2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
7 * This file is based on arch/powerpc/kvm/44x_tlb.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_host.h>
20 #include <linux/highmem.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_e500.h>
24 #include "../mm/mmu_decl.h"
29 #define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1)
39 * This table provide mappings from:
40 * (guestAS,guestTID,guestPR) --> ID of physical cpu
45 * Each vcpu keeps one vcpu_id_table.
47 struct vcpu_id_table
{
48 struct id id
[2][NUM_TIDS
][2];
52 * This table provide reversed mappings of vcpu_id_table:
53 * ID --> address of vcpu_id_table item.
54 * Each physical core has one pcpu_id_table.
56 struct pcpu_id_table
{
57 struct id
*entry
[NUM_TIDS
];
60 static DEFINE_PER_CPU(struct pcpu_id_table
, pcpu_sids
);
62 /* This variable keeps last used shadow ID on local core.
63 * The valid range of shadow ID is [1..255] */
64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid
);
66 static unsigned int tlb1_entry_num
;
69 * Allocate a free shadow id and setup a valid sid mapping in given entry.
70 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
72 * The caller must have preemption disabled, and keep it that way until
73 * it has finished with the returned shadow id (either written into the
74 * TLB or arch.shadow_pid, or discarded).
76 static inline int local_sid_setup_one(struct id
*entry
)
81 sid
= ++(__get_cpu_var(pcpu_last_used_sid
));
83 __get_cpu_var(pcpu_sids
).entry
[sid
] = entry
;
85 entry
->pentry
= &__get_cpu_var(pcpu_sids
).entry
[sid
];
90 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
91 * the caller will invalidate everything and start over.
93 * sid > NUM_TIDS indicates a race, which we disable preemption to
96 WARN_ON(sid
> NUM_TIDS
);
102 * Check if given entry contain a valid shadow id mapping.
103 * An ID mapping is considered valid only if
104 * both vcpu and pcpu know this mapping.
106 * The caller must have preemption disabled, and keep it that way until
107 * it has finished with the returned shadow id (either written into the
108 * TLB or arch.shadow_pid, or discarded).
110 static inline int local_sid_lookup(struct id
*entry
)
112 if (entry
&& entry
->val
!= 0 &&
113 __get_cpu_var(pcpu_sids
).entry
[entry
->val
] == entry
&&
114 entry
->pentry
== &__get_cpu_var(pcpu_sids
).entry
[entry
->val
])
119 /* Invalidate all id mappings on local core */
120 static inline void local_sid_destroy_all(void)
123 __get_cpu_var(pcpu_last_used_sid
) = 0;
124 memset(&__get_cpu_var(pcpu_sids
), 0, sizeof(__get_cpu_var(pcpu_sids
)));
128 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500
*vcpu_e500
)
130 vcpu_e500
->idt
= kzalloc(sizeof(struct vcpu_id_table
), GFP_KERNEL
);
131 return vcpu_e500
->idt
;
134 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500
*vcpu_e500
)
136 kfree(vcpu_e500
->idt
);
139 /* Invalidate all mappings on vcpu */
140 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500
*vcpu_e500
)
142 memset(vcpu_e500
->idt
, 0, sizeof(struct vcpu_id_table
));
144 /* Update shadow pid when mappings are changed */
145 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
148 /* Invalidate one ID mapping on vcpu */
149 static inline void kvmppc_e500_id_table_reset_one(
150 struct kvmppc_vcpu_e500
*vcpu_e500
,
151 int as
, int pid
, int pr
)
153 struct vcpu_id_table
*idt
= vcpu_e500
->idt
;
156 BUG_ON(pid
>= NUM_TIDS
);
159 idt
->id
[as
][pid
][pr
].val
= 0;
160 idt
->id
[as
][pid
][pr
].pentry
= NULL
;
162 /* Update shadow pid when mappings are changed */
163 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
167 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
168 * This function first lookup if a valid mapping exists,
169 * if not, then creates a new one.
171 * The caller must have preemption disabled, and keep it that way until
172 * it has finished with the returned shadow id (either written into the
173 * TLB or arch.shadow_pid, or discarded).
175 static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500
*vcpu_e500
,
176 unsigned int as
, unsigned int gid
,
177 unsigned int pr
, int avoid_recursion
)
179 struct vcpu_id_table
*idt
= vcpu_e500
->idt
;
183 BUG_ON(gid
>= NUM_TIDS
);
186 sid
= local_sid_lookup(&idt
->id
[as
][gid
][pr
]);
190 sid
= local_sid_setup_one(&idt
->id
[as
][gid
][pr
]);
193 local_sid_destroy_all();
196 /* Update shadow pid when mappings are changed */
197 if (!avoid_recursion
)
198 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
204 /* Map guest pid to shadow.
205 * We use PID to keep shadow of current guest non-zero PID,
206 * and use PID1 to keep shadow of guest zero PID.
207 * So that guest tlbe with TID=0 can be accessed at any time */
208 void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500
*vcpu_e500
)
211 vcpu_e500
->vcpu
.arch
.shadow_pid
= kvmppc_e500_get_sid(vcpu_e500
,
212 get_cur_as(&vcpu_e500
->vcpu
),
213 get_cur_pid(&vcpu_e500
->vcpu
),
214 get_cur_pr(&vcpu_e500
->vcpu
), 1);
215 vcpu_e500
->vcpu
.arch
.shadow_pid1
= kvmppc_e500_get_sid(vcpu_e500
,
216 get_cur_as(&vcpu_e500
->vcpu
), 0,
217 get_cur_pr(&vcpu_e500
->vcpu
), 1);
221 void kvmppc_dump_tlbs(struct kvm_vcpu
*vcpu
)
223 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
227 printk("| %8s | %8s | %8s | %8s | %8s |\n",
228 "nr", "mas1", "mas2", "mas3", "mas7");
230 for (tlbsel
= 0; tlbsel
< 2; tlbsel
++) {
231 printk("Guest TLB%d:\n", tlbsel
);
232 for (i
= 0; i
< vcpu_e500
->gtlb_size
[tlbsel
]; i
++) {
233 tlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][i
];
234 if (tlbe
->mas1
& MAS1_VALID
)
235 printk(" G[%d][%3d] | %08X | %08X | %08X | %08X |\n",
236 tlbsel
, i
, tlbe
->mas1
, tlbe
->mas2
,
237 tlbe
->mas3
, tlbe
->mas7
);
242 static inline unsigned int tlb0_get_next_victim(
243 struct kvmppc_vcpu_e500
*vcpu_e500
)
247 victim
= vcpu_e500
->gtlb_nv
[0]++;
248 if (unlikely(vcpu_e500
->gtlb_nv
[0] >= KVM_E500_TLB0_WAY_NUM
))
249 vcpu_e500
->gtlb_nv
[0] = 0;
254 static inline unsigned int tlb1_max_shadow_size(void)
256 /* reserve one entry for magic page */
257 return tlb1_entry_num
- tlbcam_index
- 1;
260 static inline int tlbe_is_writable(struct tlbe
*tlbe
)
262 return tlbe
->mas3
& (MAS3_SW
|MAS3_UW
);
265 static inline u32
e500_shadow_mas3_attrib(u32 mas3
, int usermode
)
267 /* Mask off reserved bits. */
268 mas3
&= MAS3_ATTRIB_MASK
;
271 /* Guest is in supervisor mode,
272 * so we need to translate guest
273 * supervisor permissions into user permissions. */
274 mas3
&= ~E500_TLB_USER_PERM_MASK
;
275 mas3
|= (mas3
& E500_TLB_SUPER_PERM_MASK
) << 1;
278 return mas3
| E500_TLB_SUPER_PERM_MASK
;
281 static inline u32
e500_shadow_mas2_attrib(u32 mas2
, int usermode
)
284 return (mas2
& MAS2_ATTRIB_MASK
) | MAS2_M
;
286 return mas2
& MAS2_ATTRIB_MASK
;
291 * writing shadow tlb entry to host TLB
293 static inline void __write_host_tlbe(struct tlbe
*stlbe
, uint32_t mas0
)
297 local_irq_save(flags
);
298 mtspr(SPRN_MAS0
, mas0
);
299 mtspr(SPRN_MAS1
, stlbe
->mas1
);
300 mtspr(SPRN_MAS2
, stlbe
->mas2
);
301 mtspr(SPRN_MAS3
, stlbe
->mas3
);
302 mtspr(SPRN_MAS7
, stlbe
->mas7
);
303 asm volatile("isync; tlbwe" : : : "memory");
304 local_irq_restore(flags
);
307 static inline void write_host_tlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
308 int tlbsel
, int esel
, struct tlbe
*stlbe
)
311 __write_host_tlbe(stlbe
,
313 MAS0_ESEL(esel
& (KVM_E500_TLB0_WAY_NUM
- 1)));
315 __write_host_tlbe(stlbe
,
317 MAS0_ESEL(to_htlb1_esel(esel
)));
319 trace_kvm_stlb_write(index_of(tlbsel
, esel
), stlbe
->mas1
, stlbe
->mas2
,
320 stlbe
->mas3
, stlbe
->mas7
);
323 void kvmppc_map_magic(struct kvm_vcpu
*vcpu
)
325 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
327 ulong shared_page
= ((ulong
)vcpu
->arch
.shared
) & PAGE_MASK
;
331 pfn
= (pfn_t
)virt_to_phys((void *)shared_page
) >> PAGE_SHIFT
;
332 get_page(pfn_to_page(pfn
));
335 stid
= kvmppc_e500_get_sid(vcpu_e500
, 0, 0, 0, 0);
337 magic
.mas1
= MAS1_VALID
| MAS1_TS
| MAS1_TID(stid
) |
338 MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
339 magic
.mas2
= vcpu
->arch
.magic_page_ea
| MAS2_M
;
340 magic
.mas3
= (pfn
<< PAGE_SHIFT
) |
341 MAS3_SW
| MAS3_SR
| MAS3_UW
| MAS3_UR
;
342 magic
.mas7
= pfn
>> (32 - PAGE_SHIFT
);
344 __write_host_tlbe(&magic
, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index
));
348 void kvmppc_e500_tlb_load(struct kvm_vcpu
*vcpu
, int cpu
)
350 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
352 /* Shadow PID may be expired on local core */
353 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
356 void kvmppc_e500_tlb_put(struct kvm_vcpu
*vcpu
)
360 static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500
*vcpu_e500
,
361 int tlbsel
, int esel
)
363 struct tlbe
*gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
364 struct vcpu_id_table
*idt
= vcpu_e500
->idt
;
365 unsigned int pr
, tid
, ts
, pid
;
369 ts
= get_tlb_ts(gtlbe
);
370 tid
= get_tlb_tid(gtlbe
);
374 /* One guest ID may be mapped to two shadow IDs */
375 for (pr
= 0; pr
< 2; pr
++) {
377 * The shadow PID can have a valid mapping on at most one
378 * host CPU. In the common case, it will be valid on this
379 * CPU, in which case (for TLB0) we do a local invalidation
380 * of the specific address.
382 * If the shadow PID is not valid on the current host CPU, or
383 * if we're invalidating a TLB1 entry, we invalidate the
387 (pid
= local_sid_lookup(&idt
->id
[ts
][tid
][pr
])) <= 0) {
388 kvmppc_e500_id_table_reset_one(vcpu_e500
, ts
, tid
, pr
);
393 * The guest is invalidating a TLB0 entry which is in a PID
394 * that has a valid shadow mapping on this host CPU. We
395 * search host TLB0 to invalidate it's shadow TLB entry,
396 * similar to __tlbil_va except that we need to look in AS1.
398 val
= (pid
<< MAS6_SPID_SHIFT
) | MAS6_SAS
;
399 eaddr
= get_tlb_eaddr(gtlbe
);
401 local_irq_save(flags
);
403 mtspr(SPRN_MAS6
, val
);
404 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr
] "r" (eaddr
));
405 val
= mfspr(SPRN_MAS1
);
406 if (val
& MAS1_VALID
) {
407 mtspr(SPRN_MAS1
, val
& ~MAS1_VALID
);
408 asm volatile("tlbwe");
411 local_irq_restore(flags
);
417 /* Search the guest TLB for a matching entry. */
418 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500
*vcpu_e500
,
419 gva_t eaddr
, int tlbsel
, unsigned int pid
, int as
)
421 int size
= vcpu_e500
->gtlb_size
[tlbsel
];
426 int mask
= size
/ KVM_E500_TLB0_WAY_NUM
- 1;
427 set_base
= (eaddr
>> PAGE_SHIFT
) & mask
;
428 set_base
*= KVM_E500_TLB0_WAY_NUM
;
429 size
= KVM_E500_TLB0_WAY_NUM
;
434 for (i
= 0; i
< size
; i
++) {
435 struct tlbe
*tlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][set_base
+ i
];
438 if (eaddr
< get_tlb_eaddr(tlbe
))
441 if (eaddr
> get_tlb_end(tlbe
))
444 tid
= get_tlb_tid(tlbe
);
445 if (tid
&& (tid
!= pid
))
448 if (!get_tlb_v(tlbe
))
451 if (get_tlb_ts(tlbe
) != as
&& as
!= -1)
460 static inline void kvmppc_e500_priv_setup(struct tlbe_priv
*priv
,
465 priv
->flags
= E500_TLB_VALID
;
467 if (tlbe_is_writable(gtlbe
))
468 priv
->flags
|= E500_TLB_DIRTY
;
471 static inline void kvmppc_e500_priv_release(struct tlbe_priv
*priv
)
473 if (priv
->flags
& E500_TLB_VALID
) {
474 if (priv
->flags
& E500_TLB_DIRTY
)
475 kvm_release_pfn_dirty(priv
->pfn
);
477 kvm_release_pfn_clean(priv
->pfn
);
483 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu
*vcpu
,
484 unsigned int eaddr
, int as
)
486 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
487 unsigned int victim
, pidsel
, tsized
;
490 /* since we only have two TLBs, only lower bit is used. */
491 tlbsel
= (vcpu_e500
->mas4
>> 28) & 0x1;
492 victim
= (tlbsel
== 0) ? tlb0_get_next_victim(vcpu_e500
) : 0;
493 pidsel
= (vcpu_e500
->mas4
>> 16) & 0xf;
494 tsized
= (vcpu_e500
->mas4
>> 7) & 0x1f;
496 vcpu_e500
->mas0
= MAS0_TLBSEL(tlbsel
) | MAS0_ESEL(victim
)
497 | MAS0_NV(vcpu_e500
->gtlb_nv
[tlbsel
]);
498 vcpu_e500
->mas1
= MAS1_VALID
| (as
? MAS1_TS
: 0)
499 | MAS1_TID(vcpu_e500
->pid
[pidsel
])
500 | MAS1_TSIZE(tsized
);
501 vcpu_e500
->mas2
= (eaddr
& MAS2_EPN
)
502 | (vcpu_e500
->mas4
& MAS2_ATTRIB_MASK
);
503 vcpu_e500
->mas3
&= MAS3_U0
| MAS3_U1
| MAS3_U2
| MAS3_U3
;
504 vcpu_e500
->mas6
= (vcpu_e500
->mas6
& MAS6_SPID1
)
505 | (get_cur_pid(vcpu
) << 16)
506 | (as
? MAS6_SAS
: 0);
510 static inline void kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
511 struct tlbe
*gtlbe
, int tsize
,
512 struct tlbe_priv
*priv
,
513 u64 gvaddr
, struct tlbe
*stlbe
)
515 pfn_t pfn
= priv
->pfn
;
518 stid
= kvmppc_e500_get_sid(vcpu_e500
, get_tlb_ts(gtlbe
),
520 get_cur_pr(&vcpu_e500
->vcpu
), 0);
522 /* Force TS=1 IPROT=0 for all guest mappings. */
523 stlbe
->mas1
= MAS1_TSIZE(tsize
)
524 | MAS1_TID(stid
) | MAS1_TS
| MAS1_VALID
;
525 stlbe
->mas2
= (gvaddr
& MAS2_EPN
)
526 | e500_shadow_mas2_attrib(gtlbe
->mas2
,
527 vcpu_e500
->vcpu
.arch
.shared
->msr
& MSR_PR
);
528 stlbe
->mas3
= ((pfn
<< PAGE_SHIFT
) & MAS3_RPN
)
529 | e500_shadow_mas3_attrib(gtlbe
->mas3
,
530 vcpu_e500
->vcpu
.arch
.shared
->msr
& MSR_PR
);
531 stlbe
->mas7
= (pfn
>> (32 - PAGE_SHIFT
)) & MAS7_RPN
;
535 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
536 u64 gvaddr
, gfn_t gfn
, struct tlbe
*gtlbe
, int tlbsel
, int esel
,
539 struct kvm_memory_slot
*slot
;
540 unsigned long pfn
, hva
;
542 int tsize
= BOOK3E_PAGESZ_4K
;
543 struct tlbe_priv
*priv
;
546 * Translate guest physical to true physical, acquiring
547 * a page reference if it is normal, non-reserved memory.
549 * gfn_to_memslot() must succeed because otherwise we wouldn't
550 * have gotten this far. Eventually we should just pass the slot
551 * pointer through from the first lookup.
553 slot
= gfn_to_memslot(vcpu_e500
->vcpu
.kvm
, gfn
);
554 hva
= gfn_to_hva_memslot(slot
, gfn
);
557 struct vm_area_struct
*vma
;
558 down_read(¤t
->mm
->mmap_sem
);
560 vma
= find_vma(current
->mm
, hva
);
561 if (vma
&& hva
>= vma
->vm_start
&&
562 (vma
->vm_flags
& VM_PFNMAP
)) {
564 * This VMA is a physically contiguous region (e.g.
565 * /dev/mem) that bypasses normal Linux page
566 * management. Find the overlap between the
567 * vma and the memslot.
570 unsigned long start
, end
;
571 unsigned long slot_start
, slot_end
;
575 start
= vma
->vm_pgoff
;
577 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
);
579 pfn
= start
+ ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
581 slot_start
= pfn
- (gfn
- slot
->base_gfn
);
582 slot_end
= slot_start
+ slot
->npages
;
584 if (start
< slot_start
)
589 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
593 * e500 doesn't implement the lowest tsize bit,
596 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
599 * Now find the largest tsize (up to what the guest
600 * requested) that will cover gfn, stay within the
601 * range, and for which gfn and pfn are mutually
605 for (; tsize
> BOOK3E_PAGESZ_4K
; tsize
-= 2) {
606 unsigned long gfn_start
, gfn_end
, tsize_pages
;
607 tsize_pages
= 1 << (tsize
- 2);
609 gfn_start
= gfn
& ~(tsize_pages
- 1);
610 gfn_end
= gfn_start
+ tsize_pages
;
612 if (gfn_start
+ pfn
- gfn
< start
)
614 if (gfn_end
+ pfn
- gfn
> end
)
616 if ((gfn
& (tsize_pages
- 1)) !=
617 (pfn
& (tsize_pages
- 1)))
620 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
621 pfn
&= ~(tsize_pages
- 1);
626 up_read(¤t
->mm
->mmap_sem
);
629 if (likely(!pfnmap
)) {
630 pfn
= gfn_to_pfn_memslot(vcpu_e500
->vcpu
.kvm
, slot
, gfn
);
631 if (is_error_pfn(pfn
)) {
632 printk(KERN_ERR
"Couldn't get real page for gfn %lx!\n",
634 kvm_release_pfn_clean(pfn
);
639 /* Drop old priv and setup new one. */
640 priv
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
];
641 kvmppc_e500_priv_release(priv
);
642 kvmppc_e500_priv_setup(priv
, gtlbe
, pfn
);
644 kvmppc_e500_setup_stlbe(vcpu_e500
, gtlbe
, tsize
, priv
, gvaddr
, stlbe
);
647 /* XXX only map the one-one case, for now use TLB0 */
648 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
649 int esel
, struct tlbe
*stlbe
)
653 gtlbe
= &vcpu_e500
->gtlb_arch
[0][esel
];
655 kvmppc_e500_shadow_map(vcpu_e500
, get_tlb_eaddr(gtlbe
),
656 get_tlb_raddr(gtlbe
) >> PAGE_SHIFT
,
657 gtlbe
, 0, esel
, stlbe
);
662 /* Caller must ensure that the specified guest TLB entry is safe to insert into
664 /* XXX for both one-one and one-to-many , for now use TLB1 */
665 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
666 u64 gvaddr
, gfn_t gfn
, struct tlbe
*gtlbe
, struct tlbe
*stlbe
)
670 victim
= vcpu_e500
->gtlb_nv
[1]++;
672 if (unlikely(vcpu_e500
->gtlb_nv
[1] >= tlb1_max_shadow_size()))
673 vcpu_e500
->gtlb_nv
[1] = 0;
675 kvmppc_e500_shadow_map(vcpu_e500
, gvaddr
, gfn
, gtlbe
, 1, victim
, stlbe
);
680 void kvmppc_mmu_msr_notify(struct kvm_vcpu
*vcpu
, u32 old_msr
)
682 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
684 /* Recalc shadow pid since MSR changes */
685 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
688 static inline int kvmppc_e500_gtlbe_invalidate(
689 struct kvmppc_vcpu_e500
*vcpu_e500
,
690 int tlbsel
, int esel
)
692 struct tlbe
*gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
694 if (unlikely(get_tlb_iprot(gtlbe
)))
702 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500
*vcpu_e500
, ulong value
)
706 if (value
& MMUCSR0_TLB0FI
)
707 for (esel
= 0; esel
< vcpu_e500
->gtlb_size
[0]; esel
++)
708 kvmppc_e500_gtlbe_invalidate(vcpu_e500
, 0, esel
);
709 if (value
& MMUCSR0_TLB1FI
)
710 for (esel
= 0; esel
< vcpu_e500
->gtlb_size
[1]; esel
++)
711 kvmppc_e500_gtlbe_invalidate(vcpu_e500
, 1, esel
);
713 /* Invalidate all vcpu id mappings */
714 kvmppc_e500_id_table_reset_all(vcpu_e500
);
719 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu
*vcpu
, int ra
, int rb
)
721 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
726 ea
= ((ra
) ? kvmppc_get_gpr(vcpu
, ra
) : 0) + kvmppc_get_gpr(vcpu
, rb
);
728 ia
= (ea
>> 2) & 0x1;
730 /* since we only have two TLBs, only lower bit is used. */
731 tlbsel
= (ea
>> 3) & 0x1;
734 /* invalidate all entries */
735 for (esel
= 0; esel
< vcpu_e500
->gtlb_size
[tlbsel
]; esel
++)
736 kvmppc_e500_gtlbe_invalidate(vcpu_e500
, tlbsel
, esel
);
739 esel
= kvmppc_e500_tlb_index(vcpu_e500
, ea
, tlbsel
,
740 get_cur_pid(vcpu
), -1);
742 kvmppc_e500_gtlbe_invalidate(vcpu_e500
, tlbsel
, esel
);
745 /* Invalidate all vcpu id mappings */
746 kvmppc_e500_id_table_reset_all(vcpu_e500
);
751 int kvmppc_e500_emul_tlbre(struct kvm_vcpu
*vcpu
)
753 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
757 tlbsel
= get_tlb_tlbsel(vcpu_e500
);
758 esel
= get_tlb_esel(vcpu_e500
, tlbsel
);
760 gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
761 vcpu_e500
->mas0
&= ~MAS0_NV(~0);
762 vcpu_e500
->mas0
|= MAS0_NV(vcpu_e500
->gtlb_nv
[tlbsel
]);
763 vcpu_e500
->mas1
= gtlbe
->mas1
;
764 vcpu_e500
->mas2
= gtlbe
->mas2
;
765 vcpu_e500
->mas3
= gtlbe
->mas3
;
766 vcpu_e500
->mas7
= gtlbe
->mas7
;
771 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu
*vcpu
, int rb
)
773 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
774 int as
= !!get_cur_sas(vcpu_e500
);
775 unsigned int pid
= get_cur_spid(vcpu_e500
);
777 struct tlbe
*gtlbe
= NULL
;
780 ea
= kvmppc_get_gpr(vcpu
, rb
);
782 for (tlbsel
= 0; tlbsel
< 2; tlbsel
++) {
783 esel
= kvmppc_e500_tlb_index(vcpu_e500
, ea
, tlbsel
, pid
, as
);
785 gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
791 vcpu_e500
->mas0
= MAS0_TLBSEL(tlbsel
) | MAS0_ESEL(esel
)
792 | MAS0_NV(vcpu_e500
->gtlb_nv
[tlbsel
]);
793 vcpu_e500
->mas1
= gtlbe
->mas1
;
794 vcpu_e500
->mas2
= gtlbe
->mas2
;
795 vcpu_e500
->mas3
= gtlbe
->mas3
;
796 vcpu_e500
->mas7
= gtlbe
->mas7
;
800 /* since we only have two TLBs, only lower bit is used. */
801 tlbsel
= vcpu_e500
->mas4
>> 28 & 0x1;
802 victim
= (tlbsel
== 0) ? tlb0_get_next_victim(vcpu_e500
) : 0;
804 vcpu_e500
->mas0
= MAS0_TLBSEL(tlbsel
) | MAS0_ESEL(victim
)
805 | MAS0_NV(vcpu_e500
->gtlb_nv
[tlbsel
]);
806 vcpu_e500
->mas1
= (vcpu_e500
->mas6
& MAS6_SPID0
)
807 | (vcpu_e500
->mas6
& (MAS6_SAS
? MAS1_TS
: 0))
808 | (vcpu_e500
->mas4
& MAS4_TSIZED(~0));
809 vcpu_e500
->mas2
&= MAS2_EPN
;
810 vcpu_e500
->mas2
|= vcpu_e500
->mas4
& MAS2_ATTRIB_MASK
;
811 vcpu_e500
->mas3
&= MAS3_U0
| MAS3_U1
| MAS3_U2
| MAS3_U3
;
815 kvmppc_set_exit_type(vcpu
, EMULATED_TLBSX_EXITS
);
819 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu
*vcpu
)
821 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
825 tlbsel
= get_tlb_tlbsel(vcpu_e500
);
826 esel
= get_tlb_esel(vcpu_e500
, tlbsel
);
828 gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
830 if (get_tlb_v(gtlbe
))
831 kvmppc_e500_stlbe_invalidate(vcpu_e500
, tlbsel
, esel
);
833 gtlbe
->mas1
= vcpu_e500
->mas1
;
834 gtlbe
->mas2
= vcpu_e500
->mas2
;
835 gtlbe
->mas3
= vcpu_e500
->mas3
;
836 gtlbe
->mas7
= vcpu_e500
->mas7
;
838 trace_kvm_gtlb_write(vcpu_e500
->mas0
, gtlbe
->mas1
, gtlbe
->mas2
,
839 gtlbe
->mas3
, gtlbe
->mas7
);
841 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
842 if (tlbe_is_host_safe(vcpu
, gtlbe
)) {
852 gtlbe
->mas1
&= ~MAS1_TSIZE(~0);
853 gtlbe
->mas1
|= MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
856 sesel
= kvmppc_e500_tlb0_map(vcpu_e500
, esel
, &stlbe
);
862 eaddr
= get_tlb_eaddr(gtlbe
);
863 raddr
= get_tlb_raddr(gtlbe
);
865 /* Create a 4KB mapping on the host.
866 * If the guest wanted a large page,
867 * only the first 4KB is mapped here and the rest
868 * are mapped on the fly. */
870 sesel
= kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
,
871 raddr
>> PAGE_SHIFT
, gtlbe
, &stlbe
);
877 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, &stlbe
);
881 kvmppc_set_exit_type(vcpu
, EMULATED_TLBWE_EXITS
);
885 int kvmppc_mmu_itlb_index(struct kvm_vcpu
*vcpu
, gva_t eaddr
)
887 unsigned int as
= !!(vcpu
->arch
.shared
->msr
& MSR_IS
);
889 return kvmppc_e500_tlb_search(vcpu
, eaddr
, get_cur_pid(vcpu
), as
);
892 int kvmppc_mmu_dtlb_index(struct kvm_vcpu
*vcpu
, gva_t eaddr
)
894 unsigned int as
= !!(vcpu
->arch
.shared
->msr
& MSR_DS
);
896 return kvmppc_e500_tlb_search(vcpu
, eaddr
, get_cur_pid(vcpu
), as
);
899 void kvmppc_mmu_itlb_miss(struct kvm_vcpu
*vcpu
)
901 unsigned int as
= !!(vcpu
->arch
.shared
->msr
& MSR_IS
);
903 kvmppc_e500_deliver_tlb_miss(vcpu
, vcpu
->arch
.pc
, as
);
906 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu
*vcpu
)
908 unsigned int as
= !!(vcpu
->arch
.shared
->msr
& MSR_DS
);
910 kvmppc_e500_deliver_tlb_miss(vcpu
, vcpu
->arch
.fault_dear
, as
);
913 gpa_t
kvmppc_mmu_xlate(struct kvm_vcpu
*vcpu
, unsigned int index
,
916 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
918 &vcpu_e500
->gtlb_arch
[tlbsel_of(index
)][esel_of(index
)];
919 u64 pgmask
= get_tlb_bytes(gtlbe
) - 1;
921 return get_tlb_raddr(gtlbe
) | (eaddr
& pgmask
);
924 void kvmppc_mmu_destroy(struct kvm_vcpu
*vcpu
)
928 void kvmppc_mmu_map(struct kvm_vcpu
*vcpu
, u64 eaddr
, gpa_t gpaddr
,
931 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
932 struct tlbe_priv
*priv
;
933 struct tlbe
*gtlbe
, stlbe
;
934 int tlbsel
= tlbsel_of(index
);
935 int esel
= esel_of(index
);
938 gtlbe
= &vcpu_e500
->gtlb_arch
[tlbsel
][esel
];
945 priv
= &vcpu_e500
->gtlb_priv
[stlbsel
][sesel
];
947 kvmppc_e500_setup_stlbe(vcpu_e500
, gtlbe
, BOOK3E_PAGESZ_4K
,
948 priv
, eaddr
, &stlbe
);
952 gfn_t gfn
= gpaddr
>> PAGE_SHIFT
;
955 sesel
= kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
, gfn
,
965 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, &stlbe
);
969 int kvmppc_e500_tlb_search(struct kvm_vcpu
*vcpu
,
970 gva_t eaddr
, unsigned int pid
, int as
)
972 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
975 for (tlbsel
= 0; tlbsel
< 2; tlbsel
++) {
976 esel
= kvmppc_e500_tlb_index(vcpu_e500
, eaddr
, tlbsel
, pid
, as
);
978 return index_of(tlbsel
, esel
);
984 void kvmppc_set_pid(struct kvm_vcpu
*vcpu
, u32 pid
)
986 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
988 if (vcpu
->arch
.pid
!= pid
) {
989 vcpu_e500
->pid
[0] = vcpu
->arch
.pid
= pid
;
990 kvmppc_e500_recalc_shadow_pid(vcpu_e500
);
994 void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500
*vcpu_e500
)
998 /* Insert large initial mapping for guest. */
999 tlbe
= &vcpu_e500
->gtlb_arch
[1][0];
1000 tlbe
->mas1
= MAS1_VALID
| MAS1_TSIZE(BOOK3E_PAGESZ_256M
);
1002 tlbe
->mas3
= E500_TLB_SUPER_PERM_MASK
;
1005 /* 4K map for serial output. Used by kernel wrapper. */
1006 tlbe
= &vcpu_e500
->gtlb_arch
[1][1];
1007 tlbe
->mas1
= MAS1_VALID
| MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
1008 tlbe
->mas2
= (0xe0004500 & 0xFFFFF000) | MAS2_I
| MAS2_G
;
1009 tlbe
->mas3
= (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK
;
1013 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500
*vcpu_e500
)
1015 tlb1_entry_num
= mfspr(SPRN_TLB1CFG
) & 0xFFF;
1017 vcpu_e500
->gtlb_size
[0] = KVM_E500_TLB0_SIZE
;
1018 vcpu_e500
->gtlb_arch
[0] =
1019 kzalloc(sizeof(struct tlbe
) * KVM_E500_TLB0_SIZE
, GFP_KERNEL
);
1020 if (vcpu_e500
->gtlb_arch
[0] == NULL
)
1023 vcpu_e500
->gtlb_size
[1] = KVM_E500_TLB1_SIZE
;
1024 vcpu_e500
->gtlb_arch
[1] =
1025 kzalloc(sizeof(struct tlbe
) * KVM_E500_TLB1_SIZE
, GFP_KERNEL
);
1026 if (vcpu_e500
->gtlb_arch
[1] == NULL
)
1027 goto err_out_guest0
;
1029 vcpu_e500
->gtlb_priv
[0] = (struct tlbe_priv
*)
1030 kzalloc(sizeof(struct tlbe_priv
) * KVM_E500_TLB0_SIZE
, GFP_KERNEL
);
1031 if (vcpu_e500
->gtlb_priv
[0] == NULL
)
1032 goto err_out_guest1
;
1033 vcpu_e500
->gtlb_priv
[1] = (struct tlbe_priv
*)
1034 kzalloc(sizeof(struct tlbe_priv
) * KVM_E500_TLB1_SIZE
, GFP_KERNEL
);
1036 if (vcpu_e500
->gtlb_priv
[1] == NULL
)
1039 if (kvmppc_e500_id_table_alloc(vcpu_e500
) == NULL
)
1042 /* Init TLB configuration register */
1043 vcpu_e500
->tlb0cfg
= mfspr(SPRN_TLB0CFG
) & ~0xfffUL
;
1044 vcpu_e500
->tlb0cfg
|= vcpu_e500
->gtlb_size
[0];
1045 vcpu_e500
->tlb1cfg
= mfspr(SPRN_TLB1CFG
) & ~0xfffUL
;
1046 vcpu_e500
->tlb1cfg
|= vcpu_e500
->gtlb_size
[1];
1051 kfree(vcpu_e500
->gtlb_priv
[1]);
1053 kfree(vcpu_e500
->gtlb_priv
[0]);
1055 kfree(vcpu_e500
->gtlb_arch
[1]);
1057 kfree(vcpu_e500
->gtlb_arch
[0]);
1062 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500
*vcpu_e500
)
1066 /* release all privs */
1067 for (stlbsel
= 0; stlbsel
< 2; stlbsel
++)
1068 for (i
= 0; i
< vcpu_e500
->gtlb_size
[stlbsel
]; i
++) {
1069 struct tlbe_priv
*priv
=
1070 &vcpu_e500
->gtlb_priv
[stlbsel
][i
];
1071 kvmppc_e500_priv_release(priv
);
1074 kvmppc_e500_id_table_free(vcpu_e500
);
1075 kfree(vcpu_e500
->gtlb_arch
[1]);
1076 kfree(vcpu_e500
->gtlb_arch
[0]);