KVM: SVM: clean up nested vmrun path
[linux/fpc-iii.git] / arch / x86 / kvm / svm.c
blob68b6d4cdd153f7d825072d5a8b6704ba8344b774
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
30 #include <asm/desc.h>
32 #include <asm/virtext.h>
33 #include "trace.h"
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
52 /* Turn on to get debugging output*/
53 /* #define NESTED_DEBUG */
55 #ifdef NESTED_DEBUG
56 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
57 #else
58 #define nsvm_printk(fmt, args...) do {} while(0)
59 #endif
61 static const u32 host_save_user_msrs[] = {
62 #ifdef CONFIG_X86_64
63 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
64 MSR_FS_BASE,
65 #endif
66 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
69 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
71 struct kvm_vcpu;
73 struct nested_state {
74 struct vmcb *hsave;
75 u64 hsave_msr;
76 u64 vmcb;
78 /* These are the merged vectors */
79 u32 *msrpm;
81 /* gpa pointers to the real vectors */
82 u64 vmcb_msrpm;
84 /* cache for intercepts of the guest */
85 u16 intercept_cr_read;
86 u16 intercept_cr_write;
87 u16 intercept_dr_read;
88 u16 intercept_dr_write;
89 u32 intercept_exceptions;
90 u64 intercept;
94 struct vcpu_svm {
95 struct kvm_vcpu vcpu;
96 struct vmcb *vmcb;
97 unsigned long vmcb_pa;
98 struct svm_cpu_data *svm_data;
99 uint64_t asid_generation;
100 uint64_t sysenter_esp;
101 uint64_t sysenter_eip;
103 u64 next_rip;
105 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
106 u64 host_gs_base;
108 u32 *msrpm;
110 struct nested_state nested;
113 /* enable NPT for AMD64 and X86 with PAE */
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 static bool npt_enabled = true;
116 #else
117 static bool npt_enabled = false;
118 #endif
119 static int npt = 1;
121 module_param(npt, int, S_IRUGO);
123 static int nested = 0;
124 module_param(nested, int, S_IRUGO);
126 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
127 static void svm_complete_interrupts(struct vcpu_svm *svm);
129 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
130 static int nested_svm_vmexit(struct vcpu_svm *svm);
131 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
132 bool has_error_code, u32 error_code);
134 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
136 return container_of(vcpu, struct vcpu_svm, vcpu);
139 static inline bool is_nested(struct vcpu_svm *svm)
141 return svm->nested.vmcb;
144 static inline void enable_gif(struct vcpu_svm *svm)
146 svm->vcpu.arch.hflags |= HF_GIF_MASK;
149 static inline void disable_gif(struct vcpu_svm *svm)
151 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
154 static inline bool gif_set(struct vcpu_svm *svm)
156 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
159 static unsigned long iopm_base;
161 struct kvm_ldttss_desc {
162 u16 limit0;
163 u16 base0;
164 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
165 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
166 u32 base3;
167 u32 zero1;
168 } __attribute__((packed));
170 struct svm_cpu_data {
171 int cpu;
173 u64 asid_generation;
174 u32 max_asid;
175 u32 next_asid;
176 struct kvm_ldttss_desc *tss_desc;
178 struct page *save_area;
181 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
182 static uint32_t svm_features;
184 struct svm_init_data {
185 int cpu;
186 int r;
189 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
191 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
192 #define MSRS_RANGE_SIZE 2048
193 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
195 #define MAX_INST_SIZE 15
197 static inline u32 svm_has(u32 feat)
199 return svm_features & feat;
202 static inline void clgi(void)
204 asm volatile (__ex(SVM_CLGI));
207 static inline void stgi(void)
209 asm volatile (__ex(SVM_STGI));
212 static inline void invlpga(unsigned long addr, u32 asid)
214 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
217 static inline void force_new_asid(struct kvm_vcpu *vcpu)
219 to_svm(vcpu)->asid_generation--;
222 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
224 force_new_asid(vcpu);
227 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
229 if (!npt_enabled && !(efer & EFER_LMA))
230 efer &= ~EFER_LME;
232 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
233 vcpu->arch.shadow_efer = efer;
236 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
237 bool has_error_code, u32 error_code)
239 struct vcpu_svm *svm = to_svm(vcpu);
241 /* If we are within a nested VM we'd better #VMEXIT and let the
242 guest handle the exception */
243 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
244 return;
246 svm->vmcb->control.event_inj = nr
247 | SVM_EVTINJ_VALID
248 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
249 | SVM_EVTINJ_TYPE_EXEPT;
250 svm->vmcb->control.event_inj_err = error_code;
253 static int is_external_interrupt(u32 info)
255 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
256 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
259 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
261 struct vcpu_svm *svm = to_svm(vcpu);
262 u32 ret = 0;
264 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
265 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
266 return ret & mask;
269 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
271 struct vcpu_svm *svm = to_svm(vcpu);
273 if (mask == 0)
274 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
275 else
276 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
280 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
282 struct vcpu_svm *svm = to_svm(vcpu);
284 if (!svm->next_rip) {
285 if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) !=
286 EMULATE_DONE)
287 printk(KERN_DEBUG "%s: NOP\n", __func__);
288 return;
290 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
291 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
292 __func__, kvm_rip_read(vcpu), svm->next_rip);
294 kvm_rip_write(vcpu, svm->next_rip);
295 svm_set_interrupt_shadow(vcpu, 0);
298 static int has_svm(void)
300 const char *msg;
302 if (!cpu_has_svm(&msg)) {
303 printk(KERN_INFO "has_svm: %s\n", msg);
304 return 0;
307 return 1;
310 static void svm_hardware_disable(void *garbage)
312 cpu_svm_disable();
315 static void svm_hardware_enable(void *garbage)
318 struct svm_cpu_data *svm_data;
319 uint64_t efer;
320 struct descriptor_table gdt_descr;
321 struct desc_struct *gdt;
322 int me = raw_smp_processor_id();
324 if (!has_svm()) {
325 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
326 return;
328 svm_data = per_cpu(svm_data, me);
330 if (!svm_data) {
331 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
332 me);
333 return;
336 svm_data->asid_generation = 1;
337 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
338 svm_data->next_asid = svm_data->max_asid + 1;
340 kvm_get_gdt(&gdt_descr);
341 gdt = (struct desc_struct *)gdt_descr.base;
342 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
344 rdmsrl(MSR_EFER, efer);
345 wrmsrl(MSR_EFER, efer | EFER_SVME);
347 wrmsrl(MSR_VM_HSAVE_PA,
348 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
351 static void svm_cpu_uninit(int cpu)
353 struct svm_cpu_data *svm_data
354 = per_cpu(svm_data, raw_smp_processor_id());
356 if (!svm_data)
357 return;
359 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
360 __free_page(svm_data->save_area);
361 kfree(svm_data);
364 static int svm_cpu_init(int cpu)
366 struct svm_cpu_data *svm_data;
367 int r;
369 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
370 if (!svm_data)
371 return -ENOMEM;
372 svm_data->cpu = cpu;
373 svm_data->save_area = alloc_page(GFP_KERNEL);
374 r = -ENOMEM;
375 if (!svm_data->save_area)
376 goto err_1;
378 per_cpu(svm_data, cpu) = svm_data;
380 return 0;
382 err_1:
383 kfree(svm_data);
384 return r;
388 static void set_msr_interception(u32 *msrpm, unsigned msr,
389 int read, int write)
391 int i;
393 for (i = 0; i < NUM_MSR_MAPS; i++) {
394 if (msr >= msrpm_ranges[i] &&
395 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
396 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
397 msrpm_ranges[i]) * 2;
399 u32 *base = msrpm + (msr_offset / 32);
400 u32 msr_shift = msr_offset % 32;
401 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
402 *base = (*base & ~(0x3 << msr_shift)) |
403 (mask << msr_shift);
404 return;
407 BUG();
410 static void svm_vcpu_init_msrpm(u32 *msrpm)
412 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
414 #ifdef CONFIG_X86_64
415 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
416 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
417 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
418 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
419 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
420 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
421 #endif
422 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
423 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
426 static void svm_enable_lbrv(struct vcpu_svm *svm)
428 u32 *msrpm = svm->msrpm;
430 svm->vmcb->control.lbr_ctl = 1;
431 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
432 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
433 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
434 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
437 static void svm_disable_lbrv(struct vcpu_svm *svm)
439 u32 *msrpm = svm->msrpm;
441 svm->vmcb->control.lbr_ctl = 0;
442 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
443 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
444 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
445 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
448 static __init int svm_hardware_setup(void)
450 int cpu;
451 struct page *iopm_pages;
452 void *iopm_va;
453 int r;
455 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
457 if (!iopm_pages)
458 return -ENOMEM;
460 iopm_va = page_address(iopm_pages);
461 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
462 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
464 if (boot_cpu_has(X86_FEATURE_NX))
465 kvm_enable_efer_bits(EFER_NX);
467 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
468 kvm_enable_efer_bits(EFER_FFXSR);
470 if (nested) {
471 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
472 kvm_enable_efer_bits(EFER_SVME);
475 for_each_online_cpu(cpu) {
476 r = svm_cpu_init(cpu);
477 if (r)
478 goto err;
481 svm_features = cpuid_edx(SVM_CPUID_FUNC);
483 if (!svm_has(SVM_FEATURE_NPT))
484 npt_enabled = false;
486 if (npt_enabled && !npt) {
487 printk(KERN_INFO "kvm: Nested Paging disabled\n");
488 npt_enabled = false;
491 if (npt_enabled) {
492 printk(KERN_INFO "kvm: Nested Paging enabled\n");
493 kvm_enable_tdp();
494 } else
495 kvm_disable_tdp();
497 return 0;
499 err:
500 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
501 iopm_base = 0;
502 return r;
505 static __exit void svm_hardware_unsetup(void)
507 int cpu;
509 for_each_online_cpu(cpu)
510 svm_cpu_uninit(cpu);
512 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
513 iopm_base = 0;
516 static void init_seg(struct vmcb_seg *seg)
518 seg->selector = 0;
519 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
520 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
521 seg->limit = 0xffff;
522 seg->base = 0;
525 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
527 seg->selector = 0;
528 seg->attrib = SVM_SELECTOR_P_MASK | type;
529 seg->limit = 0xffff;
530 seg->base = 0;
533 static void init_vmcb(struct vcpu_svm *svm)
535 struct vmcb_control_area *control = &svm->vmcb->control;
536 struct vmcb_save_area *save = &svm->vmcb->save;
538 control->intercept_cr_read = INTERCEPT_CR0_MASK |
539 INTERCEPT_CR3_MASK |
540 INTERCEPT_CR4_MASK;
542 control->intercept_cr_write = INTERCEPT_CR0_MASK |
543 INTERCEPT_CR3_MASK |
544 INTERCEPT_CR4_MASK |
545 INTERCEPT_CR8_MASK;
547 control->intercept_dr_read = INTERCEPT_DR0_MASK |
548 INTERCEPT_DR1_MASK |
549 INTERCEPT_DR2_MASK |
550 INTERCEPT_DR3_MASK;
552 control->intercept_dr_write = INTERCEPT_DR0_MASK |
553 INTERCEPT_DR1_MASK |
554 INTERCEPT_DR2_MASK |
555 INTERCEPT_DR3_MASK |
556 INTERCEPT_DR5_MASK |
557 INTERCEPT_DR7_MASK;
559 control->intercept_exceptions = (1 << PF_VECTOR) |
560 (1 << UD_VECTOR) |
561 (1 << MC_VECTOR);
564 control->intercept = (1ULL << INTERCEPT_INTR) |
565 (1ULL << INTERCEPT_NMI) |
566 (1ULL << INTERCEPT_SMI) |
567 (1ULL << INTERCEPT_CPUID) |
568 (1ULL << INTERCEPT_INVD) |
569 (1ULL << INTERCEPT_HLT) |
570 (1ULL << INTERCEPT_INVLPG) |
571 (1ULL << INTERCEPT_INVLPGA) |
572 (1ULL << INTERCEPT_IOIO_PROT) |
573 (1ULL << INTERCEPT_MSR_PROT) |
574 (1ULL << INTERCEPT_TASK_SWITCH) |
575 (1ULL << INTERCEPT_SHUTDOWN) |
576 (1ULL << INTERCEPT_VMRUN) |
577 (1ULL << INTERCEPT_VMMCALL) |
578 (1ULL << INTERCEPT_VMLOAD) |
579 (1ULL << INTERCEPT_VMSAVE) |
580 (1ULL << INTERCEPT_STGI) |
581 (1ULL << INTERCEPT_CLGI) |
582 (1ULL << INTERCEPT_SKINIT) |
583 (1ULL << INTERCEPT_WBINVD) |
584 (1ULL << INTERCEPT_MONITOR) |
585 (1ULL << INTERCEPT_MWAIT);
587 control->iopm_base_pa = iopm_base;
588 control->msrpm_base_pa = __pa(svm->msrpm);
589 control->tsc_offset = 0;
590 control->int_ctl = V_INTR_MASKING_MASK;
592 init_seg(&save->es);
593 init_seg(&save->ss);
594 init_seg(&save->ds);
595 init_seg(&save->fs);
596 init_seg(&save->gs);
598 save->cs.selector = 0xf000;
599 /* Executable/Readable Code Segment */
600 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
601 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
602 save->cs.limit = 0xffff;
604 * cs.base should really be 0xffff0000, but vmx can't handle that, so
605 * be consistent with it.
607 * Replace when we have real mode working for vmx.
609 save->cs.base = 0xf0000;
611 save->gdtr.limit = 0xffff;
612 save->idtr.limit = 0xffff;
614 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
615 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
617 save->efer = EFER_SVME;
618 save->dr6 = 0xffff0ff0;
619 save->dr7 = 0x400;
620 save->rflags = 2;
621 save->rip = 0x0000fff0;
622 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
625 * cr0 val on cpu init should be 0x60000010, we enable cpu
626 * cache by default. the orderly way is to enable cache in bios.
628 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
629 save->cr4 = X86_CR4_PAE;
630 /* rdx = ?? */
632 if (npt_enabled) {
633 /* Setup VMCB for Nested Paging */
634 control->nested_ctl = 1;
635 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
636 (1ULL << INTERCEPT_INVLPG));
637 control->intercept_exceptions &= ~(1 << PF_VECTOR);
638 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
639 INTERCEPT_CR3_MASK);
640 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
641 INTERCEPT_CR3_MASK);
642 save->g_pat = 0x0007040600070406ULL;
643 /* enable caching because the QEMU Bios doesn't enable it */
644 save->cr0 = X86_CR0_ET;
645 save->cr3 = 0;
646 save->cr4 = 0;
648 force_new_asid(&svm->vcpu);
650 svm->nested.vmcb = 0;
651 svm->vcpu.arch.hflags = 0;
653 enable_gif(svm);
656 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
658 struct vcpu_svm *svm = to_svm(vcpu);
660 init_vmcb(svm);
662 if (!kvm_vcpu_is_bsp(vcpu)) {
663 kvm_rip_write(vcpu, 0);
664 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
665 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
667 vcpu->arch.regs_avail = ~0;
668 vcpu->arch.regs_dirty = ~0;
670 return 0;
673 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
675 struct vcpu_svm *svm;
676 struct page *page;
677 struct page *msrpm_pages;
678 struct page *hsave_page;
679 struct page *nested_msrpm_pages;
680 int err;
682 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
683 if (!svm) {
684 err = -ENOMEM;
685 goto out;
688 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
689 if (err)
690 goto free_svm;
692 page = alloc_page(GFP_KERNEL);
693 if (!page) {
694 err = -ENOMEM;
695 goto uninit;
698 err = -ENOMEM;
699 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
700 if (!msrpm_pages)
701 goto uninit;
703 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
704 if (!nested_msrpm_pages)
705 goto uninit;
707 svm->msrpm = page_address(msrpm_pages);
708 svm_vcpu_init_msrpm(svm->msrpm);
710 hsave_page = alloc_page(GFP_KERNEL);
711 if (!hsave_page)
712 goto uninit;
713 svm->nested.hsave = page_address(hsave_page);
715 svm->nested.msrpm = page_address(nested_msrpm_pages);
717 svm->vmcb = page_address(page);
718 clear_page(svm->vmcb);
719 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
720 svm->asid_generation = 0;
721 init_vmcb(svm);
723 fx_init(&svm->vcpu);
724 svm->vcpu.fpu_active = 1;
725 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
726 if (kvm_vcpu_is_bsp(&svm->vcpu))
727 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
729 return &svm->vcpu;
731 uninit:
732 kvm_vcpu_uninit(&svm->vcpu);
733 free_svm:
734 kmem_cache_free(kvm_vcpu_cache, svm);
735 out:
736 return ERR_PTR(err);
739 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
741 struct vcpu_svm *svm = to_svm(vcpu);
743 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
744 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
745 __free_page(virt_to_page(svm->nested.hsave));
746 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
747 kvm_vcpu_uninit(vcpu);
748 kmem_cache_free(kvm_vcpu_cache, svm);
751 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
753 struct vcpu_svm *svm = to_svm(vcpu);
754 int i;
756 if (unlikely(cpu != vcpu->cpu)) {
757 u64 tsc_this, delta;
760 * Make sure that the guest sees a monotonically
761 * increasing TSC.
763 rdtscll(tsc_this);
764 delta = vcpu->arch.host_tsc - tsc_this;
765 svm->vmcb->control.tsc_offset += delta;
766 vcpu->cpu = cpu;
767 kvm_migrate_timers(vcpu);
768 svm->asid_generation = 0;
771 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
772 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
775 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
777 struct vcpu_svm *svm = to_svm(vcpu);
778 int i;
780 ++vcpu->stat.host_state_reload;
781 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
782 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
784 rdtscll(vcpu->arch.host_tsc);
787 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
789 return to_svm(vcpu)->vmcb->save.rflags;
792 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
794 to_svm(vcpu)->vmcb->save.rflags = rflags;
797 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
799 switch (reg) {
800 case VCPU_EXREG_PDPTR:
801 BUG_ON(!npt_enabled);
802 load_pdptrs(vcpu, vcpu->arch.cr3);
803 break;
804 default:
805 BUG();
809 static void svm_set_vintr(struct vcpu_svm *svm)
811 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
814 static void svm_clear_vintr(struct vcpu_svm *svm)
816 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
819 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
821 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
823 switch (seg) {
824 case VCPU_SREG_CS: return &save->cs;
825 case VCPU_SREG_DS: return &save->ds;
826 case VCPU_SREG_ES: return &save->es;
827 case VCPU_SREG_FS: return &save->fs;
828 case VCPU_SREG_GS: return &save->gs;
829 case VCPU_SREG_SS: return &save->ss;
830 case VCPU_SREG_TR: return &save->tr;
831 case VCPU_SREG_LDTR: return &save->ldtr;
833 BUG();
834 return NULL;
837 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
839 struct vmcb_seg *s = svm_seg(vcpu, seg);
841 return s->base;
844 static void svm_get_segment(struct kvm_vcpu *vcpu,
845 struct kvm_segment *var, int seg)
847 struct vmcb_seg *s = svm_seg(vcpu, seg);
849 var->base = s->base;
850 var->limit = s->limit;
851 var->selector = s->selector;
852 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
853 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
854 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
855 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
856 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
857 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
858 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
859 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
861 /* AMD's VMCB does not have an explicit unusable field, so emulate it
862 * for cross vendor migration purposes by "not present"
864 var->unusable = !var->present || (var->type == 0);
866 switch (seg) {
867 case VCPU_SREG_CS:
869 * SVM always stores 0 for the 'G' bit in the CS selector in
870 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
871 * Intel's VMENTRY has a check on the 'G' bit.
873 var->g = s->limit > 0xfffff;
874 break;
875 case VCPU_SREG_TR:
877 * Work around a bug where the busy flag in the tr selector
878 * isn't exposed
880 var->type |= 0x2;
881 break;
882 case VCPU_SREG_DS:
883 case VCPU_SREG_ES:
884 case VCPU_SREG_FS:
885 case VCPU_SREG_GS:
887 * The accessed bit must always be set in the segment
888 * descriptor cache, although it can be cleared in the
889 * descriptor, the cached bit always remains at 1. Since
890 * Intel has a check on this, set it here to support
891 * cross-vendor migration.
893 if (!var->unusable)
894 var->type |= 0x1;
895 break;
896 case VCPU_SREG_SS:
897 /* On AMD CPUs sometimes the DB bit in the segment
898 * descriptor is left as 1, although the whole segment has
899 * been made unusable. Clear it here to pass an Intel VMX
900 * entry check when cross vendor migrating.
902 if (var->unusable)
903 var->db = 0;
904 break;
908 static int svm_get_cpl(struct kvm_vcpu *vcpu)
910 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
912 return save->cpl;
915 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
917 struct vcpu_svm *svm = to_svm(vcpu);
919 dt->limit = svm->vmcb->save.idtr.limit;
920 dt->base = svm->vmcb->save.idtr.base;
923 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
925 struct vcpu_svm *svm = to_svm(vcpu);
927 svm->vmcb->save.idtr.limit = dt->limit;
928 svm->vmcb->save.idtr.base = dt->base ;
931 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
933 struct vcpu_svm *svm = to_svm(vcpu);
935 dt->limit = svm->vmcb->save.gdtr.limit;
936 dt->base = svm->vmcb->save.gdtr.base;
939 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
941 struct vcpu_svm *svm = to_svm(vcpu);
943 svm->vmcb->save.gdtr.limit = dt->limit;
944 svm->vmcb->save.gdtr.base = dt->base ;
947 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
951 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
953 struct vcpu_svm *svm = to_svm(vcpu);
955 #ifdef CONFIG_X86_64
956 if (vcpu->arch.shadow_efer & EFER_LME) {
957 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
958 vcpu->arch.shadow_efer |= EFER_LMA;
959 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
962 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
963 vcpu->arch.shadow_efer &= ~EFER_LMA;
964 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
967 #endif
968 if (npt_enabled)
969 goto set;
971 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
972 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
973 vcpu->fpu_active = 1;
976 vcpu->arch.cr0 = cr0;
977 cr0 |= X86_CR0_PG | X86_CR0_WP;
978 if (!vcpu->fpu_active) {
979 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
980 cr0 |= X86_CR0_TS;
982 set:
984 * re-enable caching here because the QEMU bios
985 * does not do it - this results in some delay at
986 * reboot
988 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
989 svm->vmcb->save.cr0 = cr0;
992 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
994 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
995 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
997 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
998 force_new_asid(vcpu);
1000 vcpu->arch.cr4 = cr4;
1001 if (!npt_enabled)
1002 cr4 |= X86_CR4_PAE;
1003 cr4 |= host_cr4_mce;
1004 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1007 static void svm_set_segment(struct kvm_vcpu *vcpu,
1008 struct kvm_segment *var, int seg)
1010 struct vcpu_svm *svm = to_svm(vcpu);
1011 struct vmcb_seg *s = svm_seg(vcpu, seg);
1013 s->base = var->base;
1014 s->limit = var->limit;
1015 s->selector = var->selector;
1016 if (var->unusable)
1017 s->attrib = 0;
1018 else {
1019 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1020 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1021 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1022 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1023 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1024 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1025 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1026 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1028 if (seg == VCPU_SREG_CS)
1029 svm->vmcb->save.cpl
1030 = (svm->vmcb->save.cs.attrib
1031 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1035 static void update_db_intercept(struct kvm_vcpu *vcpu)
1037 struct vcpu_svm *svm = to_svm(vcpu);
1039 svm->vmcb->control.intercept_exceptions &=
1040 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1042 if (vcpu->arch.singlestep)
1043 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1045 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1046 if (vcpu->guest_debug &
1047 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1048 svm->vmcb->control.intercept_exceptions |=
1049 1 << DB_VECTOR;
1050 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1051 svm->vmcb->control.intercept_exceptions |=
1052 1 << BP_VECTOR;
1053 } else
1054 vcpu->guest_debug = 0;
1057 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1059 int old_debug = vcpu->guest_debug;
1060 struct vcpu_svm *svm = to_svm(vcpu);
1062 vcpu->guest_debug = dbg->control;
1064 update_db_intercept(vcpu);
1066 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1067 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1068 else
1069 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1071 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1072 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1073 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1074 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1076 return 0;
1079 static void load_host_msrs(struct kvm_vcpu *vcpu)
1081 #ifdef CONFIG_X86_64
1082 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1083 #endif
1086 static void save_host_msrs(struct kvm_vcpu *vcpu)
1088 #ifdef CONFIG_X86_64
1089 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1090 #endif
1093 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1095 if (svm_data->next_asid > svm_data->max_asid) {
1096 ++svm_data->asid_generation;
1097 svm_data->next_asid = 1;
1098 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1101 svm->asid_generation = svm_data->asid_generation;
1102 svm->vmcb->control.asid = svm_data->next_asid++;
1105 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1107 struct vcpu_svm *svm = to_svm(vcpu);
1108 unsigned long val;
1110 switch (dr) {
1111 case 0 ... 3:
1112 val = vcpu->arch.db[dr];
1113 break;
1114 case 6:
1115 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1116 val = vcpu->arch.dr6;
1117 else
1118 val = svm->vmcb->save.dr6;
1119 break;
1120 case 7:
1121 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1122 val = vcpu->arch.dr7;
1123 else
1124 val = svm->vmcb->save.dr7;
1125 break;
1126 default:
1127 val = 0;
1130 return val;
1133 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1134 int *exception)
1136 struct vcpu_svm *svm = to_svm(vcpu);
1138 *exception = 0;
1140 switch (dr) {
1141 case 0 ... 3:
1142 vcpu->arch.db[dr] = value;
1143 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1144 vcpu->arch.eff_db[dr] = value;
1145 return;
1146 case 4 ... 5:
1147 if (vcpu->arch.cr4 & X86_CR4_DE)
1148 *exception = UD_VECTOR;
1149 return;
1150 case 6:
1151 if (value & 0xffffffff00000000ULL) {
1152 *exception = GP_VECTOR;
1153 return;
1155 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1156 return;
1157 case 7:
1158 if (value & 0xffffffff00000000ULL) {
1159 *exception = GP_VECTOR;
1160 return;
1162 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1163 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1164 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1165 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1167 return;
1168 default:
1169 /* FIXME: Possible case? */
1170 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1171 __func__, dr);
1172 *exception = UD_VECTOR;
1173 return;
1177 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1179 u64 fault_address;
1180 u32 error_code;
1182 fault_address = svm->vmcb->control.exit_info_2;
1183 error_code = svm->vmcb->control.exit_info_1;
1185 trace_kvm_page_fault(fault_address, error_code);
1187 * FIXME: Tis shouldn't be necessary here, but there is a flush
1188 * missing in the MMU code. Until we find this bug, flush the
1189 * complete TLB here on an NPF
1191 if (npt_enabled)
1192 svm_flush_tlb(&svm->vcpu);
1193 else {
1194 if (kvm_event_needs_reinjection(&svm->vcpu))
1195 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1197 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1200 static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1202 if (!(svm->vcpu.guest_debug &
1203 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1204 !svm->vcpu.arch.singlestep) {
1205 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1206 return 1;
1209 if (svm->vcpu.arch.singlestep) {
1210 svm->vcpu.arch.singlestep = false;
1211 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1212 svm->vmcb->save.rflags &=
1213 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1214 update_db_intercept(&svm->vcpu);
1217 if (svm->vcpu.guest_debug &
1218 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1219 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1220 kvm_run->debug.arch.pc =
1221 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1222 kvm_run->debug.arch.exception = DB_VECTOR;
1223 return 0;
1226 return 1;
1229 static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1231 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1232 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1233 kvm_run->debug.arch.exception = BP_VECTOR;
1234 return 0;
1237 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1239 int er;
1241 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1242 if (er != EMULATE_DONE)
1243 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1244 return 1;
1247 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1249 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1250 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1251 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1252 svm->vcpu.fpu_active = 1;
1254 return 1;
1257 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1260 * On an #MC intercept the MCE handler is not called automatically in
1261 * the host. So do it by hand here.
1263 asm volatile (
1264 "int $0x12\n");
1265 /* not sure if we ever come back to this point */
1267 return 1;
1270 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1273 * VMCB is undefined after a SHUTDOWN intercept
1274 * so reinitialize it.
1276 clear_page(svm->vmcb);
1277 init_vmcb(svm);
1279 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1280 return 0;
1283 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1285 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1286 int size, in, string;
1287 unsigned port;
1289 ++svm->vcpu.stat.io_exits;
1291 svm->next_rip = svm->vmcb->control.exit_info_2;
1293 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1295 if (string) {
1296 if (emulate_instruction(&svm->vcpu,
1297 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1298 return 0;
1299 return 1;
1302 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1303 port = io_info >> 16;
1304 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1306 skip_emulated_instruction(&svm->vcpu);
1307 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1310 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1312 return 1;
1315 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1317 ++svm->vcpu.stat.irq_exits;
1318 return 1;
1321 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1323 return 1;
1326 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1328 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1329 skip_emulated_instruction(&svm->vcpu);
1330 return kvm_emulate_halt(&svm->vcpu);
1333 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1335 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1336 skip_emulated_instruction(&svm->vcpu);
1337 kvm_emulate_hypercall(&svm->vcpu);
1338 return 1;
1341 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1343 if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1344 || !is_paging(&svm->vcpu)) {
1345 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1346 return 1;
1349 if (svm->vmcb->save.cpl) {
1350 kvm_inject_gp(&svm->vcpu, 0);
1351 return 1;
1354 return 0;
1357 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1358 bool has_error_code, u32 error_code)
1360 if (!is_nested(svm))
1361 return 0;
1363 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1364 svm->vmcb->control.exit_code_hi = 0;
1365 svm->vmcb->control.exit_info_1 = error_code;
1366 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1368 return nested_svm_exit_handled(svm, false);
1371 static inline int nested_svm_intr(struct vcpu_svm *svm)
1373 if (is_nested(svm)) {
1374 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1375 return 0;
1377 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1378 return 0;
1380 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1382 if (nested_svm_exit_handled(svm, false)) {
1383 nsvm_printk("VMexit -> INTR\n");
1384 return 1;
1388 return 0;
1391 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1393 struct page *page;
1395 down_read(&current->mm->mmap_sem);
1396 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1397 up_read(&current->mm->mmap_sem);
1399 if (is_error_page(page))
1400 goto error;
1402 return kmap_atomic(page, idx);
1404 error:
1405 kvm_release_page_clean(page);
1406 kvm_inject_gp(&svm->vcpu, 0);
1408 return NULL;
1411 static void nested_svm_unmap(void *addr, enum km_type idx)
1413 struct page *page;
1415 if (!addr)
1416 return;
1418 page = kmap_atomic_to_page(addr);
1420 kunmap_atomic(addr, idx);
1421 kvm_release_page_dirty(page);
1424 static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
1426 struct page *page;
1428 down_read(&current->mm->mmap_sem);
1429 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1430 up_read(&current->mm->mmap_sem);
1432 if (is_error_page(page)) {
1433 printk(KERN_INFO "%s: could not find page at 0x%llx\n",
1434 __func__, gpa);
1435 kvm_release_page_clean(page);
1436 kvm_inject_gp(&svm->vcpu, 0);
1437 return NULL;
1439 return page;
1442 static int nested_svm_do(struct vcpu_svm *svm,
1443 u64 arg1_gpa, u64 arg2_gpa, void *opaque,
1444 int (*handler)(struct vcpu_svm *svm,
1445 void *arg1,
1446 void *arg2,
1447 void *opaque))
1449 struct page *arg1_page;
1450 struct page *arg2_page = NULL;
1451 void *arg1;
1452 void *arg2 = NULL;
1453 int retval;
1455 arg1_page = nested_svm_get_page(svm, arg1_gpa);
1456 if(arg1_page == NULL)
1457 return 1;
1459 if (arg2_gpa) {
1460 arg2_page = nested_svm_get_page(svm, arg2_gpa);
1461 if(arg2_page == NULL) {
1462 kvm_release_page_clean(arg1_page);
1463 return 1;
1467 arg1 = kmap_atomic(arg1_page, KM_USER0);
1468 if (arg2_gpa)
1469 arg2 = kmap_atomic(arg2_page, KM_USER1);
1471 retval = handler(svm, arg1, arg2, opaque);
1473 kunmap_atomic(arg1, KM_USER0);
1474 if (arg2_gpa)
1475 kunmap_atomic(arg2, KM_USER1);
1477 kvm_release_page_dirty(arg1_page);
1478 if (arg2_gpa)
1479 kvm_release_page_dirty(arg2_page);
1481 return retval;
1484 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1486 u32 param = svm->vmcb->control.exit_info_1 & 1;
1487 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1488 bool ret = false;
1489 u32 t0, t1;
1490 u8 *msrpm;
1492 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1493 return false;
1495 msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1497 if (!msrpm)
1498 goto out;
1500 switch (msr) {
1501 case 0 ... 0x1fff:
1502 t0 = (msr * 2) % 8;
1503 t1 = msr / 8;
1504 break;
1505 case 0xc0000000 ... 0xc0001fff:
1506 t0 = (8192 + msr - 0xc0000000) * 2;
1507 t1 = (t0 / 8);
1508 t0 %= 8;
1509 break;
1510 case 0xc0010000 ... 0xc0011fff:
1511 t0 = (16384 + msr - 0xc0010000) * 2;
1512 t1 = (t0 / 8);
1513 t0 %= 8;
1514 break;
1515 default:
1516 ret = true;
1517 goto out;
1520 ret = msrpm[t1] & ((1 << param) << t0);
1522 out:
1523 nested_svm_unmap(msrpm, KM_USER0);
1525 return ret;
1528 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
1530 u32 exit_code = svm->vmcb->control.exit_code;
1531 bool vmexit = false;
1533 if (kvm_override) {
1534 switch (exit_code) {
1535 case SVM_EXIT_INTR:
1536 case SVM_EXIT_NMI:
1537 return 0;
1538 /* For now we are always handling NPFs when using them */
1539 case SVM_EXIT_NPF:
1540 if (npt_enabled)
1541 return 0;
1542 break;
1543 /* When we're shadowing, trap PFs */
1544 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1545 if (!npt_enabled)
1546 return 0;
1547 break;
1548 default:
1549 break;
1553 switch (exit_code) {
1554 case SVM_EXIT_MSR:
1555 vmexit = nested_svm_exit_handled_msr(svm);
1556 break;
1557 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1558 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1559 if (svm->nested.intercept_cr_read & cr_bits)
1560 vmexit = true;
1561 break;
1563 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1564 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1565 if (svm->nested.intercept_cr_write & cr_bits)
1566 vmexit = true;
1567 break;
1569 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1570 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1571 if (svm->nested.intercept_dr_read & dr_bits)
1572 vmexit = true;
1573 break;
1575 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1576 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1577 if (svm->nested.intercept_dr_write & dr_bits)
1578 vmexit = true;
1579 break;
1581 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1582 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1583 if (svm->nested.intercept_exceptions & excp_bits)
1584 vmexit = true;
1585 break;
1587 default: {
1588 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1589 nsvm_printk("exit code: 0x%x\n", exit_code);
1590 if (svm->nested.intercept & exit_bits)
1591 vmexit = true;
1595 if (vmexit) {
1596 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1597 nested_svm_vmexit(svm);
1600 return vmexit;
1603 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1605 struct vmcb_control_area *dst = &dst_vmcb->control;
1606 struct vmcb_control_area *from = &from_vmcb->control;
1608 dst->intercept_cr_read = from->intercept_cr_read;
1609 dst->intercept_cr_write = from->intercept_cr_write;
1610 dst->intercept_dr_read = from->intercept_dr_read;
1611 dst->intercept_dr_write = from->intercept_dr_write;
1612 dst->intercept_exceptions = from->intercept_exceptions;
1613 dst->intercept = from->intercept;
1614 dst->iopm_base_pa = from->iopm_base_pa;
1615 dst->msrpm_base_pa = from->msrpm_base_pa;
1616 dst->tsc_offset = from->tsc_offset;
1617 dst->asid = from->asid;
1618 dst->tlb_ctl = from->tlb_ctl;
1619 dst->int_ctl = from->int_ctl;
1620 dst->int_vector = from->int_vector;
1621 dst->int_state = from->int_state;
1622 dst->exit_code = from->exit_code;
1623 dst->exit_code_hi = from->exit_code_hi;
1624 dst->exit_info_1 = from->exit_info_1;
1625 dst->exit_info_2 = from->exit_info_2;
1626 dst->exit_int_info = from->exit_int_info;
1627 dst->exit_int_info_err = from->exit_int_info_err;
1628 dst->nested_ctl = from->nested_ctl;
1629 dst->event_inj = from->event_inj;
1630 dst->event_inj_err = from->event_inj_err;
1631 dst->nested_cr3 = from->nested_cr3;
1632 dst->lbr_ctl = from->lbr_ctl;
1635 static int nested_svm_vmexit(struct vcpu_svm *svm)
1637 struct vmcb *nested_vmcb;
1638 struct vmcb *hsave = svm->nested.hsave;
1639 struct vmcb *vmcb = svm->vmcb;
1641 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1642 if (!nested_vmcb)
1643 return 1;
1645 /* Give the current vmcb to the guest */
1646 disable_gif(svm);
1648 nested_vmcb->save.es = vmcb->save.es;
1649 nested_vmcb->save.cs = vmcb->save.cs;
1650 nested_vmcb->save.ss = vmcb->save.ss;
1651 nested_vmcb->save.ds = vmcb->save.ds;
1652 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1653 nested_vmcb->save.idtr = vmcb->save.idtr;
1654 if (npt_enabled)
1655 nested_vmcb->save.cr3 = vmcb->save.cr3;
1656 nested_vmcb->save.cr2 = vmcb->save.cr2;
1657 nested_vmcb->save.rflags = vmcb->save.rflags;
1658 nested_vmcb->save.rip = vmcb->save.rip;
1659 nested_vmcb->save.rsp = vmcb->save.rsp;
1660 nested_vmcb->save.rax = vmcb->save.rax;
1661 nested_vmcb->save.dr7 = vmcb->save.dr7;
1662 nested_vmcb->save.dr6 = vmcb->save.dr6;
1663 nested_vmcb->save.cpl = vmcb->save.cpl;
1665 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1666 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1667 nested_vmcb->control.int_state = vmcb->control.int_state;
1668 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1669 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1670 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1671 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1672 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1673 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1674 nested_vmcb->control.tlb_ctl = 0;
1675 nested_vmcb->control.event_inj = 0;
1676 nested_vmcb->control.event_inj_err = 0;
1678 /* We always set V_INTR_MASKING and remember the old value in hflags */
1679 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1680 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1682 /* Restore the original control entries */
1683 copy_vmcb_control_area(vmcb, hsave);
1685 /* Kill any pending exceptions */
1686 if (svm->vcpu.arch.exception.pending == true)
1687 nsvm_printk("WARNING: Pending Exception\n");
1689 kvm_clear_exception_queue(&svm->vcpu);
1690 kvm_clear_interrupt_queue(&svm->vcpu);
1692 /* Restore selected save entries */
1693 svm->vmcb->save.es = hsave->save.es;
1694 svm->vmcb->save.cs = hsave->save.cs;
1695 svm->vmcb->save.ss = hsave->save.ss;
1696 svm->vmcb->save.ds = hsave->save.ds;
1697 svm->vmcb->save.gdtr = hsave->save.gdtr;
1698 svm->vmcb->save.idtr = hsave->save.idtr;
1699 svm->vmcb->save.rflags = hsave->save.rflags;
1700 svm_set_efer(&svm->vcpu, hsave->save.efer);
1701 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1702 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1703 if (npt_enabled) {
1704 svm->vmcb->save.cr3 = hsave->save.cr3;
1705 svm->vcpu.arch.cr3 = hsave->save.cr3;
1706 } else {
1707 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1709 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1710 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1711 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1712 svm->vmcb->save.dr7 = 0;
1713 svm->vmcb->save.cpl = 0;
1714 svm->vmcb->control.exit_int_info = 0;
1716 /* Exit nested SVM mode */
1717 svm->nested.vmcb = 0;
1719 nested_svm_unmap(nested_vmcb, KM_USER0);
1721 kvm_mmu_reset_context(&svm->vcpu);
1722 kvm_mmu_load(&svm->vcpu);
1724 return 0;
1727 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1729 u32 *nested_msrpm;
1730 int i;
1732 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1733 if (!nested_msrpm)
1734 return false;
1736 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1737 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1739 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1741 nested_svm_unmap(nested_msrpm, KM_USER0);
1743 return true;
1746 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1748 struct vmcb *nested_vmcb;
1749 struct vmcb *hsave = svm->nested.hsave;
1750 struct vmcb *vmcb = svm->vmcb;
1752 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1753 if (!nested_vmcb)
1754 return false;
1756 /* nested_vmcb is our indicator if nested SVM is activated */
1757 svm->nested.vmcb = svm->vmcb->save.rax;
1759 /* Clear internal status */
1760 kvm_clear_exception_queue(&svm->vcpu);
1761 kvm_clear_interrupt_queue(&svm->vcpu);
1763 /* Save the old vmcb, so we don't need to pick what we save, but
1764 can restore everything when a VMEXIT occurs */
1765 hsave->save.es = vmcb->save.es;
1766 hsave->save.cs = vmcb->save.cs;
1767 hsave->save.ss = vmcb->save.ss;
1768 hsave->save.ds = vmcb->save.ds;
1769 hsave->save.gdtr = vmcb->save.gdtr;
1770 hsave->save.idtr = vmcb->save.idtr;
1771 hsave->save.efer = svm->vcpu.arch.shadow_efer;
1772 hsave->save.cr0 = svm->vcpu.arch.cr0;
1773 hsave->save.cr4 = svm->vcpu.arch.cr4;
1774 hsave->save.rflags = vmcb->save.rflags;
1775 hsave->save.rip = svm->next_rip;
1776 hsave->save.rsp = vmcb->save.rsp;
1777 hsave->save.rax = vmcb->save.rax;
1778 if (npt_enabled)
1779 hsave->save.cr3 = vmcb->save.cr3;
1780 else
1781 hsave->save.cr3 = svm->vcpu.arch.cr3;
1783 copy_vmcb_control_area(hsave, vmcb);
1785 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1786 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1787 else
1788 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1790 /* Load the nested guest state */
1791 svm->vmcb->save.es = nested_vmcb->save.es;
1792 svm->vmcb->save.cs = nested_vmcb->save.cs;
1793 svm->vmcb->save.ss = nested_vmcb->save.ss;
1794 svm->vmcb->save.ds = nested_vmcb->save.ds;
1795 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1796 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1797 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1798 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1799 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1800 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1801 if (npt_enabled) {
1802 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1803 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1804 } else {
1805 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1806 kvm_mmu_reset_context(&svm->vcpu);
1808 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1809 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1810 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1811 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1812 /* In case we don't even reach vcpu_run, the fields are not updated */
1813 svm->vmcb->save.rax = nested_vmcb->save.rax;
1814 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1815 svm->vmcb->save.rip = nested_vmcb->save.rip;
1816 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1817 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1818 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1820 /* We don't want a nested guest to be more powerful than the guest,
1821 so all intercepts are ORed */
1822 svm->vmcb->control.intercept_cr_read |=
1823 nested_vmcb->control.intercept_cr_read;
1824 svm->vmcb->control.intercept_cr_write |=
1825 nested_vmcb->control.intercept_cr_write;
1826 svm->vmcb->control.intercept_dr_read |=
1827 nested_vmcb->control.intercept_dr_read;
1828 svm->vmcb->control.intercept_dr_write |=
1829 nested_vmcb->control.intercept_dr_write;
1830 svm->vmcb->control.intercept_exceptions |=
1831 nested_vmcb->control.intercept_exceptions;
1833 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1835 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1837 /* cache intercepts */
1838 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1839 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1840 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1841 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1842 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1843 svm->nested.intercept = nested_vmcb->control.intercept;
1845 force_new_asid(&svm->vcpu);
1846 svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1847 svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1848 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1849 if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1850 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1851 nested_vmcb->control.int_ctl);
1853 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1854 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1855 else
1856 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1858 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1859 nested_vmcb->control.exit_int_info,
1860 nested_vmcb->control.int_state);
1862 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1863 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1864 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1865 if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1866 nsvm_printk("Injecting Event: 0x%x\n",
1867 nested_vmcb->control.event_inj);
1868 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1869 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1871 nested_svm_unmap(nested_vmcb, KM_USER0);
1873 enable_gif(svm);
1875 return true;
1878 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1880 to_vmcb->save.fs = from_vmcb->save.fs;
1881 to_vmcb->save.gs = from_vmcb->save.gs;
1882 to_vmcb->save.tr = from_vmcb->save.tr;
1883 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1884 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1885 to_vmcb->save.star = from_vmcb->save.star;
1886 to_vmcb->save.lstar = from_vmcb->save.lstar;
1887 to_vmcb->save.cstar = from_vmcb->save.cstar;
1888 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1889 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1890 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1891 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1894 static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1896 struct vmcb *nested_vmcb;
1898 if (nested_svm_check_permissions(svm))
1899 return 1;
1901 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1902 skip_emulated_instruction(&svm->vcpu);
1904 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1905 if (!nested_vmcb)
1906 return 1;
1908 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1909 nested_svm_unmap(nested_vmcb, KM_USER0);
1911 return 1;
1914 static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1916 struct vmcb *nested_vmcb;
1918 if (nested_svm_check_permissions(svm))
1919 return 1;
1921 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1922 skip_emulated_instruction(&svm->vcpu);
1924 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1925 if (!nested_vmcb)
1926 return 1;
1928 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1929 nested_svm_unmap(nested_vmcb, KM_USER0);
1931 return 1;
1934 static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1936 nsvm_printk("VMrun\n");
1937 if (nested_svm_check_permissions(svm))
1938 return 1;
1940 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1941 skip_emulated_instruction(&svm->vcpu);
1943 if (!nested_svm_vmrun(svm))
1944 return 1;
1946 if (!nested_svm_vmrun_msrpm(svm))
1947 return 1;
1949 return 1;
1952 static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1954 if (nested_svm_check_permissions(svm))
1955 return 1;
1957 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1958 skip_emulated_instruction(&svm->vcpu);
1960 enable_gif(svm);
1962 return 1;
1965 static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1967 if (nested_svm_check_permissions(svm))
1968 return 1;
1970 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1971 skip_emulated_instruction(&svm->vcpu);
1973 disable_gif(svm);
1975 /* After a CLGI no interrupts should come */
1976 svm_clear_vintr(svm);
1977 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1979 return 1;
1982 static int invlpga_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1984 struct kvm_vcpu *vcpu = &svm->vcpu;
1985 nsvm_printk("INVLPGA\n");
1987 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1988 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1990 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1991 skip_emulated_instruction(&svm->vcpu);
1992 return 1;
1995 static int invalid_op_interception(struct vcpu_svm *svm,
1996 struct kvm_run *kvm_run)
1998 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1999 return 1;
2002 static int task_switch_interception(struct vcpu_svm *svm,
2003 struct kvm_run *kvm_run)
2005 u16 tss_selector;
2006 int reason;
2007 int int_type = svm->vmcb->control.exit_int_info &
2008 SVM_EXITINTINFO_TYPE_MASK;
2009 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2010 uint32_t type =
2011 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2012 uint32_t idt_v =
2013 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2015 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2017 if (svm->vmcb->control.exit_info_2 &
2018 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2019 reason = TASK_SWITCH_IRET;
2020 else if (svm->vmcb->control.exit_info_2 &
2021 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2022 reason = TASK_SWITCH_JMP;
2023 else if (idt_v)
2024 reason = TASK_SWITCH_GATE;
2025 else
2026 reason = TASK_SWITCH_CALL;
2028 if (reason == TASK_SWITCH_GATE) {
2029 switch (type) {
2030 case SVM_EXITINTINFO_TYPE_NMI:
2031 svm->vcpu.arch.nmi_injected = false;
2032 break;
2033 case SVM_EXITINTINFO_TYPE_EXEPT:
2034 kvm_clear_exception_queue(&svm->vcpu);
2035 break;
2036 case SVM_EXITINTINFO_TYPE_INTR:
2037 kvm_clear_interrupt_queue(&svm->vcpu);
2038 break;
2039 default:
2040 break;
2044 if (reason != TASK_SWITCH_GATE ||
2045 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2046 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2047 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2048 skip_emulated_instruction(&svm->vcpu);
2050 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2053 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2055 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2056 kvm_emulate_cpuid(&svm->vcpu);
2057 return 1;
2060 static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2062 ++svm->vcpu.stat.nmi_window_exits;
2063 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2064 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2065 return 1;
2068 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2070 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
2071 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2072 return 1;
2075 static int emulate_on_interception(struct vcpu_svm *svm,
2076 struct kvm_run *kvm_run)
2078 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
2079 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2080 return 1;
2083 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2085 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2086 /* instruction emulation calls kvm_set_cr8() */
2087 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
2088 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2089 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2090 return 1;
2092 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2093 return 1;
2094 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2095 return 0;
2098 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2100 struct vcpu_svm *svm = to_svm(vcpu);
2102 switch (ecx) {
2103 case MSR_IA32_TSC: {
2104 u64 tsc;
2106 rdtscll(tsc);
2107 *data = svm->vmcb->control.tsc_offset + tsc;
2108 break;
2110 case MSR_K6_STAR:
2111 *data = svm->vmcb->save.star;
2112 break;
2113 #ifdef CONFIG_X86_64
2114 case MSR_LSTAR:
2115 *data = svm->vmcb->save.lstar;
2116 break;
2117 case MSR_CSTAR:
2118 *data = svm->vmcb->save.cstar;
2119 break;
2120 case MSR_KERNEL_GS_BASE:
2121 *data = svm->vmcb->save.kernel_gs_base;
2122 break;
2123 case MSR_SYSCALL_MASK:
2124 *data = svm->vmcb->save.sfmask;
2125 break;
2126 #endif
2127 case MSR_IA32_SYSENTER_CS:
2128 *data = svm->vmcb->save.sysenter_cs;
2129 break;
2130 case MSR_IA32_SYSENTER_EIP:
2131 *data = svm->sysenter_eip;
2132 break;
2133 case MSR_IA32_SYSENTER_ESP:
2134 *data = svm->sysenter_esp;
2135 break;
2136 /* Nobody will change the following 5 values in the VMCB so
2137 we can safely return them on rdmsr. They will always be 0
2138 until LBRV is implemented. */
2139 case MSR_IA32_DEBUGCTLMSR:
2140 *data = svm->vmcb->save.dbgctl;
2141 break;
2142 case MSR_IA32_LASTBRANCHFROMIP:
2143 *data = svm->vmcb->save.br_from;
2144 break;
2145 case MSR_IA32_LASTBRANCHTOIP:
2146 *data = svm->vmcb->save.br_to;
2147 break;
2148 case MSR_IA32_LASTINTFROMIP:
2149 *data = svm->vmcb->save.last_excp_from;
2150 break;
2151 case MSR_IA32_LASTINTTOIP:
2152 *data = svm->vmcb->save.last_excp_to;
2153 break;
2154 case MSR_VM_HSAVE_PA:
2155 *data = svm->nested.hsave_msr;
2156 break;
2157 case MSR_VM_CR:
2158 *data = 0;
2159 break;
2160 case MSR_IA32_UCODE_REV:
2161 *data = 0x01000065;
2162 break;
2163 default:
2164 return kvm_get_msr_common(vcpu, ecx, data);
2166 return 0;
2169 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2171 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2172 u64 data;
2174 if (svm_get_msr(&svm->vcpu, ecx, &data))
2175 kvm_inject_gp(&svm->vcpu, 0);
2176 else {
2177 trace_kvm_msr_read(ecx, data);
2179 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2180 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2181 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2182 skip_emulated_instruction(&svm->vcpu);
2184 return 1;
2187 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2189 struct vcpu_svm *svm = to_svm(vcpu);
2191 switch (ecx) {
2192 case MSR_IA32_TSC: {
2193 u64 tsc;
2195 rdtscll(tsc);
2196 svm->vmcb->control.tsc_offset = data - tsc;
2197 break;
2199 case MSR_K6_STAR:
2200 svm->vmcb->save.star = data;
2201 break;
2202 #ifdef CONFIG_X86_64
2203 case MSR_LSTAR:
2204 svm->vmcb->save.lstar = data;
2205 break;
2206 case MSR_CSTAR:
2207 svm->vmcb->save.cstar = data;
2208 break;
2209 case MSR_KERNEL_GS_BASE:
2210 svm->vmcb->save.kernel_gs_base = data;
2211 break;
2212 case MSR_SYSCALL_MASK:
2213 svm->vmcb->save.sfmask = data;
2214 break;
2215 #endif
2216 case MSR_IA32_SYSENTER_CS:
2217 svm->vmcb->save.sysenter_cs = data;
2218 break;
2219 case MSR_IA32_SYSENTER_EIP:
2220 svm->sysenter_eip = data;
2221 svm->vmcb->save.sysenter_eip = data;
2222 break;
2223 case MSR_IA32_SYSENTER_ESP:
2224 svm->sysenter_esp = data;
2225 svm->vmcb->save.sysenter_esp = data;
2226 break;
2227 case MSR_IA32_DEBUGCTLMSR:
2228 if (!svm_has(SVM_FEATURE_LBRV)) {
2229 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2230 __func__, data);
2231 break;
2233 if (data & DEBUGCTL_RESERVED_BITS)
2234 return 1;
2236 svm->vmcb->save.dbgctl = data;
2237 if (data & (1ULL<<0))
2238 svm_enable_lbrv(svm);
2239 else
2240 svm_disable_lbrv(svm);
2241 break;
2242 case MSR_VM_HSAVE_PA:
2243 svm->nested.hsave_msr = data;
2244 break;
2245 case MSR_VM_CR:
2246 case MSR_VM_IGNNE:
2247 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2248 break;
2249 default:
2250 return kvm_set_msr_common(vcpu, ecx, data);
2252 return 0;
2255 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2257 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2258 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2259 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2261 trace_kvm_msr_write(ecx, data);
2263 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2264 if (svm_set_msr(&svm->vcpu, ecx, data))
2265 kvm_inject_gp(&svm->vcpu, 0);
2266 else
2267 skip_emulated_instruction(&svm->vcpu);
2268 return 1;
2271 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2273 if (svm->vmcb->control.exit_info_1)
2274 return wrmsr_interception(svm, kvm_run);
2275 else
2276 return rdmsr_interception(svm, kvm_run);
2279 static int interrupt_window_interception(struct vcpu_svm *svm,
2280 struct kvm_run *kvm_run)
2282 svm_clear_vintr(svm);
2283 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2285 * If the user space waits to inject interrupts, exit as soon as
2286 * possible
2288 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2289 kvm_run->request_interrupt_window &&
2290 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2291 ++svm->vcpu.stat.irq_window_exits;
2292 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2293 return 0;
2296 return 1;
2299 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
2300 struct kvm_run *kvm_run) = {
2301 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2302 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2303 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2304 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2305 /* for now: */
2306 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2307 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2308 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2309 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2310 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2311 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2312 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2313 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2314 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2315 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2316 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2317 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2318 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2319 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2320 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2321 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2322 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2323 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2324 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2325 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2326 [SVM_EXIT_INTR] = intr_interception,
2327 [SVM_EXIT_NMI] = nmi_interception,
2328 [SVM_EXIT_SMI] = nop_on_interception,
2329 [SVM_EXIT_INIT] = nop_on_interception,
2330 [SVM_EXIT_VINTR] = interrupt_window_interception,
2331 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2332 [SVM_EXIT_CPUID] = cpuid_interception,
2333 [SVM_EXIT_IRET] = iret_interception,
2334 [SVM_EXIT_INVD] = emulate_on_interception,
2335 [SVM_EXIT_HLT] = halt_interception,
2336 [SVM_EXIT_INVLPG] = invlpg_interception,
2337 [SVM_EXIT_INVLPGA] = invlpga_interception,
2338 [SVM_EXIT_IOIO] = io_interception,
2339 [SVM_EXIT_MSR] = msr_interception,
2340 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2341 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2342 [SVM_EXIT_VMRUN] = vmrun_interception,
2343 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2344 [SVM_EXIT_VMLOAD] = vmload_interception,
2345 [SVM_EXIT_VMSAVE] = vmsave_interception,
2346 [SVM_EXIT_STGI] = stgi_interception,
2347 [SVM_EXIT_CLGI] = clgi_interception,
2348 [SVM_EXIT_SKINIT] = invalid_op_interception,
2349 [SVM_EXIT_WBINVD] = emulate_on_interception,
2350 [SVM_EXIT_MONITOR] = invalid_op_interception,
2351 [SVM_EXIT_MWAIT] = invalid_op_interception,
2352 [SVM_EXIT_NPF] = pf_interception,
2355 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2357 struct vcpu_svm *svm = to_svm(vcpu);
2358 u32 exit_code = svm->vmcb->control.exit_code;
2360 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2362 if (is_nested(svm)) {
2363 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2364 exit_code, svm->vmcb->control.exit_info_1,
2365 svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2366 if (nested_svm_exit_handled(svm, true))
2367 return 1;
2370 svm_complete_interrupts(svm);
2372 if (npt_enabled) {
2373 int mmu_reload = 0;
2374 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2375 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2376 mmu_reload = 1;
2378 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2379 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2380 if (mmu_reload) {
2381 kvm_mmu_reset_context(vcpu);
2382 kvm_mmu_load(vcpu);
2387 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2388 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2389 kvm_run->fail_entry.hardware_entry_failure_reason
2390 = svm->vmcb->control.exit_code;
2391 return 0;
2394 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2395 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2396 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2397 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2398 "exit_code 0x%x\n",
2399 __func__, svm->vmcb->control.exit_int_info,
2400 exit_code);
2402 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2403 || !svm_exit_handlers[exit_code]) {
2404 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2405 kvm_run->hw.hardware_exit_reason = exit_code;
2406 return 0;
2409 return svm_exit_handlers[exit_code](svm, kvm_run);
2412 static void reload_tss(struct kvm_vcpu *vcpu)
2414 int cpu = raw_smp_processor_id();
2416 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2417 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2418 load_TR_desc();
2421 static void pre_svm_run(struct vcpu_svm *svm)
2423 int cpu = raw_smp_processor_id();
2425 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2427 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2428 /* FIXME: handle wraparound of asid_generation */
2429 if (svm->asid_generation != svm_data->asid_generation)
2430 new_asid(svm, svm_data);
2433 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2435 struct vcpu_svm *svm = to_svm(vcpu);
2437 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2438 vcpu->arch.hflags |= HF_NMI_MASK;
2439 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2440 ++vcpu->stat.nmi_injections;
2443 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2445 struct vmcb_control_area *control;
2447 trace_kvm_inj_virq(irq);
2449 ++svm->vcpu.stat.irq_injections;
2450 control = &svm->vmcb->control;
2451 control->int_vector = irq;
2452 control->int_ctl &= ~V_INTR_PRIO_MASK;
2453 control->int_ctl |= V_IRQ_MASK |
2454 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2457 static void svm_set_irq(struct kvm_vcpu *vcpu)
2459 struct vcpu_svm *svm = to_svm(vcpu);
2461 BUG_ON(!(gif_set(svm)));
2463 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2464 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2467 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2469 struct vcpu_svm *svm = to_svm(vcpu);
2471 if (irr == -1)
2472 return;
2474 if (tpr >= irr)
2475 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2478 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2480 struct vcpu_svm *svm = to_svm(vcpu);
2481 struct vmcb *vmcb = svm->vmcb;
2482 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2483 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2486 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2488 struct vcpu_svm *svm = to_svm(vcpu);
2489 struct vmcb *vmcb = svm->vmcb;
2490 return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2491 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2492 gif_set(svm) &&
2493 !is_nested(svm);
2496 static void enable_irq_window(struct kvm_vcpu *vcpu)
2498 struct vcpu_svm *svm = to_svm(vcpu);
2499 nsvm_printk("Trying to open IRQ window\n");
2501 nested_svm_intr(svm);
2503 /* In case GIF=0 we can't rely on the CPU to tell us when
2504 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2505 * The next time we get that intercept, this function will be
2506 * called again though and we'll get the vintr intercept. */
2507 if (gif_set(svm)) {
2508 svm_set_vintr(svm);
2509 svm_inject_irq(svm, 0x0);
2513 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2515 struct vcpu_svm *svm = to_svm(vcpu);
2517 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2518 == HF_NMI_MASK)
2519 return; /* IRET will cause a vm exit */
2521 /* Something prevents NMI from been injected. Single step over
2522 possible problem (IRET or exception injection or interrupt
2523 shadow) */
2524 vcpu->arch.singlestep = true;
2525 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2526 update_db_intercept(vcpu);
2529 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2531 return 0;
2534 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2536 force_new_asid(vcpu);
2539 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2543 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2545 struct vcpu_svm *svm = to_svm(vcpu);
2547 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2548 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2549 kvm_set_cr8(vcpu, cr8);
2553 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2555 struct vcpu_svm *svm = to_svm(vcpu);
2556 u64 cr8;
2558 cr8 = kvm_get_cr8(vcpu);
2559 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2560 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2563 static void svm_complete_interrupts(struct vcpu_svm *svm)
2565 u8 vector;
2566 int type;
2567 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2569 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2570 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2572 svm->vcpu.arch.nmi_injected = false;
2573 kvm_clear_exception_queue(&svm->vcpu);
2574 kvm_clear_interrupt_queue(&svm->vcpu);
2576 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2577 return;
2579 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2580 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2582 switch (type) {
2583 case SVM_EXITINTINFO_TYPE_NMI:
2584 svm->vcpu.arch.nmi_injected = true;
2585 break;
2586 case SVM_EXITINTINFO_TYPE_EXEPT:
2587 /* In case of software exception do not reinject an exception
2588 vector, but re-execute and instruction instead */
2589 if (is_nested(svm))
2590 break;
2591 if (kvm_exception_is_soft(vector))
2592 break;
2593 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2594 u32 err = svm->vmcb->control.exit_int_info_err;
2595 kvm_queue_exception_e(&svm->vcpu, vector, err);
2597 } else
2598 kvm_queue_exception(&svm->vcpu, vector);
2599 break;
2600 case SVM_EXITINTINFO_TYPE_INTR:
2601 kvm_queue_interrupt(&svm->vcpu, vector, false);
2602 break;
2603 default:
2604 break;
2608 #ifdef CONFIG_X86_64
2609 #define R "r"
2610 #else
2611 #define R "e"
2612 #endif
2614 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2616 struct vcpu_svm *svm = to_svm(vcpu);
2617 u16 fs_selector;
2618 u16 gs_selector;
2619 u16 ldt_selector;
2621 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2622 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2623 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2625 pre_svm_run(svm);
2627 sync_lapic_to_cr8(vcpu);
2629 save_host_msrs(vcpu);
2630 fs_selector = kvm_read_fs();
2631 gs_selector = kvm_read_gs();
2632 ldt_selector = kvm_read_ldt();
2633 if (!is_nested(svm))
2634 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2635 /* required for live migration with NPT */
2636 if (npt_enabled)
2637 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2639 clgi();
2641 local_irq_enable();
2643 asm volatile (
2644 "push %%"R"bp; \n\t"
2645 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2646 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2647 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2648 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2649 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2650 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2651 #ifdef CONFIG_X86_64
2652 "mov %c[r8](%[svm]), %%r8 \n\t"
2653 "mov %c[r9](%[svm]), %%r9 \n\t"
2654 "mov %c[r10](%[svm]), %%r10 \n\t"
2655 "mov %c[r11](%[svm]), %%r11 \n\t"
2656 "mov %c[r12](%[svm]), %%r12 \n\t"
2657 "mov %c[r13](%[svm]), %%r13 \n\t"
2658 "mov %c[r14](%[svm]), %%r14 \n\t"
2659 "mov %c[r15](%[svm]), %%r15 \n\t"
2660 #endif
2662 /* Enter guest mode */
2663 "push %%"R"ax \n\t"
2664 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2665 __ex(SVM_VMLOAD) "\n\t"
2666 __ex(SVM_VMRUN) "\n\t"
2667 __ex(SVM_VMSAVE) "\n\t"
2668 "pop %%"R"ax \n\t"
2670 /* Save guest registers, load host registers */
2671 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2672 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2673 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2674 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2675 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2676 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2677 #ifdef CONFIG_X86_64
2678 "mov %%r8, %c[r8](%[svm]) \n\t"
2679 "mov %%r9, %c[r9](%[svm]) \n\t"
2680 "mov %%r10, %c[r10](%[svm]) \n\t"
2681 "mov %%r11, %c[r11](%[svm]) \n\t"
2682 "mov %%r12, %c[r12](%[svm]) \n\t"
2683 "mov %%r13, %c[r13](%[svm]) \n\t"
2684 "mov %%r14, %c[r14](%[svm]) \n\t"
2685 "mov %%r15, %c[r15](%[svm]) \n\t"
2686 #endif
2687 "pop %%"R"bp"
2689 : [svm]"a"(svm),
2690 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2691 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2692 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2693 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2694 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2695 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2696 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2697 #ifdef CONFIG_X86_64
2698 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2699 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2700 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2701 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2702 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2703 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2704 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2705 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2706 #endif
2707 : "cc", "memory"
2708 , R"bx", R"cx", R"dx", R"si", R"di"
2709 #ifdef CONFIG_X86_64
2710 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2711 #endif
2714 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2715 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2716 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2717 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2719 kvm_load_fs(fs_selector);
2720 kvm_load_gs(gs_selector);
2721 kvm_load_ldt(ldt_selector);
2722 load_host_msrs(vcpu);
2724 reload_tss(vcpu);
2726 local_irq_disable();
2728 stgi();
2730 sync_cr8_to_lapic(vcpu);
2732 svm->next_rip = 0;
2734 if (npt_enabled) {
2735 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2736 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2740 #undef R
2742 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2744 struct vcpu_svm *svm = to_svm(vcpu);
2746 if (npt_enabled) {
2747 svm->vmcb->control.nested_cr3 = root;
2748 force_new_asid(vcpu);
2749 return;
2752 svm->vmcb->save.cr3 = root;
2753 force_new_asid(vcpu);
2755 if (vcpu->fpu_active) {
2756 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2757 svm->vmcb->save.cr0 |= X86_CR0_TS;
2758 vcpu->fpu_active = 0;
2762 static int is_disabled(void)
2764 u64 vm_cr;
2766 rdmsrl(MSR_VM_CR, vm_cr);
2767 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2768 return 1;
2770 return 0;
2773 static void
2774 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2777 * Patch in the VMMCALL instruction:
2779 hypercall[0] = 0x0f;
2780 hypercall[1] = 0x01;
2781 hypercall[2] = 0xd9;
2784 static void svm_check_processor_compat(void *rtn)
2786 *(int *)rtn = 0;
2789 static bool svm_cpu_has_accelerated_tpr(void)
2791 return false;
2794 static int get_npt_level(void)
2796 #ifdef CONFIG_X86_64
2797 return PT64_ROOT_LEVEL;
2798 #else
2799 return PT32E_ROOT_LEVEL;
2800 #endif
2803 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2805 return 0;
2808 static const struct trace_print_flags svm_exit_reasons_str[] = {
2809 { SVM_EXIT_READ_CR0, "read_cr0" },
2810 { SVM_EXIT_READ_CR3, "read_cr3" },
2811 { SVM_EXIT_READ_CR4, "read_cr4" },
2812 { SVM_EXIT_READ_CR8, "read_cr8" },
2813 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2814 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2815 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2816 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2817 { SVM_EXIT_READ_DR0, "read_dr0" },
2818 { SVM_EXIT_READ_DR1, "read_dr1" },
2819 { SVM_EXIT_READ_DR2, "read_dr2" },
2820 { SVM_EXIT_READ_DR3, "read_dr3" },
2821 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2822 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2823 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2824 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2825 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2826 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2827 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2828 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2829 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2830 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2831 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2832 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2833 { SVM_EXIT_INTR, "interrupt" },
2834 { SVM_EXIT_NMI, "nmi" },
2835 { SVM_EXIT_SMI, "smi" },
2836 { SVM_EXIT_INIT, "init" },
2837 { SVM_EXIT_VINTR, "vintr" },
2838 { SVM_EXIT_CPUID, "cpuid" },
2839 { SVM_EXIT_INVD, "invd" },
2840 { SVM_EXIT_HLT, "hlt" },
2841 { SVM_EXIT_INVLPG, "invlpg" },
2842 { SVM_EXIT_INVLPGA, "invlpga" },
2843 { SVM_EXIT_IOIO, "io" },
2844 { SVM_EXIT_MSR, "msr" },
2845 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2846 { SVM_EXIT_SHUTDOWN, "shutdown" },
2847 { SVM_EXIT_VMRUN, "vmrun" },
2848 { SVM_EXIT_VMMCALL, "hypercall" },
2849 { SVM_EXIT_VMLOAD, "vmload" },
2850 { SVM_EXIT_VMSAVE, "vmsave" },
2851 { SVM_EXIT_STGI, "stgi" },
2852 { SVM_EXIT_CLGI, "clgi" },
2853 { SVM_EXIT_SKINIT, "skinit" },
2854 { SVM_EXIT_WBINVD, "wbinvd" },
2855 { SVM_EXIT_MONITOR, "monitor" },
2856 { SVM_EXIT_MWAIT, "mwait" },
2857 { SVM_EXIT_NPF, "npf" },
2858 { -1, NULL }
2861 static bool svm_gb_page_enable(void)
2863 return true;
2866 static struct kvm_x86_ops svm_x86_ops = {
2867 .cpu_has_kvm_support = has_svm,
2868 .disabled_by_bios = is_disabled,
2869 .hardware_setup = svm_hardware_setup,
2870 .hardware_unsetup = svm_hardware_unsetup,
2871 .check_processor_compatibility = svm_check_processor_compat,
2872 .hardware_enable = svm_hardware_enable,
2873 .hardware_disable = svm_hardware_disable,
2874 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2876 .vcpu_create = svm_create_vcpu,
2877 .vcpu_free = svm_free_vcpu,
2878 .vcpu_reset = svm_vcpu_reset,
2880 .prepare_guest_switch = svm_prepare_guest_switch,
2881 .vcpu_load = svm_vcpu_load,
2882 .vcpu_put = svm_vcpu_put,
2884 .set_guest_debug = svm_guest_debug,
2885 .get_msr = svm_get_msr,
2886 .set_msr = svm_set_msr,
2887 .get_segment_base = svm_get_segment_base,
2888 .get_segment = svm_get_segment,
2889 .set_segment = svm_set_segment,
2890 .get_cpl = svm_get_cpl,
2891 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2892 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2893 .set_cr0 = svm_set_cr0,
2894 .set_cr3 = svm_set_cr3,
2895 .set_cr4 = svm_set_cr4,
2896 .set_efer = svm_set_efer,
2897 .get_idt = svm_get_idt,
2898 .set_idt = svm_set_idt,
2899 .get_gdt = svm_get_gdt,
2900 .set_gdt = svm_set_gdt,
2901 .get_dr = svm_get_dr,
2902 .set_dr = svm_set_dr,
2903 .cache_reg = svm_cache_reg,
2904 .get_rflags = svm_get_rflags,
2905 .set_rflags = svm_set_rflags,
2907 .tlb_flush = svm_flush_tlb,
2909 .run = svm_vcpu_run,
2910 .handle_exit = handle_exit,
2911 .skip_emulated_instruction = skip_emulated_instruction,
2912 .set_interrupt_shadow = svm_set_interrupt_shadow,
2913 .get_interrupt_shadow = svm_get_interrupt_shadow,
2914 .patch_hypercall = svm_patch_hypercall,
2915 .set_irq = svm_set_irq,
2916 .set_nmi = svm_inject_nmi,
2917 .queue_exception = svm_queue_exception,
2918 .interrupt_allowed = svm_interrupt_allowed,
2919 .nmi_allowed = svm_nmi_allowed,
2920 .enable_nmi_window = enable_nmi_window,
2921 .enable_irq_window = enable_irq_window,
2922 .update_cr8_intercept = update_cr8_intercept,
2924 .set_tss_addr = svm_set_tss_addr,
2925 .get_tdp_level = get_npt_level,
2926 .get_mt_mask = svm_get_mt_mask,
2928 .exit_reasons_str = svm_exit_reasons_str,
2929 .gb_page_enable = svm_gb_page_enable,
2932 static int __init svm_init(void)
2934 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2935 THIS_MODULE);
2938 static void __exit svm_exit(void)
2940 kvm_exit();
2943 module_init(svm_init)
2944 module_exit(svm_exit)