2 * address space "slices" (meta-segments) support
4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
6 * Based on hugetlb implementation
8 * Copyright (C) 2003 David Gibson, IBM Corporation.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/kernel.h>
29 #include <linux/pagemap.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/export.h>
37 static DEFINE_SPINLOCK(slice_convert_lock
);
43 static void slice_print_mask(const char *label
, struct slice_mask mask
)
45 char *p
, buf
[16 + 3 + 16 + 1];
51 for (i
= 0; i
< SLICE_NUM_LOW
; i
++)
52 *(p
++) = (mask
.low_slices
& (1 << i
)) ? '1' : '0';
56 for (i
= 0; i
< SLICE_NUM_HIGH
; i
++)
57 *(p
++) = (mask
.high_slices
& (1 << i
)) ? '1' : '0';
60 printk(KERN_DEBUG
"%s:%s\n", label
, buf
);
63 #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
67 static void slice_print_mask(const char *label
, struct slice_mask mask
) {}
68 #define slice_dbg(fmt...)
72 static struct slice_mask
slice_range_to_mask(unsigned long start
,
75 unsigned long end
= start
+ len
- 1;
76 struct slice_mask ret
= { 0, 0 };
78 if (start
< SLICE_LOW_TOP
) {
79 unsigned long mend
= min(end
, SLICE_LOW_TOP
);
80 unsigned long mstart
= min(start
, SLICE_LOW_TOP
);
82 ret
.low_slices
= (1u << (GET_LOW_SLICE_INDEX(mend
) + 1))
83 - (1u << GET_LOW_SLICE_INDEX(mstart
));
86 if ((start
+ len
) > SLICE_LOW_TOP
)
87 ret
.high_slices
= (1u << (GET_HIGH_SLICE_INDEX(end
) + 1))
88 - (1u << GET_HIGH_SLICE_INDEX(start
));
93 static int slice_area_is_free(struct mm_struct
*mm
, unsigned long addr
,
96 struct vm_area_struct
*vma
;
98 if ((mm
->task_size
- len
) < addr
)
100 vma
= find_vma(mm
, addr
);
101 return (!vma
|| (addr
+ len
) <= vma
->vm_start
);
104 static int slice_low_has_vma(struct mm_struct
*mm
, unsigned long slice
)
106 return !slice_area_is_free(mm
, slice
<< SLICE_LOW_SHIFT
,
107 1ul << SLICE_LOW_SHIFT
);
110 static int slice_high_has_vma(struct mm_struct
*mm
, unsigned long slice
)
112 unsigned long start
= slice
<< SLICE_HIGH_SHIFT
;
113 unsigned long end
= start
+ (1ul << SLICE_HIGH_SHIFT
);
115 /* Hack, so that each addresses is controlled by exactly one
116 * of the high or low area bitmaps, the first high area starts
119 start
= SLICE_LOW_TOP
;
121 return !slice_area_is_free(mm
, start
, end
- start
);
124 static struct slice_mask
slice_mask_for_free(struct mm_struct
*mm
)
126 struct slice_mask ret
= { 0, 0 };
129 for (i
= 0; i
< SLICE_NUM_LOW
; i
++)
130 if (!slice_low_has_vma(mm
, i
))
131 ret
.low_slices
|= 1u << i
;
133 if (mm
->task_size
<= SLICE_LOW_TOP
)
136 for (i
= 0; i
< SLICE_NUM_HIGH
; i
++)
137 if (!slice_high_has_vma(mm
, i
))
138 ret
.high_slices
|= 1u << i
;
143 static struct slice_mask
slice_mask_for_size(struct mm_struct
*mm
, int psize
)
145 struct slice_mask ret
= { 0, 0 };
149 psizes
= mm
->context
.low_slices_psize
;
150 for (i
= 0; i
< SLICE_NUM_LOW
; i
++)
151 if (((psizes
>> (i
* 4)) & 0xf) == psize
)
152 ret
.low_slices
|= 1u << i
;
154 psizes
= mm
->context
.high_slices_psize
;
155 for (i
= 0; i
< SLICE_NUM_HIGH
; i
++)
156 if (((psizes
>> (i
* 4)) & 0xf) == psize
)
157 ret
.high_slices
|= 1u << i
;
162 static int slice_check_fit(struct slice_mask mask
, struct slice_mask available
)
164 return (mask
.low_slices
& available
.low_slices
) == mask
.low_slices
&&
165 (mask
.high_slices
& available
.high_slices
) == mask
.high_slices
;
168 static void slice_flush_segments(void *parm
)
170 struct mm_struct
*mm
= parm
;
173 if (mm
!= current
->active_mm
)
176 /* update the paca copy of the context struct */
177 get_paca()->context
= current
->active_mm
->context
;
179 local_irq_save(flags
);
180 slb_flush_and_rebolt();
181 local_irq_restore(flags
);
184 static void slice_convert(struct mm_struct
*mm
, struct slice_mask mask
, int psize
)
186 /* Write the new slice psize bits */
187 u64 lpsizes
, hpsizes
;
188 unsigned long i
, flags
;
190 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm
, psize
);
191 slice_print_mask(" mask", mask
);
193 /* We need to use a spinlock here to protect against
194 * concurrent 64k -> 4k demotion ...
196 spin_lock_irqsave(&slice_convert_lock
, flags
);
198 lpsizes
= mm
->context
.low_slices_psize
;
199 for (i
= 0; i
< SLICE_NUM_LOW
; i
++)
200 if (mask
.low_slices
& (1u << i
))
201 lpsizes
= (lpsizes
& ~(0xful
<< (i
* 4))) |
202 (((unsigned long)psize
) << (i
* 4));
204 hpsizes
= mm
->context
.high_slices_psize
;
205 for (i
= 0; i
< SLICE_NUM_HIGH
; i
++)
206 if (mask
.high_slices
& (1u << i
))
207 hpsizes
= (hpsizes
& ~(0xful
<< (i
* 4))) |
208 (((unsigned long)psize
) << (i
* 4));
210 mm
->context
.low_slices_psize
= lpsizes
;
211 mm
->context
.high_slices_psize
= hpsizes
;
213 slice_dbg(" lsps=%lx, hsps=%lx\n",
214 mm
->context
.low_slices_psize
,
215 mm
->context
.high_slices_psize
);
217 spin_unlock_irqrestore(&slice_convert_lock
, flags
);
219 #ifdef CONFIG_SPU_BASE
220 spu_flush_all_slbs(mm
);
224 static unsigned long slice_find_area_bottomup(struct mm_struct
*mm
,
226 struct slice_mask available
,
227 int psize
, int use_cache
)
229 struct vm_area_struct
*vma
;
230 unsigned long start_addr
, addr
;
231 struct slice_mask mask
;
232 int pshift
= max_t(int, mmu_psize_defs
[psize
].shift
, PAGE_SHIFT
);
235 if (len
<= mm
->cached_hole_size
) {
236 start_addr
= addr
= TASK_UNMAPPED_BASE
;
237 mm
->cached_hole_size
= 0;
239 start_addr
= addr
= mm
->free_area_cache
;
241 start_addr
= addr
= TASK_UNMAPPED_BASE
;
245 addr
= _ALIGN_UP(addr
, 1ul << pshift
);
246 if ((TASK_SIZE
- len
) < addr
)
248 vma
= find_vma(mm
, addr
);
249 BUG_ON(vma
&& (addr
>= vma
->vm_end
));
251 mask
= slice_range_to_mask(addr
, len
);
252 if (!slice_check_fit(mask
, available
)) {
253 if (addr
< SLICE_LOW_TOP
)
254 addr
= _ALIGN_UP(addr
+ 1, 1ul << SLICE_LOW_SHIFT
);
256 addr
= _ALIGN_UP(addr
+ 1, 1ul << SLICE_HIGH_SHIFT
);
259 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
261 * Remember the place where we stopped the search:
264 mm
->free_area_cache
= addr
+ len
;
267 if (use_cache
&& (addr
+ mm
->cached_hole_size
) < vma
->vm_start
)
268 mm
->cached_hole_size
= vma
->vm_start
- addr
;
272 /* Make sure we didn't miss any holes */
273 if (use_cache
&& start_addr
!= TASK_UNMAPPED_BASE
) {
274 start_addr
= addr
= TASK_UNMAPPED_BASE
;
275 mm
->cached_hole_size
= 0;
281 static unsigned long slice_find_area_topdown(struct mm_struct
*mm
,
283 struct slice_mask available
,
284 int psize
, int use_cache
)
286 struct vm_area_struct
*vma
;
288 struct slice_mask mask
;
289 int pshift
= max_t(int, mmu_psize_defs
[psize
].shift
, PAGE_SHIFT
);
291 /* check if free_area_cache is useful for us */
293 if (len
<= mm
->cached_hole_size
) {
294 mm
->cached_hole_size
= 0;
295 mm
->free_area_cache
= mm
->mmap_base
;
298 /* either no address requested or can't fit in requested
301 addr
= mm
->free_area_cache
;
303 /* make sure it can fit in the remaining address space */
305 addr
= _ALIGN_DOWN(addr
- len
, 1ul << pshift
);
306 mask
= slice_range_to_mask(addr
, len
);
307 if (slice_check_fit(mask
, available
) &&
308 slice_area_is_free(mm
, addr
, len
))
309 /* remember the address as a hint for
312 return (mm
->free_area_cache
= addr
);
316 addr
= mm
->mmap_base
;
318 /* Go down by chunk size */
319 addr
= _ALIGN_DOWN(addr
- len
, 1ul << pshift
);
321 /* Check for hit with different page size */
322 mask
= slice_range_to_mask(addr
, len
);
323 if (!slice_check_fit(mask
, available
)) {
324 if (addr
< SLICE_LOW_TOP
)
325 addr
= _ALIGN_DOWN(addr
, 1ul << SLICE_LOW_SHIFT
);
326 else if (addr
< (1ul << SLICE_HIGH_SHIFT
))
327 addr
= SLICE_LOW_TOP
;
329 addr
= _ALIGN_DOWN(addr
, 1ul << SLICE_HIGH_SHIFT
);
334 * Lookup failure means no vma is above this address,
335 * else if new region fits below vma->vm_start,
336 * return with success:
338 vma
= find_vma(mm
, addr
);
339 if (!vma
|| (addr
+ len
) <= vma
->vm_start
) {
340 /* remember the address as a hint for next time */
342 mm
->free_area_cache
= addr
;
346 /* remember the largest hole we saw so far */
347 if (use_cache
&& (addr
+ mm
->cached_hole_size
) < vma
->vm_start
)
348 mm
->cached_hole_size
= vma
->vm_start
- addr
;
350 /* try just below the current vma->vm_start */
351 addr
= vma
->vm_start
;
355 * A failed mmap() very likely causes application failure,
356 * so fall back to the bottom-up function here. This scenario
357 * can happen with large stack limits and large mmap()
360 addr
= slice_find_area_bottomup(mm
, len
, available
, psize
, 0);
363 * Restore the topdown base:
366 mm
->free_area_cache
= mm
->mmap_base
;
367 mm
->cached_hole_size
= ~0UL;
374 static unsigned long slice_find_area(struct mm_struct
*mm
, unsigned long len
,
375 struct slice_mask mask
, int psize
,
376 int topdown
, int use_cache
)
379 return slice_find_area_topdown(mm
, len
, mask
, psize
, use_cache
);
381 return slice_find_area_bottomup(mm
, len
, mask
, psize
, use_cache
);
384 #define or_mask(dst, src) do { \
385 (dst).low_slices |= (src).low_slices; \
386 (dst).high_slices |= (src).high_slices; \
389 #define andnot_mask(dst, src) do { \
390 (dst).low_slices &= ~(src).low_slices; \
391 (dst).high_slices &= ~(src).high_slices; \
394 #ifdef CONFIG_PPC_64K_PAGES
395 #define MMU_PAGE_BASE MMU_PAGE_64K
397 #define MMU_PAGE_BASE MMU_PAGE_4K
400 unsigned long slice_get_unmapped_area(unsigned long addr
, unsigned long len
,
401 unsigned long flags
, unsigned int psize
,
402 int topdown
, int use_cache
)
404 struct slice_mask mask
= {0, 0};
405 struct slice_mask good_mask
;
406 struct slice_mask potential_mask
= {0,0} /* silence stupid warning */;
407 struct slice_mask compat_mask
= {0, 0};
408 int fixed
= (flags
& MAP_FIXED
);
409 int pshift
= max_t(int, mmu_psize_defs
[psize
].shift
, PAGE_SHIFT
);
410 struct mm_struct
*mm
= current
->mm
;
411 unsigned long newaddr
;
414 BUG_ON(mm
->task_size
== 0);
416 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm
, psize
);
417 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
418 addr
, len
, flags
, topdown
, use_cache
);
420 if (len
> mm
->task_size
)
422 if (len
& ((1ul << pshift
) - 1))
424 if (fixed
&& (addr
& ((1ul << pshift
) - 1)))
426 if (fixed
&& addr
> (mm
->task_size
- len
))
429 /* If hint, make sure it matches our alignment restrictions */
430 if (!fixed
&& addr
) {
431 addr
= _ALIGN_UP(addr
, 1ul << pshift
);
432 slice_dbg(" aligned addr=%lx\n", addr
);
433 /* Ignore hint if it's too large or overlaps a VMA */
434 if (addr
> mm
->task_size
- len
||
435 !slice_area_is_free(mm
, addr
, len
))
439 /* First make up a "good" mask of slices that have the right size
442 good_mask
= slice_mask_for_size(mm
, psize
);
443 slice_print_mask(" good_mask", good_mask
);
446 * Here "good" means slices that are already the right page size,
447 * "compat" means slices that have a compatible page size (i.e.
448 * 4k in a 64k pagesize kernel), and "free" means slices without
452 * check if fits in good | compat => OK
453 * check if fits in good | compat | free => convert free
456 * check if hint fits in good => OK
457 * check if hint fits in good | free => convert free
459 * search in good, found => OK
460 * search in good | free, found => convert free
461 * search in good | compat | free, found => convert free.
464 #ifdef CONFIG_PPC_64K_PAGES
465 /* If we support combo pages, we can allow 64k pages in 4k slices */
466 if (psize
== MMU_PAGE_64K
) {
467 compat_mask
= slice_mask_for_size(mm
, MMU_PAGE_4K
);
469 or_mask(good_mask
, compat_mask
);
473 /* First check hint if it's valid or if we have MAP_FIXED */
474 if (addr
!= 0 || fixed
) {
475 /* Build a mask for the requested range */
476 mask
= slice_range_to_mask(addr
, len
);
477 slice_print_mask(" mask", mask
);
479 /* Check if we fit in the good mask. If we do, we just return,
482 if (slice_check_fit(mask
, good_mask
)) {
483 slice_dbg(" fits good !\n");
487 /* Now let's see if we can find something in the existing
488 * slices for that size
490 newaddr
= slice_find_area(mm
, len
, good_mask
, psize
, topdown
,
492 if (newaddr
!= -ENOMEM
) {
493 /* Found within the good mask, we don't have to setup,
494 * we thus return directly
496 slice_dbg(" found area at 0x%lx\n", newaddr
);
501 /* We don't fit in the good mask, check what other slices are
502 * empty and thus can be converted
504 potential_mask
= slice_mask_for_free(mm
);
505 or_mask(potential_mask
, good_mask
);
506 slice_print_mask(" potential", potential_mask
);
508 if ((addr
!= 0 || fixed
) && slice_check_fit(mask
, potential_mask
)) {
509 slice_dbg(" fits potential !\n");
513 /* If we have MAP_FIXED and failed the above steps, then error out */
517 slice_dbg(" search...\n");
519 /* If we had a hint that didn't work out, see if we can fit
520 * anywhere in the good area.
523 addr
= slice_find_area(mm
, len
, good_mask
, psize
, topdown
,
525 if (addr
!= -ENOMEM
) {
526 slice_dbg(" found area at 0x%lx\n", addr
);
531 /* Now let's see if we can find something in the existing slices
532 * for that size plus free slices
534 addr
= slice_find_area(mm
, len
, potential_mask
, psize
, topdown
,
537 #ifdef CONFIG_PPC_64K_PAGES
538 if (addr
== -ENOMEM
&& psize
== MMU_PAGE_64K
) {
539 /* retry the search with 4k-page slices included */
540 or_mask(potential_mask
, compat_mask
);
541 addr
= slice_find_area(mm
, len
, potential_mask
, psize
,
549 mask
= slice_range_to_mask(addr
, len
);
550 slice_dbg(" found potential area at 0x%lx\n", addr
);
551 slice_print_mask(" mask", mask
);
554 andnot_mask(mask
, good_mask
);
555 andnot_mask(mask
, compat_mask
);
556 if (mask
.low_slices
|| mask
.high_slices
) {
557 slice_convert(mm
, mask
, psize
);
558 if (psize
> MMU_PAGE_BASE
)
559 on_each_cpu(slice_flush_segments
, mm
, 1);
564 EXPORT_SYMBOL_GPL(slice_get_unmapped_area
);
566 unsigned long arch_get_unmapped_area(struct file
*filp
,
572 return slice_get_unmapped_area(addr
, len
, flags
,
573 current
->mm
->context
.user_psize
,
577 unsigned long arch_get_unmapped_area_topdown(struct file
*filp
,
578 const unsigned long addr0
,
579 const unsigned long len
,
580 const unsigned long pgoff
,
581 const unsigned long flags
)
583 return slice_get_unmapped_area(addr0
, len
, flags
,
584 current
->mm
->context
.user_psize
,
588 unsigned int get_slice_psize(struct mm_struct
*mm
, unsigned long addr
)
593 if (addr
< SLICE_LOW_TOP
) {
594 psizes
= mm
->context
.low_slices_psize
;
595 index
= GET_LOW_SLICE_INDEX(addr
);
597 psizes
= mm
->context
.high_slices_psize
;
598 index
= GET_HIGH_SLICE_INDEX(addr
);
601 return (psizes
>> (index
* 4)) & 0xf;
603 EXPORT_SYMBOL_GPL(get_slice_psize
);
606 * This is called by hash_page when it needs to do a lazy conversion of
607 * an address space from real 64K pages to combo 4K pages (typically
608 * when hitting a non cacheable mapping on a processor or hypervisor
609 * that won't allow them for 64K pages).
611 * This is also called in init_new_context() to change back the user
612 * psize from whatever the parent context had it set to
613 * N.B. This may be called before mm->context.id has been set.
615 * This function will only change the content of the {low,high)_slice_psize
616 * masks, it will not flush SLBs as this shall be handled lazily by the
619 void slice_set_user_psize(struct mm_struct
*mm
, unsigned int psize
)
621 unsigned long flags
, lpsizes
, hpsizes
;
622 unsigned int old_psize
;
625 slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm
, psize
);
627 spin_lock_irqsave(&slice_convert_lock
, flags
);
629 old_psize
= mm
->context
.user_psize
;
630 slice_dbg(" old_psize=%d\n", old_psize
);
631 if (old_psize
== psize
)
634 mm
->context
.user_psize
= psize
;
637 lpsizes
= mm
->context
.low_slices_psize
;
638 for (i
= 0; i
< SLICE_NUM_LOW
; i
++)
639 if (((lpsizes
>> (i
* 4)) & 0xf) == old_psize
)
640 lpsizes
= (lpsizes
& ~(0xful
<< (i
* 4))) |
641 (((unsigned long)psize
) << (i
* 4));
643 hpsizes
= mm
->context
.high_slices_psize
;
644 for (i
= 0; i
< SLICE_NUM_HIGH
; i
++)
645 if (((hpsizes
>> (i
* 4)) & 0xf) == old_psize
)
646 hpsizes
= (hpsizes
& ~(0xful
<< (i
* 4))) |
647 (((unsigned long)psize
) << (i
* 4));
649 mm
->context
.low_slices_psize
= lpsizes
;
650 mm
->context
.high_slices_psize
= hpsizes
;
652 slice_dbg(" lsps=%lx, hsps=%lx\n",
653 mm
->context
.low_slices_psize
,
654 mm
->context
.high_slices_psize
);
657 spin_unlock_irqrestore(&slice_convert_lock
, flags
);
660 void slice_set_psize(struct mm_struct
*mm
, unsigned long address
,
663 unsigned long i
, flags
;
666 spin_lock_irqsave(&slice_convert_lock
, flags
);
667 if (address
< SLICE_LOW_TOP
) {
668 i
= GET_LOW_SLICE_INDEX(address
);
669 p
= &mm
->context
.low_slices_psize
;
671 i
= GET_HIGH_SLICE_INDEX(address
);
672 p
= &mm
->context
.high_slices_psize
;
674 *p
= (*p
& ~(0xful
<< (i
* 4))) | ((unsigned long) psize
<< (i
* 4));
675 spin_unlock_irqrestore(&slice_convert_lock
, flags
);
677 #ifdef CONFIG_SPU_BASE
678 spu_flush_all_slbs(mm
);
682 void slice_set_range_psize(struct mm_struct
*mm
, unsigned long start
,
683 unsigned long len
, unsigned int psize
)
685 struct slice_mask mask
= slice_range_to_mask(start
, len
);
687 slice_convert(mm
, mask
, psize
);
691 * is_hugepage_only_range() is used by generic code to verify wether
692 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
694 * until the generic code provides a more generic hook and/or starts
695 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
696 * here knows how to deal with), we hijack it to keep standard mappings
699 * because of that generic code limitation, MAP_FIXED mapping cannot
700 * "convert" back a slice with no VMAs to the standard page size, only
701 * get_unmapped_area() can. It would be possible to fix it here but I
702 * prefer working on fixing the generic code instead.
704 * WARNING: This will not work if hugetlbfs isn't enabled since the
705 * generic code will redefine that function as 0 in that. This is ok
706 * for now as we only use slices with hugetlbfs enabled. This should
707 * be fixed as the generic code gets fixed.
709 int is_hugepage_only_range(struct mm_struct
*mm
, unsigned long addr
,
712 struct slice_mask mask
, available
;
713 unsigned int psize
= mm
->context
.user_psize
;
715 mask
= slice_range_to_mask(addr
, len
);
716 available
= slice_mask_for_size(mm
, psize
);
717 #ifdef CONFIG_PPC_64K_PAGES
718 /* We need to account for 4k slices too */
719 if (psize
== MMU_PAGE_64K
) {
720 struct slice_mask compat_mask
;
721 compat_mask
= slice_mask_for_size(mm
, MMU_PAGE_4K
);
722 or_mask(available
, compat_mask
);
726 #if 0 /* too verbose */
727 slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
729 slice_print_mask(" mask", mask
);
730 slice_print_mask(" available", available
);
732 return !slice_check_fit(mask
, available
);