2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
20 #include "kvm_cache_regs.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
32 #include <asm/virtext.h>
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
52 /* Turn on to get debugging output*/
53 /* #define NESTED_DEBUG */
56 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
58 #define nsvm_printk(fmt, args...) do {} while(0)
61 static const u32 host_save_user_msrs
[] = {
63 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
66 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
69 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
78 /* These are the merged vectors */
81 /* gpa pointers to the real vectors */
84 /* cache for intercepts of the guest */
85 u16 intercept_cr_read
;
86 u16 intercept_cr_write
;
87 u16 intercept_dr_read
;
88 u16 intercept_dr_write
;
89 u32 intercept_exceptions
;
97 unsigned long vmcb_pa
;
98 struct svm_cpu_data
*svm_data
;
99 uint64_t asid_generation
;
100 uint64_t sysenter_esp
;
101 uint64_t sysenter_eip
;
105 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
110 struct nested_state nested
;
113 /* enable NPT for AMD64 and X86 with PAE */
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 static bool npt_enabled
= true;
117 static bool npt_enabled
= false;
121 module_param(npt
, int, S_IRUGO
);
123 static int nested
= 0;
124 module_param(nested
, int, S_IRUGO
);
126 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
127 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
129 static int nested_svm_exit_handled(struct vcpu_svm
*svm
, bool kvm_override
);
130 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
131 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
132 bool has_error_code
, u32 error_code
);
134 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
136 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
139 static inline bool is_nested(struct vcpu_svm
*svm
)
141 return svm
->nested
.vmcb
;
144 static inline void enable_gif(struct vcpu_svm
*svm
)
146 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
149 static inline void disable_gif(struct vcpu_svm
*svm
)
151 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
154 static inline bool gif_set(struct vcpu_svm
*svm
)
156 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
159 static unsigned long iopm_base
;
161 struct kvm_ldttss_desc
{
164 unsigned base1
: 8, type
: 5, dpl
: 2, p
: 1;
165 unsigned limit1
: 4, zero0
: 3, g
: 1, base2
: 8;
168 } __attribute__((packed
));
170 struct svm_cpu_data
{
176 struct kvm_ldttss_desc
*tss_desc
;
178 struct page
*save_area
;
181 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
182 static uint32_t svm_features
;
184 struct svm_init_data
{
189 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
191 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
192 #define MSRS_RANGE_SIZE 2048
193 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
195 #define MAX_INST_SIZE 15
197 static inline u32
svm_has(u32 feat
)
199 return svm_features
& feat
;
202 static inline void clgi(void)
204 asm volatile (__ex(SVM_CLGI
));
207 static inline void stgi(void)
209 asm volatile (__ex(SVM_STGI
));
212 static inline void invlpga(unsigned long addr
, u32 asid
)
214 asm volatile (__ex(SVM_INVLPGA
) :: "a"(addr
), "c"(asid
));
217 static inline void force_new_asid(struct kvm_vcpu
*vcpu
)
219 to_svm(vcpu
)->asid_generation
--;
222 static inline void flush_guest_tlb(struct kvm_vcpu
*vcpu
)
224 force_new_asid(vcpu
);
227 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
229 if (!npt_enabled
&& !(efer
& EFER_LMA
))
232 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
233 vcpu
->arch
.shadow_efer
= efer
;
236 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
237 bool has_error_code
, u32 error_code
)
239 struct vcpu_svm
*svm
= to_svm(vcpu
);
241 /* If we are within a nested VM we'd better #VMEXIT and let the
242 guest handle the exception */
243 if (nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
246 svm
->vmcb
->control
.event_inj
= nr
248 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
249 | SVM_EVTINJ_TYPE_EXEPT
;
250 svm
->vmcb
->control
.event_inj_err
= error_code
;
253 static int is_external_interrupt(u32 info
)
255 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
256 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
259 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
261 struct vcpu_svm
*svm
= to_svm(vcpu
);
264 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
265 ret
|= X86_SHADOW_INT_STI
| X86_SHADOW_INT_MOV_SS
;
269 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
271 struct vcpu_svm
*svm
= to_svm(vcpu
);
274 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
276 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
280 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
282 struct vcpu_svm
*svm
= to_svm(vcpu
);
284 if (!svm
->next_rip
) {
285 if (emulate_instruction(vcpu
, vcpu
->run
, 0, 0, EMULTYPE_SKIP
) !=
287 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
290 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
291 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
292 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
294 kvm_rip_write(vcpu
, svm
->next_rip
);
295 svm_set_interrupt_shadow(vcpu
, 0);
298 static int has_svm(void)
302 if (!cpu_has_svm(&msg
)) {
303 printk(KERN_INFO
"has_svm: %s\n", msg
);
310 static void svm_hardware_disable(void *garbage
)
315 static void svm_hardware_enable(void *garbage
)
318 struct svm_cpu_data
*svm_data
;
320 struct descriptor_table gdt_descr
;
321 struct desc_struct
*gdt
;
322 int me
= raw_smp_processor_id();
325 printk(KERN_ERR
"svm_cpu_init: err EOPNOTSUPP on %d\n", me
);
328 svm_data
= per_cpu(svm_data
, me
);
331 printk(KERN_ERR
"svm_cpu_init: svm_data is NULL on %d\n",
336 svm_data
->asid_generation
= 1;
337 svm_data
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
338 svm_data
->next_asid
= svm_data
->max_asid
+ 1;
340 kvm_get_gdt(&gdt_descr
);
341 gdt
= (struct desc_struct
*)gdt_descr
.base
;
342 svm_data
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
344 rdmsrl(MSR_EFER
, efer
);
345 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
347 wrmsrl(MSR_VM_HSAVE_PA
,
348 page_to_pfn(svm_data
->save_area
) << PAGE_SHIFT
);
351 static void svm_cpu_uninit(int cpu
)
353 struct svm_cpu_data
*svm_data
354 = per_cpu(svm_data
, raw_smp_processor_id());
359 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
360 __free_page(svm_data
->save_area
);
364 static int svm_cpu_init(int cpu
)
366 struct svm_cpu_data
*svm_data
;
369 svm_data
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
373 svm_data
->save_area
= alloc_page(GFP_KERNEL
);
375 if (!svm_data
->save_area
)
378 per_cpu(svm_data
, cpu
) = svm_data
;
388 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
393 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
394 if (msr
>= msrpm_ranges
[i
] &&
395 msr
< msrpm_ranges
[i
] + MSRS_IN_RANGE
) {
396 u32 msr_offset
= (i
* MSRS_IN_RANGE
+ msr
-
397 msrpm_ranges
[i
]) * 2;
399 u32
*base
= msrpm
+ (msr_offset
/ 32);
400 u32 msr_shift
= msr_offset
% 32;
401 u32 mask
= ((write
) ? 0 : 2) | ((read
) ? 0 : 1);
402 *base
= (*base
& ~(0x3 << msr_shift
)) |
410 static void svm_vcpu_init_msrpm(u32
*msrpm
)
412 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
415 set_msr_interception(msrpm
, MSR_GS_BASE
, 1, 1);
416 set_msr_interception(msrpm
, MSR_FS_BASE
, 1, 1);
417 set_msr_interception(msrpm
, MSR_KERNEL_GS_BASE
, 1, 1);
418 set_msr_interception(msrpm
, MSR_LSTAR
, 1, 1);
419 set_msr_interception(msrpm
, MSR_CSTAR
, 1, 1);
420 set_msr_interception(msrpm
, MSR_SYSCALL_MASK
, 1, 1);
422 set_msr_interception(msrpm
, MSR_K6_STAR
, 1, 1);
423 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_CS
, 1, 1);
426 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
428 u32
*msrpm
= svm
->msrpm
;
430 svm
->vmcb
->control
.lbr_ctl
= 1;
431 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
432 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
433 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
434 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
437 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
439 u32
*msrpm
= svm
->msrpm
;
441 svm
->vmcb
->control
.lbr_ctl
= 0;
442 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
443 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
444 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
445 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
448 static __init
int svm_hardware_setup(void)
451 struct page
*iopm_pages
;
455 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
460 iopm_va
= page_address(iopm_pages
);
461 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
462 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
464 if (boot_cpu_has(X86_FEATURE_NX
))
465 kvm_enable_efer_bits(EFER_NX
);
467 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
468 kvm_enable_efer_bits(EFER_FFXSR
);
471 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
472 kvm_enable_efer_bits(EFER_SVME
);
475 for_each_online_cpu(cpu
) {
476 r
= svm_cpu_init(cpu
);
481 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
483 if (!svm_has(SVM_FEATURE_NPT
))
486 if (npt_enabled
&& !npt
) {
487 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
492 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
500 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
505 static __exit
void svm_hardware_unsetup(void)
509 for_each_online_cpu(cpu
)
512 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
516 static void init_seg(struct vmcb_seg
*seg
)
519 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
520 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
525 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
528 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
533 static void init_vmcb(struct vcpu_svm
*svm
)
535 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
536 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
538 control
->intercept_cr_read
= INTERCEPT_CR0_MASK
|
542 control
->intercept_cr_write
= INTERCEPT_CR0_MASK
|
547 control
->intercept_dr_read
= INTERCEPT_DR0_MASK
|
552 control
->intercept_dr_write
= INTERCEPT_DR0_MASK
|
559 control
->intercept_exceptions
= (1 << PF_VECTOR
) |
564 control
->intercept
= (1ULL << INTERCEPT_INTR
) |
565 (1ULL << INTERCEPT_NMI
) |
566 (1ULL << INTERCEPT_SMI
) |
567 (1ULL << INTERCEPT_CPUID
) |
568 (1ULL << INTERCEPT_INVD
) |
569 (1ULL << INTERCEPT_HLT
) |
570 (1ULL << INTERCEPT_INVLPG
) |
571 (1ULL << INTERCEPT_INVLPGA
) |
572 (1ULL << INTERCEPT_IOIO_PROT
) |
573 (1ULL << INTERCEPT_MSR_PROT
) |
574 (1ULL << INTERCEPT_TASK_SWITCH
) |
575 (1ULL << INTERCEPT_SHUTDOWN
) |
576 (1ULL << INTERCEPT_VMRUN
) |
577 (1ULL << INTERCEPT_VMMCALL
) |
578 (1ULL << INTERCEPT_VMLOAD
) |
579 (1ULL << INTERCEPT_VMSAVE
) |
580 (1ULL << INTERCEPT_STGI
) |
581 (1ULL << INTERCEPT_CLGI
) |
582 (1ULL << INTERCEPT_SKINIT
) |
583 (1ULL << INTERCEPT_WBINVD
) |
584 (1ULL << INTERCEPT_MONITOR
) |
585 (1ULL << INTERCEPT_MWAIT
);
587 control
->iopm_base_pa
= iopm_base
;
588 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
589 control
->tsc_offset
= 0;
590 control
->int_ctl
= V_INTR_MASKING_MASK
;
598 save
->cs
.selector
= 0xf000;
599 /* Executable/Readable Code Segment */
600 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
601 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
602 save
->cs
.limit
= 0xffff;
604 * cs.base should really be 0xffff0000, but vmx can't handle that, so
605 * be consistent with it.
607 * Replace when we have real mode working for vmx.
609 save
->cs
.base
= 0xf0000;
611 save
->gdtr
.limit
= 0xffff;
612 save
->idtr
.limit
= 0xffff;
614 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
615 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
617 save
->efer
= EFER_SVME
;
618 save
->dr6
= 0xffff0ff0;
621 save
->rip
= 0x0000fff0;
622 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
625 * cr0 val on cpu init should be 0x60000010, we enable cpu
626 * cache by default. the orderly way is to enable cache in bios.
628 save
->cr0
= 0x00000010 | X86_CR0_PG
| X86_CR0_WP
;
629 save
->cr4
= X86_CR4_PAE
;
633 /* Setup VMCB for Nested Paging */
634 control
->nested_ctl
= 1;
635 control
->intercept
&= ~((1ULL << INTERCEPT_TASK_SWITCH
) |
636 (1ULL << INTERCEPT_INVLPG
));
637 control
->intercept_exceptions
&= ~(1 << PF_VECTOR
);
638 control
->intercept_cr_read
&= ~(INTERCEPT_CR0_MASK
|
640 control
->intercept_cr_write
&= ~(INTERCEPT_CR0_MASK
|
642 save
->g_pat
= 0x0007040600070406ULL
;
643 /* enable caching because the QEMU Bios doesn't enable it */
644 save
->cr0
= X86_CR0_ET
;
648 force_new_asid(&svm
->vcpu
);
650 svm
->nested
.vmcb
= 0;
651 svm
->vcpu
.arch
.hflags
= 0;
656 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
658 struct vcpu_svm
*svm
= to_svm(vcpu
);
662 if (!kvm_vcpu_is_bsp(vcpu
)) {
663 kvm_rip_write(vcpu
, 0);
664 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
665 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
667 vcpu
->arch
.regs_avail
= ~0;
668 vcpu
->arch
.regs_dirty
= ~0;
673 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
675 struct vcpu_svm
*svm
;
677 struct page
*msrpm_pages
;
678 struct page
*hsave_page
;
679 struct page
*nested_msrpm_pages
;
682 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
688 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
692 page
= alloc_page(GFP_KERNEL
);
699 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
703 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
704 if (!nested_msrpm_pages
)
707 svm
->msrpm
= page_address(msrpm_pages
);
708 svm_vcpu_init_msrpm(svm
->msrpm
);
710 hsave_page
= alloc_page(GFP_KERNEL
);
713 svm
->nested
.hsave
= page_address(hsave_page
);
715 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
717 svm
->vmcb
= page_address(page
);
718 clear_page(svm
->vmcb
);
719 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
720 svm
->asid_generation
= 0;
724 svm
->vcpu
.fpu_active
= 1;
725 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
726 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
727 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
732 kvm_vcpu_uninit(&svm
->vcpu
);
734 kmem_cache_free(kvm_vcpu_cache
, svm
);
739 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
741 struct vcpu_svm
*svm
= to_svm(vcpu
);
743 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
744 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
745 __free_page(virt_to_page(svm
->nested
.hsave
));
746 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
747 kvm_vcpu_uninit(vcpu
);
748 kmem_cache_free(kvm_vcpu_cache
, svm
);
751 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
753 struct vcpu_svm
*svm
= to_svm(vcpu
);
756 if (unlikely(cpu
!= vcpu
->cpu
)) {
760 * Make sure that the guest sees a monotonically
764 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
765 svm
->vmcb
->control
.tsc_offset
+= delta
;
767 kvm_migrate_timers(vcpu
);
768 svm
->asid_generation
= 0;
771 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
772 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
775 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
777 struct vcpu_svm
*svm
= to_svm(vcpu
);
780 ++vcpu
->stat
.host_state_reload
;
781 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
782 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
784 rdtscll(vcpu
->arch
.host_tsc
);
787 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
789 return to_svm(vcpu
)->vmcb
->save
.rflags
;
792 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
794 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
797 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
800 case VCPU_EXREG_PDPTR
:
801 BUG_ON(!npt_enabled
);
802 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
809 static void svm_set_vintr(struct vcpu_svm
*svm
)
811 svm
->vmcb
->control
.intercept
|= 1ULL << INTERCEPT_VINTR
;
814 static void svm_clear_vintr(struct vcpu_svm
*svm
)
816 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_VINTR
);
819 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
821 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
824 case VCPU_SREG_CS
: return &save
->cs
;
825 case VCPU_SREG_DS
: return &save
->ds
;
826 case VCPU_SREG_ES
: return &save
->es
;
827 case VCPU_SREG_FS
: return &save
->fs
;
828 case VCPU_SREG_GS
: return &save
->gs
;
829 case VCPU_SREG_SS
: return &save
->ss
;
830 case VCPU_SREG_TR
: return &save
->tr
;
831 case VCPU_SREG_LDTR
: return &save
->ldtr
;
837 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
839 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
844 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
845 struct kvm_segment
*var
, int seg
)
847 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
850 var
->limit
= s
->limit
;
851 var
->selector
= s
->selector
;
852 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
853 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
854 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
855 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
856 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
857 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
858 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
859 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
861 /* AMD's VMCB does not have an explicit unusable field, so emulate it
862 * for cross vendor migration purposes by "not present"
864 var
->unusable
= !var
->present
|| (var
->type
== 0);
869 * SVM always stores 0 for the 'G' bit in the CS selector in
870 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
871 * Intel's VMENTRY has a check on the 'G' bit.
873 var
->g
= s
->limit
> 0xfffff;
877 * Work around a bug where the busy flag in the tr selector
887 * The accessed bit must always be set in the segment
888 * descriptor cache, although it can be cleared in the
889 * descriptor, the cached bit always remains at 1. Since
890 * Intel has a check on this, set it here to support
891 * cross-vendor migration.
897 /* On AMD CPUs sometimes the DB bit in the segment
898 * descriptor is left as 1, although the whole segment has
899 * been made unusable. Clear it here to pass an Intel VMX
900 * entry check when cross vendor migrating.
908 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
910 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
915 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
917 struct vcpu_svm
*svm
= to_svm(vcpu
);
919 dt
->limit
= svm
->vmcb
->save
.idtr
.limit
;
920 dt
->base
= svm
->vmcb
->save
.idtr
.base
;
923 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
925 struct vcpu_svm
*svm
= to_svm(vcpu
);
927 svm
->vmcb
->save
.idtr
.limit
= dt
->limit
;
928 svm
->vmcb
->save
.idtr
.base
= dt
->base
;
931 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
933 struct vcpu_svm
*svm
= to_svm(vcpu
);
935 dt
->limit
= svm
->vmcb
->save
.gdtr
.limit
;
936 dt
->base
= svm
->vmcb
->save
.gdtr
.base
;
939 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
941 struct vcpu_svm
*svm
= to_svm(vcpu
);
943 svm
->vmcb
->save
.gdtr
.limit
= dt
->limit
;
944 svm
->vmcb
->save
.gdtr
.base
= dt
->base
;
947 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
951 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
953 struct vcpu_svm
*svm
= to_svm(vcpu
);
956 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
957 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
958 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
959 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
962 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
963 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
964 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
971 if ((vcpu
->arch
.cr0
& X86_CR0_TS
) && !(cr0
& X86_CR0_TS
)) {
972 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
973 vcpu
->fpu_active
= 1;
976 vcpu
->arch
.cr0
= cr0
;
977 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
978 if (!vcpu
->fpu_active
) {
979 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
984 * re-enable caching here because the QEMU bios
985 * does not do it - this results in some delay at
988 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
989 svm
->vmcb
->save
.cr0
= cr0
;
992 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
994 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
995 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
997 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
998 force_new_asid(vcpu
);
1000 vcpu
->arch
.cr4
= cr4
;
1003 cr4
|= host_cr4_mce
;
1004 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1007 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1008 struct kvm_segment
*var
, int seg
)
1010 struct vcpu_svm
*svm
= to_svm(vcpu
);
1011 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1013 s
->base
= var
->base
;
1014 s
->limit
= var
->limit
;
1015 s
->selector
= var
->selector
;
1019 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1020 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1021 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1022 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1023 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1024 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1025 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1026 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1028 if (seg
== VCPU_SREG_CS
)
1030 = (svm
->vmcb
->save
.cs
.attrib
1031 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1035 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1037 struct vcpu_svm
*svm
= to_svm(vcpu
);
1039 svm
->vmcb
->control
.intercept_exceptions
&=
1040 ~((1 << DB_VECTOR
) | (1 << BP_VECTOR
));
1042 if (vcpu
->arch
.singlestep
)
1043 svm
->vmcb
->control
.intercept_exceptions
|= (1 << DB_VECTOR
);
1045 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1046 if (vcpu
->guest_debug
&
1047 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1048 svm
->vmcb
->control
.intercept_exceptions
|=
1050 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1051 svm
->vmcb
->control
.intercept_exceptions
|=
1054 vcpu
->guest_debug
= 0;
1057 static int svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1059 int old_debug
= vcpu
->guest_debug
;
1060 struct vcpu_svm
*svm
= to_svm(vcpu
);
1062 vcpu
->guest_debug
= dbg
->control
;
1064 update_db_intercept(vcpu
);
1066 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1067 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1069 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1071 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
1072 svm
->vmcb
->save
.rflags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1073 else if (old_debug
& KVM_GUESTDBG_SINGLESTEP
)
1074 svm
->vmcb
->save
.rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1079 static void load_host_msrs(struct kvm_vcpu
*vcpu
)
1081 #ifdef CONFIG_X86_64
1082 wrmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1086 static void save_host_msrs(struct kvm_vcpu
*vcpu
)
1088 #ifdef CONFIG_X86_64
1089 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1093 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*svm_data
)
1095 if (svm_data
->next_asid
> svm_data
->max_asid
) {
1096 ++svm_data
->asid_generation
;
1097 svm_data
->next_asid
= 1;
1098 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1101 svm
->asid_generation
= svm_data
->asid_generation
;
1102 svm
->vmcb
->control
.asid
= svm_data
->next_asid
++;
1105 static unsigned long svm_get_dr(struct kvm_vcpu
*vcpu
, int dr
)
1107 struct vcpu_svm
*svm
= to_svm(vcpu
);
1112 val
= vcpu
->arch
.db
[dr
];
1115 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1116 val
= vcpu
->arch
.dr6
;
1118 val
= svm
->vmcb
->save
.dr6
;
1121 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1122 val
= vcpu
->arch
.dr7
;
1124 val
= svm
->vmcb
->save
.dr7
;
1133 static void svm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long value
,
1136 struct vcpu_svm
*svm
= to_svm(vcpu
);
1142 vcpu
->arch
.db
[dr
] = value
;
1143 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1144 vcpu
->arch
.eff_db
[dr
] = value
;
1147 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
1148 *exception
= UD_VECTOR
;
1151 if (value
& 0xffffffff00000000ULL
) {
1152 *exception
= GP_VECTOR
;
1155 vcpu
->arch
.dr6
= (value
& DR6_VOLATILE
) | DR6_FIXED_1
;
1158 if (value
& 0xffffffff00000000ULL
) {
1159 *exception
= GP_VECTOR
;
1162 vcpu
->arch
.dr7
= (value
& DR7_VOLATILE
) | DR7_FIXED_1
;
1163 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1164 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1165 vcpu
->arch
.switch_db_regs
= (value
& DR7_BP_EN_MASK
);
1169 /* FIXME: Possible case? */
1170 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1172 *exception
= UD_VECTOR
;
1177 static int pf_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1182 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1183 error_code
= svm
->vmcb
->control
.exit_info_1
;
1185 trace_kvm_page_fault(fault_address
, error_code
);
1187 * FIXME: Tis shouldn't be necessary here, but there is a flush
1188 * missing in the MMU code. Until we find this bug, flush the
1189 * complete TLB here on an NPF
1192 svm_flush_tlb(&svm
->vcpu
);
1194 if (kvm_event_needs_reinjection(&svm
->vcpu
))
1195 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1197 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
);
1200 static int db_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1202 if (!(svm
->vcpu
.guest_debug
&
1203 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1204 !svm
->vcpu
.arch
.singlestep
) {
1205 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1209 if (svm
->vcpu
.arch
.singlestep
) {
1210 svm
->vcpu
.arch
.singlestep
= false;
1211 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1212 svm
->vmcb
->save
.rflags
&=
1213 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1214 update_db_intercept(&svm
->vcpu
);
1217 if (svm
->vcpu
.guest_debug
&
1218 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)){
1219 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1220 kvm_run
->debug
.arch
.pc
=
1221 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1222 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1229 static int bp_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1231 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1232 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1233 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1237 static int ud_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1241 er
= emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
1242 if (er
!= EMULATE_DONE
)
1243 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1247 static int nm_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1249 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
1250 if (!(svm
->vcpu
.arch
.cr0
& X86_CR0_TS
))
1251 svm
->vmcb
->save
.cr0
&= ~X86_CR0_TS
;
1252 svm
->vcpu
.fpu_active
= 1;
1257 static int mc_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1260 * On an #MC intercept the MCE handler is not called automatically in
1261 * the host. So do it by hand here.
1265 /* not sure if we ever come back to this point */
1270 static int shutdown_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1273 * VMCB is undefined after a SHUTDOWN intercept
1274 * so reinitialize it.
1276 clear_page(svm
->vmcb
);
1279 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1283 static int io_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1285 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1286 int size
, in
, string
;
1289 ++svm
->vcpu
.stat
.io_exits
;
1291 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1293 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1296 if (emulate_instruction(&svm
->vcpu
,
1297 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
1302 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1303 port
= io_info
>> 16;
1304 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1306 skip_emulated_instruction(&svm
->vcpu
);
1307 return kvm_emulate_pio(&svm
->vcpu
, kvm_run
, in
, size
, port
);
1310 static int nmi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1315 static int intr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1317 ++svm
->vcpu
.stat
.irq_exits
;
1321 static int nop_on_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1326 static int halt_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1328 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1329 skip_emulated_instruction(&svm
->vcpu
);
1330 return kvm_emulate_halt(&svm
->vcpu
);
1333 static int vmmcall_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1335 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1336 skip_emulated_instruction(&svm
->vcpu
);
1337 kvm_emulate_hypercall(&svm
->vcpu
);
1341 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1343 if (!(svm
->vcpu
.arch
.shadow_efer
& EFER_SVME
)
1344 || !is_paging(&svm
->vcpu
)) {
1345 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1349 if (svm
->vmcb
->save
.cpl
) {
1350 kvm_inject_gp(&svm
->vcpu
, 0);
1357 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1358 bool has_error_code
, u32 error_code
)
1360 if (!is_nested(svm
))
1363 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1364 svm
->vmcb
->control
.exit_code_hi
= 0;
1365 svm
->vmcb
->control
.exit_info_1
= error_code
;
1366 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1368 return nested_svm_exit_handled(svm
, false);
1371 static inline int nested_svm_intr(struct vcpu_svm
*svm
)
1373 if (is_nested(svm
)) {
1374 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1377 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1380 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1382 if (nested_svm_exit_handled(svm
, false)) {
1383 nsvm_printk("VMexit -> INTR\n");
1391 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, enum km_type idx
)
1395 down_read(¤t
->mm
->mmap_sem
);
1396 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1397 up_read(¤t
->mm
->mmap_sem
);
1399 if (is_error_page(page
))
1402 return kmap_atomic(page
, idx
);
1405 kvm_release_page_clean(page
);
1406 kvm_inject_gp(&svm
->vcpu
, 0);
1411 static void nested_svm_unmap(void *addr
, enum km_type idx
)
1418 page
= kmap_atomic_to_page(addr
);
1420 kunmap_atomic(addr
, idx
);
1421 kvm_release_page_dirty(page
);
1424 static struct page
*nested_svm_get_page(struct vcpu_svm
*svm
, u64 gpa
)
1428 down_read(¤t
->mm
->mmap_sem
);
1429 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1430 up_read(¤t
->mm
->mmap_sem
);
1432 if (is_error_page(page
)) {
1433 printk(KERN_INFO
"%s: could not find page at 0x%llx\n",
1435 kvm_release_page_clean(page
);
1436 kvm_inject_gp(&svm
->vcpu
, 0);
1442 static int nested_svm_do(struct vcpu_svm
*svm
,
1443 u64 arg1_gpa
, u64 arg2_gpa
, void *opaque
,
1444 int (*handler
)(struct vcpu_svm
*svm
,
1449 struct page
*arg1_page
;
1450 struct page
*arg2_page
= NULL
;
1455 arg1_page
= nested_svm_get_page(svm
, arg1_gpa
);
1456 if(arg1_page
== NULL
)
1460 arg2_page
= nested_svm_get_page(svm
, arg2_gpa
);
1461 if(arg2_page
== NULL
) {
1462 kvm_release_page_clean(arg1_page
);
1467 arg1
= kmap_atomic(arg1_page
, KM_USER0
);
1469 arg2
= kmap_atomic(arg2_page
, KM_USER1
);
1471 retval
= handler(svm
, arg1
, arg2
, opaque
);
1473 kunmap_atomic(arg1
, KM_USER0
);
1475 kunmap_atomic(arg2
, KM_USER1
);
1477 kvm_release_page_dirty(arg1_page
);
1479 kvm_release_page_dirty(arg2_page
);
1484 static bool nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
1486 u32 param
= svm
->vmcb
->control
.exit_info_1
& 1;
1487 u32 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1492 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1495 msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1505 case 0xc0000000 ... 0xc0001fff:
1506 t0
= (8192 + msr
- 0xc0000000) * 2;
1510 case 0xc0010000 ... 0xc0011fff:
1511 t0
= (16384 + msr
- 0xc0010000) * 2;
1520 ret
= msrpm
[t1
] & ((1 << param
) << t0
);
1523 nested_svm_unmap(msrpm
, KM_USER0
);
1528 static int nested_svm_exit_handled(struct vcpu_svm
*svm
, bool kvm_override
)
1530 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1531 bool vmexit
= false;
1534 switch (exit_code
) {
1538 /* For now we are always handling NPFs when using them */
1543 /* When we're shadowing, trap PFs */
1544 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1553 switch (exit_code
) {
1555 vmexit
= nested_svm_exit_handled_msr(svm
);
1557 case SVM_EXIT_READ_CR0
... SVM_EXIT_READ_CR8
: {
1558 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_READ_CR0
);
1559 if (svm
->nested
.intercept_cr_read
& cr_bits
)
1563 case SVM_EXIT_WRITE_CR0
... SVM_EXIT_WRITE_CR8
: {
1564 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_CR0
);
1565 if (svm
->nested
.intercept_cr_write
& cr_bits
)
1569 case SVM_EXIT_READ_DR0
... SVM_EXIT_READ_DR7
: {
1570 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_READ_DR0
);
1571 if (svm
->nested
.intercept_dr_read
& dr_bits
)
1575 case SVM_EXIT_WRITE_DR0
... SVM_EXIT_WRITE_DR7
: {
1576 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_DR0
);
1577 if (svm
->nested
.intercept_dr_write
& dr_bits
)
1581 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
1582 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
1583 if (svm
->nested
.intercept_exceptions
& excp_bits
)
1588 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
1589 nsvm_printk("exit code: 0x%x\n", exit_code
);
1590 if (svm
->nested
.intercept
& exit_bits
)
1596 nsvm_printk("#VMEXIT reason=%04x\n", exit_code
);
1597 nested_svm_vmexit(svm
);
1603 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
1605 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
1606 struct vmcb_control_area
*from
= &from_vmcb
->control
;
1608 dst
->intercept_cr_read
= from
->intercept_cr_read
;
1609 dst
->intercept_cr_write
= from
->intercept_cr_write
;
1610 dst
->intercept_dr_read
= from
->intercept_dr_read
;
1611 dst
->intercept_dr_write
= from
->intercept_dr_write
;
1612 dst
->intercept_exceptions
= from
->intercept_exceptions
;
1613 dst
->intercept
= from
->intercept
;
1614 dst
->iopm_base_pa
= from
->iopm_base_pa
;
1615 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
1616 dst
->tsc_offset
= from
->tsc_offset
;
1617 dst
->asid
= from
->asid
;
1618 dst
->tlb_ctl
= from
->tlb_ctl
;
1619 dst
->int_ctl
= from
->int_ctl
;
1620 dst
->int_vector
= from
->int_vector
;
1621 dst
->int_state
= from
->int_state
;
1622 dst
->exit_code
= from
->exit_code
;
1623 dst
->exit_code_hi
= from
->exit_code_hi
;
1624 dst
->exit_info_1
= from
->exit_info_1
;
1625 dst
->exit_info_2
= from
->exit_info_2
;
1626 dst
->exit_int_info
= from
->exit_int_info
;
1627 dst
->exit_int_info_err
= from
->exit_int_info_err
;
1628 dst
->nested_ctl
= from
->nested_ctl
;
1629 dst
->event_inj
= from
->event_inj
;
1630 dst
->event_inj_err
= from
->event_inj_err
;
1631 dst
->nested_cr3
= from
->nested_cr3
;
1632 dst
->lbr_ctl
= from
->lbr_ctl
;
1635 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
1637 struct vmcb
*nested_vmcb
;
1638 struct vmcb
*hsave
= svm
->nested
.hsave
;
1639 struct vmcb
*vmcb
= svm
->vmcb
;
1641 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, KM_USER0
);
1645 /* Give the current vmcb to the guest */
1648 nested_vmcb
->save
.es
= vmcb
->save
.es
;
1649 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
1650 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
1651 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
1652 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
1653 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
1655 nested_vmcb
->save
.cr3
= vmcb
->save
.cr3
;
1656 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
1657 nested_vmcb
->save
.rflags
= vmcb
->save
.rflags
;
1658 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
1659 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
1660 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
1661 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
1662 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
1663 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
1665 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
1666 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
1667 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
1668 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
1669 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
1670 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
1671 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
1672 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
1673 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
1674 nested_vmcb
->control
.tlb_ctl
= 0;
1675 nested_vmcb
->control
.event_inj
= 0;
1676 nested_vmcb
->control
.event_inj_err
= 0;
1678 /* We always set V_INTR_MASKING and remember the old value in hflags */
1679 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1680 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
1682 /* Restore the original control entries */
1683 copy_vmcb_control_area(vmcb
, hsave
);
1685 /* Kill any pending exceptions */
1686 if (svm
->vcpu
.arch
.exception
.pending
== true)
1687 nsvm_printk("WARNING: Pending Exception\n");
1689 kvm_clear_exception_queue(&svm
->vcpu
);
1690 kvm_clear_interrupt_queue(&svm
->vcpu
);
1692 /* Restore selected save entries */
1693 svm
->vmcb
->save
.es
= hsave
->save
.es
;
1694 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
1695 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
1696 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
1697 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
1698 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
1699 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
1700 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
1701 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
1702 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
1704 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
1705 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
1707 kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
1709 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
1710 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
1711 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
1712 svm
->vmcb
->save
.dr7
= 0;
1713 svm
->vmcb
->save
.cpl
= 0;
1714 svm
->vmcb
->control
.exit_int_info
= 0;
1716 /* Exit nested SVM mode */
1717 svm
->nested
.vmcb
= 0;
1719 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1721 kvm_mmu_reset_context(&svm
->vcpu
);
1722 kvm_mmu_load(&svm
->vcpu
);
1727 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
1732 nested_msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1736 for (i
=0; i
< PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
) / 4; i
++)
1737 svm
->nested
.msrpm
[i
] = svm
->msrpm
[i
] | nested_msrpm
[i
];
1739 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
1741 nested_svm_unmap(nested_msrpm
, KM_USER0
);
1746 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
1748 struct vmcb
*nested_vmcb
;
1749 struct vmcb
*hsave
= svm
->nested
.hsave
;
1750 struct vmcb
*vmcb
= svm
->vmcb
;
1752 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1756 /* nested_vmcb is our indicator if nested SVM is activated */
1757 svm
->nested
.vmcb
= svm
->vmcb
->save
.rax
;
1759 /* Clear internal status */
1760 kvm_clear_exception_queue(&svm
->vcpu
);
1761 kvm_clear_interrupt_queue(&svm
->vcpu
);
1763 /* Save the old vmcb, so we don't need to pick what we save, but
1764 can restore everything when a VMEXIT occurs */
1765 hsave
->save
.es
= vmcb
->save
.es
;
1766 hsave
->save
.cs
= vmcb
->save
.cs
;
1767 hsave
->save
.ss
= vmcb
->save
.ss
;
1768 hsave
->save
.ds
= vmcb
->save
.ds
;
1769 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
1770 hsave
->save
.idtr
= vmcb
->save
.idtr
;
1771 hsave
->save
.efer
= svm
->vcpu
.arch
.shadow_efer
;
1772 hsave
->save
.cr0
= svm
->vcpu
.arch
.cr0
;
1773 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
1774 hsave
->save
.rflags
= vmcb
->save
.rflags
;
1775 hsave
->save
.rip
= svm
->next_rip
;
1776 hsave
->save
.rsp
= vmcb
->save
.rsp
;
1777 hsave
->save
.rax
= vmcb
->save
.rax
;
1779 hsave
->save
.cr3
= vmcb
->save
.cr3
;
1781 hsave
->save
.cr3
= svm
->vcpu
.arch
.cr3
;
1783 copy_vmcb_control_area(hsave
, vmcb
);
1785 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
1786 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
1788 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
1790 /* Load the nested guest state */
1791 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
1792 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
1793 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
1794 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
1795 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
1796 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
1797 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
1798 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
1799 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
1800 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
1802 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
1803 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
1805 kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
1806 kvm_mmu_reset_context(&svm
->vcpu
);
1808 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
1809 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
1810 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
1811 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
1812 /* In case we don't even reach vcpu_run, the fields are not updated */
1813 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
1814 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
1815 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
1816 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
1817 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
1818 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
1820 /* We don't want a nested guest to be more powerful than the guest,
1821 so all intercepts are ORed */
1822 svm
->vmcb
->control
.intercept_cr_read
|=
1823 nested_vmcb
->control
.intercept_cr_read
;
1824 svm
->vmcb
->control
.intercept_cr_write
|=
1825 nested_vmcb
->control
.intercept_cr_write
;
1826 svm
->vmcb
->control
.intercept_dr_read
|=
1827 nested_vmcb
->control
.intercept_dr_read
;
1828 svm
->vmcb
->control
.intercept_dr_write
|=
1829 nested_vmcb
->control
.intercept_dr_write
;
1830 svm
->vmcb
->control
.intercept_exceptions
|=
1831 nested_vmcb
->control
.intercept_exceptions
;
1833 svm
->vmcb
->control
.intercept
|= nested_vmcb
->control
.intercept
;
1835 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
;
1837 /* cache intercepts */
1838 svm
->nested
.intercept_cr_read
= nested_vmcb
->control
.intercept_cr_read
;
1839 svm
->nested
.intercept_cr_write
= nested_vmcb
->control
.intercept_cr_write
;
1840 svm
->nested
.intercept_dr_read
= nested_vmcb
->control
.intercept_dr_read
;
1841 svm
->nested
.intercept_dr_write
= nested_vmcb
->control
.intercept_dr_write
;
1842 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
1843 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
1845 force_new_asid(&svm
->vcpu
);
1846 svm
->vmcb
->control
.exit_int_info
= nested_vmcb
->control
.exit_int_info
;
1847 svm
->vmcb
->control
.exit_int_info_err
= nested_vmcb
->control
.exit_int_info_err
;
1848 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
1849 if (nested_vmcb
->control
.int_ctl
& V_IRQ_MASK
) {
1850 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1851 nested_vmcb
->control
.int_ctl
);
1853 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
1854 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
1856 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
1858 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1859 nested_vmcb
->control
.exit_int_info
,
1860 nested_vmcb
->control
.int_state
);
1862 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
1863 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
1864 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
1865 if (nested_vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
)
1866 nsvm_printk("Injecting Event: 0x%x\n",
1867 nested_vmcb
->control
.event_inj
);
1868 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
1869 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
1871 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1878 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
1880 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
1881 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
1882 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
1883 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
1884 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
1885 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
1886 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
1887 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
1888 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
1889 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
1890 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
1891 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
1894 static int vmload_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1896 struct vmcb
*nested_vmcb
;
1898 if (nested_svm_check_permissions(svm
))
1901 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1902 skip_emulated_instruction(&svm
->vcpu
);
1904 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1908 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
1909 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1914 static int vmsave_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1916 struct vmcb
*nested_vmcb
;
1918 if (nested_svm_check_permissions(svm
))
1921 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1922 skip_emulated_instruction(&svm
->vcpu
);
1924 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1928 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
1929 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1934 static int vmrun_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1936 nsvm_printk("VMrun\n");
1937 if (nested_svm_check_permissions(svm
))
1940 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1941 skip_emulated_instruction(&svm
->vcpu
);
1943 if (!nested_svm_vmrun(svm
))
1946 if (!nested_svm_vmrun_msrpm(svm
))
1952 static int stgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1954 if (nested_svm_check_permissions(svm
))
1957 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1958 skip_emulated_instruction(&svm
->vcpu
);
1965 static int clgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1967 if (nested_svm_check_permissions(svm
))
1970 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1971 skip_emulated_instruction(&svm
->vcpu
);
1975 /* After a CLGI no interrupts should come */
1976 svm_clear_vintr(svm
);
1977 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1982 static int invlpga_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1984 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1985 nsvm_printk("INVLPGA\n");
1987 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1988 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
1990 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1991 skip_emulated_instruction(&svm
->vcpu
);
1995 static int invalid_op_interception(struct vcpu_svm
*svm
,
1996 struct kvm_run
*kvm_run
)
1998 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2002 static int task_switch_interception(struct vcpu_svm
*svm
,
2003 struct kvm_run
*kvm_run
)
2007 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2008 SVM_EXITINTINFO_TYPE_MASK
;
2009 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2011 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2013 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2015 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2017 if (svm
->vmcb
->control
.exit_info_2
&
2018 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2019 reason
= TASK_SWITCH_IRET
;
2020 else if (svm
->vmcb
->control
.exit_info_2
&
2021 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2022 reason
= TASK_SWITCH_JMP
;
2024 reason
= TASK_SWITCH_GATE
;
2026 reason
= TASK_SWITCH_CALL
;
2028 if (reason
== TASK_SWITCH_GATE
) {
2030 case SVM_EXITINTINFO_TYPE_NMI
:
2031 svm
->vcpu
.arch
.nmi_injected
= false;
2033 case SVM_EXITINTINFO_TYPE_EXEPT
:
2034 kvm_clear_exception_queue(&svm
->vcpu
);
2036 case SVM_EXITINTINFO_TYPE_INTR
:
2037 kvm_clear_interrupt_queue(&svm
->vcpu
);
2044 if (reason
!= TASK_SWITCH_GATE
||
2045 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2046 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2047 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2048 skip_emulated_instruction(&svm
->vcpu
);
2050 return kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
);
2053 static int cpuid_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2055 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2056 kvm_emulate_cpuid(&svm
->vcpu
);
2060 static int iret_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2062 ++svm
->vcpu
.stat
.nmi_window_exits
;
2063 svm
->vmcb
->control
.intercept
&= ~(1UL << INTERCEPT_IRET
);
2064 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2068 static int invlpg_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2070 if (emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, 0) != EMULATE_DONE
)
2071 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2075 static int emulate_on_interception(struct vcpu_svm
*svm
,
2076 struct kvm_run
*kvm_run
)
2078 if (emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0) != EMULATE_DONE
)
2079 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2083 static int cr8_write_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2085 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2086 /* instruction emulation calls kvm_set_cr8() */
2087 emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0);
2088 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2089 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR8_MASK
;
2092 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2094 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2098 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2100 struct vcpu_svm
*svm
= to_svm(vcpu
);
2103 case MSR_IA32_TSC
: {
2107 *data
= svm
->vmcb
->control
.tsc_offset
+ tsc
;
2111 *data
= svm
->vmcb
->save
.star
;
2113 #ifdef CONFIG_X86_64
2115 *data
= svm
->vmcb
->save
.lstar
;
2118 *data
= svm
->vmcb
->save
.cstar
;
2120 case MSR_KERNEL_GS_BASE
:
2121 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2123 case MSR_SYSCALL_MASK
:
2124 *data
= svm
->vmcb
->save
.sfmask
;
2127 case MSR_IA32_SYSENTER_CS
:
2128 *data
= svm
->vmcb
->save
.sysenter_cs
;
2130 case MSR_IA32_SYSENTER_EIP
:
2131 *data
= svm
->sysenter_eip
;
2133 case MSR_IA32_SYSENTER_ESP
:
2134 *data
= svm
->sysenter_esp
;
2136 /* Nobody will change the following 5 values in the VMCB so
2137 we can safely return them on rdmsr. They will always be 0
2138 until LBRV is implemented. */
2139 case MSR_IA32_DEBUGCTLMSR
:
2140 *data
= svm
->vmcb
->save
.dbgctl
;
2142 case MSR_IA32_LASTBRANCHFROMIP
:
2143 *data
= svm
->vmcb
->save
.br_from
;
2145 case MSR_IA32_LASTBRANCHTOIP
:
2146 *data
= svm
->vmcb
->save
.br_to
;
2148 case MSR_IA32_LASTINTFROMIP
:
2149 *data
= svm
->vmcb
->save
.last_excp_from
;
2151 case MSR_IA32_LASTINTTOIP
:
2152 *data
= svm
->vmcb
->save
.last_excp_to
;
2154 case MSR_VM_HSAVE_PA
:
2155 *data
= svm
->nested
.hsave_msr
;
2160 case MSR_IA32_UCODE_REV
:
2164 return kvm_get_msr_common(vcpu
, ecx
, data
);
2169 static int rdmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2171 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2174 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
))
2175 kvm_inject_gp(&svm
->vcpu
, 0);
2177 trace_kvm_msr_read(ecx
, data
);
2179 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2180 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2181 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2182 skip_emulated_instruction(&svm
->vcpu
);
2187 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2189 struct vcpu_svm
*svm
= to_svm(vcpu
);
2192 case MSR_IA32_TSC
: {
2196 svm
->vmcb
->control
.tsc_offset
= data
- tsc
;
2200 svm
->vmcb
->save
.star
= data
;
2202 #ifdef CONFIG_X86_64
2204 svm
->vmcb
->save
.lstar
= data
;
2207 svm
->vmcb
->save
.cstar
= data
;
2209 case MSR_KERNEL_GS_BASE
:
2210 svm
->vmcb
->save
.kernel_gs_base
= data
;
2212 case MSR_SYSCALL_MASK
:
2213 svm
->vmcb
->save
.sfmask
= data
;
2216 case MSR_IA32_SYSENTER_CS
:
2217 svm
->vmcb
->save
.sysenter_cs
= data
;
2219 case MSR_IA32_SYSENTER_EIP
:
2220 svm
->sysenter_eip
= data
;
2221 svm
->vmcb
->save
.sysenter_eip
= data
;
2223 case MSR_IA32_SYSENTER_ESP
:
2224 svm
->sysenter_esp
= data
;
2225 svm
->vmcb
->save
.sysenter_esp
= data
;
2227 case MSR_IA32_DEBUGCTLMSR
:
2228 if (!svm_has(SVM_FEATURE_LBRV
)) {
2229 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2233 if (data
& DEBUGCTL_RESERVED_BITS
)
2236 svm
->vmcb
->save
.dbgctl
= data
;
2237 if (data
& (1ULL<<0))
2238 svm_enable_lbrv(svm
);
2240 svm_disable_lbrv(svm
);
2242 case MSR_VM_HSAVE_PA
:
2243 svm
->nested
.hsave_msr
= data
;
2247 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2250 return kvm_set_msr_common(vcpu
, ecx
, data
);
2255 static int wrmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2257 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2258 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2259 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2261 trace_kvm_msr_write(ecx
, data
);
2263 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2264 if (svm_set_msr(&svm
->vcpu
, ecx
, data
))
2265 kvm_inject_gp(&svm
->vcpu
, 0);
2267 skip_emulated_instruction(&svm
->vcpu
);
2271 static int msr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2273 if (svm
->vmcb
->control
.exit_info_1
)
2274 return wrmsr_interception(svm
, kvm_run
);
2276 return rdmsr_interception(svm
, kvm_run
);
2279 static int interrupt_window_interception(struct vcpu_svm
*svm
,
2280 struct kvm_run
*kvm_run
)
2282 svm_clear_vintr(svm
);
2283 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2285 * If the user space waits to inject interrupts, exit as soon as
2288 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
2289 kvm_run
->request_interrupt_window
&&
2290 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
2291 ++svm
->vcpu
.stat
.irq_window_exits
;
2292 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2299 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
,
2300 struct kvm_run
*kvm_run
) = {
2301 [SVM_EXIT_READ_CR0
] = emulate_on_interception
,
2302 [SVM_EXIT_READ_CR3
] = emulate_on_interception
,
2303 [SVM_EXIT_READ_CR4
] = emulate_on_interception
,
2304 [SVM_EXIT_READ_CR8
] = emulate_on_interception
,
2306 [SVM_EXIT_WRITE_CR0
] = emulate_on_interception
,
2307 [SVM_EXIT_WRITE_CR3
] = emulate_on_interception
,
2308 [SVM_EXIT_WRITE_CR4
] = emulate_on_interception
,
2309 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2310 [SVM_EXIT_READ_DR0
] = emulate_on_interception
,
2311 [SVM_EXIT_READ_DR1
] = emulate_on_interception
,
2312 [SVM_EXIT_READ_DR2
] = emulate_on_interception
,
2313 [SVM_EXIT_READ_DR3
] = emulate_on_interception
,
2314 [SVM_EXIT_WRITE_DR0
] = emulate_on_interception
,
2315 [SVM_EXIT_WRITE_DR1
] = emulate_on_interception
,
2316 [SVM_EXIT_WRITE_DR2
] = emulate_on_interception
,
2317 [SVM_EXIT_WRITE_DR3
] = emulate_on_interception
,
2318 [SVM_EXIT_WRITE_DR5
] = emulate_on_interception
,
2319 [SVM_EXIT_WRITE_DR7
] = emulate_on_interception
,
2320 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2321 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2322 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2323 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2324 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
2325 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2326 [SVM_EXIT_INTR
] = intr_interception
,
2327 [SVM_EXIT_NMI
] = nmi_interception
,
2328 [SVM_EXIT_SMI
] = nop_on_interception
,
2329 [SVM_EXIT_INIT
] = nop_on_interception
,
2330 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2331 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2332 [SVM_EXIT_CPUID
] = cpuid_interception
,
2333 [SVM_EXIT_IRET
] = iret_interception
,
2334 [SVM_EXIT_INVD
] = emulate_on_interception
,
2335 [SVM_EXIT_HLT
] = halt_interception
,
2336 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2337 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
2338 [SVM_EXIT_IOIO
] = io_interception
,
2339 [SVM_EXIT_MSR
] = msr_interception
,
2340 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2341 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2342 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2343 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2344 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2345 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2346 [SVM_EXIT_STGI
] = stgi_interception
,
2347 [SVM_EXIT_CLGI
] = clgi_interception
,
2348 [SVM_EXIT_SKINIT
] = invalid_op_interception
,
2349 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
2350 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
2351 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
2352 [SVM_EXIT_NPF
] = pf_interception
,
2355 static int handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2357 struct vcpu_svm
*svm
= to_svm(vcpu
);
2358 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2360 trace_kvm_exit(exit_code
, svm
->vmcb
->save
.rip
);
2362 if (is_nested(svm
)) {
2363 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2364 exit_code
, svm
->vmcb
->control
.exit_info_1
,
2365 svm
->vmcb
->control
.exit_info_2
, svm
->vmcb
->save
.rip
);
2366 if (nested_svm_exit_handled(svm
, true))
2370 svm_complete_interrupts(svm
);
2374 if ((vcpu
->arch
.cr0
^ svm
->vmcb
->save
.cr0
) & X86_CR0_PG
) {
2375 svm_set_cr0(vcpu
, svm
->vmcb
->save
.cr0
);
2378 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2379 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2381 kvm_mmu_reset_context(vcpu
);
2387 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2388 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2389 kvm_run
->fail_entry
.hardware_entry_failure_reason
2390 = svm
->vmcb
->control
.exit_code
;
2394 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2395 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2396 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
)
2397 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
2399 __func__
, svm
->vmcb
->control
.exit_int_info
,
2402 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2403 || !svm_exit_handlers
[exit_code
]) {
2404 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2405 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
2409 return svm_exit_handlers
[exit_code
](svm
, kvm_run
);
2412 static void reload_tss(struct kvm_vcpu
*vcpu
)
2414 int cpu
= raw_smp_processor_id();
2416 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2417 svm_data
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2421 static void pre_svm_run(struct vcpu_svm
*svm
)
2423 int cpu
= raw_smp_processor_id();
2425 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2427 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
2428 /* FIXME: handle wraparound of asid_generation */
2429 if (svm
->asid_generation
!= svm_data
->asid_generation
)
2430 new_asid(svm
, svm_data
);
2433 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
2435 struct vcpu_svm
*svm
= to_svm(vcpu
);
2437 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
2438 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
2439 svm
->vmcb
->control
.intercept
|= (1UL << INTERCEPT_IRET
);
2440 ++vcpu
->stat
.nmi_injections
;
2443 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
2445 struct vmcb_control_area
*control
;
2447 trace_kvm_inj_virq(irq
);
2449 ++svm
->vcpu
.stat
.irq_injections
;
2450 control
= &svm
->vmcb
->control
;
2451 control
->int_vector
= irq
;
2452 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
2453 control
->int_ctl
|= V_IRQ_MASK
|
2454 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
2457 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
2459 struct vcpu_svm
*svm
= to_svm(vcpu
);
2461 BUG_ON(!(gif_set(svm
)));
2463 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
2464 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
2467 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
2469 struct vcpu_svm
*svm
= to_svm(vcpu
);
2475 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR8_MASK
;
2478 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
2480 struct vcpu_svm
*svm
= to_svm(vcpu
);
2481 struct vmcb
*vmcb
= svm
->vmcb
;
2482 return !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2483 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2486 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2488 struct vcpu_svm
*svm
= to_svm(vcpu
);
2489 struct vmcb
*vmcb
= svm
->vmcb
;
2490 return (vmcb
->save
.rflags
& X86_EFLAGS_IF
) &&
2491 !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2496 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2498 struct vcpu_svm
*svm
= to_svm(vcpu
);
2499 nsvm_printk("Trying to open IRQ window\n");
2501 nested_svm_intr(svm
);
2503 /* In case GIF=0 we can't rely on the CPU to tell us when
2504 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2505 * The next time we get that intercept, this function will be
2506 * called again though and we'll get the vintr intercept. */
2509 svm_inject_irq(svm
, 0x0);
2513 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2515 struct vcpu_svm
*svm
= to_svm(vcpu
);
2517 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
2519 return; /* IRET will cause a vm exit */
2521 /* Something prevents NMI from been injected. Single step over
2522 possible problem (IRET or exception injection or interrupt
2524 vcpu
->arch
.singlestep
= true;
2525 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2526 update_db_intercept(vcpu
);
2529 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2534 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
2536 force_new_asid(vcpu
);
2539 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
2543 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
2545 struct vcpu_svm
*svm
= to_svm(vcpu
);
2547 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR8_MASK
)) {
2548 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
2549 kvm_set_cr8(vcpu
, cr8
);
2553 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
2555 struct vcpu_svm
*svm
= to_svm(vcpu
);
2558 cr8
= kvm_get_cr8(vcpu
);
2559 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
2560 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
2563 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
2567 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
2569 if (svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
2570 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
2572 svm
->vcpu
.arch
.nmi_injected
= false;
2573 kvm_clear_exception_queue(&svm
->vcpu
);
2574 kvm_clear_interrupt_queue(&svm
->vcpu
);
2576 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
2579 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
2580 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
2583 case SVM_EXITINTINFO_TYPE_NMI
:
2584 svm
->vcpu
.arch
.nmi_injected
= true;
2586 case SVM_EXITINTINFO_TYPE_EXEPT
:
2587 /* In case of software exception do not reinject an exception
2588 vector, but re-execute and instruction instead */
2591 if (kvm_exception_is_soft(vector
))
2593 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
2594 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
2595 kvm_queue_exception_e(&svm
->vcpu
, vector
, err
);
2598 kvm_queue_exception(&svm
->vcpu
, vector
);
2600 case SVM_EXITINTINFO_TYPE_INTR
:
2601 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
2608 #ifdef CONFIG_X86_64
2614 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2616 struct vcpu_svm
*svm
= to_svm(vcpu
);
2621 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2622 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2623 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
2627 sync_lapic_to_cr8(vcpu
);
2629 save_host_msrs(vcpu
);
2630 fs_selector
= kvm_read_fs();
2631 gs_selector
= kvm_read_gs();
2632 ldt_selector
= kvm_read_ldt();
2633 if (!is_nested(svm
))
2634 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
2635 /* required for live migration with NPT */
2637 svm
->vmcb
->save
.cr3
= vcpu
->arch
.cr3
;
2644 "push %%"R
"bp; \n\t"
2645 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
2646 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
2647 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
2648 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
2649 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
2650 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
2651 #ifdef CONFIG_X86_64
2652 "mov %c[r8](%[svm]), %%r8 \n\t"
2653 "mov %c[r9](%[svm]), %%r9 \n\t"
2654 "mov %c[r10](%[svm]), %%r10 \n\t"
2655 "mov %c[r11](%[svm]), %%r11 \n\t"
2656 "mov %c[r12](%[svm]), %%r12 \n\t"
2657 "mov %c[r13](%[svm]), %%r13 \n\t"
2658 "mov %c[r14](%[svm]), %%r14 \n\t"
2659 "mov %c[r15](%[svm]), %%r15 \n\t"
2662 /* Enter guest mode */
2664 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
2665 __ex(SVM_VMLOAD
) "\n\t"
2666 __ex(SVM_VMRUN
) "\n\t"
2667 __ex(SVM_VMSAVE
) "\n\t"
2670 /* Save guest registers, load host registers */
2671 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
2672 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
2673 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
2674 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
2675 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
2676 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
2677 #ifdef CONFIG_X86_64
2678 "mov %%r8, %c[r8](%[svm]) \n\t"
2679 "mov %%r9, %c[r9](%[svm]) \n\t"
2680 "mov %%r10, %c[r10](%[svm]) \n\t"
2681 "mov %%r11, %c[r11](%[svm]) \n\t"
2682 "mov %%r12, %c[r12](%[svm]) \n\t"
2683 "mov %%r13, %c[r13](%[svm]) \n\t"
2684 "mov %%r14, %c[r14](%[svm]) \n\t"
2685 "mov %%r15, %c[r15](%[svm]) \n\t"
2690 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
2691 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2692 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2693 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2694 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2695 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2696 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
2697 #ifdef CONFIG_X86_64
2698 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2699 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2700 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2701 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2702 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2703 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2704 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2705 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
2708 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
2709 #ifdef CONFIG_X86_64
2710 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2714 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
2715 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
2716 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
2717 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
2719 kvm_load_fs(fs_selector
);
2720 kvm_load_gs(gs_selector
);
2721 kvm_load_ldt(ldt_selector
);
2722 load_host_msrs(vcpu
);
2726 local_irq_disable();
2730 sync_cr8_to_lapic(vcpu
);
2735 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
2736 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
2742 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
2744 struct vcpu_svm
*svm
= to_svm(vcpu
);
2747 svm
->vmcb
->control
.nested_cr3
= root
;
2748 force_new_asid(vcpu
);
2752 svm
->vmcb
->save
.cr3
= root
;
2753 force_new_asid(vcpu
);
2755 if (vcpu
->fpu_active
) {
2756 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
2757 svm
->vmcb
->save
.cr0
|= X86_CR0_TS
;
2758 vcpu
->fpu_active
= 0;
2762 static int is_disabled(void)
2766 rdmsrl(MSR_VM_CR
, vm_cr
);
2767 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
2774 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2777 * Patch in the VMMCALL instruction:
2779 hypercall
[0] = 0x0f;
2780 hypercall
[1] = 0x01;
2781 hypercall
[2] = 0xd9;
2784 static void svm_check_processor_compat(void *rtn
)
2789 static bool svm_cpu_has_accelerated_tpr(void)
2794 static int get_npt_level(void)
2796 #ifdef CONFIG_X86_64
2797 return PT64_ROOT_LEVEL
;
2799 return PT32E_ROOT_LEVEL
;
2803 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
2808 static const struct trace_print_flags svm_exit_reasons_str
[] = {
2809 { SVM_EXIT_READ_CR0
, "read_cr0" },
2810 { SVM_EXIT_READ_CR3
, "read_cr3" },
2811 { SVM_EXIT_READ_CR4
, "read_cr4" },
2812 { SVM_EXIT_READ_CR8
, "read_cr8" },
2813 { SVM_EXIT_WRITE_CR0
, "write_cr0" },
2814 { SVM_EXIT_WRITE_CR3
, "write_cr3" },
2815 { SVM_EXIT_WRITE_CR4
, "write_cr4" },
2816 { SVM_EXIT_WRITE_CR8
, "write_cr8" },
2817 { SVM_EXIT_READ_DR0
, "read_dr0" },
2818 { SVM_EXIT_READ_DR1
, "read_dr1" },
2819 { SVM_EXIT_READ_DR2
, "read_dr2" },
2820 { SVM_EXIT_READ_DR3
, "read_dr3" },
2821 { SVM_EXIT_WRITE_DR0
, "write_dr0" },
2822 { SVM_EXIT_WRITE_DR1
, "write_dr1" },
2823 { SVM_EXIT_WRITE_DR2
, "write_dr2" },
2824 { SVM_EXIT_WRITE_DR3
, "write_dr3" },
2825 { SVM_EXIT_WRITE_DR5
, "write_dr5" },
2826 { SVM_EXIT_WRITE_DR7
, "write_dr7" },
2827 { SVM_EXIT_EXCP_BASE
+ DB_VECTOR
, "DB excp" },
2828 { SVM_EXIT_EXCP_BASE
+ BP_VECTOR
, "BP excp" },
2829 { SVM_EXIT_EXCP_BASE
+ UD_VECTOR
, "UD excp" },
2830 { SVM_EXIT_EXCP_BASE
+ PF_VECTOR
, "PF excp" },
2831 { SVM_EXIT_EXCP_BASE
+ NM_VECTOR
, "NM excp" },
2832 { SVM_EXIT_EXCP_BASE
+ MC_VECTOR
, "MC excp" },
2833 { SVM_EXIT_INTR
, "interrupt" },
2834 { SVM_EXIT_NMI
, "nmi" },
2835 { SVM_EXIT_SMI
, "smi" },
2836 { SVM_EXIT_INIT
, "init" },
2837 { SVM_EXIT_VINTR
, "vintr" },
2838 { SVM_EXIT_CPUID
, "cpuid" },
2839 { SVM_EXIT_INVD
, "invd" },
2840 { SVM_EXIT_HLT
, "hlt" },
2841 { SVM_EXIT_INVLPG
, "invlpg" },
2842 { SVM_EXIT_INVLPGA
, "invlpga" },
2843 { SVM_EXIT_IOIO
, "io" },
2844 { SVM_EXIT_MSR
, "msr" },
2845 { SVM_EXIT_TASK_SWITCH
, "task_switch" },
2846 { SVM_EXIT_SHUTDOWN
, "shutdown" },
2847 { SVM_EXIT_VMRUN
, "vmrun" },
2848 { SVM_EXIT_VMMCALL
, "hypercall" },
2849 { SVM_EXIT_VMLOAD
, "vmload" },
2850 { SVM_EXIT_VMSAVE
, "vmsave" },
2851 { SVM_EXIT_STGI
, "stgi" },
2852 { SVM_EXIT_CLGI
, "clgi" },
2853 { SVM_EXIT_SKINIT
, "skinit" },
2854 { SVM_EXIT_WBINVD
, "wbinvd" },
2855 { SVM_EXIT_MONITOR
, "monitor" },
2856 { SVM_EXIT_MWAIT
, "mwait" },
2857 { SVM_EXIT_NPF
, "npf" },
2861 static bool svm_gb_page_enable(void)
2866 static struct kvm_x86_ops svm_x86_ops
= {
2867 .cpu_has_kvm_support
= has_svm
,
2868 .disabled_by_bios
= is_disabled
,
2869 .hardware_setup
= svm_hardware_setup
,
2870 .hardware_unsetup
= svm_hardware_unsetup
,
2871 .check_processor_compatibility
= svm_check_processor_compat
,
2872 .hardware_enable
= svm_hardware_enable
,
2873 .hardware_disable
= svm_hardware_disable
,
2874 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
2876 .vcpu_create
= svm_create_vcpu
,
2877 .vcpu_free
= svm_free_vcpu
,
2878 .vcpu_reset
= svm_vcpu_reset
,
2880 .prepare_guest_switch
= svm_prepare_guest_switch
,
2881 .vcpu_load
= svm_vcpu_load
,
2882 .vcpu_put
= svm_vcpu_put
,
2884 .set_guest_debug
= svm_guest_debug
,
2885 .get_msr
= svm_get_msr
,
2886 .set_msr
= svm_set_msr
,
2887 .get_segment_base
= svm_get_segment_base
,
2888 .get_segment
= svm_get_segment
,
2889 .set_segment
= svm_set_segment
,
2890 .get_cpl
= svm_get_cpl
,
2891 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
2892 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
2893 .set_cr0
= svm_set_cr0
,
2894 .set_cr3
= svm_set_cr3
,
2895 .set_cr4
= svm_set_cr4
,
2896 .set_efer
= svm_set_efer
,
2897 .get_idt
= svm_get_idt
,
2898 .set_idt
= svm_set_idt
,
2899 .get_gdt
= svm_get_gdt
,
2900 .set_gdt
= svm_set_gdt
,
2901 .get_dr
= svm_get_dr
,
2902 .set_dr
= svm_set_dr
,
2903 .cache_reg
= svm_cache_reg
,
2904 .get_rflags
= svm_get_rflags
,
2905 .set_rflags
= svm_set_rflags
,
2907 .tlb_flush
= svm_flush_tlb
,
2909 .run
= svm_vcpu_run
,
2910 .handle_exit
= handle_exit
,
2911 .skip_emulated_instruction
= skip_emulated_instruction
,
2912 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
2913 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
2914 .patch_hypercall
= svm_patch_hypercall
,
2915 .set_irq
= svm_set_irq
,
2916 .set_nmi
= svm_inject_nmi
,
2917 .queue_exception
= svm_queue_exception
,
2918 .interrupt_allowed
= svm_interrupt_allowed
,
2919 .nmi_allowed
= svm_nmi_allowed
,
2920 .enable_nmi_window
= enable_nmi_window
,
2921 .enable_irq_window
= enable_irq_window
,
2922 .update_cr8_intercept
= update_cr8_intercept
,
2924 .set_tss_addr
= svm_set_tss_addr
,
2925 .get_tdp_level
= get_npt_level
,
2926 .get_mt_mask
= svm_get_mt_mask
,
2928 .exit_reasons_str
= svm_exit_reasons_str
,
2929 .gb_page_enable
= svm_gb_page_enable
,
2932 static int __init
svm_init(void)
2934 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
2938 static void __exit
svm_exit(void)
2943 module_init(svm_init
)
2944 module_exit(svm_exit
)