear_blocks);
114 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
116 loff_t pos, loff_t end)
118 loff_t final = end - pos + first; /* The final byte of the buffer */
120 if (first > 0)
121 clear_pmem(addr, first);
122 if (final < size)
123 clear_pmem(addr + final, size - final);
126 static bool buffer_written(struct buffer_head *bh)
128 return buffer_mapped(bh) && !buffer_unwritten(bh);
132 * When ext4 encounters a hole, it returns without modifying the buffer_head
133 * which means that we can't trust b_size. To cope with this, we set b_state
134 * to 0 before calling get_block and, if any bit is set, we know we can trust
135 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
136 * and would save us time calling get_block repeatedly.
138 static bool buffer_size_valid(struct buffer_head *bh)
140 return bh->b_state != 0;
144 static sector_t to_sector(const struct buffer_head *bh,
145 const struct inode *inode)
147 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
149 return sector;
152 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
153 loff_t start, loff_t end, get_block_t get_block,
154 struct buffer_head *bh)
156 loff_t pos = start, max = start, bh_max = start;
157 bool hole = false, need_wmb = false;
158 struct block_device *bdev = NULL;
159 int rw = iov_iter_rw(iter), rc;
160 long map_len = 0;
161 struct blk_dax_ctl dax = {
162 .addr = (void __pmem *) ERR_PTR(-EIO),
165 if (rw == READ)
166 end = min(end, i_size_read(inode));
168 while (pos < end) {
169 size_t len;
170 if (pos == max) {
171 unsigned blkbits = inode->i_blkbits;
172 long page = pos >> PAGE_SHIFT;
173 sector_t block = page << (PAGE_SHIFT - blkbits);
174 unsigned first = pos - (block << blkbits);
175 long size;
177 if (pos == bh_max) {
178 bh->b_size = PAGE_ALIGN(end - pos);
179 bh->b_state = 0;
180 rc = get_block(inode, block, bh, rw == WRITE);
181 if (rc)
182 break;
183 if (!buffer_size_valid(bh))
184 bh->b_size = 1 << blkbits;
185 bh_max = pos - first + bh->b_size;
186 bdev = bh->b_bdev;
187 } else {
188 unsigned done = bh->b_size -
189 (bh_max - (pos - first));
190 bh->b_blocknr += done >> blkbits;
191 bh->b_size -= done;
194 hole = rw == READ && !buffer_written(bh);
195 if (hole) {
196 size = bh->b_size - first;
197 } else {
198 dax_unmap_atomic(bdev, &dax);
199 dax.sector = to_sector(bh, inode);
200 dax.size = bh->b_size;
201 map_len = dax_map_atomic(bdev, &dax);
202 if (map_len < 0) {
203 rc = map_len;
204 break;
206 if (buffer_unwritten(bh) || buffer_new(bh)) {
207 dax_new_buf(dax.addr, map_len, first,
208 pos, end);
209 need_wmb = true;
211 dax.addr += first;
212 size = map_len - first;
214 max = min(pos + size, end);
217 if (iov_iter_rw(iter) == WRITE) {
218 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219 need_wmb = true;
220 } else if (!hole)
221 len = copy_to_iter((void __force *) dax.addr, max - pos,
222 iter);
223 else
224 len = iov_iter_zero(max - pos, iter);
226 if (!len) {
227 rc = -EFAULT;
228 break;
231 pos += len;
232 if (!IS_ERR(dax.addr))
233 dax.addr += len;
236 if (need_wmb)
237 wmb_pmem();
238 dax_unmap_atomic(bdev, &dax);
240 return (pos == start) ? rc : pos - start;
244 * dax_do_io - Perform I/O to a DAX file
245 * @iocb: The control block for this I/O
246 * @inode: The file which the I/O is directed at
247 * @iter: The addresses to do I/O from or to
248 * @pos: The file offset where the I/O starts
249 * @get_block: The filesystem method used to translate file offsets to blocks
250 * @end_io: A filesystem callback for I/O completion
251 * @flags: See below
253 * This function uses the same locking scheme as do_blockdev_direct_IO:
254 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255 * caller for writes. For reads, we take and release the i_mutex ourselves.
256 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258 * is in progress.
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261 struct iov_iter *iter, loff_t pos, get_block_t get_block,
262 dio_iodone_t end_io, int flags)
264 struct buffer_head bh;
265 ssize_t retval = -EINVAL;
266 loff_t end = pos + iov_iter_count(iter);
268 memset(&bh, 0, sizeof(bh));
269 bh.b_bdev = inode->i_sb->s_bdev;
271 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272 struct address_space *mapping = inode->i_mapping;
273 inode_lock(inode);
274 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275 if (retval) {
276 inode_unlock(inode);
277 goto out;
281 /* Protects against truncate */
282 if (!(flags & DIO_SKIP_DIO_COUNT))
283 inode_dio_begin(inode);
285 retval = dax_io(inode, iter, pos, end, get_block, &bh);
287 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288 inode_unlock(inode);
290 if ((retval > 0) && end_io)
291 end_io(iocb, pos, retval, bh.b_private);
293 if (!(flags & DIO_SKIP_DIO_COUNT))
294 inode_dio_end(inode);
295 out:
296 return retval;
298 EXPORT_SYMBOL_GPL(dax_do_io);
301 * The user has performed a load from a hole in the file. Allocating
302 * a new page in the file would cause excessive storage usage for
303 * workloads with sparse files. We allocate a page cache page instead.
304 * We'll kick it out of the page cache if it's ever written to,
305 * otherwise it will simply fall out of the page cache under memory
306 * pressure without ever having been dirtied.
308 static int dax_load_hole(struct address_space *mapping, struct page *page,
309 struct vm_fault *vmf)
311 unsigned long size;
312 struct inode *inode = mapping->host;
313 if (!page)
314 page = find_or_create_page(mapping, vmf->pgoff,
315 GFP_KERNEL | __GFP_ZERO);
316 if (!page)
317 return VM_FAULT_OOM;
318 /* Recheck i_size under page lock to avoid truncate race */
319 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
320 if (vmf->pgoff >= size) {
321 unlock_page(page);
322 page_cache_release(page);
323 return VM_FAULT_SIGBUS;
326 vmf->page = page;
327 return VM_FAULT_LOCKED;
330 static int copy_user_bh(struct page *to, struct inode *inode,
331 struct buffer_head *bh, unsigned long vaddr)
333 struct blk_dax_ctl dax = {
334 .sector = to_sector(bh, inode),
335 .size = bh->b_size,
337 struct block_device *bdev = bh->b_bdev;
338 void *vto;
340 if (dax_map_atomic(bdev, &dax) < 0)
341 return PTR_ERR(dax.addr);
342 vto = kmap_atomic(to);
343 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
344 kunmap_atomic(vto);
345 dax_unmap_atomic(bdev, &dax);
346 return 0;
349 #define NO_SECTOR -1
350 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
352 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
353 sector_t sector, bool pmd_entry, bool dirty)
355 struct radix_tree_root *page_tree = &mapping->page_tree;
356 pgoff_t pmd_index = DAX_PMD_INDEX(index);
357 int type, error = 0;
358 void *entry;
360 WARN_ON_ONCE(pmd_entry && !dirty);
361 if (dirty)
362 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
364 spin_lock_irq(&mapping->tree_lock);
366 entry = radix_tree_lookup(page_tree, pmd_index);
367 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
368 index = pmd_index;
369 goto dirty;
372 entry = radix_tree_lookup(page_tree, index);
373 if (entry) {
374 type = RADIX_DAX_TYPE(entry);
375 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
376 type != RADIX_DAX_PMD)) {
377 error = -EIO;
378 goto unlock;
381 if (!pmd_entry || type == RADIX_DAX_PMD)
382 goto dirty;
385 * We only insert dirty PMD entries into the radix tree. This
386 * means we don't need to worry about removing a dirty PTE
387 * entry and inserting a clean PMD entry, thus reducing the
388 * range we would flush with a follow-up fsync/msync call.
390 radix_tree_delete(&mapping->page_tree, index);
391 mapping->nrexceptional--;
394 if (sector == NO_SECTOR) {
396 * This can happen during correct operation if our pfn_mkwrite
397 * fault raced against a hole punch operation. If this
398 * happens the pte that was hole punched will have been
399 * unmapped and the radix tree entry will have been removed by
400 * the time we are called, but the call will still happen. We
401 * will return all the way up to wp_pfn_shared(), where the
402 * pte_same() check will fail, eventually causing page fault
403 * to be retried by the CPU.
405 goto unlock;
408 error = radix_tree_insert(page_tree, index,
409 RADIX_DAX_ENTRY(sector, pmd_entry));
410 if (error)
411 goto unlock;
413 mapping->nrexceptional++;
414 dirty:
415 if (dirty)
416 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
417 unlock:
418 spin_unlock_irq(&mapping->tree_lock);
419 return error;
422 static int dax_writeback_one(struct block_device *bdev,
423 struct address_space *mapping, pgoff_t index, void *entry)
425 struct radix_tree_root *page_tree = &mapping->page_tree;
426 int type = RADIX_DAX_TYPE(entry);
427 struct radix_tree_node *node;
428 struct blk_dax_ctl dax;
429 void **slot;
430 int ret = 0;
432 spin_lock_irq(&mapping->tree_lock);
434 * Regular page slots are stabilized by the page lock even
435 * without the tree itself locked. These unlocked entries
436 * need verification under the tree lock.
438 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
439 goto unlock;
440 if (*slot != entry)
441 goto unlock;
443 /* another fsync thread may have already written back this entry */
444 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
445 goto unlock;
447 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
448 ret = -EIO;
449 goto unlock;
452 dax.sector = RADIX_DAX_SECTOR(entry);
453 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
454 spin_unlock_irq(&mapping->tree_lock);
457 * We cannot hold tree_lock while calling dax_map_atomic() because it
458 * eventually calls cond_resched().
460 ret = dax_map_atomic(bdev, &dax);
461 if (ret < 0)
462 return ret;
464 if (WARN_ON_ONCE(ret < dax.size)) {
465 ret = -EIO;
466 goto unmap;
469 wb_cache_pmem(dax.addr, dax.size);
471 spin_lock_irq(&mapping->tree_lock);
472 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
473 spin_unlock_irq(&mapping->tree_lock);
474 unmap:
475 dax_unmap_atomic(bdev, &dax);
476 return ret;
478 unlock:
479 spin_unlock_irq(&mapping->tree_lock);
480 return ret;
484 * Flush the mapping to the persistent domain within the byte range of [start,
485 * end]. This is required by data integrity operations to ensure file data is
486 * on persistent storage prior to completion of the operation.
488 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
489 loff_t end)
491 struct inode *inode = mapping->host;
492 struct block_device *bdev = inode->i_sb->s_bdev;
493 pgoff_t start_index, end_index, pmd_index;
494 pgoff_t indices[PAGEVEC_SIZE];
495 struct pagevec pvec;
496 bool done = false;
497 int i, ret = 0;
498 void *entry;
500 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
501 return -EIO;
503 start_index = start >> PAGE_CACHE_SHIFT;
504 end_index = end >> PAGE_CACHE_SHIFT;
505 pmd_index = DAX_PMD_INDEX(start_index);
507 rcu_read_lock();
508 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
509 rcu_read_unlock();
511 /* see if the start of our range is covered by a PMD entry */
512 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
513 start_index = pmd_index;
515 tag_pages_for_writeback(mapping, start_index, end_index);
517 pagevec_init(&pvec, 0);
518 while (!done) {
519 pvec.nr = find_get_entries_tag(mapping, start_index,
520 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
521 pvec.pages, indices);
523 if (pvec.nr == 0)
524 break;
526 for (i = 0; i < pvec.nr; i++) {
527 if (indices[i] > end_index) {
528 done = true;
529 break;
532 ret = dax_writeback_one(bdev, mapping, indices[i],
533 pvec.pages[i]);
534 if (ret < 0)
535 return ret;
538 wmb_pmem();
539 return 0;
541 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
543 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
544 struct vm_area_struct *vma, struct vm_fault *vmf)
546 unsigned long vaddr = (unsigned long)vmf->virtual_address;
547 struct address_space *mapping = inode->i_mapping;
548 struct block_device *bdev = bh->b_bdev;
549 struct blk_dax_ctl dax = {
550 .sector = to_sector(bh, inode),
551 .size = bh->b_size,
553 pgoff_t size;
554 int error;
556 i_mmap_lock_read(mapping);
559 * Check truncate didn't happen while we were allocating a block.
560 * If it did, this block may or may not be still allocated to the
561 * file. We can't tell the filesystem to free it because we can't
562 * take i_mutex here. In the worst case, the file still has blocks
563 * allocated past the end of the file.
565 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
566 if (unlikely(vmf->pgoff >= size)) {
567 error = -EIO;
568 goto out;
571 if (dax_map_atomic(bdev, &dax) < 0) {
572 error = PTR_ERR(dax.addr);
573 goto out;
576 if (buffer_unwritten(bh) || buffer_new(bh)) {
577 clear_pmem(dax.addr, PAGE_SIZE);
578 wmb_pmem();
580 dax_unmap_atomic(bdev, &dax);
582 error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
583 vmf->flags & FAULT_FLAG_WRITE);
584 if (error)
585 goto out;
587 error = vm_insert_mixed(vma, vaddr, dax.pfn);
589 out:
590 i_mmap_unlock_read(mapping);
592 return error;
596 * __dax_fault - handle a page fault on a DAX file
597 * @vma: The virtual memory area where the fault occurred
598 * @vmf: The description of the fault
599 * @get_block: The filesystem method used to translate file offsets to blocks
600 * @complete_unwritten: The filesystem method used to convert unwritten blocks
601 * to written so the data written to them is exposed. This is required for
602 * required by write faults for filesystems that will return unwritten
603 * extent mappings from @get_block, but it is optional for reads as
604 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
605 * not support unwritten extents, the it should pass NULL.
607 * When a page fault occurs, filesystems may call this helper in their
608 * fault handler for DAX files. __dax_fault() assumes the caller has done all
609 * the necessary locking for the page fault to proceed successfully.
611 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
612 get_block_t get_block, dax_iodone_t complete_unwritten)
614 struct file *file = vma->vm_file;
615 struct address_space *mapping = file->f_mapping;
616 struct inode *inode = mapping->host;
617 struct page *page;
618 struct buffer_head bh;
619 unsigned long vaddr = (unsigned long)vmf->virtual_address;
620 unsigned blkbits = inode->i_blkbits;
621 sector_t block;
622 pgoff_t size;
623 int error;
624 int major = 0;
626 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
627 if (vmf->pgoff >= size)
628 return VM_FAULT_SIGBUS;
630 memset(&bh, 0, sizeof(bh));
631 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
632 bh.b_bdev = inode->i_sb->s_bdev;
633 bh.b_size = PAGE_SIZE;
635 repeat:
636 page = find_get_page(mapping, vmf->pgoff);
637 if (page) {
638 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
639 page_cache_release(page);
640 return VM_FAULT_RETRY;
642 if (unlikely(page->mapping != mapping)) {
643 unlock_page(page);
644 page_cache_release(page);
645 goto repeat;
647 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
648 if (unlikely(vmf->pgoff >= size)) {
650 * We have a struct page covering a hole in the file
651 * from a read fault and we've raced with a truncate
653 error = -EIO;
654 goto unlock_page;
658 error = get_block(inode, block, &bh, 0);
659 if (!error && (bh.b_size < PAGE_SIZE))
660 error = -EIO; /* fs corruption? */
661 if (error)
662 goto unlock_page;
664 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
665 if (vmf->flags & FAULT_FLAG_WRITE) {
666 error = get_block(inode, block, &bh, 1);
667 count_vm_event(PGMAJFAULT);
668 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
669 major = VM_FAULT_MAJOR;
670 if (!error && (bh.b_size < PAGE_SIZE))
671 error = -EIO;
672 if (error)
673 goto unlock_page;
674 } else {
675 return dax_load_hole(mapping, page, vmf);
679 if (vmf->cow_page) {
680 struct page *new_page = vmf->cow_page;
681 if (buffer_written(&bh))
682 error = copy_user_bh(new_page, inode, &bh, vaddr);
683 else
684 clear_user_highpage(new_page, vaddr);
685 if (error)
686 goto unlock_page;
687 vmf->page = page;
688 if (!page) {
689 i_mmap_lock_read(mapping);
690 /* Check we didn't race with truncate */
691 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
692 PAGE_SHIFT;
693 if (vmf->pgoff >= size) {
694 i_mmap_unlock_read(mapping);
695 error = -EIO;
696 goto out;
699 return VM_FAULT_LOCKED;
702 /* Check we didn't race with a read fault installing a new page */
703 if (!page && major)
704 page = find_lock_page(mapping, vmf->pgoff);
706 if (page) {
707 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
708 PAGE_CACHE_SIZE, 0);
709 delete_from_page_cache(page);
710 unlock_page(page);
711 page_cache_release(page);
712 page = NULL;
716 * If we successfully insert the new mapping over an unwritten extent,
717 * we need to ensure we convert the unwritten extent. If there is an
718 * error inserting the mapping, the filesystem needs to leave it as
719 * unwritten to prevent exposure of the stale underlying data to
720 * userspace, but we still need to call the completion function so
721 * the private resources on the mapping buffer can be released. We
722 * indicate what the callback should do via the uptodate variable, same
723 * as for normal BH based IO completions.
725 error = dax_insert_mapping(inode, &bh, vma, vmf);
726 if (buffer_unwritten(&bh)) {
727 if (complete_unwritten)
728 complete_unwritten(&bh, !error);
729 else
730 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
733 out:
734 if (error == -ENOMEM)
735 return VM_FAULT_OOM | major;
736 /* -EBUSY is fine, somebody else faulted on the same PTE */
737 if ((error < 0) && (error != -EBUSY))
738 return VM_FAULT_SIGBUS | major;
739 return VM_FAULT_NOPAGE | major;
741 unlock_page:
742 if (page) {
743 unlock_page(page);
744 page_cache_release(page);
746 goto out;
748 EXPORT_SYMBOL(__dax_fault);
751 * dax_fault - handle a page fault on a DAX file
752 * @vma: The virtual memory area where the fault occurred
753 * @vmf: The description of the fault
754 * @get_block: The filesystem method used to translate file offsets to blocks
756 * When a page fault occurs, filesystems may call this helper in their
757 * fault handler for DAX files.
759 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
760 get_block_t get_block, dax_iodone_t complete_unwritten)
762 int result;
763 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
765 if (vmf->flags & FAULT_FLAG_WRITE) {
766 sb_start_pagefault(sb);
767 file_update_time(vma->vm_file);
769 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
770 if (vmf->flags & FAULT_FLAG_WRITE)
771 sb_end_pagefault(sb);
773 return result;
775 EXPORT_SYMBOL_GPL(dax_fault);
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
779 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
780 * more often than one might expect in the below function.
782 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
784 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
785 const char *reason, const char *fn)
787 if (bh) {
788 char bname[BDEVNAME_SIZE];
789 bdevname(bh->b_bdev, bname);
790 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
791 "length %zd fallback: %s\n", fn, current->comm,
792 address, bname, bh->b_state, (u64)bh->b_blocknr,
793 bh->b_size, reason);
794 } else {
795 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
796 current->comm, address, reason);
800 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
802 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
803 pmd_t *pmd, unsigned int flags, get_block_t get_block,
804 dax_iodone_t complete_unwritten)
806 struct file *file = vma->vm_file;
807 struct address_space *mapping = file->f_mapping;
808 struct inode *inode = mapping->host;
809 struct buffer_head bh;
810 unsigned blkbits = inode->i_blkbits;
811 unsigned long pmd_addr = address & PMD_MASK;
812 bool write = flags & FAULT_FLAG_WRITE;
813 struct block_device *bdev;
814 pgoff_t size, pgoff;
815 sector_t block;
816 int error, result = 0;
817 bool alloc = false;
819 /* dax pmd mappings require pfn_t_devmap() */
820 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
821 return VM_FAULT_FALLBACK;
823 /* Fall back to PTEs if we're going to COW */
824 if (write && !(vma->vm_flags & VM_SHARED)) {
825 split_huge_pmd(vma, pmd, address);
826 dax_pmd_dbg(NULL, address, "cow write");
827 return VM_FAULT_FALLBACK;
829 /* If the PMD would extend outside the VMA */
830 if (pmd_addr < vma->vm_start) {
831 dax_pmd_dbg(NULL, address, "vma start unaligned");
832 return VM_FAULT_FALLBACK;
834 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
835 dax_pmd_dbg(NULL, address, "vma end unaligned");
836 return VM_FAULT_FALLBACK;
839 pgoff = linear_page_index(vma, pmd_addr);
840 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
841 if (pgoff >= size)
842 return VM_FAULT_SIGBUS;
843 /* If the PMD would cover blocks out of the file */
844 if ((pgoff | PG_PMD_COLOUR) >= size) {
845 dax_pmd_dbg(NULL, address,
846 "offset + huge page size > file size");
847 return VM_FAULT_FALLBACK;
850 memset(&bh, 0, sizeof(bh));
851 bh.b_bdev = inode->i_sb->s_bdev;
852 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
854 bh.b_size = PMD_SIZE;
856 if (get_block(inode, block, &bh, 0) != 0)
857 return VM_FAULT_SIGBUS;
859 if (!buffer_mapped(&bh) && write) {
860 if (get_block(inode, block, &bh, 1) != 0)
861 return VM_FAULT_SIGBUS;
862 alloc = true;
865 bdev = bh.b_bdev;
868 * If the filesystem isn't willing to tell us the length of a hole,
869 * just fall back to PTEs. Calling get_block 512 times in a loop
870 * would be silly.
872 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
873 dax_pmd_dbg(&bh, address, "allocated block too small");
874 return VM_FAULT_FALLBACK;
878 * If we allocated new storage, make sure no process has any
879 * zero pages covering this hole
881 if (alloc) {
882 loff_t lstart = pgoff << PAGE_SHIFT;
883 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
885 truncate_pagecache_range(inode, lstart, lend);
888 i_mmap_lock_read(mapping);
891 * If a truncate happened while we were allocating blocks, we may
892 * leave blocks allocated to the file that are beyond EOF. We can't
893 * take i_mutex here, so just leave them hanging; they'll be freed
894 * when the file is deleted.
896 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
897 if (pgoff >= size) {
898 result = VM_FAULT_SIGBUS;
899 goto out;
901 if ((pgoff | PG_PMD_COLOUR) >= size) {
902 dax_pmd_dbg(&bh, address,
903 "offset + huge page size > file size");
904 goto fallback;
907 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
908 spinlock_t *ptl;
909 pmd_t entry;
910 struct page *zero_page = get_huge_zero_page();
912 if (unlikely(!zero_page)) {
913 dax_pmd_dbg(&bh, address, "no zero page");
914 goto fallback;
917 ptl = pmd_lock(vma->vm_mm, pmd);
918 if (!pmd_none(*pmd)) {
919 spin_unlock(ptl);
920 dax_pmd_dbg(&bh, address, "pmd already present");
921 goto fallback;
924 dev_dbg(part_to_dev(bdev->bd_part),
925 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
926 __func__, current->comm, address,
927 (unsigned long long) to_sector(&bh, inode));
929 entry = mk_pmd(zero_page, vma->vm_page_prot);
930 entry = pmd_mkhuge(entry);
931 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
932 result = VM_FAULT_NOPAGE;
933 spin_unlock(ptl);
934 } else {
935 struct blk_dax_ctl dax = {
936 .sector = to_sector(&bh, inode),
937 .size = PMD_SIZE,
939 long length = dax_map_atomic(bdev, &dax);
941 if (length < 0) {
942 result = VM_FAULT_SIGBUS;
943 goto out;
945 if (length < PMD_SIZE) {
946 dax_pmd_dbg(&bh, address, "dax-length too small");
947 dax_unmap_atomic(bdev, &dax);
948 goto fallback;
950 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
951 dax_pmd_dbg(&bh, address, "pfn unaligned");
952 dax_unmap_atomic(bdev, &dax);
953 goto fallback;
956 if (!pfn_t_devmap(dax.pfn)) {
957 dax_unmap_atomic(bdev, &dax);
958 dax_pmd_dbg(&bh, address, "pfn not in memmap");
959 goto fallback;
962 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
963 clear_pmem(dax.addr, PMD_SIZE);
964 wmb_pmem();
965 count_vm_event(PGMAJFAULT);
966 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
967 result |= VM_FAULT_MAJOR;
969 dax_unmap_atomic(bdev, &dax);
972 * For PTE faults we insert a radix tree entry for reads, and
973 * leave it clean. Then on the first write we dirty the radix
974 * tree entry via the dax_pfn_mkwrite() path. This sequence
975 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
976 * call into get_block() to translate the pgoff to a sector in
977 * order to be able to create a new radix tree entry.
979 * The PMD path doesn't have an equivalent to
980 * dax_pfn_mkwrite(), though, so for a read followed by a
981 * write we traverse all the way through __dax_pmd_fault()
982 * twice. This means we can just skip inserting a radix tree
983 * entry completely on the initial read and just wait until
984 * the write to insert a dirty entry.
986 if (write) {
987 error = dax_radix_entry(mapping, pgoff, dax.sector,
988 true, true);
989 if (error) {
990 dax_pmd_dbg(&bh, address,
991 "PMD radix insertion failed");
992 goto fallback;
996 dev_dbg(part_to_dev(bdev->bd_part),
997 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
998 __func__, current->comm, address,
999 pfn_t_to_pfn(dax.pfn),
1000 (unsigned long long) dax.sector);
1001 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1002 dax.pfn, write);
1005 out:
1006 i_mmap_unlock_read(mapping);
1008 if (buffer_unwritten(&bh))
1009 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1011 return result;
1013 fallback:
1014 count_vm_event(THP_FAULT_FALLBACK);
1015 result = VM_FAULT_FALLBACK;
1016 goto out;
1018 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1021 * dax_pmd_fault - handle a PMD fault on a DAX file
1022 * @vma: The virtual memory area where the fault occurred
1023 * @vmf: The description of the fault
1024 * @get_block: The filesystem method used to translate file offsets to blocks
1026 * When a page fault occurs, filesystems may call this helper in their
1027 * pmd_fault handler for DAX files.
1029 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1030 pmd_t *pmd, unsigned int flags, get_block_t get_block,
1031 dax_iodone_t complete_unwritten)
1033 int result;
1034 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1036 if (flags & FAULT_FLAG_WRITE) {
1037 sb_start_pagefault(sb);
1038 file_update_time(vma->vm_file);
1040 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1041 complete_unwritten);
1042 if (flags & FAULT_FLAG_WRITE)
1043 sb_end_pagefault(sb);
1045 return result;
1047 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1048 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1051 * dax_pfn_mkwrite - handle first write to DAX page
1052 * @vma: The virtual memory area where the fault occurred
1053 * @vmf: The description of the fault
1055 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1057 struct file *file = vma->vm_file;
1060 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1061 * RADIX_DAX_PTE entry already exists in the radix tree from a
1062 * previous call to __dax_fault(). We just want to look up that PTE
1063 * entry using vmf->pgoff and make sure the dirty tag is set. This
1064 * saves us from having to make a call to get_block() here to look
1065 * up the sector.
1067 dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1068 return VM_FAULT_NOPAGE;
1070 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1073 * dax_zero_page_range - zero a range within a page of a DAX file
1074 * @inode: The file being truncated
1075 * @from: The file offset that is being truncated to
1076 * @length: The number of bytes to zero
1077 * @get_block: The filesystem method used to translate file offsets to blocks
1079 * This function can be called by a filesystem when it is zeroing part of a
1080 * page in a DAX file. This is intended for hole-punch operations. If
1081 * you are truncating a file, the helper function dax_truncate_page() may be
1082 * more convenient.
1084 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1085 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1086 * took care of disposing of the unnecessary blocks. Even if the filesystem
1087 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1088 * since the file might be mmapped.
1090 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1091 get_block_t get_block)
1093 struct buffer_head bh;
1094 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1095 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1096 int err;
1098 /* Block boundary? Nothing to do */
1099 if (!length)
1100 return 0;
1101 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1103 memset(&bh, 0, sizeof(bh));
1104 bh.b_bdev = inode->i_sb->s_bdev;
1105 bh.b_size = PAGE_CACHE_SIZE;
1106 err = get_block(inode, index, &bh, 0);
1107 if (err < 0)
1108 return err;
1109 if (buffer_written(&bh)) {
1110 struct block_device *bdev = bh.b_bdev;
1111 struct blk_dax_ctl dax = {
1112 .sector = to_sector(&bh, inode),
1113 .size = PAGE_CACHE_SIZE,
1116 if (dax_map_atomic(bdev, &dax) < 0)
1117 return PTR_ERR(dax.addr);
1118 clear_pmem(dax.addr + offset, length);
1119 wmb_pmem();
1120 dax_unmap_atomic(bdev, &dax);
1123 return 0;
1125 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1128 * dax_truncate_page - handle a partial page being truncated in a DAX file
1129 * @inode: The file being truncated
1130 * @from: The file offset that is being truncated to
1131 * @get_block: The filesystem method used to translate file offsets to blocks
1133 * Similar to block_truncate_page(), this function can be called by a
1134 * filesystem when it is truncating a DAX file to handle the partial page.
1136 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1137 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1138 * took care of disposing of the unnecessary blocks. Even if the filesystem
1139 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1140 * since the file might be mmapped.
1142 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1144 unsigned length = PAGE_CACHE_ALIGN(from) - from;
1145 return dax_zero_page_range(inode, from, length, get_block);
1147 EXPORT_SYMBOL_GPL(dax_truncate_page);