4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages
;
53 static int least_priority
;
54 static atomic_t highest_priority_index
= ATOMIC_INIT(-1);
56 static const char Bad_file
[] = "Bad swap file entry ";
57 static const char Unused_file
[] = "Unused swap file entry ";
58 static const char Bad_offset
[] = "Bad swap offset entry ";
59 static const char Unused_offset
[] = "Unused swap offset entry ";
61 struct swap_list_t swap_list
= {-1, -1};
63 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
65 static DEFINE_MUTEX(swapon_mutex
);
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
71 static inline unsigned char swap_count(unsigned char ent
)
73 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
76 /* returns 1 if swap entry is freed */
78 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
80 swp_entry_t entry
= swp_entry(si
->type
, offset
);
84 page
= find_get_page(swap_address_space(entry
), entry
.val
);
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
94 if (trylock_page(page
)) {
95 ret
= try_to_free_swap(page
);
98 page_cache_release(page
);
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
106 static int discard_swap(struct swap_info_struct
*si
)
108 struct swap_extent
*se
;
109 sector_t start_block
;
113 /* Do not discard the swap header page! */
114 se
= &si
->first_swap_extent
;
115 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
116 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
118 err
= blkdev_issue_discard(si
->bdev
, start_block
,
119 nr_blocks
, GFP_KERNEL
, 0);
125 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
126 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
127 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
129 err
= blkdev_issue_discard(si
->bdev
, start_block
,
130 nr_blocks
, GFP_KERNEL
, 0);
136 return err
; /* That will often be -EOPNOTSUPP */
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
143 static void discard_swap_cluster(struct swap_info_struct
*si
,
144 pgoff_t start_page
, pgoff_t nr_pages
)
146 struct swap_extent
*se
= si
->curr_swap_extent
;
147 int found_extent
= 0;
150 struct list_head
*lh
;
152 if (se
->start_page
<= start_page
&&
153 start_page
< se
->start_page
+ se
->nr_pages
) {
154 pgoff_t offset
= start_page
- se
->start_page
;
155 sector_t start_block
= se
->start_block
+ offset
;
156 sector_t nr_blocks
= se
->nr_pages
- offset
;
158 if (nr_blocks
> nr_pages
)
159 nr_blocks
= nr_pages
;
160 start_page
+= nr_blocks
;
161 nr_pages
-= nr_blocks
;
164 si
->curr_swap_extent
= se
;
166 start_block
<<= PAGE_SHIFT
- 9;
167 nr_blocks
<<= PAGE_SHIFT
- 9;
168 if (blkdev_issue_discard(si
->bdev
, start_block
,
169 nr_blocks
, GFP_NOIO
, 0))
174 se
= list_entry(lh
, struct swap_extent
, list
);
178 #define SWAPFILE_CLUSTER 256
179 #define LATENCY_LIMIT 256
181 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
187 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
192 static inline void cluster_set_count(struct swap_cluster_info
*info
,
198 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
199 unsigned int c
, unsigned int f
)
205 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
210 static inline void cluster_set_next(struct swap_cluster_info
*info
,
216 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
217 unsigned int n
, unsigned int f
)
223 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
225 return info
->flags
& CLUSTER_FLAG_FREE
;
228 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
230 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
233 static inline void cluster_set_null(struct swap_cluster_info
*info
)
235 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
239 /* Add a cluster to discard list and schedule it to do discard */
240 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
244 * If scan_swap_map() can't find a free cluster, it will check
245 * si->swap_map directly. To make sure the discarding cluster isn't
246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 * will be cleared after discard
249 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
250 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
252 if (cluster_is_null(&si
->discard_cluster_head
)) {
253 cluster_set_next_flag(&si
->discard_cluster_head
,
255 cluster_set_next_flag(&si
->discard_cluster_tail
,
258 unsigned int tail
= cluster_next(&si
->discard_cluster_tail
);
259 cluster_set_next(&si
->cluster_info
[tail
], idx
);
260 cluster_set_next_flag(&si
->discard_cluster_tail
,
264 schedule_work(&si
->discard_work
);
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
271 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
273 struct swap_cluster_info
*info
;
276 info
= si
->cluster_info
;
278 while (!cluster_is_null(&si
->discard_cluster_head
)) {
279 idx
= cluster_next(&si
->discard_cluster_head
);
281 cluster_set_next_flag(&si
->discard_cluster_head
,
282 cluster_next(&info
[idx
]), 0);
283 if (cluster_next(&si
->discard_cluster_tail
) == idx
) {
284 cluster_set_null(&si
->discard_cluster_head
);
285 cluster_set_null(&si
->discard_cluster_tail
);
287 spin_unlock(&si
->lock
);
289 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
292 spin_lock(&si
->lock
);
293 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
294 if (cluster_is_null(&si
->free_cluster_head
)) {
295 cluster_set_next_flag(&si
->free_cluster_head
,
297 cluster_set_next_flag(&si
->free_cluster_tail
,
302 tail
= cluster_next(&si
->free_cluster_tail
);
303 cluster_set_next(&info
[tail
], idx
);
304 cluster_set_next_flag(&si
->free_cluster_tail
,
307 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
308 0, SWAPFILE_CLUSTER
);
312 static void swap_discard_work(struct work_struct
*work
)
314 struct swap_info_struct
*si
;
316 si
= container_of(work
, struct swap_info_struct
, discard_work
);
318 spin_lock(&si
->lock
);
319 swap_do_scheduled_discard(si
);
320 spin_unlock(&si
->lock
);
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
327 static void inc_cluster_info_page(struct swap_info_struct
*p
,
328 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
330 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
334 if (cluster_is_free(&cluster_info
[idx
])) {
335 VM_BUG_ON(cluster_next(&p
->free_cluster_head
) != idx
);
336 cluster_set_next_flag(&p
->free_cluster_head
,
337 cluster_next(&cluster_info
[idx
]), 0);
338 if (cluster_next(&p
->free_cluster_tail
) == idx
) {
339 cluster_set_null(&p
->free_cluster_tail
);
340 cluster_set_null(&p
->free_cluster_head
);
342 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
345 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
346 cluster_set_count(&cluster_info
[idx
],
347 cluster_count(&cluster_info
[idx
]) + 1);
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
355 static void dec_cluster_info_page(struct swap_info_struct
*p
,
356 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
358 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
363 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
364 cluster_set_count(&cluster_info
[idx
],
365 cluster_count(&cluster_info
[idx
]) - 1);
367 if (cluster_count(&cluster_info
[idx
]) == 0) {
369 * If the swap is discardable, prepare discard the cluster
370 * instead of free it immediately. The cluster will be freed
373 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
374 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
375 swap_cluster_schedule_discard(p
, idx
);
379 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
380 if (cluster_is_null(&p
->free_cluster_head
)) {
381 cluster_set_next_flag(&p
->free_cluster_head
, idx
, 0);
382 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
384 unsigned int tail
= cluster_next(&p
->free_cluster_tail
);
385 cluster_set_next(&cluster_info
[tail
], idx
);
386 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
397 unsigned long offset
)
399 struct percpu_cluster
*percpu_cluster
;
402 offset
/= SWAPFILE_CLUSTER
;
403 conflict
= !cluster_is_null(&si
->free_cluster_head
) &&
404 offset
!= cluster_next(&si
->free_cluster_head
) &&
405 cluster_is_free(&si
->cluster_info
[offset
]);
410 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
411 cluster_set_null(&percpu_cluster
->index
);
416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417 * might involve allocating a new cluster for current CPU too.
419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
420 unsigned long *offset
, unsigned long *scan_base
)
422 struct percpu_cluster
*cluster
;
427 cluster
= this_cpu_ptr(si
->percpu_cluster
);
428 if (cluster_is_null(&cluster
->index
)) {
429 if (!cluster_is_null(&si
->free_cluster_head
)) {
430 cluster
->index
= si
->free_cluster_head
;
431 cluster
->next
= cluster_next(&cluster
->index
) *
433 } else if (!cluster_is_null(&si
->discard_cluster_head
)) {
435 * we don't have free cluster but have some clusters in
436 * discarding, do discard now and reclaim them
438 swap_do_scheduled_discard(si
);
439 *scan_base
= *offset
= si
->cluster_next
;
448 * Other CPUs can use our cluster if they can't find a free cluster,
449 * check if there is still free entry in the cluster
452 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
454 if (!si
->swap_map
[tmp
]) {
461 cluster_set_null(&cluster
->index
);
464 cluster
->next
= tmp
+ 1;
469 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
472 unsigned long offset
;
473 unsigned long scan_base
;
474 unsigned long last_in_cluster
= 0;
475 int latency_ration
= LATENCY_LIMIT
;
478 * We try to cluster swap pages by allocating them sequentially
479 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
480 * way, however, we resort to first-free allocation, starting
481 * a new cluster. This prevents us from scattering swap pages
482 * all over the entire swap partition, so that we reduce
483 * overall disk seek times between swap pages. -- sct
484 * But we do now try to find an empty cluster. -Andrea
485 * And we let swap pages go all over an SSD partition. Hugh
488 si
->flags
+= SWP_SCANNING
;
489 scan_base
= offset
= si
->cluster_next
;
492 if (si
->cluster_info
) {
493 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
497 if (unlikely(!si
->cluster_nr
--)) {
498 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
499 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
503 spin_unlock(&si
->lock
);
506 * If seek is expensive, start searching for new cluster from
507 * start of partition, to minimize the span of allocated swap.
508 * But if seek is cheap, search from our current position, so
509 * that swap is allocated from all over the partition: if the
510 * Flash Translation Layer only remaps within limited zones,
511 * we don't want to wear out the first zone too quickly.
513 if (!(si
->flags
& SWP_SOLIDSTATE
))
514 scan_base
= offset
= si
->lowest_bit
;
515 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
517 /* Locate the first empty (unaligned) cluster */
518 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
519 if (si
->swap_map
[offset
])
520 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
521 else if (offset
== last_in_cluster
) {
522 spin_lock(&si
->lock
);
523 offset
-= SWAPFILE_CLUSTER
- 1;
524 si
->cluster_next
= offset
;
525 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
528 if (unlikely(--latency_ration
< 0)) {
530 latency_ration
= LATENCY_LIMIT
;
534 offset
= si
->lowest_bit
;
535 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
537 /* Locate the first empty (unaligned) cluster */
538 for (; last_in_cluster
< scan_base
; offset
++) {
539 if (si
->swap_map
[offset
])
540 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
541 else if (offset
== last_in_cluster
) {
542 spin_lock(&si
->lock
);
543 offset
-= SWAPFILE_CLUSTER
- 1;
544 si
->cluster_next
= offset
;
545 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
548 if (unlikely(--latency_ration
< 0)) {
550 latency_ration
= LATENCY_LIMIT
;
555 spin_lock(&si
->lock
);
556 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
560 if (si
->cluster_info
) {
561 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
562 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
564 if (!(si
->flags
& SWP_WRITEOK
))
566 if (!si
->highest_bit
)
568 if (offset
> si
->highest_bit
)
569 scan_base
= offset
= si
->lowest_bit
;
571 /* reuse swap entry of cache-only swap if not busy. */
572 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
574 spin_unlock(&si
->lock
);
575 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
576 spin_lock(&si
->lock
);
577 /* entry was freed successfully, try to use this again */
580 goto scan
; /* check next one */
583 if (si
->swap_map
[offset
])
586 if (offset
== si
->lowest_bit
)
588 if (offset
== si
->highest_bit
)
591 if (si
->inuse_pages
== si
->pages
) {
592 si
->lowest_bit
= si
->max
;
595 si
->swap_map
[offset
] = usage
;
596 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
597 si
->cluster_next
= offset
+ 1;
598 si
->flags
-= SWP_SCANNING
;
603 spin_unlock(&si
->lock
);
604 while (++offset
<= si
->highest_bit
) {
605 if (!si
->swap_map
[offset
]) {
606 spin_lock(&si
->lock
);
609 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
610 spin_lock(&si
->lock
);
613 if (unlikely(--latency_ration
< 0)) {
615 latency_ration
= LATENCY_LIMIT
;
618 offset
= si
->lowest_bit
;
619 while (offset
< scan_base
) {
620 if (!si
->swap_map
[offset
]) {
621 spin_lock(&si
->lock
);
624 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
625 spin_lock(&si
->lock
);
628 if (unlikely(--latency_ration
< 0)) {
630 latency_ration
= LATENCY_LIMIT
;
634 spin_lock(&si
->lock
);
637 si
->flags
-= SWP_SCANNING
;
641 swp_entry_t
get_swap_page(void)
643 struct swap_info_struct
*si
;
649 spin_lock(&swap_lock
);
650 if (atomic_long_read(&nr_swap_pages
) <= 0)
652 atomic_long_dec(&nr_swap_pages
);
654 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
655 hp_index
= atomic_xchg(&highest_priority_index
, -1);
657 * highest_priority_index records current highest priority swap
658 * type which just frees swap entries. If its priority is
659 * higher than that of swap_list.next swap type, we use it. It
660 * isn't protected by swap_lock, so it can be an invalid value
661 * if the corresponding swap type is swapoff. We double check
662 * the flags here. It's even possible the swap type is swapoff
663 * and swapon again and its priority is changed. In such rare
664 * case, low prority swap type might be used, but eventually
665 * high priority swap will be used after several rounds of
668 if (hp_index
!= -1 && hp_index
!= type
&&
669 swap_info
[type
]->prio
< swap_info
[hp_index
]->prio
&&
670 (swap_info
[hp_index
]->flags
& SWP_WRITEOK
)) {
672 swap_list
.next
= type
;
675 si
= swap_info
[type
];
678 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
679 next
= swap_list
.head
;
683 spin_lock(&si
->lock
);
684 if (!si
->highest_bit
) {
685 spin_unlock(&si
->lock
);
688 if (!(si
->flags
& SWP_WRITEOK
)) {
689 spin_unlock(&si
->lock
);
693 swap_list
.next
= next
;
695 spin_unlock(&swap_lock
);
696 /* This is called for allocating swap entry for cache */
697 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
698 spin_unlock(&si
->lock
);
700 return swp_entry(type
, offset
);
701 spin_lock(&swap_lock
);
702 next
= swap_list
.next
;
705 atomic_long_inc(&nr_swap_pages
);
707 spin_unlock(&swap_lock
);
708 return (swp_entry_t
) {0};
711 /* The only caller of this function is now suspend routine */
712 swp_entry_t
get_swap_page_of_type(int type
)
714 struct swap_info_struct
*si
;
717 si
= swap_info
[type
];
718 spin_lock(&si
->lock
);
719 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
720 atomic_long_dec(&nr_swap_pages
);
721 /* This is called for allocating swap entry, not cache */
722 offset
= scan_swap_map(si
, 1);
724 spin_unlock(&si
->lock
);
725 return swp_entry(type
, offset
);
727 atomic_long_inc(&nr_swap_pages
);
729 spin_unlock(&si
->lock
);
730 return (swp_entry_t
) {0};
733 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
735 struct swap_info_struct
*p
;
736 unsigned long offset
, type
;
740 type
= swp_type(entry
);
741 if (type
>= nr_swapfiles
)
744 if (!(p
->flags
& SWP_USED
))
746 offset
= swp_offset(entry
);
747 if (offset
>= p
->max
)
749 if (!p
->swap_map
[offset
])
755 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
758 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
761 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
764 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
770 * This swap type frees swap entry, check if it is the highest priority swap
771 * type which just frees swap entry. get_swap_page() uses
772 * highest_priority_index to search highest priority swap type. The
773 * swap_info_struct.lock can't protect us if there are multiple swap types
774 * active, so we use atomic_cmpxchg.
776 static void set_highest_priority_index(int type
)
778 int old_hp_index
, new_hp_index
;
781 old_hp_index
= atomic_read(&highest_priority_index
);
782 if (old_hp_index
!= -1 &&
783 swap_info
[old_hp_index
]->prio
>= swap_info
[type
]->prio
)
786 } while (atomic_cmpxchg(&highest_priority_index
,
787 old_hp_index
, new_hp_index
) != old_hp_index
);
790 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
791 swp_entry_t entry
, unsigned char usage
)
793 unsigned long offset
= swp_offset(entry
);
795 unsigned char has_cache
;
797 count
= p
->swap_map
[offset
];
798 has_cache
= count
& SWAP_HAS_CACHE
;
799 count
&= ~SWAP_HAS_CACHE
;
801 if (usage
== SWAP_HAS_CACHE
) {
802 VM_BUG_ON(!has_cache
);
804 } else if (count
== SWAP_MAP_SHMEM
) {
806 * Or we could insist on shmem.c using a special
807 * swap_shmem_free() and free_shmem_swap_and_cache()...
810 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
811 if (count
== COUNT_CONTINUED
) {
812 if (swap_count_continued(p
, offset
, count
))
813 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
815 count
= SWAP_MAP_MAX
;
821 mem_cgroup_uncharge_swap(entry
);
823 usage
= count
| has_cache
;
824 p
->swap_map
[offset
] = usage
;
826 /* free if no reference */
828 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
829 if (offset
< p
->lowest_bit
)
830 p
->lowest_bit
= offset
;
831 if (offset
> p
->highest_bit
)
832 p
->highest_bit
= offset
;
833 set_highest_priority_index(p
->type
);
834 atomic_long_inc(&nr_swap_pages
);
836 frontswap_invalidate_page(p
->type
, offset
);
837 if (p
->flags
& SWP_BLKDEV
) {
838 struct gendisk
*disk
= p
->bdev
->bd_disk
;
839 if (disk
->fops
->swap_slot_free_notify
)
840 disk
->fops
->swap_slot_free_notify(p
->bdev
,
849 * Caller has made sure that the swap device corresponding to entry
850 * is still around or has not been recycled.
852 void swap_free(swp_entry_t entry
)
854 struct swap_info_struct
*p
;
856 p
= swap_info_get(entry
);
858 swap_entry_free(p
, entry
, 1);
859 spin_unlock(&p
->lock
);
864 * Called after dropping swapcache to decrease refcnt to swap entries.
866 void swapcache_free(swp_entry_t entry
, struct page
*page
)
868 struct swap_info_struct
*p
;
871 p
= swap_info_get(entry
);
873 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
875 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
876 spin_unlock(&p
->lock
);
881 * How many references to page are currently swapped out?
882 * This does not give an exact answer when swap count is continued,
883 * but does include the high COUNT_CONTINUED flag to allow for that.
885 int page_swapcount(struct page
*page
)
888 struct swap_info_struct
*p
;
891 entry
.val
= page_private(page
);
892 p
= swap_info_get(entry
);
894 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
895 spin_unlock(&p
->lock
);
901 * We can write to an anon page without COW if there are no other references
902 * to it. And as a side-effect, free up its swap: because the old content
903 * on disk will never be read, and seeking back there to write new content
904 * later would only waste time away from clustering.
906 int reuse_swap_page(struct page
*page
)
910 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
911 if (unlikely(PageKsm(page
)))
913 count
= page_mapcount(page
);
914 if (count
<= 1 && PageSwapCache(page
)) {
915 count
+= page_swapcount(page
);
916 if (count
== 1 && !PageWriteback(page
)) {
917 delete_from_swap_cache(page
);
925 * If swap is getting full, or if there are no more mappings of this page,
926 * then try_to_free_swap is called to free its swap space.
928 int try_to_free_swap(struct page
*page
)
930 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
932 if (!PageSwapCache(page
))
934 if (PageWriteback(page
))
936 if (page_swapcount(page
))
940 * Once hibernation has begun to create its image of memory,
941 * there's a danger that one of the calls to try_to_free_swap()
942 * - most probably a call from __try_to_reclaim_swap() while
943 * hibernation is allocating its own swap pages for the image,
944 * but conceivably even a call from memory reclaim - will free
945 * the swap from a page which has already been recorded in the
946 * image as a clean swapcache page, and then reuse its swap for
947 * another page of the image. On waking from hibernation, the
948 * original page might be freed under memory pressure, then
949 * later read back in from swap, now with the wrong data.
951 * Hibernation suspends storage while it is writing the image
952 * to disk so check that here.
954 if (pm_suspended_storage())
957 delete_from_swap_cache(page
);
963 * Free the swap entry like above, but also try to
964 * free the page cache entry if it is the last user.
966 int free_swap_and_cache(swp_entry_t entry
)
968 struct swap_info_struct
*p
;
969 struct page
*page
= NULL
;
971 if (non_swap_entry(entry
))
974 p
= swap_info_get(entry
);
976 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
977 page
= find_get_page(swap_address_space(entry
),
979 if (page
&& !trylock_page(page
)) {
980 page_cache_release(page
);
984 spin_unlock(&p
->lock
);
988 * Not mapped elsewhere, or swap space full? Free it!
989 * Also recheck PageSwapCache now page is locked (above).
991 if (PageSwapCache(page
) && !PageWriteback(page
) &&
992 (!page_mapped(page
) || vm_swap_full())) {
993 delete_from_swap_cache(page
);
997 page_cache_release(page
);
1002 #ifdef CONFIG_HIBERNATION
1004 * Find the swap type that corresponds to given device (if any).
1006 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1007 * from 0, in which the swap header is expected to be located.
1009 * This is needed for the suspend to disk (aka swsusp).
1011 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1013 struct block_device
*bdev
= NULL
;
1017 bdev
= bdget(device
);
1019 spin_lock(&swap_lock
);
1020 for (type
= 0; type
< nr_swapfiles
; type
++) {
1021 struct swap_info_struct
*sis
= swap_info
[type
];
1023 if (!(sis
->flags
& SWP_WRITEOK
))
1028 *bdev_p
= bdgrab(sis
->bdev
);
1030 spin_unlock(&swap_lock
);
1033 if (bdev
== sis
->bdev
) {
1034 struct swap_extent
*se
= &sis
->first_swap_extent
;
1036 if (se
->start_block
== offset
) {
1038 *bdev_p
= bdgrab(sis
->bdev
);
1040 spin_unlock(&swap_lock
);
1046 spin_unlock(&swap_lock
);
1054 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1055 * corresponding to given index in swap_info (swap type).
1057 sector_t
swapdev_block(int type
, pgoff_t offset
)
1059 struct block_device
*bdev
;
1061 if ((unsigned int)type
>= nr_swapfiles
)
1063 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1065 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1069 * Return either the total number of swap pages of given type, or the number
1070 * of free pages of that type (depending on @free)
1072 * This is needed for software suspend
1074 unsigned int count_swap_pages(int type
, int free
)
1078 spin_lock(&swap_lock
);
1079 if ((unsigned int)type
< nr_swapfiles
) {
1080 struct swap_info_struct
*sis
= swap_info
[type
];
1082 spin_lock(&sis
->lock
);
1083 if (sis
->flags
& SWP_WRITEOK
) {
1086 n
-= sis
->inuse_pages
;
1088 spin_unlock(&sis
->lock
);
1090 spin_unlock(&swap_lock
);
1093 #endif /* CONFIG_HIBERNATION */
1095 static inline int maybe_same_pte(pte_t pte
, pte_t swp_pte
)
1097 #ifdef CONFIG_MEM_SOFT_DIRTY
1099 * When pte keeps soft dirty bit the pte generated
1100 * from swap entry does not has it, still it's same
1101 * pte from logical point of view.
1103 pte_t swp_pte_dirty
= pte_swp_mksoft_dirty(swp_pte
);
1104 return pte_same(pte
, swp_pte
) || pte_same(pte
, swp_pte_dirty
);
1106 return pte_same(pte
, swp_pte
);
1111 * No need to decide whether this PTE shares the swap entry with others,
1112 * just let do_wp_page work it out if a write is requested later - to
1113 * force COW, vm_page_prot omits write permission from any private vma.
1115 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1116 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1118 struct page
*swapcache
;
1119 struct mem_cgroup
*memcg
;
1125 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1126 if (unlikely(!page
))
1129 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
,
1130 GFP_KERNEL
, &memcg
)) {
1135 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1136 if (unlikely(!maybe_same_pte(*pte
, swp_entry_to_pte(entry
)))) {
1137 mem_cgroup_cancel_charge_swapin(memcg
);
1142 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1143 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1145 set_pte_at(vma
->vm_mm
, addr
, pte
,
1146 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1147 if (page
== swapcache
)
1148 page_add_anon_rmap(page
, vma
, addr
);
1149 else /* ksm created a completely new copy */
1150 page_add_new_anon_rmap(page
, vma
, addr
);
1151 mem_cgroup_commit_charge_swapin(page
, memcg
);
1154 * Move the page to the active list so it is not
1155 * immediately swapped out again after swapon.
1157 activate_page(page
);
1159 pte_unmap_unlock(pte
, ptl
);
1161 if (page
!= swapcache
) {
1168 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1169 unsigned long addr
, unsigned long end
,
1170 swp_entry_t entry
, struct page
*page
)
1172 pte_t swp_pte
= swp_entry_to_pte(entry
);
1177 * We don't actually need pte lock while scanning for swp_pte: since
1178 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1179 * page table while we're scanning; though it could get zapped, and on
1180 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1181 * of unmatched parts which look like swp_pte, so unuse_pte must
1182 * recheck under pte lock. Scanning without pte lock lets it be
1183 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1185 pte
= pte_offset_map(pmd
, addr
);
1188 * swapoff spends a _lot_ of time in this loop!
1189 * Test inline before going to call unuse_pte.
1191 if (unlikely(maybe_same_pte(*pte
, swp_pte
))) {
1193 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1196 pte
= pte_offset_map(pmd
, addr
);
1198 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1204 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1205 unsigned long addr
, unsigned long end
,
1206 swp_entry_t entry
, struct page
*page
)
1212 pmd
= pmd_offset(pud
, addr
);
1214 next
= pmd_addr_end(addr
, end
);
1215 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1217 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1220 } while (pmd
++, addr
= next
, addr
!= end
);
1224 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1225 unsigned long addr
, unsigned long end
,
1226 swp_entry_t entry
, struct page
*page
)
1232 pud
= pud_offset(pgd
, addr
);
1234 next
= pud_addr_end(addr
, end
);
1235 if (pud_none_or_clear_bad(pud
))
1237 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1240 } while (pud
++, addr
= next
, addr
!= end
);
1244 static int unuse_vma(struct vm_area_struct
*vma
,
1245 swp_entry_t entry
, struct page
*page
)
1248 unsigned long addr
, end
, next
;
1251 if (page_anon_vma(page
)) {
1252 addr
= page_address_in_vma(page
, vma
);
1253 if (addr
== -EFAULT
)
1256 end
= addr
+ PAGE_SIZE
;
1258 addr
= vma
->vm_start
;
1262 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1264 next
= pgd_addr_end(addr
, end
);
1265 if (pgd_none_or_clear_bad(pgd
))
1267 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1270 } while (pgd
++, addr
= next
, addr
!= end
);
1274 static int unuse_mm(struct mm_struct
*mm
,
1275 swp_entry_t entry
, struct page
*page
)
1277 struct vm_area_struct
*vma
;
1280 if (!down_read_trylock(&mm
->mmap_sem
)) {
1282 * Activate page so shrink_inactive_list is unlikely to unmap
1283 * its ptes while lock is dropped, so swapoff can make progress.
1285 activate_page(page
);
1287 down_read(&mm
->mmap_sem
);
1290 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1291 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1294 up_read(&mm
->mmap_sem
);
1295 return (ret
< 0)? ret
: 0;
1299 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1300 * from current position to next entry still in use.
1301 * Recycle to start on reaching the end, returning 0 when empty.
1303 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1304 unsigned int prev
, bool frontswap
)
1306 unsigned int max
= si
->max
;
1307 unsigned int i
= prev
;
1308 unsigned char count
;
1311 * No need for swap_lock here: we're just looking
1312 * for whether an entry is in use, not modifying it; false
1313 * hits are okay, and sys_swapoff() has already prevented new
1314 * allocations from this area (while holding swap_lock).
1323 * No entries in use at top of swap_map,
1324 * loop back to start and recheck there.
1331 if (frontswap_test(si
, i
))
1336 count
= ACCESS_ONCE(si
->swap_map
[i
]);
1337 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1344 * We completely avoid races by reading each swap page in advance,
1345 * and then search for the process using it. All the necessary
1346 * page table adjustments can then be made atomically.
1348 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1349 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1351 int try_to_unuse(unsigned int type
, bool frontswap
,
1352 unsigned long pages_to_unuse
)
1354 struct swap_info_struct
*si
= swap_info
[type
];
1355 struct mm_struct
*start_mm
;
1356 volatile unsigned char *swap_map
; /* swap_map is accessed without
1357 * locking. Mark it as volatile
1358 * to prevent compiler doing
1361 unsigned char swcount
;
1368 * When searching mms for an entry, a good strategy is to
1369 * start at the first mm we freed the previous entry from
1370 * (though actually we don't notice whether we or coincidence
1371 * freed the entry). Initialize this start_mm with a hold.
1373 * A simpler strategy would be to start at the last mm we
1374 * freed the previous entry from; but that would take less
1375 * advantage of mmlist ordering, which clusters forked mms
1376 * together, child after parent. If we race with dup_mmap(), we
1377 * prefer to resolve parent before child, lest we miss entries
1378 * duplicated after we scanned child: using last mm would invert
1381 start_mm
= &init_mm
;
1382 atomic_inc(&init_mm
.mm_users
);
1385 * Keep on scanning until all entries have gone. Usually,
1386 * one pass through swap_map is enough, but not necessarily:
1387 * there are races when an instance of an entry might be missed.
1389 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1390 if (signal_pending(current
)) {
1396 * Get a page for the entry, using the existing swap
1397 * cache page if there is one. Otherwise, get a clean
1398 * page and read the swap into it.
1400 swap_map
= &si
->swap_map
[i
];
1401 entry
= swp_entry(type
, i
);
1402 page
= read_swap_cache_async(entry
,
1403 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1406 * Either swap_duplicate() failed because entry
1407 * has been freed independently, and will not be
1408 * reused since sys_swapoff() already disabled
1409 * allocation from here, or alloc_page() failed.
1411 swcount
= *swap_map
;
1413 * We don't hold lock here, so the swap entry could be
1414 * SWAP_MAP_BAD (when the cluster is discarding).
1415 * Instead of fail out, We can just skip the swap
1416 * entry because swapoff will wait for discarding
1419 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1426 * Don't hold on to start_mm if it looks like exiting.
1428 if (atomic_read(&start_mm
->mm_users
) == 1) {
1430 start_mm
= &init_mm
;
1431 atomic_inc(&init_mm
.mm_users
);
1435 * Wait for and lock page. When do_swap_page races with
1436 * try_to_unuse, do_swap_page can handle the fault much
1437 * faster than try_to_unuse can locate the entry. This
1438 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1439 * defer to do_swap_page in such a case - in some tests,
1440 * do_swap_page and try_to_unuse repeatedly compete.
1442 wait_on_page_locked(page
);
1443 wait_on_page_writeback(page
);
1445 wait_on_page_writeback(page
);
1448 * Remove all references to entry.
1450 swcount
= *swap_map
;
1451 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1452 retval
= shmem_unuse(entry
, page
);
1453 /* page has already been unlocked and released */
1458 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1459 retval
= unuse_mm(start_mm
, entry
, page
);
1461 if (swap_count(*swap_map
)) {
1462 int set_start_mm
= (*swap_map
>= swcount
);
1463 struct list_head
*p
= &start_mm
->mmlist
;
1464 struct mm_struct
*new_start_mm
= start_mm
;
1465 struct mm_struct
*prev_mm
= start_mm
;
1466 struct mm_struct
*mm
;
1468 atomic_inc(&new_start_mm
->mm_users
);
1469 atomic_inc(&prev_mm
->mm_users
);
1470 spin_lock(&mmlist_lock
);
1471 while (swap_count(*swap_map
) && !retval
&&
1472 (p
= p
->next
) != &start_mm
->mmlist
) {
1473 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1474 if (!atomic_inc_not_zero(&mm
->mm_users
))
1476 spin_unlock(&mmlist_lock
);
1482 swcount
= *swap_map
;
1483 if (!swap_count(swcount
)) /* any usage ? */
1485 else if (mm
== &init_mm
)
1488 retval
= unuse_mm(mm
, entry
, page
);
1490 if (set_start_mm
&& *swap_map
< swcount
) {
1491 mmput(new_start_mm
);
1492 atomic_inc(&mm
->mm_users
);
1496 spin_lock(&mmlist_lock
);
1498 spin_unlock(&mmlist_lock
);
1501 start_mm
= new_start_mm
;
1505 page_cache_release(page
);
1510 * If a reference remains (rare), we would like to leave
1511 * the page in the swap cache; but try_to_unmap could
1512 * then re-duplicate the entry once we drop page lock,
1513 * so we might loop indefinitely; also, that page could
1514 * not be swapped out to other storage meanwhile. So:
1515 * delete from cache even if there's another reference,
1516 * after ensuring that the data has been saved to disk -
1517 * since if the reference remains (rarer), it will be
1518 * read from disk into another page. Splitting into two
1519 * pages would be incorrect if swap supported "shared
1520 * private" pages, but they are handled by tmpfs files.
1522 * Given how unuse_vma() targets one particular offset
1523 * in an anon_vma, once the anon_vma has been determined,
1524 * this splitting happens to be just what is needed to
1525 * handle where KSM pages have been swapped out: re-reading
1526 * is unnecessarily slow, but we can fix that later on.
1528 if (swap_count(*swap_map
) &&
1529 PageDirty(page
) && PageSwapCache(page
)) {
1530 struct writeback_control wbc
= {
1531 .sync_mode
= WB_SYNC_NONE
,
1534 swap_writepage(page
, &wbc
);
1536 wait_on_page_writeback(page
);
1540 * It is conceivable that a racing task removed this page from
1541 * swap cache just before we acquired the page lock at the top,
1542 * or while we dropped it in unuse_mm(). The page might even
1543 * be back in swap cache on another swap area: that we must not
1544 * delete, since it may not have been written out to swap yet.
1546 if (PageSwapCache(page
) &&
1547 likely(page_private(page
) == entry
.val
))
1548 delete_from_swap_cache(page
);
1551 * So we could skip searching mms once swap count went
1552 * to 1, we did not mark any present ptes as dirty: must
1553 * mark page dirty so shrink_page_list will preserve it.
1557 page_cache_release(page
);
1560 * Make sure that we aren't completely killing
1561 * interactive performance.
1564 if (frontswap
&& pages_to_unuse
> 0) {
1565 if (!--pages_to_unuse
)
1575 * After a successful try_to_unuse, if no swap is now in use, we know
1576 * we can empty the mmlist. swap_lock must be held on entry and exit.
1577 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1578 * added to the mmlist just after page_duplicate - before would be racy.
1580 static void drain_mmlist(void)
1582 struct list_head
*p
, *next
;
1585 for (type
= 0; type
< nr_swapfiles
; type
++)
1586 if (swap_info
[type
]->inuse_pages
)
1588 spin_lock(&mmlist_lock
);
1589 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1591 spin_unlock(&mmlist_lock
);
1595 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1596 * corresponds to page offset for the specified swap entry.
1597 * Note that the type of this function is sector_t, but it returns page offset
1598 * into the bdev, not sector offset.
1600 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1602 struct swap_info_struct
*sis
;
1603 struct swap_extent
*start_se
;
1604 struct swap_extent
*se
;
1607 sis
= swap_info
[swp_type(entry
)];
1610 offset
= swp_offset(entry
);
1611 start_se
= sis
->curr_swap_extent
;
1615 struct list_head
*lh
;
1617 if (se
->start_page
<= offset
&&
1618 offset
< (se
->start_page
+ se
->nr_pages
)) {
1619 return se
->start_block
+ (offset
- se
->start_page
);
1622 se
= list_entry(lh
, struct swap_extent
, list
);
1623 sis
->curr_swap_extent
= se
;
1624 BUG_ON(se
== start_se
); /* It *must* be present */
1629 * Returns the page offset into bdev for the specified page's swap entry.
1631 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1634 entry
.val
= page_private(page
);
1635 return map_swap_entry(entry
, bdev
);
1639 * Free all of a swapdev's extent information
1641 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1643 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1644 struct swap_extent
*se
;
1646 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1647 struct swap_extent
, list
);
1648 list_del(&se
->list
);
1652 if (sis
->flags
& SWP_FILE
) {
1653 struct file
*swap_file
= sis
->swap_file
;
1654 struct address_space
*mapping
= swap_file
->f_mapping
;
1656 sis
->flags
&= ~SWP_FILE
;
1657 mapping
->a_ops
->swap_deactivate(swap_file
);
1662 * Add a block range (and the corresponding page range) into this swapdev's
1663 * extent list. The extent list is kept sorted in page order.
1665 * This function rather assumes that it is called in ascending page order.
1668 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1669 unsigned long nr_pages
, sector_t start_block
)
1671 struct swap_extent
*se
;
1672 struct swap_extent
*new_se
;
1673 struct list_head
*lh
;
1675 if (start_page
== 0) {
1676 se
= &sis
->first_swap_extent
;
1677 sis
->curr_swap_extent
= se
;
1679 se
->nr_pages
= nr_pages
;
1680 se
->start_block
= start_block
;
1683 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1684 se
= list_entry(lh
, struct swap_extent
, list
);
1685 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1686 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1688 se
->nr_pages
+= nr_pages
;
1694 * No merge. Insert a new extent, preserving ordering.
1696 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1699 new_se
->start_page
= start_page
;
1700 new_se
->nr_pages
= nr_pages
;
1701 new_se
->start_block
= start_block
;
1703 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1708 * A `swap extent' is a simple thing which maps a contiguous range of pages
1709 * onto a contiguous range of disk blocks. An ordered list of swap extents
1710 * is built at swapon time and is then used at swap_writepage/swap_readpage
1711 * time for locating where on disk a page belongs.
1713 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1714 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1715 * swap files identically.
1717 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1718 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1719 * swapfiles are handled *identically* after swapon time.
1721 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1722 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1723 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1724 * requirements, they are simply tossed out - we will never use those blocks
1727 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1728 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1729 * which will scribble on the fs.
1731 * The amount of disk space which a single swap extent represents varies.
1732 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1733 * extents in the list. To avoid much list walking, we cache the previous
1734 * search location in `curr_swap_extent', and start new searches from there.
1735 * This is extremely effective. The average number of iterations in
1736 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1738 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1740 struct file
*swap_file
= sis
->swap_file
;
1741 struct address_space
*mapping
= swap_file
->f_mapping
;
1742 struct inode
*inode
= mapping
->host
;
1745 if (S_ISBLK(inode
->i_mode
)) {
1746 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1751 if (mapping
->a_ops
->swap_activate
) {
1752 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1754 sis
->flags
|= SWP_FILE
;
1755 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1761 return generic_swapfile_activate(sis
, swap_file
, span
);
1764 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1765 unsigned char *swap_map
,
1766 struct swap_cluster_info
*cluster_info
)
1773 p
->prio
= --least_priority
;
1774 p
->swap_map
= swap_map
;
1775 p
->cluster_info
= cluster_info
;
1776 p
->flags
|= SWP_WRITEOK
;
1777 atomic_long_add(p
->pages
, &nr_swap_pages
);
1778 total_swap_pages
+= p
->pages
;
1780 /* insert swap space into swap_list: */
1782 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1783 if (p
->prio
>= swap_info
[i
]->prio
)
1789 swap_list
.head
= swap_list
.next
= p
->type
;
1791 swap_info
[prev
]->next
= p
->type
;
1794 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1795 unsigned char *swap_map
,
1796 struct swap_cluster_info
*cluster_info
,
1797 unsigned long *frontswap_map
)
1799 frontswap_init(p
->type
, frontswap_map
);
1800 spin_lock(&swap_lock
);
1801 spin_lock(&p
->lock
);
1802 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1803 spin_unlock(&p
->lock
);
1804 spin_unlock(&swap_lock
);
1807 static void reinsert_swap_info(struct swap_info_struct
*p
)
1809 spin_lock(&swap_lock
);
1810 spin_lock(&p
->lock
);
1811 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1812 spin_unlock(&p
->lock
);
1813 spin_unlock(&swap_lock
);
1816 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1818 struct swap_info_struct
*p
= NULL
;
1819 unsigned char *swap_map
;
1820 struct swap_cluster_info
*cluster_info
;
1821 unsigned long *frontswap_map
;
1822 struct file
*swap_file
, *victim
;
1823 struct address_space
*mapping
;
1824 struct inode
*inode
;
1825 struct filename
*pathname
;
1828 unsigned int old_block_size
;
1830 if (!capable(CAP_SYS_ADMIN
))
1833 BUG_ON(!current
->mm
);
1835 pathname
= getname(specialfile
);
1836 if (IS_ERR(pathname
))
1837 return PTR_ERR(pathname
);
1839 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1840 err
= PTR_ERR(victim
);
1844 mapping
= victim
->f_mapping
;
1846 spin_lock(&swap_lock
);
1847 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1848 p
= swap_info
[type
];
1849 if (p
->flags
& SWP_WRITEOK
) {
1850 if (p
->swap_file
->f_mapping
== mapping
)
1857 spin_unlock(&swap_lock
);
1860 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1861 vm_unacct_memory(p
->pages
);
1864 spin_unlock(&swap_lock
);
1868 swap_list
.head
= p
->next
;
1870 swap_info
[prev
]->next
= p
->next
;
1871 if (type
== swap_list
.next
) {
1872 /* just pick something that's safe... */
1873 swap_list
.next
= swap_list
.head
;
1875 spin_lock(&p
->lock
);
1877 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1878 swap_info
[i
]->prio
= p
->prio
--;
1881 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1882 total_swap_pages
-= p
->pages
;
1883 p
->flags
&= ~SWP_WRITEOK
;
1884 spin_unlock(&p
->lock
);
1885 spin_unlock(&swap_lock
);
1887 set_current_oom_origin();
1888 err
= try_to_unuse(type
, false, 0); /* force all pages to be unused */
1889 clear_current_oom_origin();
1892 /* re-insert swap space back into swap_list */
1893 reinsert_swap_info(p
);
1897 flush_work(&p
->discard_work
);
1899 destroy_swap_extents(p
);
1900 if (p
->flags
& SWP_CONTINUED
)
1901 free_swap_count_continuations(p
);
1903 mutex_lock(&swapon_mutex
);
1904 spin_lock(&swap_lock
);
1905 spin_lock(&p
->lock
);
1908 /* wait for anyone still in scan_swap_map */
1909 p
->highest_bit
= 0; /* cuts scans short */
1910 while (p
->flags
>= SWP_SCANNING
) {
1911 spin_unlock(&p
->lock
);
1912 spin_unlock(&swap_lock
);
1913 schedule_timeout_uninterruptible(1);
1914 spin_lock(&swap_lock
);
1915 spin_lock(&p
->lock
);
1918 swap_file
= p
->swap_file
;
1919 old_block_size
= p
->old_block_size
;
1920 p
->swap_file
= NULL
;
1922 swap_map
= p
->swap_map
;
1924 cluster_info
= p
->cluster_info
;
1925 p
->cluster_info
= NULL
;
1926 frontswap_map
= frontswap_map_get(p
);
1927 spin_unlock(&p
->lock
);
1928 spin_unlock(&swap_lock
);
1929 frontswap_invalidate_area(type
);
1930 frontswap_map_set(p
, NULL
);
1931 mutex_unlock(&swapon_mutex
);
1932 free_percpu(p
->percpu_cluster
);
1933 p
->percpu_cluster
= NULL
;
1935 vfree(cluster_info
);
1936 vfree(frontswap_map
);
1937 /* Destroy swap account information */
1938 swap_cgroup_swapoff(type
);
1940 inode
= mapping
->host
;
1941 if (S_ISBLK(inode
->i_mode
)) {
1942 struct block_device
*bdev
= I_BDEV(inode
);
1943 set_blocksize(bdev
, old_block_size
);
1944 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1946 mutex_lock(&inode
->i_mutex
);
1947 inode
->i_flags
&= ~S_SWAPFILE
;
1948 mutex_unlock(&inode
->i_mutex
);
1950 filp_close(swap_file
, NULL
);
1953 * Clear the SWP_USED flag after all resources are freed so that swapon
1954 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1955 * not hold p->lock after we cleared its SWP_WRITEOK.
1957 spin_lock(&swap_lock
);
1959 spin_unlock(&swap_lock
);
1962 atomic_inc(&proc_poll_event
);
1963 wake_up_interruptible(&proc_poll_wait
);
1966 filp_close(victim
, NULL
);
1972 #ifdef CONFIG_PROC_FS
1973 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1975 struct seq_file
*seq
= file
->private_data
;
1977 poll_wait(file
, &proc_poll_wait
, wait
);
1979 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1980 seq
->poll_event
= atomic_read(&proc_poll_event
);
1981 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1984 return POLLIN
| POLLRDNORM
;
1988 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1990 struct swap_info_struct
*si
;
1994 mutex_lock(&swapon_mutex
);
1997 return SEQ_START_TOKEN
;
1999 for (type
= 0; type
< nr_swapfiles
; type
++) {
2000 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2001 si
= swap_info
[type
];
2002 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2011 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2013 struct swap_info_struct
*si
= v
;
2016 if (v
== SEQ_START_TOKEN
)
2019 type
= si
->type
+ 1;
2021 for (; type
< nr_swapfiles
; type
++) {
2022 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2023 si
= swap_info
[type
];
2024 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2033 static void swap_stop(struct seq_file
*swap
, void *v
)
2035 mutex_unlock(&swapon_mutex
);
2038 static int swap_show(struct seq_file
*swap
, void *v
)
2040 struct swap_info_struct
*si
= v
;
2044 if (si
== SEQ_START_TOKEN
) {
2045 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2049 file
= si
->swap_file
;
2050 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
2051 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2052 len
< 40 ? 40 - len
: 1, " ",
2053 S_ISBLK(file_inode(file
)->i_mode
) ?
2054 "partition" : "file\t",
2055 si
->pages
<< (PAGE_SHIFT
- 10),
2056 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2061 static const struct seq_operations swaps_op
= {
2062 .start
= swap_start
,
2068 static int swaps_open(struct inode
*inode
, struct file
*file
)
2070 struct seq_file
*seq
;
2073 ret
= seq_open(file
, &swaps_op
);
2077 seq
= file
->private_data
;
2078 seq
->poll_event
= atomic_read(&proc_poll_event
);
2082 static const struct file_operations proc_swaps_operations
= {
2085 .llseek
= seq_lseek
,
2086 .release
= seq_release
,
2090 static int __init
procswaps_init(void)
2092 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2095 __initcall(procswaps_init
);
2096 #endif /* CONFIG_PROC_FS */
2098 #ifdef MAX_SWAPFILES_CHECK
2099 static int __init
max_swapfiles_check(void)
2101 MAX_SWAPFILES_CHECK();
2104 late_initcall(max_swapfiles_check
);
2107 static struct swap_info_struct
*alloc_swap_info(void)
2109 struct swap_info_struct
*p
;
2112 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2114 return ERR_PTR(-ENOMEM
);
2116 spin_lock(&swap_lock
);
2117 for (type
= 0; type
< nr_swapfiles
; type
++) {
2118 if (!(swap_info
[type
]->flags
& SWP_USED
))
2121 if (type
>= MAX_SWAPFILES
) {
2122 spin_unlock(&swap_lock
);
2124 return ERR_PTR(-EPERM
);
2126 if (type
>= nr_swapfiles
) {
2128 swap_info
[type
] = p
;
2130 * Write swap_info[type] before nr_swapfiles, in case a
2131 * racing procfs swap_start() or swap_next() is reading them.
2132 * (We never shrink nr_swapfiles, we never free this entry.)
2138 p
= swap_info
[type
];
2140 * Do not memset this entry: a racing procfs swap_next()
2141 * would be relying on p->type to remain valid.
2144 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2145 p
->flags
= SWP_USED
;
2147 spin_unlock(&swap_lock
);
2148 spin_lock_init(&p
->lock
);
2153 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2157 if (S_ISBLK(inode
->i_mode
)) {
2158 p
->bdev
= bdgrab(I_BDEV(inode
));
2159 error
= blkdev_get(p
->bdev
,
2160 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
2166 p
->old_block_size
= block_size(p
->bdev
);
2167 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2170 p
->flags
|= SWP_BLKDEV
;
2171 } else if (S_ISREG(inode
->i_mode
)) {
2172 p
->bdev
= inode
->i_sb
->s_bdev
;
2173 mutex_lock(&inode
->i_mutex
);
2174 if (IS_SWAPFILE(inode
))
2182 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2183 union swap_header
*swap_header
,
2184 struct inode
*inode
)
2187 unsigned long maxpages
;
2188 unsigned long swapfilepages
;
2189 unsigned long last_page
;
2191 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2192 pr_err("Unable to find swap-space signature\n");
2196 /* swap partition endianess hack... */
2197 if (swab32(swap_header
->info
.version
) == 1) {
2198 swab32s(&swap_header
->info
.version
);
2199 swab32s(&swap_header
->info
.last_page
);
2200 swab32s(&swap_header
->info
.nr_badpages
);
2201 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2202 swab32s(&swap_header
->info
.badpages
[i
]);
2204 /* Check the swap header's sub-version */
2205 if (swap_header
->info
.version
!= 1) {
2206 pr_warn("Unable to handle swap header version %d\n",
2207 swap_header
->info
.version
);
2212 p
->cluster_next
= 1;
2216 * Find out how many pages are allowed for a single swap
2217 * device. There are two limiting factors: 1) the number
2218 * of bits for the swap offset in the swp_entry_t type, and
2219 * 2) the number of bits in the swap pte as defined by the
2220 * different architectures. In order to find the
2221 * largest possible bit mask, a swap entry with swap type 0
2222 * and swap offset ~0UL is created, encoded to a swap pte,
2223 * decoded to a swp_entry_t again, and finally the swap
2224 * offset is extracted. This will mask all the bits from
2225 * the initial ~0UL mask that can't be encoded in either
2226 * the swp_entry_t or the architecture definition of a
2229 maxpages
= swp_offset(pte_to_swp_entry(
2230 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2231 last_page
= swap_header
->info
.last_page
;
2232 if (last_page
> maxpages
) {
2233 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2234 maxpages
<< (PAGE_SHIFT
- 10),
2235 last_page
<< (PAGE_SHIFT
- 10));
2237 if (maxpages
> last_page
) {
2238 maxpages
= last_page
+ 1;
2239 /* p->max is an unsigned int: don't overflow it */
2240 if ((unsigned int)maxpages
== 0)
2241 maxpages
= UINT_MAX
;
2243 p
->highest_bit
= maxpages
- 1;
2247 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2248 if (swapfilepages
&& maxpages
> swapfilepages
) {
2249 pr_warn("Swap area shorter than signature indicates\n");
2252 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2254 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2260 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2261 union swap_header
*swap_header
,
2262 unsigned char *swap_map
,
2263 struct swap_cluster_info
*cluster_info
,
2264 unsigned long maxpages
,
2268 unsigned int nr_good_pages
;
2270 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2271 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2273 nr_good_pages
= maxpages
- 1; /* omit header page */
2275 cluster_set_null(&p
->free_cluster_head
);
2276 cluster_set_null(&p
->free_cluster_tail
);
2277 cluster_set_null(&p
->discard_cluster_head
);
2278 cluster_set_null(&p
->discard_cluster_tail
);
2280 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2281 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2282 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2284 if (page_nr
< maxpages
) {
2285 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2288 * Haven't marked the cluster free yet, no list
2289 * operation involved
2291 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2295 /* Haven't marked the cluster free yet, no list operation involved */
2296 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2297 inc_cluster_info_page(p
, cluster_info
, i
);
2299 if (nr_good_pages
) {
2300 swap_map
[0] = SWAP_MAP_BAD
;
2302 * Not mark the cluster free yet, no list
2303 * operation involved
2305 inc_cluster_info_page(p
, cluster_info
, 0);
2307 p
->pages
= nr_good_pages
;
2308 nr_extents
= setup_swap_extents(p
, span
);
2311 nr_good_pages
= p
->pages
;
2313 if (!nr_good_pages
) {
2314 pr_warn("Empty swap-file\n");
2321 for (i
= 0; i
< nr_clusters
; i
++) {
2322 if (!cluster_count(&cluster_info
[idx
])) {
2323 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2324 if (cluster_is_null(&p
->free_cluster_head
)) {
2325 cluster_set_next_flag(&p
->free_cluster_head
,
2327 cluster_set_next_flag(&p
->free_cluster_tail
,
2332 tail
= cluster_next(&p
->free_cluster_tail
);
2333 cluster_set_next(&cluster_info
[tail
], idx
);
2334 cluster_set_next_flag(&p
->free_cluster_tail
,
2339 if (idx
== nr_clusters
)
2346 * Helper to sys_swapon determining if a given swap
2347 * backing device queue supports DISCARD operations.
2349 static bool swap_discardable(struct swap_info_struct
*si
)
2351 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2353 if (!q
|| !blk_queue_discard(q
))
2359 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2361 struct swap_info_struct
*p
;
2362 struct filename
*name
;
2363 struct file
*swap_file
= NULL
;
2364 struct address_space
*mapping
;
2368 union swap_header
*swap_header
;
2371 unsigned long maxpages
;
2372 unsigned char *swap_map
= NULL
;
2373 struct swap_cluster_info
*cluster_info
= NULL
;
2374 unsigned long *frontswap_map
= NULL
;
2375 struct page
*page
= NULL
;
2376 struct inode
*inode
= NULL
;
2378 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2381 if (!capable(CAP_SYS_ADMIN
))
2384 p
= alloc_swap_info();
2388 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2390 name
= getname(specialfile
);
2392 error
= PTR_ERR(name
);
2396 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2397 if (IS_ERR(swap_file
)) {
2398 error
= PTR_ERR(swap_file
);
2403 p
->swap_file
= swap_file
;
2404 mapping
= swap_file
->f_mapping
;
2406 for (i
= 0; i
< nr_swapfiles
; i
++) {
2407 struct swap_info_struct
*q
= swap_info
[i
];
2409 if (q
== p
|| !q
->swap_file
)
2411 if (mapping
== q
->swap_file
->f_mapping
) {
2417 inode
= mapping
->host
;
2418 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2419 error
= claim_swapfile(p
, inode
);
2420 if (unlikely(error
))
2424 * Read the swap header.
2426 if (!mapping
->a_ops
->readpage
) {
2430 page
= read_mapping_page(mapping
, 0, swap_file
);
2432 error
= PTR_ERR(page
);
2435 swap_header
= kmap(page
);
2437 maxpages
= read_swap_header(p
, swap_header
, inode
);
2438 if (unlikely(!maxpages
)) {
2443 /* OK, set up the swap map and apply the bad block list */
2444 swap_map
= vzalloc(maxpages
);
2449 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2450 p
->flags
|= SWP_SOLIDSTATE
;
2452 * select a random position to start with to help wear leveling
2455 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2457 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2458 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2459 if (!cluster_info
) {
2463 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2464 if (!p
->percpu_cluster
) {
2468 for_each_possible_cpu(i
) {
2469 struct percpu_cluster
*cluster
;
2470 cluster
= per_cpu_ptr(p
->percpu_cluster
, i
);
2471 cluster_set_null(&cluster
->index
);
2475 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2479 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2480 cluster_info
, maxpages
, &span
);
2481 if (unlikely(nr_extents
< 0)) {
2485 /* frontswap enabled? set up bit-per-page map for frontswap */
2486 if (frontswap_enabled
)
2487 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2489 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2491 * When discard is enabled for swap with no particular
2492 * policy flagged, we set all swap discard flags here in
2493 * order to sustain backward compatibility with older
2494 * swapon(8) releases.
2496 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2500 * By flagging sys_swapon, a sysadmin can tell us to
2501 * either do single-time area discards only, or to just
2502 * perform discards for released swap page-clusters.
2503 * Now it's time to adjust the p->flags accordingly.
2505 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2506 p
->flags
&= ~SWP_PAGE_DISCARD
;
2507 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2508 p
->flags
&= ~SWP_AREA_DISCARD
;
2510 /* issue a swapon-time discard if it's still required */
2511 if (p
->flags
& SWP_AREA_DISCARD
) {
2512 int err
= discard_swap(p
);
2514 pr_err("swapon: discard_swap(%p): %d\n",
2519 mutex_lock(&swapon_mutex
);
2521 if (swap_flags
& SWAP_FLAG_PREFER
)
2523 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2524 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2526 pr_info("Adding %uk swap on %s. "
2527 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2528 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2529 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2530 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2531 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2532 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2533 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2534 (frontswap_map
) ? "FS" : "");
2536 mutex_unlock(&swapon_mutex
);
2537 atomic_inc(&proc_poll_event
);
2538 wake_up_interruptible(&proc_poll_wait
);
2540 if (S_ISREG(inode
->i_mode
))
2541 inode
->i_flags
|= S_SWAPFILE
;
2545 free_percpu(p
->percpu_cluster
);
2546 p
->percpu_cluster
= NULL
;
2547 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2548 set_blocksize(p
->bdev
, p
->old_block_size
);
2549 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2551 destroy_swap_extents(p
);
2552 swap_cgroup_swapoff(p
->type
);
2553 spin_lock(&swap_lock
);
2554 p
->swap_file
= NULL
;
2556 spin_unlock(&swap_lock
);
2558 vfree(cluster_info
);
2560 if (inode
&& S_ISREG(inode
->i_mode
)) {
2561 mutex_unlock(&inode
->i_mutex
);
2564 filp_close(swap_file
, NULL
);
2567 if (page
&& !IS_ERR(page
)) {
2569 page_cache_release(page
);
2573 if (inode
&& S_ISREG(inode
->i_mode
))
2574 mutex_unlock(&inode
->i_mutex
);
2578 void si_swapinfo(struct sysinfo
*val
)
2581 unsigned long nr_to_be_unused
= 0;
2583 spin_lock(&swap_lock
);
2584 for (type
= 0; type
< nr_swapfiles
; type
++) {
2585 struct swap_info_struct
*si
= swap_info
[type
];
2587 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2588 nr_to_be_unused
+= si
->inuse_pages
;
2590 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2591 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2592 spin_unlock(&swap_lock
);
2596 * Verify that a swap entry is valid and increment its swap map count.
2598 * Returns error code in following case.
2600 * - swp_entry is invalid -> EINVAL
2601 * - swp_entry is migration entry -> EINVAL
2602 * - swap-cache reference is requested but there is already one. -> EEXIST
2603 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2604 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2606 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2608 struct swap_info_struct
*p
;
2609 unsigned long offset
, type
;
2610 unsigned char count
;
2611 unsigned char has_cache
;
2614 if (non_swap_entry(entry
))
2617 type
= swp_type(entry
);
2618 if (type
>= nr_swapfiles
)
2620 p
= swap_info
[type
];
2621 offset
= swp_offset(entry
);
2623 spin_lock(&p
->lock
);
2624 if (unlikely(offset
>= p
->max
))
2627 count
= p
->swap_map
[offset
];
2630 * swapin_readahead() doesn't check if a swap entry is valid, so the
2631 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2633 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2638 has_cache
= count
& SWAP_HAS_CACHE
;
2639 count
&= ~SWAP_HAS_CACHE
;
2642 if (usage
== SWAP_HAS_CACHE
) {
2644 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2645 if (!has_cache
&& count
)
2646 has_cache
= SWAP_HAS_CACHE
;
2647 else if (has_cache
) /* someone else added cache */
2649 else /* no users remaining */
2652 } else if (count
|| has_cache
) {
2654 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2656 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2658 else if (swap_count_continued(p
, offset
, count
))
2659 count
= COUNT_CONTINUED
;
2663 err
= -ENOENT
; /* unused swap entry */
2665 p
->swap_map
[offset
] = count
| has_cache
;
2668 spin_unlock(&p
->lock
);
2673 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2678 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2679 * (in which case its reference count is never incremented).
2681 void swap_shmem_alloc(swp_entry_t entry
)
2683 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2687 * Increase reference count of swap entry by 1.
2688 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2689 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2690 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2691 * might occur if a page table entry has got corrupted.
2693 int swap_duplicate(swp_entry_t entry
)
2697 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2698 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2703 * @entry: swap entry for which we allocate swap cache.
2705 * Called when allocating swap cache for existing swap entry,
2706 * This can return error codes. Returns 0 at success.
2707 * -EBUSY means there is a swap cache.
2708 * Note: return code is different from swap_duplicate().
2710 int swapcache_prepare(swp_entry_t entry
)
2712 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2715 struct swap_info_struct
*page_swap_info(struct page
*page
)
2717 swp_entry_t swap
= { .val
= page_private(page
) };
2718 BUG_ON(!PageSwapCache(page
));
2719 return swap_info
[swp_type(swap
)];
2723 * out-of-line __page_file_ methods to avoid include hell.
2725 struct address_space
*__page_file_mapping(struct page
*page
)
2727 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2728 return page_swap_info(page
)->swap_file
->f_mapping
;
2730 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2732 pgoff_t
__page_file_index(struct page
*page
)
2734 swp_entry_t swap
= { .val
= page_private(page
) };
2735 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2736 return swp_offset(swap
);
2738 EXPORT_SYMBOL_GPL(__page_file_index
);
2741 * add_swap_count_continuation - called when a swap count is duplicated
2742 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2743 * page of the original vmalloc'ed swap_map, to hold the continuation count
2744 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2745 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2747 * These continuation pages are seldom referenced: the common paths all work
2748 * on the original swap_map, only referring to a continuation page when the
2749 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2751 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2752 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2753 * can be called after dropping locks.
2755 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2757 struct swap_info_struct
*si
;
2760 struct page
*list_page
;
2762 unsigned char count
;
2765 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2766 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2768 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2770 si
= swap_info_get(entry
);
2773 * An acceptable race has occurred since the failing
2774 * __swap_duplicate(): the swap entry has been freed,
2775 * perhaps even the whole swap_map cleared for swapoff.
2780 offset
= swp_offset(entry
);
2781 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2783 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2785 * The higher the swap count, the more likely it is that tasks
2786 * will race to add swap count continuation: we need to avoid
2787 * over-provisioning.
2793 spin_unlock(&si
->lock
);
2798 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2799 * no architecture is using highmem pages for kernel page tables: so it
2800 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2802 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2803 offset
&= ~PAGE_MASK
;
2806 * Page allocation does not initialize the page's lru field,
2807 * but it does always reset its private field.
2809 if (!page_private(head
)) {
2810 BUG_ON(count
& COUNT_CONTINUED
);
2811 INIT_LIST_HEAD(&head
->lru
);
2812 set_page_private(head
, SWP_CONTINUED
);
2813 si
->flags
|= SWP_CONTINUED
;
2816 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2820 * If the previous map said no continuation, but we've found
2821 * a continuation page, free our allocation and use this one.
2823 if (!(count
& COUNT_CONTINUED
))
2826 map
= kmap_atomic(list_page
) + offset
;
2831 * If this continuation count now has some space in it,
2832 * free our allocation and use this one.
2834 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2838 list_add_tail(&page
->lru
, &head
->lru
);
2839 page
= NULL
; /* now it's attached, don't free it */
2841 spin_unlock(&si
->lock
);
2849 * swap_count_continued - when the original swap_map count is incremented
2850 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2851 * into, carry if so, or else fail until a new continuation page is allocated;
2852 * when the original swap_map count is decremented from 0 with continuation,
2853 * borrow from the continuation and report whether it still holds more.
2854 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2856 static bool swap_count_continued(struct swap_info_struct
*si
,
2857 pgoff_t offset
, unsigned char count
)
2863 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2864 if (page_private(head
) != SWP_CONTINUED
) {
2865 BUG_ON(count
& COUNT_CONTINUED
);
2866 return false; /* need to add count continuation */
2869 offset
&= ~PAGE_MASK
;
2870 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2871 map
= kmap_atomic(page
) + offset
;
2873 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2874 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2876 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2878 * Think of how you add 1 to 999
2880 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2882 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2883 BUG_ON(page
== head
);
2884 map
= kmap_atomic(page
) + offset
;
2886 if (*map
== SWAP_CONT_MAX
) {
2888 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2890 return false; /* add count continuation */
2891 map
= kmap_atomic(page
) + offset
;
2892 init_map
: *map
= 0; /* we didn't zero the page */
2896 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2897 while (page
!= head
) {
2898 map
= kmap_atomic(page
) + offset
;
2899 *map
= COUNT_CONTINUED
;
2901 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2903 return true; /* incremented */
2905 } else { /* decrementing */
2907 * Think of how you subtract 1 from 1000
2909 BUG_ON(count
!= COUNT_CONTINUED
);
2910 while (*map
== COUNT_CONTINUED
) {
2912 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2913 BUG_ON(page
== head
);
2914 map
= kmap_atomic(page
) + offset
;
2921 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2922 while (page
!= head
) {
2923 map
= kmap_atomic(page
) + offset
;
2924 *map
= SWAP_CONT_MAX
| count
;
2925 count
= COUNT_CONTINUED
;
2927 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2929 return count
== COUNT_CONTINUED
;
2934 * free_swap_count_continuations - swapoff free all the continuation pages
2935 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2937 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2941 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2943 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2944 if (page_private(head
)) {
2945 struct list_head
*this, *next
;
2946 list_for_each_safe(this, next
, &head
->lru
) {
2948 page
= list_entry(this, struct page
, lru
);