2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s
);
136 * Issues still to be resolved:
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 * - Variable sizing of the per node arrays
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 #define MIN_PARTIAL 5
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
160 #define MAX_PARTIAL 10
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
173 * Set of flags that will prevent slab merging
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
191 static struct notifier_block slab_notifier
;
195 * Tracking user of a slab.
197 #define TRACK_ADDRS_COUNT 16
199 unsigned long addr
; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
203 int cpu
; /* Was running on cpu */
204 int pid
; /* Pid context */
205 unsigned long when
; /* When did the operation occur */
208 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
211 static int sysfs_slab_add(struct kmem_cache
*);
212 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
213 static void sysfs_slab_remove(struct kmem_cache
*);
214 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
216 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
219 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
241 return s
->node
[node
];
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache
*s
,
246 struct page
*page
, const void *object
)
253 base
= page_address(page
);
254 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
255 (object
- base
) % s
->size
) {
262 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
264 return *(void **)(object
+ s
->offset
);
267 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
269 prefetch(object
+ s
->offset
);
272 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
279 p
= get_freepointer(s
, object
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
297 return (p
- addr
) / s
->size
;
300 static inline size_t slab_ksize(const struct kmem_cache
*s
)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
308 return s
->object_size
;
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
319 * Else we can use all the padding etc for the allocation
324 static inline int order_objects(int order
, unsigned long size
, int reserved
)
326 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
329 static inline struct kmem_cache_order_objects
oo_make(int order
,
330 unsigned long size
, int reserved
)
332 struct kmem_cache_order_objects x
= {
333 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
339 static inline int oo_order(struct kmem_cache_order_objects x
)
341 return x
.x
>> OO_SHIFT
;
344 static inline int oo_objects(struct kmem_cache_order_objects x
)
346 return x
.x
& OO_MASK
;
350 * Per slab locking using the pagelock
352 static __always_inline
void slab_lock(struct page
*page
)
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
365 tmp
.counters
= counters_new
;
367 * page->counters can cover frozen/inuse/objects as well
368 * as page->_count. If we assign to ->counters directly
369 * we run the risk of losing updates to page->_count, so
370 * be careful and only assign to the fields we need.
372 page
->frozen
= tmp
.frozen
;
373 page
->inuse
= tmp
.inuse
;
374 page
->objects
= tmp
.objects
;
377 /* Interrupts must be disabled (for the fallback code to work right) */
378 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
379 void *freelist_old
, unsigned long counters_old
,
380 void *freelist_new
, unsigned long counters_new
,
383 VM_BUG_ON(!irqs_disabled());
384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 if (s
->flags
& __CMPXCHG_DOUBLE
) {
387 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
388 freelist_old
, counters_old
,
389 freelist_new
, counters_new
))
395 if (page
->freelist
== freelist_old
&&
396 page
->counters
== counters_old
) {
397 page
->freelist
= freelist_new
;
398 set_page_slub_counters(page
, counters_new
);
406 stat(s
, CMPXCHG_DOUBLE_FAIL
);
408 #ifdef SLUB_DEBUG_CMPXCHG
409 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
415 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
416 void *freelist_old
, unsigned long counters_old
,
417 void *freelist_new
, unsigned long counters_new
,
420 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
421 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
422 if (s
->flags
& __CMPXCHG_DOUBLE
) {
423 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
424 freelist_old
, counters_old
,
425 freelist_new
, counters_new
))
432 local_irq_save(flags
);
434 if (page
->freelist
== freelist_old
&&
435 page
->counters
== counters_old
) {
436 page
->freelist
= freelist_new
;
437 set_page_slub_counters(page
, counters_new
);
439 local_irq_restore(flags
);
443 local_irq_restore(flags
);
447 stat(s
, CMPXCHG_DOUBLE_FAIL
);
449 #ifdef SLUB_DEBUG_CMPXCHG
450 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
456 #ifdef CONFIG_SLUB_DEBUG
458 * Determine a map of object in use on a page.
460 * Node listlock must be held to guarantee that the page does
461 * not vanish from under us.
463 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
466 void *addr
= page_address(page
);
468 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
469 set_bit(slab_index(p
, s
, addr
), map
);
475 #ifdef CONFIG_SLUB_DEBUG_ON
476 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
478 static int slub_debug
;
481 static char *slub_debug_slabs
;
482 static int disable_higher_order_debug
;
487 static void print_section(char *text
, u8
*addr
, unsigned int length
)
489 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
493 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
494 enum track_item alloc
)
499 p
= object
+ s
->offset
+ sizeof(void *);
501 p
= object
+ s
->inuse
;
506 static void set_track(struct kmem_cache
*s
, void *object
,
507 enum track_item alloc
, unsigned long addr
)
509 struct track
*p
= get_track(s
, object
, alloc
);
512 #ifdef CONFIG_STACKTRACE
513 struct stack_trace trace
;
516 trace
.nr_entries
= 0;
517 trace
.max_entries
= TRACK_ADDRS_COUNT
;
518 trace
.entries
= p
->addrs
;
520 save_stack_trace(&trace
);
522 /* See rant in lockdep.c */
523 if (trace
.nr_entries
!= 0 &&
524 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
527 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
531 p
->cpu
= smp_processor_id();
532 p
->pid
= current
->pid
;
535 memset(p
, 0, sizeof(struct track
));
538 static void init_tracking(struct kmem_cache
*s
, void *object
)
540 if (!(s
->flags
& SLAB_STORE_USER
))
543 set_track(s
, object
, TRACK_FREE
, 0UL);
544 set_track(s
, object
, TRACK_ALLOC
, 0UL);
547 static void print_track(const char *s
, struct track
*t
)
552 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
553 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
554 #ifdef CONFIG_STACKTRACE
557 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
559 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
566 static void print_tracking(struct kmem_cache
*s
, void *object
)
568 if (!(s
->flags
& SLAB_STORE_USER
))
571 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
572 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
575 static void print_page_info(struct page
*page
)
578 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
579 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
583 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
589 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
591 printk(KERN_ERR
"========================================"
592 "=====================================\n");
593 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
594 printk(KERN_ERR
"----------------------------------------"
595 "-------------------------------------\n\n");
597 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
600 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
606 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
608 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
611 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
613 unsigned int off
; /* Offset of last byte */
614 u8
*addr
= page_address(page
);
616 print_tracking(s
, p
);
618 print_page_info(page
);
620 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
621 p
, p
- addr
, get_freepointer(s
, p
));
624 print_section("Bytes b4 ", p
- 16, 16);
626 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
628 if (s
->flags
& SLAB_RED_ZONE
)
629 print_section("Redzone ", p
+ s
->object_size
,
630 s
->inuse
- s
->object_size
);
633 off
= s
->offset
+ sizeof(void *);
637 if (s
->flags
& SLAB_STORE_USER
)
638 off
+= 2 * sizeof(struct track
);
641 /* Beginning of the filler is the free pointer */
642 print_section("Padding ", p
+ off
, s
->size
- off
);
647 static void object_err(struct kmem_cache
*s
, struct page
*page
,
648 u8
*object
, char *reason
)
650 slab_bug(s
, "%s", reason
);
651 print_trailer(s
, page
, object
);
654 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
655 const char *fmt
, ...)
661 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
663 slab_bug(s
, "%s", buf
);
664 print_page_info(page
);
668 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
672 if (s
->flags
& __OBJECT_POISON
) {
673 memset(p
, POISON_FREE
, s
->object_size
- 1);
674 p
[s
->object_size
- 1] = POISON_END
;
677 if (s
->flags
& SLAB_RED_ZONE
)
678 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
681 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
682 void *from
, void *to
)
684 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
685 memset(from
, data
, to
- from
);
688 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
689 u8
*object
, char *what
,
690 u8
*start
, unsigned int value
, unsigned int bytes
)
695 fault
= memchr_inv(start
, value
, bytes
);
700 while (end
> fault
&& end
[-1] == value
)
703 slab_bug(s
, "%s overwritten", what
);
704 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
705 fault
, end
- 1, fault
[0], value
);
706 print_trailer(s
, page
, object
);
708 restore_bytes(s
, what
, value
, fault
, end
);
716 * Bytes of the object to be managed.
717 * If the freepointer may overlay the object then the free
718 * pointer is the first word of the object.
720 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
723 * object + s->object_size
724 * Padding to reach word boundary. This is also used for Redzoning.
725 * Padding is extended by another word if Redzoning is enabled and
726 * object_size == inuse.
728 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
729 * 0xcc (RED_ACTIVE) for objects in use.
732 * Meta data starts here.
734 * A. Free pointer (if we cannot overwrite object on free)
735 * B. Tracking data for SLAB_STORE_USER
736 * C. Padding to reach required alignment boundary or at mininum
737 * one word if debugging is on to be able to detect writes
738 * before the word boundary.
740 * Padding is done using 0x5a (POISON_INUSE)
743 * Nothing is used beyond s->size.
745 * If slabcaches are merged then the object_size and inuse boundaries are mostly
746 * ignored. And therefore no slab options that rely on these boundaries
747 * may be used with merged slabcaches.
750 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
752 unsigned long off
= s
->inuse
; /* The end of info */
755 /* Freepointer is placed after the object. */
756 off
+= sizeof(void *);
758 if (s
->flags
& SLAB_STORE_USER
)
759 /* We also have user information there */
760 off
+= 2 * sizeof(struct track
);
765 return check_bytes_and_report(s
, page
, p
, "Object padding",
766 p
+ off
, POISON_INUSE
, s
->size
- off
);
769 /* Check the pad bytes at the end of a slab page */
770 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
778 if (!(s
->flags
& SLAB_POISON
))
781 start
= page_address(page
);
782 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
783 end
= start
+ length
;
784 remainder
= length
% s
->size
;
788 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
791 while (end
> fault
&& end
[-1] == POISON_INUSE
)
794 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
795 print_section("Padding ", end
- remainder
, remainder
);
797 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
801 static int check_object(struct kmem_cache
*s
, struct page
*page
,
802 void *object
, u8 val
)
805 u8
*endobject
= object
+ s
->object_size
;
807 if (s
->flags
& SLAB_RED_ZONE
) {
808 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
809 endobject
, val
, s
->inuse
- s
->object_size
))
812 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
813 check_bytes_and_report(s
, page
, p
, "Alignment padding",
814 endobject
, POISON_INUSE
,
815 s
->inuse
- s
->object_size
);
819 if (s
->flags
& SLAB_POISON
) {
820 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
821 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
822 POISON_FREE
, s
->object_size
- 1) ||
823 !check_bytes_and_report(s
, page
, p
, "Poison",
824 p
+ s
->object_size
- 1, POISON_END
, 1)))
827 * check_pad_bytes cleans up on its own.
829 check_pad_bytes(s
, page
, p
);
832 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
834 * Object and freepointer overlap. Cannot check
835 * freepointer while object is allocated.
839 /* Check free pointer validity */
840 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
841 object_err(s
, page
, p
, "Freepointer corrupt");
843 * No choice but to zap it and thus lose the remainder
844 * of the free objects in this slab. May cause
845 * another error because the object count is now wrong.
847 set_freepointer(s
, p
, NULL
);
853 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
857 VM_BUG_ON(!irqs_disabled());
859 if (!PageSlab(page
)) {
860 slab_err(s
, page
, "Not a valid slab page");
864 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
865 if (page
->objects
> maxobj
) {
866 slab_err(s
, page
, "objects %u > max %u",
867 s
->name
, page
->objects
, maxobj
);
870 if (page
->inuse
> page
->objects
) {
871 slab_err(s
, page
, "inuse %u > max %u",
872 s
->name
, page
->inuse
, page
->objects
);
875 /* Slab_pad_check fixes things up after itself */
876 slab_pad_check(s
, page
);
881 * Determine if a certain object on a page is on the freelist. Must hold the
882 * slab lock to guarantee that the chains are in a consistent state.
884 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
889 unsigned long max_objects
;
892 while (fp
&& nr
<= page
->objects
) {
895 if (!check_valid_pointer(s
, page
, fp
)) {
897 object_err(s
, page
, object
,
898 "Freechain corrupt");
899 set_freepointer(s
, object
, NULL
);
901 slab_err(s
, page
, "Freepointer corrupt");
902 page
->freelist
= NULL
;
903 page
->inuse
= page
->objects
;
904 slab_fix(s
, "Freelist cleared");
910 fp
= get_freepointer(s
, object
);
914 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
915 if (max_objects
> MAX_OBJS_PER_PAGE
)
916 max_objects
= MAX_OBJS_PER_PAGE
;
918 if (page
->objects
!= max_objects
) {
919 slab_err(s
, page
, "Wrong number of objects. Found %d but "
920 "should be %d", page
->objects
, max_objects
);
921 page
->objects
= max_objects
;
922 slab_fix(s
, "Number of objects adjusted.");
924 if (page
->inuse
!= page
->objects
- nr
) {
925 slab_err(s
, page
, "Wrong object count. Counter is %d but "
926 "counted were %d", page
->inuse
, page
->objects
- nr
);
927 page
->inuse
= page
->objects
- nr
;
928 slab_fix(s
, "Object count adjusted.");
930 return search
== NULL
;
933 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
936 if (s
->flags
& SLAB_TRACE
) {
937 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
939 alloc
? "alloc" : "free",
944 print_section("Object ", (void *)object
,
952 * Hooks for other subsystems that check memory allocations. In a typical
953 * production configuration these hooks all should produce no code at all.
955 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
957 kmemleak_alloc(ptr
, size
, 1, flags
);
960 static inline void kfree_hook(const void *x
)
965 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
967 flags
&= gfp_allowed_mask
;
968 lockdep_trace_alloc(flags
);
969 might_sleep_if(flags
& __GFP_WAIT
);
971 return should_failslab(s
->object_size
, flags
, s
->flags
);
974 static inline void slab_post_alloc_hook(struct kmem_cache
*s
,
975 gfp_t flags
, void *object
)
977 flags
&= gfp_allowed_mask
;
978 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
979 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
982 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
984 kmemleak_free_recursive(x
, s
->flags
);
987 * Trouble is that we may no longer disable interrupts in the fast path
988 * So in order to make the debug calls that expect irqs to be
989 * disabled we need to disable interrupts temporarily.
991 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
995 local_irq_save(flags
);
996 kmemcheck_slab_free(s
, x
, s
->object_size
);
997 debug_check_no_locks_freed(x
, s
->object_size
);
998 local_irq_restore(flags
);
1001 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1002 debug_check_no_obj_freed(x
, s
->object_size
);
1006 * Tracking of fully allocated slabs for debugging purposes.
1008 static void add_full(struct kmem_cache
*s
,
1009 struct kmem_cache_node
*n
, struct page
*page
)
1011 if (!(s
->flags
& SLAB_STORE_USER
))
1014 lockdep_assert_held(&n
->list_lock
);
1015 list_add(&page
->lru
, &n
->full
);
1018 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1020 if (!(s
->flags
& SLAB_STORE_USER
))
1023 lockdep_assert_held(&n
->list_lock
);
1024 list_del(&page
->lru
);
1027 /* Tracking of the number of slabs for debugging purposes */
1028 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1030 struct kmem_cache_node
*n
= get_node(s
, node
);
1032 return atomic_long_read(&n
->nr_slabs
);
1035 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1037 return atomic_long_read(&n
->nr_slabs
);
1040 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1042 struct kmem_cache_node
*n
= get_node(s
, node
);
1045 * May be called early in order to allocate a slab for the
1046 * kmem_cache_node structure. Solve the chicken-egg
1047 * dilemma by deferring the increment of the count during
1048 * bootstrap (see early_kmem_cache_node_alloc).
1051 atomic_long_inc(&n
->nr_slabs
);
1052 atomic_long_add(objects
, &n
->total_objects
);
1055 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1057 struct kmem_cache_node
*n
= get_node(s
, node
);
1059 atomic_long_dec(&n
->nr_slabs
);
1060 atomic_long_sub(objects
, &n
->total_objects
);
1063 /* Object debug checks for alloc/free paths */
1064 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1067 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1070 init_object(s
, object
, SLUB_RED_INACTIVE
);
1071 init_tracking(s
, object
);
1074 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1076 void *object
, unsigned long addr
)
1078 if (!check_slab(s
, page
))
1081 if (!check_valid_pointer(s
, page
, object
)) {
1082 object_err(s
, page
, object
, "Freelist Pointer check fails");
1086 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1089 /* Success perform special debug activities for allocs */
1090 if (s
->flags
& SLAB_STORE_USER
)
1091 set_track(s
, object
, TRACK_ALLOC
, addr
);
1092 trace(s
, page
, object
, 1);
1093 init_object(s
, object
, SLUB_RED_ACTIVE
);
1097 if (PageSlab(page
)) {
1099 * If this is a slab page then lets do the best we can
1100 * to avoid issues in the future. Marking all objects
1101 * as used avoids touching the remaining objects.
1103 slab_fix(s
, "Marking all objects used");
1104 page
->inuse
= page
->objects
;
1105 page
->freelist
= NULL
;
1110 static noinline
struct kmem_cache_node
*free_debug_processing(
1111 struct kmem_cache
*s
, struct page
*page
, void *object
,
1112 unsigned long addr
, unsigned long *flags
)
1114 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1116 spin_lock_irqsave(&n
->list_lock
, *flags
);
1119 if (!check_slab(s
, page
))
1122 if (!check_valid_pointer(s
, page
, object
)) {
1123 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1127 if (on_freelist(s
, page
, object
)) {
1128 object_err(s
, page
, object
, "Object already free");
1132 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1135 if (unlikely(s
!= page
->slab_cache
)) {
1136 if (!PageSlab(page
)) {
1137 slab_err(s
, page
, "Attempt to free object(0x%p) "
1138 "outside of slab", object
);
1139 } else if (!page
->slab_cache
) {
1141 "SLUB <none>: no slab for object 0x%p.\n",
1145 object_err(s
, page
, object
,
1146 "page slab pointer corrupt.");
1150 if (s
->flags
& SLAB_STORE_USER
)
1151 set_track(s
, object
, TRACK_FREE
, addr
);
1152 trace(s
, page
, object
, 0);
1153 init_object(s
, object
, SLUB_RED_INACTIVE
);
1157 * Keep node_lock to preserve integrity
1158 * until the object is actually freed
1164 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1165 slab_fix(s
, "Object at 0x%p not freed", object
);
1169 static int __init
setup_slub_debug(char *str
)
1171 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1172 if (*str
++ != '=' || !*str
)
1174 * No options specified. Switch on full debugging.
1180 * No options but restriction on slabs. This means full
1181 * debugging for slabs matching a pattern.
1185 if (tolower(*str
) == 'o') {
1187 * Avoid enabling debugging on caches if its minimum order
1188 * would increase as a result.
1190 disable_higher_order_debug
= 1;
1197 * Switch off all debugging measures.
1202 * Determine which debug features should be switched on
1204 for (; *str
&& *str
!= ','; str
++) {
1205 switch (tolower(*str
)) {
1207 slub_debug
|= SLAB_DEBUG_FREE
;
1210 slub_debug
|= SLAB_RED_ZONE
;
1213 slub_debug
|= SLAB_POISON
;
1216 slub_debug
|= SLAB_STORE_USER
;
1219 slub_debug
|= SLAB_TRACE
;
1222 slub_debug
|= SLAB_FAILSLAB
;
1225 printk(KERN_ERR
"slub_debug option '%c' "
1226 "unknown. skipped\n", *str
);
1232 slub_debug_slabs
= str
+ 1;
1237 __setup("slub_debug", setup_slub_debug
);
1239 static unsigned long kmem_cache_flags(unsigned long object_size
,
1240 unsigned long flags
, const char *name
,
1241 void (*ctor
)(void *))
1244 * Enable debugging if selected on the kernel commandline.
1246 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1247 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1248 flags
|= slub_debug
;
1253 static inline void setup_object_debug(struct kmem_cache
*s
,
1254 struct page
*page
, void *object
) {}
1256 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1257 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1259 static inline struct kmem_cache_node
*free_debug_processing(
1260 struct kmem_cache
*s
, struct page
*page
, void *object
,
1261 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1263 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1265 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1266 void *object
, u8 val
) { return 1; }
1267 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1268 struct page
*page
) {}
1269 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1270 struct page
*page
) {}
1271 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1272 unsigned long flags
, const char *name
,
1273 void (*ctor
)(void *))
1277 #define slub_debug 0
1279 #define disable_higher_order_debug 0
1281 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1283 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1285 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1287 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1290 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1292 kmemleak_alloc(ptr
, size
, 1, flags
);
1295 static inline void kfree_hook(const void *x
)
1300 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1303 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1306 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
,
1307 flags
& gfp_allowed_mask
);
1310 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1312 kmemleak_free_recursive(x
, s
->flags
);
1315 #endif /* CONFIG_SLUB_DEBUG */
1318 * Slab allocation and freeing
1320 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1321 struct kmem_cache_order_objects oo
)
1323 int order
= oo_order(oo
);
1325 flags
|= __GFP_NOTRACK
;
1327 if (node
== NUMA_NO_NODE
)
1328 return alloc_pages(flags
, order
);
1330 return alloc_pages_exact_node(node
, flags
, order
);
1333 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1336 struct kmem_cache_order_objects oo
= s
->oo
;
1339 flags
&= gfp_allowed_mask
;
1341 if (flags
& __GFP_WAIT
)
1344 flags
|= s
->allocflags
;
1347 * Let the initial higher-order allocation fail under memory pressure
1348 * so we fall-back to the minimum order allocation.
1350 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1352 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1353 if (unlikely(!page
)) {
1357 * Allocation may have failed due to fragmentation.
1358 * Try a lower order alloc if possible
1360 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1363 stat(s
, ORDER_FALLBACK
);
1366 if (kmemcheck_enabled
&& page
1367 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1368 int pages
= 1 << oo_order(oo
);
1370 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1373 * Objects from caches that have a constructor don't get
1374 * cleared when they're allocated, so we need to do it here.
1377 kmemcheck_mark_uninitialized_pages(page
, pages
);
1379 kmemcheck_mark_unallocated_pages(page
, pages
);
1382 if (flags
& __GFP_WAIT
)
1383 local_irq_disable();
1387 page
->objects
= oo_objects(oo
);
1388 mod_zone_page_state(page_zone(page
),
1389 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1390 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1396 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1399 setup_object_debug(s
, page
, object
);
1400 if (unlikely(s
->ctor
))
1404 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1412 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1414 page
= allocate_slab(s
,
1415 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1419 order
= compound_order(page
);
1420 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1421 memcg_bind_pages(s
, order
);
1422 page
->slab_cache
= s
;
1423 __SetPageSlab(page
);
1424 if (page
->pfmemalloc
)
1425 SetPageSlabPfmemalloc(page
);
1427 start
= page_address(page
);
1429 if (unlikely(s
->flags
& SLAB_POISON
))
1430 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1433 for_each_object(p
, s
, start
, page
->objects
) {
1434 setup_object(s
, page
, last
);
1435 set_freepointer(s
, last
, p
);
1438 setup_object(s
, page
, last
);
1439 set_freepointer(s
, last
, NULL
);
1441 page
->freelist
= start
;
1442 page
->inuse
= page
->objects
;
1448 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1450 int order
= compound_order(page
);
1451 int pages
= 1 << order
;
1453 if (kmem_cache_debug(s
)) {
1456 slab_pad_check(s
, page
);
1457 for_each_object(p
, s
, page_address(page
),
1459 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1462 kmemcheck_free_shadow(page
, compound_order(page
));
1464 mod_zone_page_state(page_zone(page
),
1465 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1466 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1469 __ClearPageSlabPfmemalloc(page
);
1470 __ClearPageSlab(page
);
1472 memcg_release_pages(s
, order
);
1473 page_mapcount_reset(page
);
1474 if (current
->reclaim_state
)
1475 current
->reclaim_state
->reclaimed_slab
+= pages
;
1476 __free_memcg_kmem_pages(page
, order
);
1479 #define need_reserve_slab_rcu \
1480 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1482 static void rcu_free_slab(struct rcu_head
*h
)
1486 if (need_reserve_slab_rcu
)
1487 page
= virt_to_head_page(h
);
1489 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1491 __free_slab(page
->slab_cache
, page
);
1494 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1496 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1497 struct rcu_head
*head
;
1499 if (need_reserve_slab_rcu
) {
1500 int order
= compound_order(page
);
1501 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1503 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1504 head
= page_address(page
) + offset
;
1507 * RCU free overloads the RCU head over the LRU
1509 head
= (void *)&page
->lru
;
1512 call_rcu(head
, rcu_free_slab
);
1514 __free_slab(s
, page
);
1517 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1519 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1524 * Management of partially allocated slabs.
1527 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1530 if (tail
== DEACTIVATE_TO_TAIL
)
1531 list_add_tail(&page
->lru
, &n
->partial
);
1533 list_add(&page
->lru
, &n
->partial
);
1536 static inline void add_partial(struct kmem_cache_node
*n
,
1537 struct page
*page
, int tail
)
1539 lockdep_assert_held(&n
->list_lock
);
1540 __add_partial(n
, page
, tail
);
1544 __remove_partial(struct kmem_cache_node
*n
, struct page
*page
)
1546 list_del(&page
->lru
);
1550 static inline void remove_partial(struct kmem_cache_node
*n
,
1553 lockdep_assert_held(&n
->list_lock
);
1554 __remove_partial(n
, page
);
1558 * Remove slab from the partial list, freeze it and
1559 * return the pointer to the freelist.
1561 * Returns a list of objects or NULL if it fails.
1563 static inline void *acquire_slab(struct kmem_cache
*s
,
1564 struct kmem_cache_node
*n
, struct page
*page
,
1565 int mode
, int *objects
)
1568 unsigned long counters
;
1571 lockdep_assert_held(&n
->list_lock
);
1574 * Zap the freelist and set the frozen bit.
1575 * The old freelist is the list of objects for the
1576 * per cpu allocation list.
1578 freelist
= page
->freelist
;
1579 counters
= page
->counters
;
1580 new.counters
= counters
;
1581 *objects
= new.objects
- new.inuse
;
1583 new.inuse
= page
->objects
;
1584 new.freelist
= NULL
;
1586 new.freelist
= freelist
;
1589 VM_BUG_ON(new.frozen
);
1592 if (!__cmpxchg_double_slab(s
, page
,
1594 new.freelist
, new.counters
,
1598 remove_partial(n
, page
);
1603 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1604 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1607 * Try to allocate a partial slab from a specific node.
1609 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1610 struct kmem_cache_cpu
*c
, gfp_t flags
)
1612 struct page
*page
, *page2
;
1613 void *object
= NULL
;
1618 * Racy check. If we mistakenly see no partial slabs then we
1619 * just allocate an empty slab. If we mistakenly try to get a
1620 * partial slab and there is none available then get_partials()
1623 if (!n
|| !n
->nr_partial
)
1626 spin_lock(&n
->list_lock
);
1627 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1630 if (!pfmemalloc_match(page
, flags
))
1633 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1637 available
+= objects
;
1640 stat(s
, ALLOC_FROM_PARTIAL
);
1643 put_cpu_partial(s
, page
, 0);
1644 stat(s
, CPU_PARTIAL_NODE
);
1646 if (!kmem_cache_has_cpu_partial(s
)
1647 || available
> s
->cpu_partial
/ 2)
1651 spin_unlock(&n
->list_lock
);
1656 * Get a page from somewhere. Search in increasing NUMA distances.
1658 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1659 struct kmem_cache_cpu
*c
)
1662 struct zonelist
*zonelist
;
1665 enum zone_type high_zoneidx
= gfp_zone(flags
);
1667 unsigned int cpuset_mems_cookie
;
1670 * The defrag ratio allows a configuration of the tradeoffs between
1671 * inter node defragmentation and node local allocations. A lower
1672 * defrag_ratio increases the tendency to do local allocations
1673 * instead of attempting to obtain partial slabs from other nodes.
1675 * If the defrag_ratio is set to 0 then kmalloc() always
1676 * returns node local objects. If the ratio is higher then kmalloc()
1677 * may return off node objects because partial slabs are obtained
1678 * from other nodes and filled up.
1680 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1681 * defrag_ratio = 1000) then every (well almost) allocation will
1682 * first attempt to defrag slab caches on other nodes. This means
1683 * scanning over all nodes to look for partial slabs which may be
1684 * expensive if we do it every time we are trying to find a slab
1685 * with available objects.
1687 if (!s
->remote_node_defrag_ratio
||
1688 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1692 cpuset_mems_cookie
= read_mems_allowed_begin();
1693 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1694 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1695 struct kmem_cache_node
*n
;
1697 n
= get_node(s
, zone_to_nid(zone
));
1699 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1700 n
->nr_partial
> s
->min_partial
) {
1701 object
= get_partial_node(s
, n
, c
, flags
);
1704 * Don't check read_mems_allowed_retry()
1705 * here - if mems_allowed was updated in
1706 * parallel, that was a harmless race
1707 * between allocation and the cpuset
1714 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1720 * Get a partial page, lock it and return it.
1722 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1723 struct kmem_cache_cpu
*c
)
1726 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1728 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1729 if (object
|| node
!= NUMA_NO_NODE
)
1732 return get_any_partial(s
, flags
, c
);
1735 #ifdef CONFIG_PREEMPT
1737 * Calculate the next globally unique transaction for disambiguiation
1738 * during cmpxchg. The transactions start with the cpu number and are then
1739 * incremented by CONFIG_NR_CPUS.
1741 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1744 * No preemption supported therefore also no need to check for
1750 static inline unsigned long next_tid(unsigned long tid
)
1752 return tid
+ TID_STEP
;
1755 static inline unsigned int tid_to_cpu(unsigned long tid
)
1757 return tid
% TID_STEP
;
1760 static inline unsigned long tid_to_event(unsigned long tid
)
1762 return tid
/ TID_STEP
;
1765 static inline unsigned int init_tid(int cpu
)
1770 static inline void note_cmpxchg_failure(const char *n
,
1771 const struct kmem_cache
*s
, unsigned long tid
)
1773 #ifdef SLUB_DEBUG_CMPXCHG
1774 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1776 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1778 #ifdef CONFIG_PREEMPT
1779 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1780 printk("due to cpu change %d -> %d\n",
1781 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1784 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1785 printk("due to cpu running other code. Event %ld->%ld\n",
1786 tid_to_event(tid
), tid_to_event(actual_tid
));
1788 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1789 actual_tid
, tid
, next_tid(tid
));
1791 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1794 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1798 for_each_possible_cpu(cpu
)
1799 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1803 * Remove the cpu slab
1805 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1808 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1809 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1811 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1813 int tail
= DEACTIVATE_TO_HEAD
;
1817 if (page
->freelist
) {
1818 stat(s
, DEACTIVATE_REMOTE_FREES
);
1819 tail
= DEACTIVATE_TO_TAIL
;
1823 * Stage one: Free all available per cpu objects back
1824 * to the page freelist while it is still frozen. Leave the
1827 * There is no need to take the list->lock because the page
1830 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1832 unsigned long counters
;
1835 prior
= page
->freelist
;
1836 counters
= page
->counters
;
1837 set_freepointer(s
, freelist
, prior
);
1838 new.counters
= counters
;
1840 VM_BUG_ON(!new.frozen
);
1842 } while (!__cmpxchg_double_slab(s
, page
,
1844 freelist
, new.counters
,
1845 "drain percpu freelist"));
1847 freelist
= nextfree
;
1851 * Stage two: Ensure that the page is unfrozen while the
1852 * list presence reflects the actual number of objects
1855 * We setup the list membership and then perform a cmpxchg
1856 * with the count. If there is a mismatch then the page
1857 * is not unfrozen but the page is on the wrong list.
1859 * Then we restart the process which may have to remove
1860 * the page from the list that we just put it on again
1861 * because the number of objects in the slab may have
1866 old
.freelist
= page
->freelist
;
1867 old
.counters
= page
->counters
;
1868 VM_BUG_ON(!old
.frozen
);
1870 /* Determine target state of the slab */
1871 new.counters
= old
.counters
;
1874 set_freepointer(s
, freelist
, old
.freelist
);
1875 new.freelist
= freelist
;
1877 new.freelist
= old
.freelist
;
1881 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1883 else if (new.freelist
) {
1888 * Taking the spinlock removes the possiblity
1889 * that acquire_slab() will see a slab page that
1892 spin_lock(&n
->list_lock
);
1896 if (kmem_cache_debug(s
) && !lock
) {
1899 * This also ensures that the scanning of full
1900 * slabs from diagnostic functions will not see
1903 spin_lock(&n
->list_lock
);
1911 remove_partial(n
, page
);
1913 else if (l
== M_FULL
)
1915 remove_full(s
, n
, page
);
1917 if (m
== M_PARTIAL
) {
1919 add_partial(n
, page
, tail
);
1922 } else if (m
== M_FULL
) {
1924 stat(s
, DEACTIVATE_FULL
);
1925 add_full(s
, n
, page
);
1931 if (!__cmpxchg_double_slab(s
, page
,
1932 old
.freelist
, old
.counters
,
1933 new.freelist
, new.counters
,
1938 spin_unlock(&n
->list_lock
);
1941 stat(s
, DEACTIVATE_EMPTY
);
1942 discard_slab(s
, page
);
1948 * Unfreeze all the cpu partial slabs.
1950 * This function must be called with interrupts disabled
1951 * for the cpu using c (or some other guarantee must be there
1952 * to guarantee no concurrent accesses).
1954 static void unfreeze_partials(struct kmem_cache
*s
,
1955 struct kmem_cache_cpu
*c
)
1957 #ifdef CONFIG_SLUB_CPU_PARTIAL
1958 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1959 struct page
*page
, *discard_page
= NULL
;
1961 while ((page
= c
->partial
)) {
1965 c
->partial
= page
->next
;
1967 n2
= get_node(s
, page_to_nid(page
));
1970 spin_unlock(&n
->list_lock
);
1973 spin_lock(&n
->list_lock
);
1978 old
.freelist
= page
->freelist
;
1979 old
.counters
= page
->counters
;
1980 VM_BUG_ON(!old
.frozen
);
1982 new.counters
= old
.counters
;
1983 new.freelist
= old
.freelist
;
1987 } while (!__cmpxchg_double_slab(s
, page
,
1988 old
.freelist
, old
.counters
,
1989 new.freelist
, new.counters
,
1990 "unfreezing slab"));
1992 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1993 page
->next
= discard_page
;
1994 discard_page
= page
;
1996 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1997 stat(s
, FREE_ADD_PARTIAL
);
2002 spin_unlock(&n
->list_lock
);
2004 while (discard_page
) {
2005 page
= discard_page
;
2006 discard_page
= discard_page
->next
;
2008 stat(s
, DEACTIVATE_EMPTY
);
2009 discard_slab(s
, page
);
2016 * Put a page that was just frozen (in __slab_free) into a partial page
2017 * slot if available. This is done without interrupts disabled and without
2018 * preemption disabled. The cmpxchg is racy and may put the partial page
2019 * onto a random cpus partial slot.
2021 * If we did not find a slot then simply move all the partials to the
2022 * per node partial list.
2024 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2026 #ifdef CONFIG_SLUB_CPU_PARTIAL
2027 struct page
*oldpage
;
2034 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2037 pobjects
= oldpage
->pobjects
;
2038 pages
= oldpage
->pages
;
2039 if (drain
&& pobjects
> s
->cpu_partial
) {
2040 unsigned long flags
;
2042 * partial array is full. Move the existing
2043 * set to the per node partial list.
2045 local_irq_save(flags
);
2046 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2047 local_irq_restore(flags
);
2051 stat(s
, CPU_PARTIAL_DRAIN
);
2056 pobjects
+= page
->objects
- page
->inuse
;
2058 page
->pages
= pages
;
2059 page
->pobjects
= pobjects
;
2060 page
->next
= oldpage
;
2062 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2067 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2069 stat(s
, CPUSLAB_FLUSH
);
2070 deactivate_slab(s
, c
->page
, c
->freelist
);
2072 c
->tid
= next_tid(c
->tid
);
2080 * Called from IPI handler with interrupts disabled.
2082 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2084 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2090 unfreeze_partials(s
, c
);
2094 static void flush_cpu_slab(void *d
)
2096 struct kmem_cache
*s
= d
;
2098 __flush_cpu_slab(s
, smp_processor_id());
2101 static bool has_cpu_slab(int cpu
, void *info
)
2103 struct kmem_cache
*s
= info
;
2104 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2106 return c
->page
|| c
->partial
;
2109 static void flush_all(struct kmem_cache
*s
)
2111 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2115 * Check if the objects in a per cpu structure fit numa
2116 * locality expectations.
2118 static inline int node_match(struct page
*page
, int node
)
2121 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2127 static int count_free(struct page
*page
)
2129 return page
->objects
- page
->inuse
;
2132 static unsigned long count_partial(struct kmem_cache_node
*n
,
2133 int (*get_count
)(struct page
*))
2135 unsigned long flags
;
2136 unsigned long x
= 0;
2139 spin_lock_irqsave(&n
->list_lock
, flags
);
2140 list_for_each_entry(page
, &n
->partial
, lru
)
2141 x
+= get_count(page
);
2142 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2146 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2148 #ifdef CONFIG_SLUB_DEBUG
2149 return atomic_long_read(&n
->total_objects
);
2155 static noinline
void
2156 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2161 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2163 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2164 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2165 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2167 if (oo_order(s
->min
) > get_order(s
->object_size
))
2168 printk(KERN_WARNING
" %s debugging increased min order, use "
2169 "slub_debug=O to disable.\n", s
->name
);
2171 for_each_online_node(node
) {
2172 struct kmem_cache_node
*n
= get_node(s
, node
);
2173 unsigned long nr_slabs
;
2174 unsigned long nr_objs
;
2175 unsigned long nr_free
;
2180 nr_free
= count_partial(n
, count_free
);
2181 nr_slabs
= node_nr_slabs(n
);
2182 nr_objs
= node_nr_objs(n
);
2185 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2186 node
, nr_slabs
, nr_objs
, nr_free
);
2190 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2191 int node
, struct kmem_cache_cpu
**pc
)
2194 struct kmem_cache_cpu
*c
= *pc
;
2197 freelist
= get_partial(s
, flags
, node
, c
);
2202 page
= new_slab(s
, flags
, node
);
2204 c
= __this_cpu_ptr(s
->cpu_slab
);
2209 * No other reference to the page yet so we can
2210 * muck around with it freely without cmpxchg
2212 freelist
= page
->freelist
;
2213 page
->freelist
= NULL
;
2215 stat(s
, ALLOC_SLAB
);
2224 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2226 if (unlikely(PageSlabPfmemalloc(page
)))
2227 return gfp_pfmemalloc_allowed(gfpflags
);
2233 * Check the page->freelist of a page and either transfer the freelist to the
2234 * per cpu freelist or deactivate the page.
2236 * The page is still frozen if the return value is not NULL.
2238 * If this function returns NULL then the page has been unfrozen.
2240 * This function must be called with interrupt disabled.
2242 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2245 unsigned long counters
;
2249 freelist
= page
->freelist
;
2250 counters
= page
->counters
;
2252 new.counters
= counters
;
2253 VM_BUG_ON(!new.frozen
);
2255 new.inuse
= page
->objects
;
2256 new.frozen
= freelist
!= NULL
;
2258 } while (!__cmpxchg_double_slab(s
, page
,
2267 * Slow path. The lockless freelist is empty or we need to perform
2270 * Processing is still very fast if new objects have been freed to the
2271 * regular freelist. In that case we simply take over the regular freelist
2272 * as the lockless freelist and zap the regular freelist.
2274 * If that is not working then we fall back to the partial lists. We take the
2275 * first element of the freelist as the object to allocate now and move the
2276 * rest of the freelist to the lockless freelist.
2278 * And if we were unable to get a new slab from the partial slab lists then
2279 * we need to allocate a new slab. This is the slowest path since it involves
2280 * a call to the page allocator and the setup of a new slab.
2282 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2283 unsigned long addr
, struct kmem_cache_cpu
*c
)
2287 unsigned long flags
;
2289 local_irq_save(flags
);
2290 #ifdef CONFIG_PREEMPT
2292 * We may have been preempted and rescheduled on a different
2293 * cpu before disabling interrupts. Need to reload cpu area
2296 c
= this_cpu_ptr(s
->cpu_slab
);
2304 if (unlikely(!node_match(page
, node
))) {
2305 stat(s
, ALLOC_NODE_MISMATCH
);
2306 deactivate_slab(s
, page
, c
->freelist
);
2313 * By rights, we should be searching for a slab page that was
2314 * PFMEMALLOC but right now, we are losing the pfmemalloc
2315 * information when the page leaves the per-cpu allocator
2317 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2318 deactivate_slab(s
, page
, c
->freelist
);
2324 /* must check again c->freelist in case of cpu migration or IRQ */
2325 freelist
= c
->freelist
;
2329 stat(s
, ALLOC_SLOWPATH
);
2331 freelist
= get_freelist(s
, page
);
2335 stat(s
, DEACTIVATE_BYPASS
);
2339 stat(s
, ALLOC_REFILL
);
2343 * freelist is pointing to the list of objects to be used.
2344 * page is pointing to the page from which the objects are obtained.
2345 * That page must be frozen for per cpu allocations to work.
2347 VM_BUG_ON(!c
->page
->frozen
);
2348 c
->freelist
= get_freepointer(s
, freelist
);
2349 c
->tid
= next_tid(c
->tid
);
2350 local_irq_restore(flags
);
2356 page
= c
->page
= c
->partial
;
2357 c
->partial
= page
->next
;
2358 stat(s
, CPU_PARTIAL_ALLOC
);
2363 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2365 if (unlikely(!freelist
)) {
2366 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2367 slab_out_of_memory(s
, gfpflags
, node
);
2369 local_irq_restore(flags
);
2374 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2377 /* Only entered in the debug case */
2378 if (kmem_cache_debug(s
) &&
2379 !alloc_debug_processing(s
, page
, freelist
, addr
))
2380 goto new_slab
; /* Slab failed checks. Next slab needed */
2382 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2385 local_irq_restore(flags
);
2390 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2391 * have the fastpath folded into their functions. So no function call
2392 * overhead for requests that can be satisfied on the fastpath.
2394 * The fastpath works by first checking if the lockless freelist can be used.
2395 * If not then __slab_alloc is called for slow processing.
2397 * Otherwise we can simply pick the next object from the lockless free list.
2399 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2400 gfp_t gfpflags
, int node
, unsigned long addr
)
2403 struct kmem_cache_cpu
*c
;
2407 if (slab_pre_alloc_hook(s
, gfpflags
))
2410 s
= memcg_kmem_get_cache(s
, gfpflags
);
2413 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2414 * enabled. We may switch back and forth between cpus while
2415 * reading from one cpu area. That does not matter as long
2416 * as we end up on the original cpu again when doing the cmpxchg.
2418 * Preemption is disabled for the retrieval of the tid because that
2419 * must occur from the current processor. We cannot allow rescheduling
2420 * on a different processor between the determination of the pointer
2421 * and the retrieval of the tid.
2424 c
= __this_cpu_ptr(s
->cpu_slab
);
2427 * The transaction ids are globally unique per cpu and per operation on
2428 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2429 * occurs on the right processor and that there was no operation on the
2430 * linked list in between.
2435 object
= c
->freelist
;
2437 if (unlikely(!object
|| !node_match(page
, node
)))
2438 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2441 void *next_object
= get_freepointer_safe(s
, object
);
2444 * The cmpxchg will only match if there was no additional
2445 * operation and if we are on the right processor.
2447 * The cmpxchg does the following atomically (without lock
2449 * 1. Relocate first pointer to the current per cpu area.
2450 * 2. Verify that tid and freelist have not been changed
2451 * 3. If they were not changed replace tid and freelist
2453 * Since this is without lock semantics the protection is only
2454 * against code executing on this cpu *not* from access by
2457 if (unlikely(!this_cpu_cmpxchg_double(
2458 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2460 next_object
, next_tid(tid
)))) {
2462 note_cmpxchg_failure("slab_alloc", s
, tid
);
2465 prefetch_freepointer(s
, next_object
);
2466 stat(s
, ALLOC_FASTPATH
);
2469 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2470 memset(object
, 0, s
->object_size
);
2472 slab_post_alloc_hook(s
, gfpflags
, object
);
2477 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2478 gfp_t gfpflags
, unsigned long addr
)
2480 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2483 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2485 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2487 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2492 EXPORT_SYMBOL(kmem_cache_alloc
);
2494 #ifdef CONFIG_TRACING
2495 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2497 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2498 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2501 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2505 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2507 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2509 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2510 s
->object_size
, s
->size
, gfpflags
, node
);
2514 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2516 #ifdef CONFIG_TRACING
2517 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2519 int node
, size_t size
)
2521 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2523 trace_kmalloc_node(_RET_IP_
, ret
,
2524 size
, s
->size
, gfpflags
, node
);
2527 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2532 * Slow patch handling. This may still be called frequently since objects
2533 * have a longer lifetime than the cpu slabs in most processing loads.
2535 * So we still attempt to reduce cache line usage. Just take the slab
2536 * lock and free the item. If there is no additional partial page
2537 * handling required then we can return immediately.
2539 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2540 void *x
, unsigned long addr
)
2543 void **object
= (void *)x
;
2546 unsigned long counters
;
2547 struct kmem_cache_node
*n
= NULL
;
2548 unsigned long uninitialized_var(flags
);
2550 stat(s
, FREE_SLOWPATH
);
2552 if (kmem_cache_debug(s
) &&
2553 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2558 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2561 prior
= page
->freelist
;
2562 counters
= page
->counters
;
2563 set_freepointer(s
, object
, prior
);
2564 new.counters
= counters
;
2565 was_frozen
= new.frozen
;
2567 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2569 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2572 * Slab was on no list before and will be
2574 * We can defer the list move and instead
2579 } else { /* Needs to be taken off a list */
2581 n
= get_node(s
, page_to_nid(page
));
2583 * Speculatively acquire the list_lock.
2584 * If the cmpxchg does not succeed then we may
2585 * drop the list_lock without any processing.
2587 * Otherwise the list_lock will synchronize with
2588 * other processors updating the list of slabs.
2590 spin_lock_irqsave(&n
->list_lock
, flags
);
2595 } while (!cmpxchg_double_slab(s
, page
,
2597 object
, new.counters
,
2603 * If we just froze the page then put it onto the
2604 * per cpu partial list.
2606 if (new.frozen
&& !was_frozen
) {
2607 put_cpu_partial(s
, page
, 1);
2608 stat(s
, CPU_PARTIAL_FREE
);
2611 * The list lock was not taken therefore no list
2612 * activity can be necessary.
2615 stat(s
, FREE_FROZEN
);
2619 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2623 * Objects left in the slab. If it was not on the partial list before
2626 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2627 if (kmem_cache_debug(s
))
2628 remove_full(s
, n
, page
);
2629 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2630 stat(s
, FREE_ADD_PARTIAL
);
2632 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2638 * Slab on the partial list.
2640 remove_partial(n
, page
);
2641 stat(s
, FREE_REMOVE_PARTIAL
);
2643 /* Slab must be on the full list */
2644 remove_full(s
, n
, page
);
2647 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2649 discard_slab(s
, page
);
2653 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2654 * can perform fastpath freeing without additional function calls.
2656 * The fastpath is only possible if we are freeing to the current cpu slab
2657 * of this processor. This typically the case if we have just allocated
2660 * If fastpath is not possible then fall back to __slab_free where we deal
2661 * with all sorts of special processing.
2663 static __always_inline
void slab_free(struct kmem_cache
*s
,
2664 struct page
*page
, void *x
, unsigned long addr
)
2666 void **object
= (void *)x
;
2667 struct kmem_cache_cpu
*c
;
2670 slab_free_hook(s
, x
);
2674 * Determine the currently cpus per cpu slab.
2675 * The cpu may change afterward. However that does not matter since
2676 * data is retrieved via this pointer. If we are on the same cpu
2677 * during the cmpxchg then the free will succedd.
2680 c
= __this_cpu_ptr(s
->cpu_slab
);
2685 if (likely(page
== c
->page
)) {
2686 set_freepointer(s
, object
, c
->freelist
);
2688 if (unlikely(!this_cpu_cmpxchg_double(
2689 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2691 object
, next_tid(tid
)))) {
2693 note_cmpxchg_failure("slab_free", s
, tid
);
2696 stat(s
, FREE_FASTPATH
);
2698 __slab_free(s
, page
, x
, addr
);
2702 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2704 s
= cache_from_obj(s
, x
);
2707 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2708 trace_kmem_cache_free(_RET_IP_
, x
);
2710 EXPORT_SYMBOL(kmem_cache_free
);
2713 * Object placement in a slab is made very easy because we always start at
2714 * offset 0. If we tune the size of the object to the alignment then we can
2715 * get the required alignment by putting one properly sized object after
2718 * Notice that the allocation order determines the sizes of the per cpu
2719 * caches. Each processor has always one slab available for allocations.
2720 * Increasing the allocation order reduces the number of times that slabs
2721 * must be moved on and off the partial lists and is therefore a factor in
2726 * Mininum / Maximum order of slab pages. This influences locking overhead
2727 * and slab fragmentation. A higher order reduces the number of partial slabs
2728 * and increases the number of allocations possible without having to
2729 * take the list_lock.
2731 static int slub_min_order
;
2732 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2733 static int slub_min_objects
;
2736 * Merge control. If this is set then no merging of slab caches will occur.
2737 * (Could be removed. This was introduced to pacify the merge skeptics.)
2739 static int slub_nomerge
;
2742 * Calculate the order of allocation given an slab object size.
2744 * The order of allocation has significant impact on performance and other
2745 * system components. Generally order 0 allocations should be preferred since
2746 * order 0 does not cause fragmentation in the page allocator. Larger objects
2747 * be problematic to put into order 0 slabs because there may be too much
2748 * unused space left. We go to a higher order if more than 1/16th of the slab
2751 * In order to reach satisfactory performance we must ensure that a minimum
2752 * number of objects is in one slab. Otherwise we may generate too much
2753 * activity on the partial lists which requires taking the list_lock. This is
2754 * less a concern for large slabs though which are rarely used.
2756 * slub_max_order specifies the order where we begin to stop considering the
2757 * number of objects in a slab as critical. If we reach slub_max_order then
2758 * we try to keep the page order as low as possible. So we accept more waste
2759 * of space in favor of a small page order.
2761 * Higher order allocations also allow the placement of more objects in a
2762 * slab and thereby reduce object handling overhead. If the user has
2763 * requested a higher mininum order then we start with that one instead of
2764 * the smallest order which will fit the object.
2766 static inline int slab_order(int size
, int min_objects
,
2767 int max_order
, int fract_leftover
, int reserved
)
2771 int min_order
= slub_min_order
;
2773 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2774 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2776 for (order
= max(min_order
,
2777 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2778 order
<= max_order
; order
++) {
2780 unsigned long slab_size
= PAGE_SIZE
<< order
;
2782 if (slab_size
< min_objects
* size
+ reserved
)
2785 rem
= (slab_size
- reserved
) % size
;
2787 if (rem
<= slab_size
/ fract_leftover
)
2795 static inline int calculate_order(int size
, int reserved
)
2803 * Attempt to find best configuration for a slab. This
2804 * works by first attempting to generate a layout with
2805 * the best configuration and backing off gradually.
2807 * First we reduce the acceptable waste in a slab. Then
2808 * we reduce the minimum objects required in a slab.
2810 min_objects
= slub_min_objects
;
2812 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2813 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2814 min_objects
= min(min_objects
, max_objects
);
2816 while (min_objects
> 1) {
2818 while (fraction
>= 4) {
2819 order
= slab_order(size
, min_objects
,
2820 slub_max_order
, fraction
, reserved
);
2821 if (order
<= slub_max_order
)
2829 * We were unable to place multiple objects in a slab. Now
2830 * lets see if we can place a single object there.
2832 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2833 if (order
<= slub_max_order
)
2837 * Doh this slab cannot be placed using slub_max_order.
2839 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2840 if (order
< MAX_ORDER
)
2846 init_kmem_cache_node(struct kmem_cache_node
*n
)
2849 spin_lock_init(&n
->list_lock
);
2850 INIT_LIST_HEAD(&n
->partial
);
2851 #ifdef CONFIG_SLUB_DEBUG
2852 atomic_long_set(&n
->nr_slabs
, 0);
2853 atomic_long_set(&n
->total_objects
, 0);
2854 INIT_LIST_HEAD(&n
->full
);
2858 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2860 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2861 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
2864 * Must align to double word boundary for the double cmpxchg
2865 * instructions to work; see __pcpu_double_call_return_bool().
2867 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2868 2 * sizeof(void *));
2873 init_kmem_cache_cpus(s
);
2878 static struct kmem_cache
*kmem_cache_node
;
2881 * No kmalloc_node yet so do it by hand. We know that this is the first
2882 * slab on the node for this slabcache. There are no concurrent accesses
2885 * Note that this function only works on the kmem_cache_node
2886 * when allocating for the kmem_cache_node. This is used for bootstrapping
2887 * memory on a fresh node that has no slab structures yet.
2889 static void early_kmem_cache_node_alloc(int node
)
2892 struct kmem_cache_node
*n
;
2894 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2896 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2899 if (page_to_nid(page
) != node
) {
2900 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2902 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2903 "in order to be able to continue\n");
2908 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2911 kmem_cache_node
->node
[node
] = n
;
2912 #ifdef CONFIG_SLUB_DEBUG
2913 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2914 init_tracking(kmem_cache_node
, n
);
2916 init_kmem_cache_node(n
);
2917 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2920 * No locks need to be taken here as it has just been
2921 * initialized and there is no concurrent access.
2923 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2926 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2930 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2931 struct kmem_cache_node
*n
= s
->node
[node
];
2934 kmem_cache_free(kmem_cache_node
, n
);
2936 s
->node
[node
] = NULL
;
2940 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2944 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2945 struct kmem_cache_node
*n
;
2947 if (slab_state
== DOWN
) {
2948 early_kmem_cache_node_alloc(node
);
2951 n
= kmem_cache_alloc_node(kmem_cache_node
,
2955 free_kmem_cache_nodes(s
);
2960 init_kmem_cache_node(n
);
2965 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2967 if (min
< MIN_PARTIAL
)
2969 else if (min
> MAX_PARTIAL
)
2971 s
->min_partial
= min
;
2975 * calculate_sizes() determines the order and the distribution of data within
2978 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2980 unsigned long flags
= s
->flags
;
2981 unsigned long size
= s
->object_size
;
2985 * Round up object size to the next word boundary. We can only
2986 * place the free pointer at word boundaries and this determines
2987 * the possible location of the free pointer.
2989 size
= ALIGN(size
, sizeof(void *));
2991 #ifdef CONFIG_SLUB_DEBUG
2993 * Determine if we can poison the object itself. If the user of
2994 * the slab may touch the object after free or before allocation
2995 * then we should never poison the object itself.
2997 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2999 s
->flags
|= __OBJECT_POISON
;
3001 s
->flags
&= ~__OBJECT_POISON
;
3005 * If we are Redzoning then check if there is some space between the
3006 * end of the object and the free pointer. If not then add an
3007 * additional word to have some bytes to store Redzone information.
3009 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3010 size
+= sizeof(void *);
3014 * With that we have determined the number of bytes in actual use
3015 * by the object. This is the potential offset to the free pointer.
3019 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3022 * Relocate free pointer after the object if it is not
3023 * permitted to overwrite the first word of the object on
3026 * This is the case if we do RCU, have a constructor or
3027 * destructor or are poisoning the objects.
3030 size
+= sizeof(void *);
3033 #ifdef CONFIG_SLUB_DEBUG
3034 if (flags
& SLAB_STORE_USER
)
3036 * Need to store information about allocs and frees after
3039 size
+= 2 * sizeof(struct track
);
3041 if (flags
& SLAB_RED_ZONE
)
3043 * Add some empty padding so that we can catch
3044 * overwrites from earlier objects rather than let
3045 * tracking information or the free pointer be
3046 * corrupted if a user writes before the start
3049 size
+= sizeof(void *);
3053 * SLUB stores one object immediately after another beginning from
3054 * offset 0. In order to align the objects we have to simply size
3055 * each object to conform to the alignment.
3057 size
= ALIGN(size
, s
->align
);
3059 if (forced_order
>= 0)
3060 order
= forced_order
;
3062 order
= calculate_order(size
, s
->reserved
);
3069 s
->allocflags
|= __GFP_COMP
;
3071 if (s
->flags
& SLAB_CACHE_DMA
)
3072 s
->allocflags
|= GFP_DMA
;
3074 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3075 s
->allocflags
|= __GFP_RECLAIMABLE
;
3078 * Determine the number of objects per slab
3080 s
->oo
= oo_make(order
, size
, s
->reserved
);
3081 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3082 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3085 return !!oo_objects(s
->oo
);
3088 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3090 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3093 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3094 s
->reserved
= sizeof(struct rcu_head
);
3096 if (!calculate_sizes(s
, -1))
3098 if (disable_higher_order_debug
) {
3100 * Disable debugging flags that store metadata if the min slab
3103 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3104 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3106 if (!calculate_sizes(s
, -1))
3111 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3112 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3113 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3114 /* Enable fast mode */
3115 s
->flags
|= __CMPXCHG_DOUBLE
;
3119 * The larger the object size is, the more pages we want on the partial
3120 * list to avoid pounding the page allocator excessively.
3122 set_min_partial(s
, ilog2(s
->size
) / 2);
3125 * cpu_partial determined the maximum number of objects kept in the
3126 * per cpu partial lists of a processor.
3128 * Per cpu partial lists mainly contain slabs that just have one
3129 * object freed. If they are used for allocation then they can be
3130 * filled up again with minimal effort. The slab will never hit the
3131 * per node partial lists and therefore no locking will be required.
3133 * This setting also determines
3135 * A) The number of objects from per cpu partial slabs dumped to the
3136 * per node list when we reach the limit.
3137 * B) The number of objects in cpu partial slabs to extract from the
3138 * per node list when we run out of per cpu objects. We only fetch
3139 * 50% to keep some capacity around for frees.
3141 if (!kmem_cache_has_cpu_partial(s
))
3143 else if (s
->size
>= PAGE_SIZE
)
3145 else if (s
->size
>= 1024)
3147 else if (s
->size
>= 256)
3148 s
->cpu_partial
= 13;
3150 s
->cpu_partial
= 30;
3153 s
->remote_node_defrag_ratio
= 1000;
3155 if (!init_kmem_cache_nodes(s
))
3158 if (alloc_kmem_cache_cpus(s
))
3161 free_kmem_cache_nodes(s
);
3163 if (flags
& SLAB_PANIC
)
3164 panic("Cannot create slab %s size=%lu realsize=%u "
3165 "order=%u offset=%u flags=%lx\n",
3166 s
->name
, (unsigned long)s
->size
, s
->size
,
3167 oo_order(s
->oo
), s
->offset
, flags
);
3171 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3174 #ifdef CONFIG_SLUB_DEBUG
3175 void *addr
= page_address(page
);
3177 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3178 sizeof(long), GFP_ATOMIC
);
3181 slab_err(s
, page
, text
, s
->name
);
3184 get_map(s
, page
, map
);
3185 for_each_object(p
, s
, addr
, page
->objects
) {
3187 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3188 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3190 print_tracking(s
, p
);
3199 * Attempt to free all partial slabs on a node.
3200 * This is called from kmem_cache_close(). We must be the last thread
3201 * using the cache and therefore we do not need to lock anymore.
3203 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3205 struct page
*page
, *h
;
3207 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3209 __remove_partial(n
, page
);
3210 discard_slab(s
, page
);
3212 list_slab_objects(s
, page
,
3213 "Objects remaining in %s on kmem_cache_close()");
3219 * Release all resources used by a slab cache.
3221 static inline int kmem_cache_close(struct kmem_cache
*s
)
3226 /* Attempt to free all objects */
3227 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3228 struct kmem_cache_node
*n
= get_node(s
, node
);
3231 if (n
->nr_partial
|| slabs_node(s
, node
))
3234 free_percpu(s
->cpu_slab
);
3235 free_kmem_cache_nodes(s
);
3239 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3241 int rc
= kmem_cache_close(s
);
3245 * Since slab_attr_store may take the slab_mutex, we should
3246 * release the lock while removing the sysfs entry in order to
3247 * avoid a deadlock. Because this is pretty much the last
3248 * operation we do and the lock will be released shortly after
3249 * that in slab_common.c, we could just move sysfs_slab_remove
3250 * to a later point in common code. We should do that when we
3251 * have a common sysfs framework for all allocators.
3253 mutex_unlock(&slab_mutex
);
3254 sysfs_slab_remove(s
);
3255 mutex_lock(&slab_mutex
);
3261 /********************************************************************
3263 *******************************************************************/
3265 static int __init
setup_slub_min_order(char *str
)
3267 get_option(&str
, &slub_min_order
);
3272 __setup("slub_min_order=", setup_slub_min_order
);
3274 static int __init
setup_slub_max_order(char *str
)
3276 get_option(&str
, &slub_max_order
);
3277 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3282 __setup("slub_max_order=", setup_slub_max_order
);
3284 static int __init
setup_slub_min_objects(char *str
)
3286 get_option(&str
, &slub_min_objects
);
3291 __setup("slub_min_objects=", setup_slub_min_objects
);
3293 static int __init
setup_slub_nomerge(char *str
)
3299 __setup("slub_nomerge", setup_slub_nomerge
);
3301 void *__kmalloc(size_t size
, gfp_t flags
)
3303 struct kmem_cache
*s
;
3306 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3307 return kmalloc_large(size
, flags
);
3309 s
= kmalloc_slab(size
, flags
);
3311 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3314 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3316 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3320 EXPORT_SYMBOL(__kmalloc
);
3323 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3328 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3329 page
= alloc_pages_node(node
, flags
, get_order(size
));
3331 ptr
= page_address(page
);
3333 kmalloc_large_node_hook(ptr
, size
, flags
);
3337 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3339 struct kmem_cache
*s
;
3342 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3343 ret
= kmalloc_large_node(size
, flags
, node
);
3345 trace_kmalloc_node(_RET_IP_
, ret
,
3346 size
, PAGE_SIZE
<< get_order(size
),
3352 s
= kmalloc_slab(size
, flags
);
3354 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3357 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3359 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3363 EXPORT_SYMBOL(__kmalloc_node
);
3366 size_t ksize(const void *object
)
3370 if (unlikely(object
== ZERO_SIZE_PTR
))
3373 page
= virt_to_head_page(object
);
3375 if (unlikely(!PageSlab(page
))) {
3376 WARN_ON(!PageCompound(page
));
3377 return PAGE_SIZE
<< compound_order(page
);
3380 return slab_ksize(page
->slab_cache
);
3382 EXPORT_SYMBOL(ksize
);
3384 void kfree(const void *x
)
3387 void *object
= (void *)x
;
3389 trace_kfree(_RET_IP_
, x
);
3391 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3394 page
= virt_to_head_page(x
);
3395 if (unlikely(!PageSlab(page
))) {
3396 BUG_ON(!PageCompound(page
));
3398 __free_memcg_kmem_pages(page
, compound_order(page
));
3401 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3403 EXPORT_SYMBOL(kfree
);
3406 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3407 * the remaining slabs by the number of items in use. The slabs with the
3408 * most items in use come first. New allocations will then fill those up
3409 * and thus they can be removed from the partial lists.
3411 * The slabs with the least items are placed last. This results in them
3412 * being allocated from last increasing the chance that the last objects
3413 * are freed in them.
3415 int kmem_cache_shrink(struct kmem_cache
*s
)
3419 struct kmem_cache_node
*n
;
3422 int objects
= oo_objects(s
->max
);
3423 struct list_head
*slabs_by_inuse
=
3424 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3425 unsigned long flags
;
3427 if (!slabs_by_inuse
)
3431 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3432 n
= get_node(s
, node
);
3437 for (i
= 0; i
< objects
; i
++)
3438 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3440 spin_lock_irqsave(&n
->list_lock
, flags
);
3443 * Build lists indexed by the items in use in each slab.
3445 * Note that concurrent frees may occur while we hold the
3446 * list_lock. page->inuse here is the upper limit.
3448 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3449 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3455 * Rebuild the partial list with the slabs filled up most
3456 * first and the least used slabs at the end.
3458 for (i
= objects
- 1; i
> 0; i
--)
3459 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3461 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3463 /* Release empty slabs */
3464 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3465 discard_slab(s
, page
);
3468 kfree(slabs_by_inuse
);
3471 EXPORT_SYMBOL(kmem_cache_shrink
);
3473 static int slab_mem_going_offline_callback(void *arg
)
3475 struct kmem_cache
*s
;
3477 mutex_lock(&slab_mutex
);
3478 list_for_each_entry(s
, &slab_caches
, list
)
3479 kmem_cache_shrink(s
);
3480 mutex_unlock(&slab_mutex
);
3485 static void slab_mem_offline_callback(void *arg
)
3487 struct kmem_cache_node
*n
;
3488 struct kmem_cache
*s
;
3489 struct memory_notify
*marg
= arg
;
3492 offline_node
= marg
->status_change_nid_normal
;
3495 * If the node still has available memory. we need kmem_cache_node
3498 if (offline_node
< 0)
3501 mutex_lock(&slab_mutex
);
3502 list_for_each_entry(s
, &slab_caches
, list
) {
3503 n
= get_node(s
, offline_node
);
3506 * if n->nr_slabs > 0, slabs still exist on the node
3507 * that is going down. We were unable to free them,
3508 * and offline_pages() function shouldn't call this
3509 * callback. So, we must fail.
3511 BUG_ON(slabs_node(s
, offline_node
));
3513 s
->node
[offline_node
] = NULL
;
3514 kmem_cache_free(kmem_cache_node
, n
);
3517 mutex_unlock(&slab_mutex
);
3520 static int slab_mem_going_online_callback(void *arg
)
3522 struct kmem_cache_node
*n
;
3523 struct kmem_cache
*s
;
3524 struct memory_notify
*marg
= arg
;
3525 int nid
= marg
->status_change_nid_normal
;
3529 * If the node's memory is already available, then kmem_cache_node is
3530 * already created. Nothing to do.
3536 * We are bringing a node online. No memory is available yet. We must
3537 * allocate a kmem_cache_node structure in order to bring the node
3540 mutex_lock(&slab_mutex
);
3541 list_for_each_entry(s
, &slab_caches
, list
) {
3543 * XXX: kmem_cache_alloc_node will fallback to other nodes
3544 * since memory is not yet available from the node that
3547 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3552 init_kmem_cache_node(n
);
3556 mutex_unlock(&slab_mutex
);
3560 static int slab_memory_callback(struct notifier_block
*self
,
3561 unsigned long action
, void *arg
)
3566 case MEM_GOING_ONLINE
:
3567 ret
= slab_mem_going_online_callback(arg
);
3569 case MEM_GOING_OFFLINE
:
3570 ret
= slab_mem_going_offline_callback(arg
);
3573 case MEM_CANCEL_ONLINE
:
3574 slab_mem_offline_callback(arg
);
3577 case MEM_CANCEL_OFFLINE
:
3581 ret
= notifier_from_errno(ret
);
3587 static struct notifier_block slab_memory_callback_nb
= {
3588 .notifier_call
= slab_memory_callback
,
3589 .priority
= SLAB_CALLBACK_PRI
,
3592 /********************************************************************
3593 * Basic setup of slabs
3594 *******************************************************************/
3597 * Used for early kmem_cache structures that were allocated using
3598 * the page allocator. Allocate them properly then fix up the pointers
3599 * that may be pointing to the wrong kmem_cache structure.
3602 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3605 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3607 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3610 * This runs very early, and only the boot processor is supposed to be
3611 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3614 __flush_cpu_slab(s
, smp_processor_id());
3615 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3616 struct kmem_cache_node
*n
= get_node(s
, node
);
3620 list_for_each_entry(p
, &n
->partial
, lru
)
3623 #ifdef CONFIG_SLUB_DEBUG
3624 list_for_each_entry(p
, &n
->full
, lru
)
3629 list_add(&s
->list
, &slab_caches
);
3633 void __init
kmem_cache_init(void)
3635 static __initdata
struct kmem_cache boot_kmem_cache
,
3636 boot_kmem_cache_node
;
3638 if (debug_guardpage_minorder())
3641 kmem_cache_node
= &boot_kmem_cache_node
;
3642 kmem_cache
= &boot_kmem_cache
;
3644 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3645 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3647 register_hotmemory_notifier(&slab_memory_callback_nb
);
3649 /* Able to allocate the per node structures */
3650 slab_state
= PARTIAL
;
3652 create_boot_cache(kmem_cache
, "kmem_cache",
3653 offsetof(struct kmem_cache
, node
) +
3654 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3655 SLAB_HWCACHE_ALIGN
);
3657 kmem_cache
= bootstrap(&boot_kmem_cache
);
3660 * Allocate kmem_cache_node properly from the kmem_cache slab.
3661 * kmem_cache_node is separately allocated so no need to
3662 * update any list pointers.
3664 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3666 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3667 create_kmalloc_caches(0);
3670 register_cpu_notifier(&slab_notifier
);
3674 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3675 " CPUs=%d, Nodes=%d\n",
3677 slub_min_order
, slub_max_order
, slub_min_objects
,
3678 nr_cpu_ids
, nr_node_ids
);
3681 void __init
kmem_cache_init_late(void)
3686 * Find a mergeable slab cache
3688 static int slab_unmergeable(struct kmem_cache
*s
)
3690 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3693 if (!is_root_cache(s
))
3700 * We may have set a slab to be unmergeable during bootstrap.
3702 if (s
->refcount
< 0)
3708 static struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
3709 unsigned long flags
, const char *name
, void (*ctor
)(void *))
3711 struct kmem_cache
*s
;
3713 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3719 size
= ALIGN(size
, sizeof(void *));
3720 align
= calculate_alignment(flags
, align
, size
);
3721 size
= ALIGN(size
, align
);
3722 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3724 list_for_each_entry(s
, &slab_caches
, list
) {
3725 if (slab_unmergeable(s
))
3731 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3734 * Check if alignment is compatible.
3735 * Courtesy of Adrian Drzewiecki
3737 if ((s
->size
& ~(align
- 1)) != s
->size
)
3740 if (s
->size
- size
>= sizeof(void *))
3749 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
3750 unsigned long flags
, void (*ctor
)(void *))
3752 struct kmem_cache
*s
;
3754 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3757 struct kmem_cache
*c
;
3762 * Adjust the object sizes so that we clear
3763 * the complete object on kzalloc.
3765 s
->object_size
= max(s
->object_size
, (int)size
);
3766 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3768 for_each_memcg_cache_index(i
) {
3769 c
= cache_from_memcg_idx(s
, i
);
3772 c
->object_size
= s
->object_size
;
3773 c
->inuse
= max_t(int, c
->inuse
,
3774 ALIGN(size
, sizeof(void *)));
3777 if (sysfs_slab_alias(s
, name
)) {
3786 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3790 err
= kmem_cache_open(s
, flags
);
3794 /* Mutex is not taken during early boot */
3795 if (slab_state
<= UP
)
3798 memcg_propagate_slab_attrs(s
);
3799 err
= sysfs_slab_add(s
);
3801 kmem_cache_close(s
);
3808 * Use the cpu notifier to insure that the cpu slabs are flushed when
3811 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3812 unsigned long action
, void *hcpu
)
3814 long cpu
= (long)hcpu
;
3815 struct kmem_cache
*s
;
3816 unsigned long flags
;
3819 case CPU_UP_CANCELED
:
3820 case CPU_UP_CANCELED_FROZEN
:
3822 case CPU_DEAD_FROZEN
:
3823 mutex_lock(&slab_mutex
);
3824 list_for_each_entry(s
, &slab_caches
, list
) {
3825 local_irq_save(flags
);
3826 __flush_cpu_slab(s
, cpu
);
3827 local_irq_restore(flags
);
3829 mutex_unlock(&slab_mutex
);
3837 static struct notifier_block slab_notifier
= {
3838 .notifier_call
= slab_cpuup_callback
3843 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3845 struct kmem_cache
*s
;
3848 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3849 return kmalloc_large(size
, gfpflags
);
3851 s
= kmalloc_slab(size
, gfpflags
);
3853 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3856 ret
= slab_alloc(s
, gfpflags
, caller
);
3858 /* Honor the call site pointer we received. */
3859 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3865 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3866 int node
, unsigned long caller
)
3868 struct kmem_cache
*s
;
3871 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3872 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3874 trace_kmalloc_node(caller
, ret
,
3875 size
, PAGE_SIZE
<< get_order(size
),
3881 s
= kmalloc_slab(size
, gfpflags
);
3883 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3886 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3888 /* Honor the call site pointer we received. */
3889 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3896 static int count_inuse(struct page
*page
)
3901 static int count_total(struct page
*page
)
3903 return page
->objects
;
3907 #ifdef CONFIG_SLUB_DEBUG
3908 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3912 void *addr
= page_address(page
);
3914 if (!check_slab(s
, page
) ||
3915 !on_freelist(s
, page
, NULL
))
3918 /* Now we know that a valid freelist exists */
3919 bitmap_zero(map
, page
->objects
);
3921 get_map(s
, page
, map
);
3922 for_each_object(p
, s
, addr
, page
->objects
) {
3923 if (test_bit(slab_index(p
, s
, addr
), map
))
3924 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3928 for_each_object(p
, s
, addr
, page
->objects
)
3929 if (!test_bit(slab_index(p
, s
, addr
), map
))
3930 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3935 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3939 validate_slab(s
, page
, map
);
3943 static int validate_slab_node(struct kmem_cache
*s
,
3944 struct kmem_cache_node
*n
, unsigned long *map
)
3946 unsigned long count
= 0;
3948 unsigned long flags
;
3950 spin_lock_irqsave(&n
->list_lock
, flags
);
3952 list_for_each_entry(page
, &n
->partial
, lru
) {
3953 validate_slab_slab(s
, page
, map
);
3956 if (count
!= n
->nr_partial
)
3957 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3958 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3960 if (!(s
->flags
& SLAB_STORE_USER
))
3963 list_for_each_entry(page
, &n
->full
, lru
) {
3964 validate_slab_slab(s
, page
, map
);
3967 if (count
!= atomic_long_read(&n
->nr_slabs
))
3968 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3969 "counter=%ld\n", s
->name
, count
,
3970 atomic_long_read(&n
->nr_slabs
));
3973 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3977 static long validate_slab_cache(struct kmem_cache
*s
)
3980 unsigned long count
= 0;
3981 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3982 sizeof(unsigned long), GFP_KERNEL
);
3988 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3989 struct kmem_cache_node
*n
= get_node(s
, node
);
3991 count
+= validate_slab_node(s
, n
, map
);
3997 * Generate lists of code addresses where slabcache objects are allocated
4002 unsigned long count
;
4009 DECLARE_BITMAP(cpus
, NR_CPUS
);
4015 unsigned long count
;
4016 struct location
*loc
;
4019 static void free_loc_track(struct loc_track
*t
)
4022 free_pages((unsigned long)t
->loc
,
4023 get_order(sizeof(struct location
) * t
->max
));
4026 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4031 order
= get_order(sizeof(struct location
) * max
);
4033 l
= (void *)__get_free_pages(flags
, order
);
4038 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4046 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4047 const struct track
*track
)
4049 long start
, end
, pos
;
4051 unsigned long caddr
;
4052 unsigned long age
= jiffies
- track
->when
;
4058 pos
= start
+ (end
- start
+ 1) / 2;
4061 * There is nothing at "end". If we end up there
4062 * we need to add something to before end.
4067 caddr
= t
->loc
[pos
].addr
;
4068 if (track
->addr
== caddr
) {
4074 if (age
< l
->min_time
)
4076 if (age
> l
->max_time
)
4079 if (track
->pid
< l
->min_pid
)
4080 l
->min_pid
= track
->pid
;
4081 if (track
->pid
> l
->max_pid
)
4082 l
->max_pid
= track
->pid
;
4084 cpumask_set_cpu(track
->cpu
,
4085 to_cpumask(l
->cpus
));
4087 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4091 if (track
->addr
< caddr
)
4098 * Not found. Insert new tracking element.
4100 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4106 (t
->count
- pos
) * sizeof(struct location
));
4109 l
->addr
= track
->addr
;
4113 l
->min_pid
= track
->pid
;
4114 l
->max_pid
= track
->pid
;
4115 cpumask_clear(to_cpumask(l
->cpus
));
4116 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4117 nodes_clear(l
->nodes
);
4118 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4122 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4123 struct page
*page
, enum track_item alloc
,
4126 void *addr
= page_address(page
);
4129 bitmap_zero(map
, page
->objects
);
4130 get_map(s
, page
, map
);
4132 for_each_object(p
, s
, addr
, page
->objects
)
4133 if (!test_bit(slab_index(p
, s
, addr
), map
))
4134 add_location(t
, s
, get_track(s
, p
, alloc
));
4137 static int list_locations(struct kmem_cache
*s
, char *buf
,
4138 enum track_item alloc
)
4142 struct loc_track t
= { 0, 0, NULL
};
4144 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4145 sizeof(unsigned long), GFP_KERNEL
);
4147 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4150 return sprintf(buf
, "Out of memory\n");
4152 /* Push back cpu slabs */
4155 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4156 struct kmem_cache_node
*n
= get_node(s
, node
);
4157 unsigned long flags
;
4160 if (!atomic_long_read(&n
->nr_slabs
))
4163 spin_lock_irqsave(&n
->list_lock
, flags
);
4164 list_for_each_entry(page
, &n
->partial
, lru
)
4165 process_slab(&t
, s
, page
, alloc
, map
);
4166 list_for_each_entry(page
, &n
->full
, lru
)
4167 process_slab(&t
, s
, page
, alloc
, map
);
4168 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4171 for (i
= 0; i
< t
.count
; i
++) {
4172 struct location
*l
= &t
.loc
[i
];
4174 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4176 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4179 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4181 len
+= sprintf(buf
+ len
, "<not-available>");
4183 if (l
->sum_time
!= l
->min_time
) {
4184 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4186 (long)div_u64(l
->sum_time
, l
->count
),
4189 len
+= sprintf(buf
+ len
, " age=%ld",
4192 if (l
->min_pid
!= l
->max_pid
)
4193 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4194 l
->min_pid
, l
->max_pid
);
4196 len
+= sprintf(buf
+ len
, " pid=%ld",
4199 if (num_online_cpus() > 1 &&
4200 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4201 len
< PAGE_SIZE
- 60) {
4202 len
+= sprintf(buf
+ len
, " cpus=");
4203 len
+= cpulist_scnprintf(buf
+ len
,
4204 PAGE_SIZE
- len
- 50,
4205 to_cpumask(l
->cpus
));
4208 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4209 len
< PAGE_SIZE
- 60) {
4210 len
+= sprintf(buf
+ len
, " nodes=");
4211 len
+= nodelist_scnprintf(buf
+ len
,
4212 PAGE_SIZE
- len
- 50,
4216 len
+= sprintf(buf
+ len
, "\n");
4222 len
+= sprintf(buf
, "No data\n");
4227 #ifdef SLUB_RESILIENCY_TEST
4228 static void resiliency_test(void)
4232 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4234 printk(KERN_ERR
"SLUB resiliency testing\n");
4235 printk(KERN_ERR
"-----------------------\n");
4236 printk(KERN_ERR
"A. Corruption after allocation\n");
4238 p
= kzalloc(16, GFP_KERNEL
);
4240 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4241 " 0x12->0x%p\n\n", p
+ 16);
4243 validate_slab_cache(kmalloc_caches
[4]);
4245 /* Hmmm... The next two are dangerous */
4246 p
= kzalloc(32, GFP_KERNEL
);
4247 p
[32 + sizeof(void *)] = 0x34;
4248 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4249 " 0x34 -> -0x%p\n", p
);
4251 "If allocated object is overwritten then not detectable\n\n");
4253 validate_slab_cache(kmalloc_caches
[5]);
4254 p
= kzalloc(64, GFP_KERNEL
);
4255 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4257 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4260 "If allocated object is overwritten then not detectable\n\n");
4261 validate_slab_cache(kmalloc_caches
[6]);
4263 printk(KERN_ERR
"\nB. Corruption after free\n");
4264 p
= kzalloc(128, GFP_KERNEL
);
4267 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4268 validate_slab_cache(kmalloc_caches
[7]);
4270 p
= kzalloc(256, GFP_KERNEL
);
4273 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4275 validate_slab_cache(kmalloc_caches
[8]);
4277 p
= kzalloc(512, GFP_KERNEL
);
4280 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4281 validate_slab_cache(kmalloc_caches
[9]);
4285 static void resiliency_test(void) {};
4290 enum slab_stat_type
{
4291 SL_ALL
, /* All slabs */
4292 SL_PARTIAL
, /* Only partially allocated slabs */
4293 SL_CPU
, /* Only slabs used for cpu caches */
4294 SL_OBJECTS
, /* Determine allocated objects not slabs */
4295 SL_TOTAL
/* Determine object capacity not slabs */
4298 #define SO_ALL (1 << SL_ALL)
4299 #define SO_PARTIAL (1 << SL_PARTIAL)
4300 #define SO_CPU (1 << SL_CPU)
4301 #define SO_OBJECTS (1 << SL_OBJECTS)
4302 #define SO_TOTAL (1 << SL_TOTAL)
4304 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4305 char *buf
, unsigned long flags
)
4307 unsigned long total
= 0;
4310 unsigned long *nodes
;
4312 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4316 if (flags
& SO_CPU
) {
4319 for_each_possible_cpu(cpu
) {
4320 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4325 page
= ACCESS_ONCE(c
->page
);
4329 node
= page_to_nid(page
);
4330 if (flags
& SO_TOTAL
)
4332 else if (flags
& SO_OBJECTS
)
4340 page
= ACCESS_ONCE(c
->partial
);
4342 node
= page_to_nid(page
);
4343 if (flags
& SO_TOTAL
)
4345 else if (flags
& SO_OBJECTS
)
4355 lock_memory_hotplug();
4356 #ifdef CONFIG_SLUB_DEBUG
4357 if (flags
& SO_ALL
) {
4358 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4359 struct kmem_cache_node
*n
= get_node(s
, node
);
4361 if (flags
& SO_TOTAL
)
4362 x
= atomic_long_read(&n
->total_objects
);
4363 else if (flags
& SO_OBJECTS
)
4364 x
= atomic_long_read(&n
->total_objects
) -
4365 count_partial(n
, count_free
);
4367 x
= atomic_long_read(&n
->nr_slabs
);
4374 if (flags
& SO_PARTIAL
) {
4375 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4376 struct kmem_cache_node
*n
= get_node(s
, node
);
4378 if (flags
& SO_TOTAL
)
4379 x
= count_partial(n
, count_total
);
4380 else if (flags
& SO_OBJECTS
)
4381 x
= count_partial(n
, count_inuse
);
4388 x
= sprintf(buf
, "%lu", total
);
4390 for_each_node_state(node
, N_NORMAL_MEMORY
)
4392 x
+= sprintf(buf
+ x
, " N%d=%lu",
4395 unlock_memory_hotplug();
4397 return x
+ sprintf(buf
+ x
, "\n");
4400 #ifdef CONFIG_SLUB_DEBUG
4401 static int any_slab_objects(struct kmem_cache
*s
)
4405 for_each_online_node(node
) {
4406 struct kmem_cache_node
*n
= get_node(s
, node
);
4411 if (atomic_long_read(&n
->total_objects
))
4418 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4419 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4421 struct slab_attribute
{
4422 struct attribute attr
;
4423 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4424 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4427 #define SLAB_ATTR_RO(_name) \
4428 static struct slab_attribute _name##_attr = \
4429 __ATTR(_name, 0400, _name##_show, NULL)
4431 #define SLAB_ATTR(_name) \
4432 static struct slab_attribute _name##_attr = \
4433 __ATTR(_name, 0600, _name##_show, _name##_store)
4435 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4437 return sprintf(buf
, "%d\n", s
->size
);
4439 SLAB_ATTR_RO(slab_size
);
4441 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4443 return sprintf(buf
, "%d\n", s
->align
);
4445 SLAB_ATTR_RO(align
);
4447 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4449 return sprintf(buf
, "%d\n", s
->object_size
);
4451 SLAB_ATTR_RO(object_size
);
4453 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4455 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4457 SLAB_ATTR_RO(objs_per_slab
);
4459 static ssize_t
order_store(struct kmem_cache
*s
,
4460 const char *buf
, size_t length
)
4462 unsigned long order
;
4465 err
= kstrtoul(buf
, 10, &order
);
4469 if (order
> slub_max_order
|| order
< slub_min_order
)
4472 calculate_sizes(s
, order
);
4476 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4478 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4482 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4484 return sprintf(buf
, "%lu\n", s
->min_partial
);
4487 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4493 err
= kstrtoul(buf
, 10, &min
);
4497 set_min_partial(s
, min
);
4500 SLAB_ATTR(min_partial
);
4502 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4504 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4507 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4510 unsigned long objects
;
4513 err
= kstrtoul(buf
, 10, &objects
);
4516 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4519 s
->cpu_partial
= objects
;
4523 SLAB_ATTR(cpu_partial
);
4525 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4529 return sprintf(buf
, "%pS\n", s
->ctor
);
4533 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4535 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4537 SLAB_ATTR_RO(aliases
);
4539 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4541 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4543 SLAB_ATTR_RO(partial
);
4545 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4547 return show_slab_objects(s
, buf
, SO_CPU
);
4549 SLAB_ATTR_RO(cpu_slabs
);
4551 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4553 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4555 SLAB_ATTR_RO(objects
);
4557 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4559 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4561 SLAB_ATTR_RO(objects_partial
);
4563 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4570 for_each_online_cpu(cpu
) {
4571 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4574 pages
+= page
->pages
;
4575 objects
+= page
->pobjects
;
4579 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4582 for_each_online_cpu(cpu
) {
4583 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4585 if (page
&& len
< PAGE_SIZE
- 20)
4586 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4587 page
->pobjects
, page
->pages
);
4590 return len
+ sprintf(buf
+ len
, "\n");
4592 SLAB_ATTR_RO(slabs_cpu_partial
);
4594 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4596 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4599 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4600 const char *buf
, size_t length
)
4602 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4604 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4607 SLAB_ATTR(reclaim_account
);
4609 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4611 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4613 SLAB_ATTR_RO(hwcache_align
);
4615 #ifdef CONFIG_ZONE_DMA
4616 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4618 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4620 SLAB_ATTR_RO(cache_dma
);
4623 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4625 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4627 SLAB_ATTR_RO(destroy_by_rcu
);
4629 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4631 return sprintf(buf
, "%d\n", s
->reserved
);
4633 SLAB_ATTR_RO(reserved
);
4635 #ifdef CONFIG_SLUB_DEBUG
4636 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4638 return show_slab_objects(s
, buf
, SO_ALL
);
4640 SLAB_ATTR_RO(slabs
);
4642 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4644 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4646 SLAB_ATTR_RO(total_objects
);
4648 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4650 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4653 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4654 const char *buf
, size_t length
)
4656 s
->flags
&= ~SLAB_DEBUG_FREE
;
4657 if (buf
[0] == '1') {
4658 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4659 s
->flags
|= SLAB_DEBUG_FREE
;
4663 SLAB_ATTR(sanity_checks
);
4665 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4667 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4670 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4673 s
->flags
&= ~SLAB_TRACE
;
4674 if (buf
[0] == '1') {
4675 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4676 s
->flags
|= SLAB_TRACE
;
4682 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4684 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4687 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4688 const char *buf
, size_t length
)
4690 if (any_slab_objects(s
))
4693 s
->flags
&= ~SLAB_RED_ZONE
;
4694 if (buf
[0] == '1') {
4695 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4696 s
->flags
|= SLAB_RED_ZONE
;
4698 calculate_sizes(s
, -1);
4701 SLAB_ATTR(red_zone
);
4703 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4705 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4708 static ssize_t
poison_store(struct kmem_cache
*s
,
4709 const char *buf
, size_t length
)
4711 if (any_slab_objects(s
))
4714 s
->flags
&= ~SLAB_POISON
;
4715 if (buf
[0] == '1') {
4716 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4717 s
->flags
|= SLAB_POISON
;
4719 calculate_sizes(s
, -1);
4724 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4726 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4729 static ssize_t
store_user_store(struct kmem_cache
*s
,
4730 const char *buf
, size_t length
)
4732 if (any_slab_objects(s
))
4735 s
->flags
&= ~SLAB_STORE_USER
;
4736 if (buf
[0] == '1') {
4737 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4738 s
->flags
|= SLAB_STORE_USER
;
4740 calculate_sizes(s
, -1);
4743 SLAB_ATTR(store_user
);
4745 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4750 static ssize_t
validate_store(struct kmem_cache
*s
,
4751 const char *buf
, size_t length
)
4755 if (buf
[0] == '1') {
4756 ret
= validate_slab_cache(s
);
4762 SLAB_ATTR(validate
);
4764 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4766 if (!(s
->flags
& SLAB_STORE_USER
))
4768 return list_locations(s
, buf
, TRACK_ALLOC
);
4770 SLAB_ATTR_RO(alloc_calls
);
4772 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4774 if (!(s
->flags
& SLAB_STORE_USER
))
4776 return list_locations(s
, buf
, TRACK_FREE
);
4778 SLAB_ATTR_RO(free_calls
);
4779 #endif /* CONFIG_SLUB_DEBUG */
4781 #ifdef CONFIG_FAILSLAB
4782 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4784 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4787 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4790 s
->flags
&= ~SLAB_FAILSLAB
;
4792 s
->flags
|= SLAB_FAILSLAB
;
4795 SLAB_ATTR(failslab
);
4798 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4803 static ssize_t
shrink_store(struct kmem_cache
*s
,
4804 const char *buf
, size_t length
)
4806 if (buf
[0] == '1') {
4807 int rc
= kmem_cache_shrink(s
);
4818 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4820 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4823 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4824 const char *buf
, size_t length
)
4826 unsigned long ratio
;
4829 err
= kstrtoul(buf
, 10, &ratio
);
4834 s
->remote_node_defrag_ratio
= ratio
* 10;
4838 SLAB_ATTR(remote_node_defrag_ratio
);
4841 #ifdef CONFIG_SLUB_STATS
4842 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4844 unsigned long sum
= 0;
4847 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4852 for_each_online_cpu(cpu
) {
4853 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4859 len
= sprintf(buf
, "%lu", sum
);
4862 for_each_online_cpu(cpu
) {
4863 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4864 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4868 return len
+ sprintf(buf
+ len
, "\n");
4871 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4875 for_each_online_cpu(cpu
)
4876 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4879 #define STAT_ATTR(si, text) \
4880 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4882 return show_stat(s, buf, si); \
4884 static ssize_t text##_store(struct kmem_cache *s, \
4885 const char *buf, size_t length) \
4887 if (buf[0] != '0') \
4889 clear_stat(s, si); \
4894 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4895 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4896 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4897 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4898 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4899 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4900 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4901 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4902 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4903 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4904 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4905 STAT_ATTR(FREE_SLAB
, free_slab
);
4906 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4907 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4908 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4909 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4910 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4911 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4912 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4913 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4914 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4915 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4916 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4917 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4918 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4919 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4922 static struct attribute
*slab_attrs
[] = {
4923 &slab_size_attr
.attr
,
4924 &object_size_attr
.attr
,
4925 &objs_per_slab_attr
.attr
,
4927 &min_partial_attr
.attr
,
4928 &cpu_partial_attr
.attr
,
4930 &objects_partial_attr
.attr
,
4932 &cpu_slabs_attr
.attr
,
4936 &hwcache_align_attr
.attr
,
4937 &reclaim_account_attr
.attr
,
4938 &destroy_by_rcu_attr
.attr
,
4940 &reserved_attr
.attr
,
4941 &slabs_cpu_partial_attr
.attr
,
4942 #ifdef CONFIG_SLUB_DEBUG
4943 &total_objects_attr
.attr
,
4945 &sanity_checks_attr
.attr
,
4947 &red_zone_attr
.attr
,
4949 &store_user_attr
.attr
,
4950 &validate_attr
.attr
,
4951 &alloc_calls_attr
.attr
,
4952 &free_calls_attr
.attr
,
4954 #ifdef CONFIG_ZONE_DMA
4955 &cache_dma_attr
.attr
,
4958 &remote_node_defrag_ratio_attr
.attr
,
4960 #ifdef CONFIG_SLUB_STATS
4961 &alloc_fastpath_attr
.attr
,
4962 &alloc_slowpath_attr
.attr
,
4963 &free_fastpath_attr
.attr
,
4964 &free_slowpath_attr
.attr
,
4965 &free_frozen_attr
.attr
,
4966 &free_add_partial_attr
.attr
,
4967 &free_remove_partial_attr
.attr
,
4968 &alloc_from_partial_attr
.attr
,
4969 &alloc_slab_attr
.attr
,
4970 &alloc_refill_attr
.attr
,
4971 &alloc_node_mismatch_attr
.attr
,
4972 &free_slab_attr
.attr
,
4973 &cpuslab_flush_attr
.attr
,
4974 &deactivate_full_attr
.attr
,
4975 &deactivate_empty_attr
.attr
,
4976 &deactivate_to_head_attr
.attr
,
4977 &deactivate_to_tail_attr
.attr
,
4978 &deactivate_remote_frees_attr
.attr
,
4979 &deactivate_bypass_attr
.attr
,
4980 &order_fallback_attr
.attr
,
4981 &cmpxchg_double_fail_attr
.attr
,
4982 &cmpxchg_double_cpu_fail_attr
.attr
,
4983 &cpu_partial_alloc_attr
.attr
,
4984 &cpu_partial_free_attr
.attr
,
4985 &cpu_partial_node_attr
.attr
,
4986 &cpu_partial_drain_attr
.attr
,
4988 #ifdef CONFIG_FAILSLAB
4989 &failslab_attr
.attr
,
4995 static struct attribute_group slab_attr_group
= {
4996 .attrs
= slab_attrs
,
4999 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5000 struct attribute
*attr
,
5003 struct slab_attribute
*attribute
;
5004 struct kmem_cache
*s
;
5007 attribute
= to_slab_attr(attr
);
5010 if (!attribute
->show
)
5013 err
= attribute
->show(s
, buf
);
5018 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5019 struct attribute
*attr
,
5020 const char *buf
, size_t len
)
5022 struct slab_attribute
*attribute
;
5023 struct kmem_cache
*s
;
5026 attribute
= to_slab_attr(attr
);
5029 if (!attribute
->store
)
5032 err
= attribute
->store(s
, buf
, len
);
5033 #ifdef CONFIG_MEMCG_KMEM
5034 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5037 mutex_lock(&slab_mutex
);
5038 if (s
->max_attr_size
< len
)
5039 s
->max_attr_size
= len
;
5042 * This is a best effort propagation, so this function's return
5043 * value will be determined by the parent cache only. This is
5044 * basically because not all attributes will have a well
5045 * defined semantics for rollbacks - most of the actions will
5046 * have permanent effects.
5048 * Returning the error value of any of the children that fail
5049 * is not 100 % defined, in the sense that users seeing the
5050 * error code won't be able to know anything about the state of
5053 * Only returning the error code for the parent cache at least
5054 * has well defined semantics. The cache being written to
5055 * directly either failed or succeeded, in which case we loop
5056 * through the descendants with best-effort propagation.
5058 for_each_memcg_cache_index(i
) {
5059 struct kmem_cache
*c
= cache_from_memcg_idx(s
, i
);
5061 attribute
->store(c
, buf
, len
);
5063 mutex_unlock(&slab_mutex
);
5069 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5071 #ifdef CONFIG_MEMCG_KMEM
5073 char *buffer
= NULL
;
5075 if (!is_root_cache(s
))
5079 * This mean this cache had no attribute written. Therefore, no point
5080 * in copying default values around
5082 if (!s
->max_attr_size
)
5085 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5088 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5090 if (!attr
|| !attr
->store
|| !attr
->show
)
5094 * It is really bad that we have to allocate here, so we will
5095 * do it only as a fallback. If we actually allocate, though,
5096 * we can just use the allocated buffer until the end.
5098 * Most of the slub attributes will tend to be very small in
5099 * size, but sysfs allows buffers up to a page, so they can
5100 * theoretically happen.
5104 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5107 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5108 if (WARN_ON(!buffer
))
5113 attr
->show(s
->memcg_params
->root_cache
, buf
);
5114 attr
->store(s
, buf
, strlen(buf
));
5118 free_page((unsigned long)buffer
);
5122 static const struct sysfs_ops slab_sysfs_ops
= {
5123 .show
= slab_attr_show
,
5124 .store
= slab_attr_store
,
5127 static struct kobj_type slab_ktype
= {
5128 .sysfs_ops
= &slab_sysfs_ops
,
5131 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5133 struct kobj_type
*ktype
= get_ktype(kobj
);
5135 if (ktype
== &slab_ktype
)
5140 static const struct kset_uevent_ops slab_uevent_ops
= {
5141 .filter
= uevent_filter
,
5144 static struct kset
*slab_kset
;
5146 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5148 #ifdef CONFIG_MEMCG_KMEM
5149 if (!is_root_cache(s
))
5150 return s
->memcg_params
->root_cache
->memcg_kset
;
5155 #define ID_STR_LENGTH 64
5157 /* Create a unique string id for a slab cache:
5159 * Format :[flags-]size
5161 static char *create_unique_id(struct kmem_cache
*s
)
5163 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5170 * First flags affecting slabcache operations. We will only
5171 * get here for aliasable slabs so we do not need to support
5172 * too many flags. The flags here must cover all flags that
5173 * are matched during merging to guarantee that the id is
5176 if (s
->flags
& SLAB_CACHE_DMA
)
5178 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5180 if (s
->flags
& SLAB_DEBUG_FREE
)
5182 if (!(s
->flags
& SLAB_NOTRACK
))
5186 p
+= sprintf(p
, "%07d", s
->size
);
5188 #ifdef CONFIG_MEMCG_KMEM
5189 if (!is_root_cache(s
))
5190 p
+= sprintf(p
, "-%08d",
5191 memcg_cache_id(s
->memcg_params
->memcg
));
5194 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5198 static int sysfs_slab_add(struct kmem_cache
*s
)
5202 int unmergeable
= slab_unmergeable(s
);
5206 * Slabcache can never be merged so we can use the name proper.
5207 * This is typically the case for debug situations. In that
5208 * case we can catch duplicate names easily.
5210 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5214 * Create a unique name for the slab as a target
5217 name
= create_unique_id(s
);
5220 s
->kobj
.kset
= cache_kset(s
);
5221 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5225 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5229 #ifdef CONFIG_MEMCG_KMEM
5230 if (is_root_cache(s
)) {
5231 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5232 if (!s
->memcg_kset
) {
5239 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5241 /* Setup first alias */
5242 sysfs_slab_alias(s
, s
->name
);
5249 kobject_del(&s
->kobj
);
5251 kobject_put(&s
->kobj
);
5255 static void sysfs_slab_remove(struct kmem_cache
*s
)
5257 if (slab_state
< FULL
)
5259 * Sysfs has not been setup yet so no need to remove the
5264 #ifdef CONFIG_MEMCG_KMEM
5265 kset_unregister(s
->memcg_kset
);
5267 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5268 kobject_del(&s
->kobj
);
5269 kobject_put(&s
->kobj
);
5273 * Need to buffer aliases during bootup until sysfs becomes
5274 * available lest we lose that information.
5276 struct saved_alias
{
5277 struct kmem_cache
*s
;
5279 struct saved_alias
*next
;
5282 static struct saved_alias
*alias_list
;
5284 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5286 struct saved_alias
*al
;
5288 if (slab_state
== FULL
) {
5290 * If we have a leftover link then remove it.
5292 sysfs_remove_link(&slab_kset
->kobj
, name
);
5293 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5296 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5302 al
->next
= alias_list
;
5307 static int __init
slab_sysfs_init(void)
5309 struct kmem_cache
*s
;
5312 mutex_lock(&slab_mutex
);
5314 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5316 mutex_unlock(&slab_mutex
);
5317 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5323 list_for_each_entry(s
, &slab_caches
, list
) {
5324 err
= sysfs_slab_add(s
);
5326 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5327 " to sysfs\n", s
->name
);
5330 while (alias_list
) {
5331 struct saved_alias
*al
= alias_list
;
5333 alias_list
= alias_list
->next
;
5334 err
= sysfs_slab_alias(al
->s
, al
->name
);
5336 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5337 " %s to sysfs\n", al
->name
);
5341 mutex_unlock(&slab_mutex
);
5346 __initcall(slab_sysfs_init
);
5347 #endif /* CONFIG_SYSFS */
5350 * The /proc/slabinfo ABI
5352 #ifdef CONFIG_SLABINFO
5353 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5355 unsigned long nr_slabs
= 0;
5356 unsigned long nr_objs
= 0;
5357 unsigned long nr_free
= 0;
5360 for_each_online_node(node
) {
5361 struct kmem_cache_node
*n
= get_node(s
, node
);
5366 nr_slabs
+= node_nr_slabs(n
);
5367 nr_objs
+= node_nr_objs(n
);
5368 nr_free
+= count_partial(n
, count_free
);
5371 sinfo
->active_objs
= nr_objs
- nr_free
;
5372 sinfo
->num_objs
= nr_objs
;
5373 sinfo
->active_slabs
= nr_slabs
;
5374 sinfo
->num_slabs
= nr_slabs
;
5375 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5376 sinfo
->cache_order
= oo_order(s
->oo
);
5379 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5383 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5384 size_t count
, loff_t
*ppos
)
5388 #endif /* CONFIG_SLABINFO */