2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
47 struct buffer_head
*bh
, *head
;
49 *delalloc
= *unwritten
= 0;
51 bh
= head
= page_buffers(page
);
53 if (buffer_unwritten(bh
))
55 else if (buffer_delay(bh
))
57 } while ((bh
= bh
->b_this_page
) != head
);
60 STATIC
struct block_device
*
61 xfs_find_bdev_for_inode(
64 struct xfs_inode
*ip
= XFS_I(inode
);
65 struct xfs_mount
*mp
= ip
->i_mount
;
67 if (XFS_IS_REALTIME_INODE(ip
))
68 return mp
->m_rtdev_targp
->bt_bdev
;
70 return mp
->m_ddev_targp
->bt_bdev
;
74 * We're now finished for good with this ioend structure.
75 * Update the page state via the associated buffer_heads,
76 * release holds on the inode and bio, and finally free
77 * up memory. Do not use the ioend after this.
83 struct buffer_head
*bh
, *next
;
85 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
87 bh
->b_end_io(bh
, !ioend
->io_error
);
91 if (ioend
->io_isasync
) {
92 aio_complete(ioend
->io_iocb
, ioend
->io_error
?
93 ioend
->io_error
: ioend
->io_result
, 0);
95 inode_dio_done(ioend
->io_inode
);
98 mempool_free(ioend
, xfs_ioend_pool
);
102 * If the end of the current ioend is beyond the current EOF,
103 * return the new EOF value, otherwise zero.
109 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
113 bsize
= ioend
->io_offset
+ ioend
->io_size
;
114 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
115 isize
= MIN(isize
, bsize
);
116 return isize
> ip
->i_d
.di_size
? isize
: 0;
120 * Fast and loose check if this write could update the on-disk inode size.
122 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
124 return ioend
->io_offset
+ ioend
->io_size
>
125 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
129 * Update on-disk file size now that data has been written to disk. The
130 * current in-memory file size is i_size. If a write is beyond eof i_new_size
131 * will be the intended file size until i_size is updated. If this write does
132 * not extend all the way to the valid file size then restrict this update to
133 * the end of the write.
135 * This function does not block as blocking on the inode lock in IO completion
136 * can lead to IO completion order dependency deadlocks.. If it can't get the
137 * inode ilock it will return EAGAIN. Callers must handle this.
143 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
146 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
149 isize
= xfs_ioend_new_eof(ioend
);
151 trace_xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
152 ip
->i_d
.di_size
= isize
;
153 xfs_mark_inode_dirty(ip
);
156 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
161 * Schedule IO completion handling on the final put of an ioend.
163 * If there is no work to do we might as well call it a day and free the
168 struct xfs_ioend
*ioend
)
170 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
171 if (ioend
->io_type
== IO_UNWRITTEN
)
172 queue_work(xfsconvertd_workqueue
, &ioend
->io_work
);
173 else if (xfs_ioend_is_append(ioend
))
174 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
176 xfs_destroy_ioend(ioend
);
181 * IO write completion.
185 struct work_struct
*work
)
187 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
188 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
191 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
192 ioend
->io_error
= -EIO
;
199 * For unwritten extents we need to issue transactions to convert a
200 * range to normal written extens after the data I/O has finished.
202 if (ioend
->io_type
== IO_UNWRITTEN
) {
203 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
206 ioend
->io_error
= -error
;
212 * We might have to update the on-disk file size after extending
215 error
= xfs_setfilesize(ioend
);
216 ASSERT(!error
|| error
== EAGAIN
);
220 * If we didn't complete processing of the ioend, requeue it to the
221 * tail of the workqueue for another attempt later. Otherwise destroy
224 if (error
== EAGAIN
) {
225 atomic_inc(&ioend
->io_remaining
);
226 xfs_finish_ioend(ioend
);
227 /* ensure we don't spin on blocked ioends */
230 xfs_destroy_ioend(ioend
);
235 * Call IO completion handling in caller context on the final put of an ioend.
238 xfs_finish_ioend_sync(
239 struct xfs_ioend
*ioend
)
241 if (atomic_dec_and_test(&ioend
->io_remaining
))
242 xfs_end_io(&ioend
->io_work
);
246 * Allocate and initialise an IO completion structure.
247 * We need to track unwritten extent write completion here initially.
248 * We'll need to extend this for updating the ondisk inode size later
258 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
261 * Set the count to 1 initially, which will prevent an I/O
262 * completion callback from happening before we have started
263 * all the I/O from calling the completion routine too early.
265 atomic_set(&ioend
->io_remaining
, 1);
266 ioend
->io_isasync
= 0;
268 ioend
->io_list
= NULL
;
269 ioend
->io_type
= type
;
270 ioend
->io_inode
= inode
;
271 ioend
->io_buffer_head
= NULL
;
272 ioend
->io_buffer_tail
= NULL
;
273 ioend
->io_offset
= 0;
275 ioend
->io_iocb
= NULL
;
276 ioend
->io_result
= 0;
278 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
286 struct xfs_bmbt_irec
*imap
,
290 struct xfs_inode
*ip
= XFS_I(inode
);
291 struct xfs_mount
*mp
= ip
->i_mount
;
292 ssize_t count
= 1 << inode
->i_blkbits
;
293 xfs_fileoff_t offset_fsb
, end_fsb
;
295 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
298 if (XFS_FORCED_SHUTDOWN(mp
))
299 return -XFS_ERROR(EIO
);
301 if (type
== IO_UNWRITTEN
)
302 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
304 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
306 return -XFS_ERROR(EAGAIN
);
307 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
310 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
311 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
312 ASSERT(offset
<= mp
->m_maxioffset
);
314 if (offset
+ count
> mp
->m_maxioffset
)
315 count
= mp
->m_maxioffset
- offset
;
316 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
317 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
318 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
319 imap
, &nimaps
, bmapi_flags
);
320 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
323 return -XFS_ERROR(error
);
325 if (type
== IO_DELALLOC
&&
326 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
327 error
= xfs_iomap_write_allocate(ip
, offset
, count
, imap
);
329 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
330 return -XFS_ERROR(error
);
334 if (type
== IO_UNWRITTEN
) {
336 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
337 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
341 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
348 struct xfs_bmbt_irec
*imap
,
351 offset
>>= inode
->i_blkbits
;
353 return offset
>= imap
->br_startoff
&&
354 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
358 * BIO completion handler for buffered IO.
365 xfs_ioend_t
*ioend
= bio
->bi_private
;
367 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
368 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
370 /* Toss bio and pass work off to an xfsdatad thread */
371 bio
->bi_private
= NULL
;
372 bio
->bi_end_io
= NULL
;
375 xfs_finish_ioend(ioend
);
379 xfs_submit_ioend_bio(
380 struct writeback_control
*wbc
,
384 atomic_inc(&ioend
->io_remaining
);
385 bio
->bi_private
= ioend
;
386 bio
->bi_end_io
= xfs_end_bio
;
389 * If the I/O is beyond EOF we mark the inode dirty immediately
390 * but don't update the inode size until I/O completion.
392 if (xfs_ioend_new_eof(ioend
))
393 xfs_mark_inode_dirty(XFS_I(ioend
->io_inode
));
395 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
400 struct buffer_head
*bh
)
402 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
403 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
405 ASSERT(bio
->bi_private
== NULL
);
406 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
407 bio
->bi_bdev
= bh
->b_bdev
;
412 xfs_start_buffer_writeback(
413 struct buffer_head
*bh
)
415 ASSERT(buffer_mapped(bh
));
416 ASSERT(buffer_locked(bh
));
417 ASSERT(!buffer_delay(bh
));
418 ASSERT(!buffer_unwritten(bh
));
420 mark_buffer_async_write(bh
);
421 set_buffer_uptodate(bh
);
422 clear_buffer_dirty(bh
);
426 xfs_start_page_writeback(
431 ASSERT(PageLocked(page
));
432 ASSERT(!PageWriteback(page
));
434 clear_page_dirty_for_io(page
);
435 set_page_writeback(page
);
437 /* If no buffers on the page are to be written, finish it here */
439 end_page_writeback(page
);
442 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
444 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
448 * Submit all of the bios for all of the ioends we have saved up, covering the
449 * initial writepage page and also any probed pages.
451 * Because we may have multiple ioends spanning a page, we need to start
452 * writeback on all the buffers before we submit them for I/O. If we mark the
453 * buffers as we got, then we can end up with a page that only has buffers
454 * marked async write and I/O complete on can occur before we mark the other
455 * buffers async write.
457 * The end result of this is that we trip a bug in end_page_writeback() because
458 * we call it twice for the one page as the code in end_buffer_async_write()
459 * assumes that all buffers on the page are started at the same time.
461 * The fix is two passes across the ioend list - one to start writeback on the
462 * buffer_heads, and then submit them for I/O on the second pass.
466 struct writeback_control
*wbc
,
469 xfs_ioend_t
*head
= ioend
;
471 struct buffer_head
*bh
;
473 sector_t lastblock
= 0;
475 /* Pass 1 - start writeback */
477 next
= ioend
->io_list
;
478 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
479 xfs_start_buffer_writeback(bh
);
480 } while ((ioend
= next
) != NULL
);
482 /* Pass 2 - submit I/O */
485 next
= ioend
->io_list
;
488 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
492 bio
= xfs_alloc_ioend_bio(bh
);
493 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
494 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
498 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
499 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
503 lastblock
= bh
->b_blocknr
;
506 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
507 xfs_finish_ioend(ioend
);
508 } while ((ioend
= next
) != NULL
);
512 * Cancel submission of all buffer_heads so far in this endio.
513 * Toss the endio too. Only ever called for the initial page
514 * in a writepage request, so only ever one page.
521 struct buffer_head
*bh
, *next_bh
;
524 next
= ioend
->io_list
;
525 bh
= ioend
->io_buffer_head
;
527 next_bh
= bh
->b_private
;
528 clear_buffer_async_write(bh
);
530 } while ((bh
= next_bh
) != NULL
);
532 mempool_free(ioend
, xfs_ioend_pool
);
533 } while ((ioend
= next
) != NULL
);
537 * Test to see if we've been building up a completion structure for
538 * earlier buffers -- if so, we try to append to this ioend if we
539 * can, otherwise we finish off any current ioend and start another.
540 * Return true if we've finished the given ioend.
545 struct buffer_head
*bh
,
548 xfs_ioend_t
**result
,
551 xfs_ioend_t
*ioend
= *result
;
553 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
554 xfs_ioend_t
*previous
= *result
;
556 ioend
= xfs_alloc_ioend(inode
, type
);
557 ioend
->io_offset
= offset
;
558 ioend
->io_buffer_head
= bh
;
559 ioend
->io_buffer_tail
= bh
;
561 previous
->io_list
= ioend
;
564 ioend
->io_buffer_tail
->b_private
= bh
;
565 ioend
->io_buffer_tail
= bh
;
568 bh
->b_private
= NULL
;
569 ioend
->io_size
+= bh
->b_size
;
575 struct buffer_head
*bh
,
576 struct xfs_bmbt_irec
*imap
,
580 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
581 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
582 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
584 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
585 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
587 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
588 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
590 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
593 set_buffer_mapped(bh
);
599 struct buffer_head
*bh
,
600 struct xfs_bmbt_irec
*imap
,
603 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
604 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
606 xfs_map_buffer(inode
, bh
, imap
, offset
);
607 set_buffer_mapped(bh
);
608 clear_buffer_delay(bh
);
609 clear_buffer_unwritten(bh
);
613 * Test if a given page is suitable for writing as part of an unwritten
614 * or delayed allocate extent.
621 if (PageWriteback(page
))
624 if (page
->mapping
&& page_has_buffers(page
)) {
625 struct buffer_head
*bh
, *head
;
628 bh
= head
= page_buffers(page
);
630 if (buffer_unwritten(bh
))
631 acceptable
= (type
== IO_UNWRITTEN
);
632 else if (buffer_delay(bh
))
633 acceptable
= (type
== IO_DELALLOC
);
634 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
635 acceptable
= (type
== IO_OVERWRITE
);
638 } while ((bh
= bh
->b_this_page
) != head
);
648 * Allocate & map buffers for page given the extent map. Write it out.
649 * except for the original page of a writepage, this is called on
650 * delalloc/unwritten pages only, for the original page it is possible
651 * that the page has no mapping at all.
658 struct xfs_bmbt_irec
*imap
,
659 xfs_ioend_t
**ioendp
,
660 struct writeback_control
*wbc
)
662 struct buffer_head
*bh
, *head
;
663 xfs_off_t end_offset
;
664 unsigned long p_offset
;
667 int count
= 0, done
= 0, uptodate
= 1;
668 xfs_off_t offset
= page_offset(page
);
670 if (page
->index
!= tindex
)
672 if (!trylock_page(page
))
674 if (PageWriteback(page
))
675 goto fail_unlock_page
;
676 if (page
->mapping
!= inode
->i_mapping
)
677 goto fail_unlock_page
;
678 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
679 goto fail_unlock_page
;
682 * page_dirty is initially a count of buffers on the page before
683 * EOF and is decremented as we move each into a cleanable state.
687 * End offset is the highest offset that this page should represent.
688 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
689 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
690 * hence give us the correct page_dirty count. On any other page,
691 * it will be zero and in that case we need page_dirty to be the
692 * count of buffers on the page.
694 end_offset
= min_t(unsigned long long,
695 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
698 len
= 1 << inode
->i_blkbits
;
699 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
701 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
702 page_dirty
= p_offset
/ len
;
704 bh
= head
= page_buffers(page
);
706 if (offset
>= end_offset
)
708 if (!buffer_uptodate(bh
))
710 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
715 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
717 if (buffer_unwritten(bh
))
719 else if (buffer_delay(bh
))
724 if (!xfs_imap_valid(inode
, imap
, offset
)) {
730 if (type
!= IO_OVERWRITE
)
731 xfs_map_at_offset(inode
, bh
, imap
, offset
);
732 xfs_add_to_ioend(inode
, bh
, offset
, type
,
740 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
742 if (uptodate
&& bh
== head
)
743 SetPageUptodate(page
);
746 if (--wbc
->nr_to_write
<= 0 &&
747 wbc
->sync_mode
== WB_SYNC_NONE
)
750 xfs_start_page_writeback(page
, !page_dirty
, count
);
760 * Convert & write out a cluster of pages in the same extent as defined
761 * by mp and following the start page.
767 struct xfs_bmbt_irec
*imap
,
768 xfs_ioend_t
**ioendp
,
769 struct writeback_control
*wbc
,
775 pagevec_init(&pvec
, 0);
776 while (!done
&& tindex
<= tlast
) {
777 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
779 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
782 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
783 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
789 pagevec_release(&pvec
);
795 xfs_vm_invalidatepage(
797 unsigned long offset
)
799 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
);
800 block_invalidatepage(page
, offset
);
804 * If the page has delalloc buffers on it, we need to punch them out before we
805 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
806 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
807 * is done on that same region - the delalloc extent is returned when none is
808 * supposed to be there.
810 * We prevent this by truncating away the delalloc regions on the page before
811 * invalidating it. Because they are delalloc, we can do this without needing a
812 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
813 * truncation without a transaction as there is no space left for block
814 * reservation (typically why we see a ENOSPC in writeback).
816 * This is not a performance critical path, so for now just do the punching a
817 * buffer head at a time.
820 xfs_aops_discard_page(
823 struct inode
*inode
= page
->mapping
->host
;
824 struct xfs_inode
*ip
= XFS_I(inode
);
825 struct buffer_head
*bh
, *head
;
826 loff_t offset
= page_offset(page
);
828 if (!xfs_is_delayed_page(page
, IO_DELALLOC
))
831 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
834 xfs_alert(ip
->i_mount
,
835 "page discard on page %p, inode 0x%llx, offset %llu.",
836 page
, ip
->i_ino
, offset
);
838 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
839 bh
= head
= page_buffers(page
);
842 xfs_fileoff_t start_fsb
;
844 if (!buffer_delay(bh
))
847 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
848 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
850 /* something screwed, just bail */
851 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
852 xfs_alert(ip
->i_mount
,
853 "page discard unable to remove delalloc mapping.");
858 offset
+= 1 << inode
->i_blkbits
;
860 } while ((bh
= bh
->b_this_page
) != head
);
862 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
864 xfs_vm_invalidatepage(page
, 0);
869 * Write out a dirty page.
871 * For delalloc space on the page we need to allocate space and flush it.
872 * For unwritten space on the page we need to start the conversion to
873 * regular allocated space.
874 * For any other dirty buffer heads on the page we should flush them.
879 struct writeback_control
*wbc
)
881 struct inode
*inode
= page
->mapping
->host
;
882 struct buffer_head
*bh
, *head
;
883 struct xfs_bmbt_irec imap
;
884 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
887 __uint64_t end_offset
;
888 pgoff_t end_index
, last_index
;
890 int err
, imap_valid
= 0, uptodate
= 1;
894 trace_xfs_writepage(inode
, page
, 0);
896 ASSERT(page_has_buffers(page
));
899 * Refuse to write the page out if we are called from reclaim context.
901 * This avoids stack overflows when called from deeply used stacks in
902 * random callers for direct reclaim or memcg reclaim. We explicitly
903 * allow reclaim from kswapd as the stack usage there is relatively low.
905 * This should never happen except in the case of a VM regression so
908 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
913 * Given that we do not allow direct reclaim to call us, we should
914 * never be called while in a filesystem transaction.
916 if (WARN_ON(current
->flags
& PF_FSTRANS
))
919 /* Is this page beyond the end of the file? */
920 offset
= i_size_read(inode
);
921 end_index
= offset
>> PAGE_CACHE_SHIFT
;
922 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
923 if (page
->index
>= end_index
) {
924 if ((page
->index
>= end_index
+ 1) ||
925 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
931 end_offset
= min_t(unsigned long long,
932 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
934 len
= 1 << inode
->i_blkbits
;
936 bh
= head
= page_buffers(page
);
937 offset
= page_offset(page
);
940 if (wbc
->sync_mode
== WB_SYNC_NONE
)
946 if (offset
>= end_offset
)
948 if (!buffer_uptodate(bh
))
952 * set_page_dirty dirties all buffers in a page, independent
953 * of their state. The dirty state however is entirely
954 * meaningless for holes (!mapped && uptodate), so skip
955 * buffers covering holes here.
957 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
962 if (buffer_unwritten(bh
)) {
963 if (type
!= IO_UNWRITTEN
) {
967 } else if (buffer_delay(bh
)) {
968 if (type
!= IO_DELALLOC
) {
972 } else if (buffer_uptodate(bh
)) {
973 if (type
!= IO_OVERWRITE
) {
978 if (PageUptodate(page
)) {
979 ASSERT(buffer_mapped(bh
));
986 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
989 * If we didn't have a valid mapping then we need to
990 * put the new mapping into a separate ioend structure.
991 * This ensures non-contiguous extents always have
992 * separate ioends, which is particularly important
993 * for unwritten extent conversion at I/O completion
997 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1001 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1005 if (type
!= IO_OVERWRITE
)
1006 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1007 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1015 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1017 if (uptodate
&& bh
== head
)
1018 SetPageUptodate(page
);
1020 xfs_start_page_writeback(page
, 1, count
);
1022 if (ioend
&& imap_valid
) {
1023 xfs_off_t end_index
;
1025 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1028 end_index
<<= inode
->i_blkbits
;
1031 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1033 /* check against file size */
1034 if (end_index
> last_index
)
1035 end_index
= last_index
;
1037 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1042 xfs_submit_ioend(wbc
, iohead
);
1048 xfs_cancel_ioend(iohead
);
1053 xfs_aops_discard_page(page
);
1054 ClearPageUptodate(page
);
1059 redirty_page_for_writepage(wbc
, page
);
1066 struct address_space
*mapping
,
1067 struct writeback_control
*wbc
)
1069 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1070 return generic_writepages(mapping
, wbc
);
1074 * Called to move a page into cleanable state - and from there
1075 * to be released. The page should already be clean. We always
1076 * have buffer heads in this call.
1078 * Returns 1 if the page is ok to release, 0 otherwise.
1085 int delalloc
, unwritten
;
1087 trace_xfs_releasepage(page
->mapping
->host
, page
, 0);
1089 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1091 if (WARN_ON(delalloc
))
1093 if (WARN_ON(unwritten
))
1096 return try_to_free_buffers(page
);
1101 struct inode
*inode
,
1103 struct buffer_head
*bh_result
,
1107 struct xfs_inode
*ip
= XFS_I(inode
);
1108 struct xfs_mount
*mp
= ip
->i_mount
;
1109 xfs_fileoff_t offset_fsb
, end_fsb
;
1112 struct xfs_bmbt_irec imap
;
1118 if (XFS_FORCED_SHUTDOWN(mp
))
1119 return -XFS_ERROR(EIO
);
1121 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1122 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1123 size
= bh_result
->b_size
;
1125 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1129 lockmode
= XFS_ILOCK_EXCL
;
1130 xfs_ilock(ip
, lockmode
);
1132 lockmode
= xfs_ilock_map_shared(ip
);
1135 ASSERT(offset
<= mp
->m_maxioffset
);
1136 if (offset
+ size
> mp
->m_maxioffset
)
1137 size
= mp
->m_maxioffset
- offset
;
1138 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1139 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1141 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1142 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1148 (imap
.br_startblock
== HOLESTARTBLOCK
||
1149 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1151 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1154 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1159 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1160 } else if (nimaps
) {
1161 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1163 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1166 xfs_iunlock(ip
, lockmode
);
1168 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1169 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1171 * For unwritten extents do not report a disk address on
1172 * the read case (treat as if we're reading into a hole).
1174 if (create
|| !ISUNWRITTEN(&imap
))
1175 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1176 if (create
&& ISUNWRITTEN(&imap
)) {
1178 bh_result
->b_private
= inode
;
1179 set_buffer_unwritten(bh_result
);
1184 * If this is a realtime file, data may be on a different device.
1185 * to that pointed to from the buffer_head b_bdev currently.
1187 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1190 * If we previously allocated a block out beyond eof and we are now
1191 * coming back to use it then we will need to flag it as new even if it
1192 * has a disk address.
1194 * With sub-block writes into unwritten extents we also need to mark
1195 * the buffer as new so that the unwritten parts of the buffer gets
1199 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1200 (offset
>= i_size_read(inode
)) ||
1201 (new || ISUNWRITTEN(&imap
))))
1202 set_buffer_new(bh_result
);
1204 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1207 set_buffer_uptodate(bh_result
);
1208 set_buffer_mapped(bh_result
);
1209 set_buffer_delay(bh_result
);
1214 * If this is O_DIRECT or the mpage code calling tell them how large
1215 * the mapping is, so that we can avoid repeated get_blocks calls.
1217 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1218 xfs_off_t mapping_size
;
1220 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1221 mapping_size
<<= inode
->i_blkbits
;
1223 ASSERT(mapping_size
> 0);
1224 if (mapping_size
> size
)
1225 mapping_size
= size
;
1226 if (mapping_size
> LONG_MAX
)
1227 mapping_size
= LONG_MAX
;
1229 bh_result
->b_size
= mapping_size
;
1235 xfs_iunlock(ip
, lockmode
);
1241 struct inode
*inode
,
1243 struct buffer_head
*bh_result
,
1246 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1250 xfs_get_blocks_direct(
1251 struct inode
*inode
,
1253 struct buffer_head
*bh_result
,
1256 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1260 * Complete a direct I/O write request.
1262 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1263 * need to issue a transaction to convert the range from unwritten to written
1264 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1265 * to do this and we are done. But in case this was a successful AIO
1266 * request this handler is called from interrupt context, from which we
1267 * can't start transactions. In that case offload the I/O completion to
1268 * the workqueues we also use for buffered I/O completion.
1271 xfs_end_io_direct_write(
1279 struct xfs_ioend
*ioend
= iocb
->private;
1282 * blockdev_direct_IO can return an error even after the I/O
1283 * completion handler was called. Thus we need to protect
1284 * against double-freeing.
1286 iocb
->private = NULL
;
1288 ioend
->io_offset
= offset
;
1289 ioend
->io_size
= size
;
1290 ioend
->io_iocb
= iocb
;
1291 ioend
->io_result
= ret
;
1292 if (private && size
> 0)
1293 ioend
->io_type
= IO_UNWRITTEN
;
1296 ioend
->io_isasync
= 1;
1297 xfs_finish_ioend(ioend
);
1299 xfs_finish_ioend_sync(ioend
);
1307 const struct iovec
*iov
,
1309 unsigned long nr_segs
)
1311 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1312 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1316 iocb
->private = xfs_alloc_ioend(inode
, IO_DIRECT
);
1318 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1320 xfs_get_blocks_direct
,
1321 xfs_end_io_direct_write
, NULL
, 0);
1322 if (ret
!= -EIOCBQUEUED
&& iocb
->private)
1323 xfs_destroy_ioend(iocb
->private);
1325 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1327 xfs_get_blocks_direct
,
1335 xfs_vm_write_failed(
1336 struct address_space
*mapping
,
1339 struct inode
*inode
= mapping
->host
;
1341 if (to
> inode
->i_size
) {
1343 * punch out the delalloc blocks we have already allocated. We
1344 * don't call xfs_setattr() to do this as we may be in the
1345 * middle of a multi-iovec write and so the vfs inode->i_size
1346 * will not match the xfs ip->i_size and so it will zero too
1347 * much. Hence we jus truncate the page cache to zero what is
1348 * necessary and punch the delalloc blocks directly.
1350 struct xfs_inode
*ip
= XFS_I(inode
);
1351 xfs_fileoff_t start_fsb
;
1352 xfs_fileoff_t end_fsb
;
1355 truncate_pagecache(inode
, to
, inode
->i_size
);
1358 * Check if there are any blocks that are outside of i_size
1359 * that need to be trimmed back.
1361 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, inode
->i_size
) + 1;
1362 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, to
);
1363 if (end_fsb
<= start_fsb
)
1366 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1367 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1368 end_fsb
- start_fsb
);
1370 /* something screwed, just bail */
1371 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1372 xfs_alert(ip
->i_mount
,
1373 "xfs_vm_write_failed: unable to clean up ino %lld",
1377 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1384 struct address_space
*mapping
,
1388 struct page
**pagep
,
1393 ret
= block_write_begin(mapping
, pos
, len
, flags
| AOP_FLAG_NOFS
,
1394 pagep
, xfs_get_blocks
);
1396 xfs_vm_write_failed(mapping
, pos
+ len
);
1403 struct address_space
*mapping
,
1412 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1413 if (unlikely(ret
< len
))
1414 xfs_vm_write_failed(mapping
, pos
+ len
);
1420 struct address_space
*mapping
,
1423 struct inode
*inode
= (struct inode
*)mapping
->host
;
1424 struct xfs_inode
*ip
= XFS_I(inode
);
1426 trace_xfs_vm_bmap(XFS_I(inode
));
1427 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1428 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1429 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1430 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1435 struct file
*unused
,
1438 return mpage_readpage(page
, xfs_get_blocks
);
1443 struct file
*unused
,
1444 struct address_space
*mapping
,
1445 struct list_head
*pages
,
1448 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1451 const struct address_space_operations xfs_address_space_operations
= {
1452 .readpage
= xfs_vm_readpage
,
1453 .readpages
= xfs_vm_readpages
,
1454 .writepage
= xfs_vm_writepage
,
1455 .writepages
= xfs_vm_writepages
,
1456 .releasepage
= xfs_vm_releasepage
,
1457 .invalidatepage
= xfs_vm_invalidatepage
,
1458 .write_begin
= xfs_vm_write_begin
,
1459 .write_end
= xfs_vm_write_end
,
1460 .bmap
= xfs_vm_bmap
,
1461 .direct_IO
= xfs_vm_direct_IO
,
1462 .migratepage
= buffer_migrate_page
,
1463 .is_partially_uptodate
= block_is_partially_uptodate
,
1464 .error_remove_page
= generic_error_remove_page
,