pinctrl: make a copy of pinmux map
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blobc0237c602f11deb92fa5f533f74a647005fbf1b8
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_bmap.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
50 kmem_zone_t *xfs_ifork_zone;
51 kmem_zone_t *xfs_inode_zone;
54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
55 * freed from a file in a single transaction.
57 #define XFS_ITRUNC_MAX_EXTENTS 2
59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 #ifdef DEBUG
66 * Make sure that the extents in the given memory buffer
67 * are valid.
69 STATIC void
70 xfs_validate_extents(
71 xfs_ifork_t *ifp,
72 int nrecs,
73 xfs_exntfmt_t fmt)
75 xfs_bmbt_irec_t irec;
76 xfs_bmbt_rec_host_t rec;
77 int i;
79 for (i = 0; i < nrecs; i++) {
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
88 #else /* DEBUG */
89 #define xfs_validate_extents(ifp, nrecs, fmt)
90 #endif /* DEBUG */
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
96 #if defined(DEBUG)
97 void
98 xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
102 int i;
103 int j;
104 xfs_dinode_t *dip;
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
114 bp);
115 ASSERT(dip->di_next_unlinked);
119 #endif
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
126 STATIC int
127 xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
130 struct xfs_imap *imap,
131 xfs_buf_t **bpp,
132 uint buf_flags,
133 uint iget_flags)
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
141 (int)imap->im_len, buf_flags, &bp);
142 if (error) {
143 if (error != EAGAIN) {
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
147 } else {
148 ASSERT(buf_flags & XBF_TRYLOCK);
150 return error;
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
157 #ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159 #else /* usual case */
160 ni = 1;
161 #endif
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
170 XFS_DINODE_GOOD_VERSION(dip->di_version);
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
174 if (iget_flags & XFS_IGET_UNTRUSTED) {
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180 #ifdef DEBUG
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 (unsigned long long)imap->im_blkno, i,
184 be16_to_cpu(dip->di_magic));
185 ASSERT(0);
186 #endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
192 xfs_inobp_check(mp, bp);
193 *bpp = bp;
194 return 0;
198 * This routine is called to map an inode number within a file
199 * system to the buffer containing the on-disk version of the
200 * inode. It returns a pointer to the buffer containing the
201 * on-disk inode in the bpp parameter, and in the dip parameter
202 * it returns a pointer to the on-disk inode within that buffer.
204 * If a non-zero error is returned, then the contents of bpp and
205 * dipp are undefined.
207 * Use xfs_imap() to determine the size and location of the
208 * buffer to read from disk.
211 xfs_inotobp(
212 xfs_mount_t *mp,
213 xfs_trans_t *tp,
214 xfs_ino_t ino,
215 xfs_dinode_t **dipp,
216 xfs_buf_t **bpp,
217 int *offset,
218 uint imap_flags)
220 struct xfs_imap imap;
221 xfs_buf_t *bp;
222 int error;
224 imap.im_blkno = 0;
225 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
226 if (error)
227 return error;
229 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
230 if (error)
231 return error;
233 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
234 *bpp = bp;
235 *offset = imap.im_boffset;
236 return 0;
241 * This routine is called to map an inode to the buffer containing
242 * the on-disk version of the inode. It returns a pointer to the
243 * buffer containing the on-disk inode in the bpp parameter, and in
244 * the dip parameter it returns a pointer to the on-disk inode within
245 * that buffer.
247 * If a non-zero error is returned, then the contents of bpp and
248 * dipp are undefined.
250 * The inode is expected to already been mapped to its buffer and read
251 * in once, thus we can use the mapping information stored in the inode
252 * rather than calling xfs_imap(). This allows us to avoid the overhead
253 * of looking at the inode btree for small block file systems
254 * (see xfs_imap()).
257 xfs_itobp(
258 xfs_mount_t *mp,
259 xfs_trans_t *tp,
260 xfs_inode_t *ip,
261 xfs_dinode_t **dipp,
262 xfs_buf_t **bpp,
263 uint buf_flags)
265 xfs_buf_t *bp;
266 int error;
268 ASSERT(ip->i_imap.im_blkno != 0);
270 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
271 if (error)
272 return error;
274 if (!bp) {
275 ASSERT(buf_flags & XBF_TRYLOCK);
276 ASSERT(tp == NULL);
277 *bpp = NULL;
278 return EAGAIN;
281 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
282 *bpp = bp;
283 return 0;
287 * Move inode type and inode format specific information from the
288 * on-disk inode to the in-core inode. For fifos, devs, and sockets
289 * this means set if_rdev to the proper value. For files, directories,
290 * and symlinks this means to bring in the in-line data or extent
291 * pointers. For a file in B-tree format, only the root is immediately
292 * brought in-core. The rest will be in-lined in if_extents when it
293 * is first referenced (see xfs_iread_extents()).
295 STATIC int
296 xfs_iformat(
297 xfs_inode_t *ip,
298 xfs_dinode_t *dip)
300 xfs_attr_shortform_t *atp;
301 int size;
302 int error;
303 xfs_fsize_t di_size;
304 ip->i_df.if_ext_max =
305 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
306 error = 0;
308 if (unlikely(be32_to_cpu(dip->di_nextents) +
309 be16_to_cpu(dip->di_anextents) >
310 be64_to_cpu(dip->di_nblocks))) {
311 xfs_warn(ip->i_mount,
312 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
313 (unsigned long long)ip->i_ino,
314 (int)(be32_to_cpu(dip->di_nextents) +
315 be16_to_cpu(dip->di_anextents)),
316 (unsigned long long)
317 be64_to_cpu(dip->di_nblocks));
318 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
319 ip->i_mount, dip);
320 return XFS_ERROR(EFSCORRUPTED);
323 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
324 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
325 (unsigned long long)ip->i_ino,
326 dip->di_forkoff);
327 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
332 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
333 !ip->i_mount->m_rtdev_targp)) {
334 xfs_warn(ip->i_mount,
335 "corrupt dinode %Lu, has realtime flag set.",
336 ip->i_ino);
337 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
338 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
339 return XFS_ERROR(EFSCORRUPTED);
342 switch (ip->i_d.di_mode & S_IFMT) {
343 case S_IFIFO:
344 case S_IFCHR:
345 case S_IFBLK:
346 case S_IFSOCK:
347 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
348 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
349 ip->i_mount, dip);
350 return XFS_ERROR(EFSCORRUPTED);
352 ip->i_d.di_size = 0;
353 ip->i_size = 0;
354 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
355 break;
357 case S_IFREG:
358 case S_IFLNK:
359 case S_IFDIR:
360 switch (dip->di_format) {
361 case XFS_DINODE_FMT_LOCAL:
363 * no local regular files yet
365 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
366 xfs_warn(ip->i_mount,
367 "corrupt inode %Lu (local format for regular file).",
368 (unsigned long long) ip->i_ino);
369 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
370 XFS_ERRLEVEL_LOW,
371 ip->i_mount, dip);
372 return XFS_ERROR(EFSCORRUPTED);
375 di_size = be64_to_cpu(dip->di_size);
376 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
377 xfs_warn(ip->i_mount,
378 "corrupt inode %Lu (bad size %Ld for local inode).",
379 (unsigned long long) ip->i_ino,
380 (long long) di_size);
381 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
382 XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
387 size = (int)di_size;
388 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
389 break;
390 case XFS_DINODE_FMT_EXTENTS:
391 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
392 break;
393 case XFS_DINODE_FMT_BTREE:
394 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
395 break;
396 default:
397 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
398 ip->i_mount);
399 return XFS_ERROR(EFSCORRUPTED);
401 break;
403 default:
404 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
405 return XFS_ERROR(EFSCORRUPTED);
407 if (error) {
408 return error;
410 if (!XFS_DFORK_Q(dip))
411 return 0;
412 ASSERT(ip->i_afp == NULL);
413 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
414 ip->i_afp->if_ext_max =
415 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
416 switch (dip->di_aformat) {
417 case XFS_DINODE_FMT_LOCAL:
418 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
419 size = be16_to_cpu(atp->hdr.totsize);
421 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
422 xfs_warn(ip->i_mount,
423 "corrupt inode %Lu (bad attr fork size %Ld).",
424 (unsigned long long) ip->i_ino,
425 (long long) size);
426 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
427 XFS_ERRLEVEL_LOW,
428 ip->i_mount, dip);
429 return XFS_ERROR(EFSCORRUPTED);
432 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
433 break;
434 case XFS_DINODE_FMT_EXTENTS:
435 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
436 break;
437 case XFS_DINODE_FMT_BTREE:
438 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
439 break;
440 default:
441 error = XFS_ERROR(EFSCORRUPTED);
442 break;
444 if (error) {
445 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
446 ip->i_afp = NULL;
447 xfs_idestroy_fork(ip, XFS_DATA_FORK);
449 return error;
453 * The file is in-lined in the on-disk inode.
454 * If it fits into if_inline_data, then copy
455 * it there, otherwise allocate a buffer for it
456 * and copy the data there. Either way, set
457 * if_data to point at the data.
458 * If we allocate a buffer for the data, make
459 * sure that its size is a multiple of 4 and
460 * record the real size in i_real_bytes.
462 STATIC int
463 xfs_iformat_local(
464 xfs_inode_t *ip,
465 xfs_dinode_t *dip,
466 int whichfork,
467 int size)
469 xfs_ifork_t *ifp;
470 int real_size;
473 * If the size is unreasonable, then something
474 * is wrong and we just bail out rather than crash in
475 * kmem_alloc() or memcpy() below.
477 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
478 xfs_warn(ip->i_mount,
479 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
480 (unsigned long long) ip->i_ino, size,
481 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
482 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
483 ip->i_mount, dip);
484 return XFS_ERROR(EFSCORRUPTED);
486 ifp = XFS_IFORK_PTR(ip, whichfork);
487 real_size = 0;
488 if (size == 0)
489 ifp->if_u1.if_data = NULL;
490 else if (size <= sizeof(ifp->if_u2.if_inline_data))
491 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
492 else {
493 real_size = roundup(size, 4);
494 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
496 ifp->if_bytes = size;
497 ifp->if_real_bytes = real_size;
498 if (size)
499 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
500 ifp->if_flags &= ~XFS_IFEXTENTS;
501 ifp->if_flags |= XFS_IFINLINE;
502 return 0;
506 * The file consists of a set of extents all
507 * of which fit into the on-disk inode.
508 * If there are few enough extents to fit into
509 * the if_inline_ext, then copy them there.
510 * Otherwise allocate a buffer for them and copy
511 * them into it. Either way, set if_extents
512 * to point at the extents.
514 STATIC int
515 xfs_iformat_extents(
516 xfs_inode_t *ip,
517 xfs_dinode_t *dip,
518 int whichfork)
520 xfs_bmbt_rec_t *dp;
521 xfs_ifork_t *ifp;
522 int nex;
523 int size;
524 int i;
526 ifp = XFS_IFORK_PTR(ip, whichfork);
527 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
528 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
531 * If the number of extents is unreasonable, then something
532 * is wrong and we just bail out rather than crash in
533 * kmem_alloc() or memcpy() below.
535 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
536 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
537 (unsigned long long) ip->i_ino, nex);
538 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
539 ip->i_mount, dip);
540 return XFS_ERROR(EFSCORRUPTED);
543 ifp->if_real_bytes = 0;
544 if (nex == 0)
545 ifp->if_u1.if_extents = NULL;
546 else if (nex <= XFS_INLINE_EXTS)
547 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
548 else
549 xfs_iext_add(ifp, 0, nex);
551 ifp->if_bytes = size;
552 if (size) {
553 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
554 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
555 for (i = 0; i < nex; i++, dp++) {
556 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
557 ep->l0 = get_unaligned_be64(&dp->l0);
558 ep->l1 = get_unaligned_be64(&dp->l1);
560 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
561 if (whichfork != XFS_DATA_FORK ||
562 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
563 if (unlikely(xfs_check_nostate_extents(
564 ifp, 0, nex))) {
565 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
566 XFS_ERRLEVEL_LOW,
567 ip->i_mount);
568 return XFS_ERROR(EFSCORRUPTED);
571 ifp->if_flags |= XFS_IFEXTENTS;
572 return 0;
576 * The file has too many extents to fit into
577 * the inode, so they are in B-tree format.
578 * Allocate a buffer for the root of the B-tree
579 * and copy the root into it. The i_extents
580 * field will remain NULL until all of the
581 * extents are read in (when they are needed).
583 STATIC int
584 xfs_iformat_btree(
585 xfs_inode_t *ip,
586 xfs_dinode_t *dip,
587 int whichfork)
589 xfs_bmdr_block_t *dfp;
590 xfs_ifork_t *ifp;
591 /* REFERENCED */
592 int nrecs;
593 int size;
595 ifp = XFS_IFORK_PTR(ip, whichfork);
596 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
597 size = XFS_BMAP_BROOT_SPACE(dfp);
598 nrecs = be16_to_cpu(dfp->bb_numrecs);
601 * blow out if -- fork has less extents than can fit in
602 * fork (fork shouldn't be a btree format), root btree
603 * block has more records than can fit into the fork,
604 * or the number of extents is greater than the number of
605 * blocks.
607 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
608 || XFS_BMDR_SPACE_CALC(nrecs) >
609 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
610 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
611 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
612 (unsigned long long) ip->i_ino);
613 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
614 ip->i_mount, dip);
615 return XFS_ERROR(EFSCORRUPTED);
618 ifp->if_broot_bytes = size;
619 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
620 ASSERT(ifp->if_broot != NULL);
622 * Copy and convert from the on-disk structure
623 * to the in-memory structure.
625 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
626 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
627 ifp->if_broot, size);
628 ifp->if_flags &= ~XFS_IFEXTENTS;
629 ifp->if_flags |= XFS_IFBROOT;
631 return 0;
634 STATIC void
635 xfs_dinode_from_disk(
636 xfs_icdinode_t *to,
637 xfs_dinode_t *from)
639 to->di_magic = be16_to_cpu(from->di_magic);
640 to->di_mode = be16_to_cpu(from->di_mode);
641 to->di_version = from ->di_version;
642 to->di_format = from->di_format;
643 to->di_onlink = be16_to_cpu(from->di_onlink);
644 to->di_uid = be32_to_cpu(from->di_uid);
645 to->di_gid = be32_to_cpu(from->di_gid);
646 to->di_nlink = be32_to_cpu(from->di_nlink);
647 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
648 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
649 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
650 to->di_flushiter = be16_to_cpu(from->di_flushiter);
651 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
652 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
653 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
654 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
655 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
656 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
657 to->di_size = be64_to_cpu(from->di_size);
658 to->di_nblocks = be64_to_cpu(from->di_nblocks);
659 to->di_extsize = be32_to_cpu(from->di_extsize);
660 to->di_nextents = be32_to_cpu(from->di_nextents);
661 to->di_anextents = be16_to_cpu(from->di_anextents);
662 to->di_forkoff = from->di_forkoff;
663 to->di_aformat = from->di_aformat;
664 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
665 to->di_dmstate = be16_to_cpu(from->di_dmstate);
666 to->di_flags = be16_to_cpu(from->di_flags);
667 to->di_gen = be32_to_cpu(from->di_gen);
670 void
671 xfs_dinode_to_disk(
672 xfs_dinode_t *to,
673 xfs_icdinode_t *from)
675 to->di_magic = cpu_to_be16(from->di_magic);
676 to->di_mode = cpu_to_be16(from->di_mode);
677 to->di_version = from ->di_version;
678 to->di_format = from->di_format;
679 to->di_onlink = cpu_to_be16(from->di_onlink);
680 to->di_uid = cpu_to_be32(from->di_uid);
681 to->di_gid = cpu_to_be32(from->di_gid);
682 to->di_nlink = cpu_to_be32(from->di_nlink);
683 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
684 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
685 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
686 to->di_flushiter = cpu_to_be16(from->di_flushiter);
687 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
688 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
689 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
690 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
691 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
692 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
693 to->di_size = cpu_to_be64(from->di_size);
694 to->di_nblocks = cpu_to_be64(from->di_nblocks);
695 to->di_extsize = cpu_to_be32(from->di_extsize);
696 to->di_nextents = cpu_to_be32(from->di_nextents);
697 to->di_anextents = cpu_to_be16(from->di_anextents);
698 to->di_forkoff = from->di_forkoff;
699 to->di_aformat = from->di_aformat;
700 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
701 to->di_dmstate = cpu_to_be16(from->di_dmstate);
702 to->di_flags = cpu_to_be16(from->di_flags);
703 to->di_gen = cpu_to_be32(from->di_gen);
706 STATIC uint
707 _xfs_dic2xflags(
708 __uint16_t di_flags)
710 uint flags = 0;
712 if (di_flags & XFS_DIFLAG_ANY) {
713 if (di_flags & XFS_DIFLAG_REALTIME)
714 flags |= XFS_XFLAG_REALTIME;
715 if (di_flags & XFS_DIFLAG_PREALLOC)
716 flags |= XFS_XFLAG_PREALLOC;
717 if (di_flags & XFS_DIFLAG_IMMUTABLE)
718 flags |= XFS_XFLAG_IMMUTABLE;
719 if (di_flags & XFS_DIFLAG_APPEND)
720 flags |= XFS_XFLAG_APPEND;
721 if (di_flags & XFS_DIFLAG_SYNC)
722 flags |= XFS_XFLAG_SYNC;
723 if (di_flags & XFS_DIFLAG_NOATIME)
724 flags |= XFS_XFLAG_NOATIME;
725 if (di_flags & XFS_DIFLAG_NODUMP)
726 flags |= XFS_XFLAG_NODUMP;
727 if (di_flags & XFS_DIFLAG_RTINHERIT)
728 flags |= XFS_XFLAG_RTINHERIT;
729 if (di_flags & XFS_DIFLAG_PROJINHERIT)
730 flags |= XFS_XFLAG_PROJINHERIT;
731 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
732 flags |= XFS_XFLAG_NOSYMLINKS;
733 if (di_flags & XFS_DIFLAG_EXTSIZE)
734 flags |= XFS_XFLAG_EXTSIZE;
735 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
736 flags |= XFS_XFLAG_EXTSZINHERIT;
737 if (di_flags & XFS_DIFLAG_NODEFRAG)
738 flags |= XFS_XFLAG_NODEFRAG;
739 if (di_flags & XFS_DIFLAG_FILESTREAM)
740 flags |= XFS_XFLAG_FILESTREAM;
743 return flags;
746 uint
747 xfs_ip2xflags(
748 xfs_inode_t *ip)
750 xfs_icdinode_t *dic = &ip->i_d;
752 return _xfs_dic2xflags(dic->di_flags) |
753 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
756 uint
757 xfs_dic2xflags(
758 xfs_dinode_t *dip)
760 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
761 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
765 * Read the disk inode attributes into the in-core inode structure.
768 xfs_iread(
769 xfs_mount_t *mp,
770 xfs_trans_t *tp,
771 xfs_inode_t *ip,
772 uint iget_flags)
774 xfs_buf_t *bp;
775 xfs_dinode_t *dip;
776 int error;
779 * Fill in the location information in the in-core inode.
781 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
782 if (error)
783 return error;
786 * Get pointers to the on-disk inode and the buffer containing it.
788 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
789 XBF_LOCK, iget_flags);
790 if (error)
791 return error;
792 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
795 * If we got something that isn't an inode it means someone
796 * (nfs or dmi) has a stale handle.
798 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
799 #ifdef DEBUG
800 xfs_alert(mp,
801 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
802 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
803 #endif /* DEBUG */
804 error = XFS_ERROR(EINVAL);
805 goto out_brelse;
809 * If the on-disk inode is already linked to a directory
810 * entry, copy all of the inode into the in-core inode.
811 * xfs_iformat() handles copying in the inode format
812 * specific information.
813 * Otherwise, just get the truly permanent information.
815 if (dip->di_mode) {
816 xfs_dinode_from_disk(&ip->i_d, dip);
817 error = xfs_iformat(ip, dip);
818 if (error) {
819 #ifdef DEBUG
820 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
821 __func__, error);
822 #endif /* DEBUG */
823 goto out_brelse;
825 } else {
826 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
827 ip->i_d.di_version = dip->di_version;
828 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
829 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
831 * Make sure to pull in the mode here as well in
832 * case the inode is released without being used.
833 * This ensures that xfs_inactive() will see that
834 * the inode is already free and not try to mess
835 * with the uninitialized part of it.
837 ip->i_d.di_mode = 0;
839 * Initialize the per-fork minima and maxima for a new
840 * inode here. xfs_iformat will do it for old inodes.
842 ip->i_df.if_ext_max =
843 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
847 * The inode format changed when we moved the link count and
848 * made it 32 bits long. If this is an old format inode,
849 * convert it in memory to look like a new one. If it gets
850 * flushed to disk we will convert back before flushing or
851 * logging it. We zero out the new projid field and the old link
852 * count field. We'll handle clearing the pad field (the remains
853 * of the old uuid field) when we actually convert the inode to
854 * the new format. We don't change the version number so that we
855 * can distinguish this from a real new format inode.
857 if (ip->i_d.di_version == 1) {
858 ip->i_d.di_nlink = ip->i_d.di_onlink;
859 ip->i_d.di_onlink = 0;
860 xfs_set_projid(ip, 0);
863 ip->i_delayed_blks = 0;
864 ip->i_size = ip->i_d.di_size;
867 * Mark the buffer containing the inode as something to keep
868 * around for a while. This helps to keep recently accessed
869 * meta-data in-core longer.
871 xfs_buf_set_ref(bp, XFS_INO_REF);
874 * Use xfs_trans_brelse() to release the buffer containing the
875 * on-disk inode, because it was acquired with xfs_trans_read_buf()
876 * in xfs_itobp() above. If tp is NULL, this is just a normal
877 * brelse(). If we're within a transaction, then xfs_trans_brelse()
878 * will only release the buffer if it is not dirty within the
879 * transaction. It will be OK to release the buffer in this case,
880 * because inodes on disk are never destroyed and we will be
881 * locking the new in-core inode before putting it in the hash
882 * table where other processes can find it. Thus we don't have
883 * to worry about the inode being changed just because we released
884 * the buffer.
886 out_brelse:
887 xfs_trans_brelse(tp, bp);
888 return error;
892 * Read in extents from a btree-format inode.
893 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
896 xfs_iread_extents(
897 xfs_trans_t *tp,
898 xfs_inode_t *ip,
899 int whichfork)
901 int error;
902 xfs_ifork_t *ifp;
903 xfs_extnum_t nextents;
905 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
906 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
907 ip->i_mount);
908 return XFS_ERROR(EFSCORRUPTED);
910 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
911 ifp = XFS_IFORK_PTR(ip, whichfork);
914 * We know that the size is valid (it's checked in iformat_btree)
916 ifp->if_bytes = ifp->if_real_bytes = 0;
917 ifp->if_flags |= XFS_IFEXTENTS;
918 xfs_iext_add(ifp, 0, nextents);
919 error = xfs_bmap_read_extents(tp, ip, whichfork);
920 if (error) {
921 xfs_iext_destroy(ifp);
922 ifp->if_flags &= ~XFS_IFEXTENTS;
923 return error;
925 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
926 return 0;
930 * Allocate an inode on disk and return a copy of its in-core version.
931 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
932 * appropriately within the inode. The uid and gid for the inode are
933 * set according to the contents of the given cred structure.
935 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
936 * has a free inode available, call xfs_iget()
937 * to obtain the in-core version of the allocated inode. Finally,
938 * fill in the inode and log its initial contents. In this case,
939 * ialloc_context would be set to NULL and call_again set to false.
941 * If xfs_dialloc() does not have an available inode,
942 * it will replenish its supply by doing an allocation. Since we can
943 * only do one allocation within a transaction without deadlocks, we
944 * must commit the current transaction before returning the inode itself.
945 * In this case, therefore, we will set call_again to true and return.
946 * The caller should then commit the current transaction, start a new
947 * transaction, and call xfs_ialloc() again to actually get the inode.
949 * To ensure that some other process does not grab the inode that
950 * was allocated during the first call to xfs_ialloc(), this routine
951 * also returns the [locked] bp pointing to the head of the freelist
952 * as ialloc_context. The caller should hold this buffer across
953 * the commit and pass it back into this routine on the second call.
955 * If we are allocating quota inodes, we do not have a parent inode
956 * to attach to or associate with (i.e. pip == NULL) because they
957 * are not linked into the directory structure - they are attached
958 * directly to the superblock - and so have no parent.
961 xfs_ialloc(
962 xfs_trans_t *tp,
963 xfs_inode_t *pip,
964 mode_t mode,
965 xfs_nlink_t nlink,
966 xfs_dev_t rdev,
967 prid_t prid,
968 int okalloc,
969 xfs_buf_t **ialloc_context,
970 boolean_t *call_again,
971 xfs_inode_t **ipp)
973 xfs_ino_t ino;
974 xfs_inode_t *ip;
975 uint flags;
976 int error;
977 timespec_t tv;
978 int filestreams = 0;
981 * Call the space management code to pick
982 * the on-disk inode to be allocated.
984 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
985 ialloc_context, call_again, &ino);
986 if (error)
987 return error;
988 if (*call_again || ino == NULLFSINO) {
989 *ipp = NULL;
990 return 0;
992 ASSERT(*ialloc_context == NULL);
995 * Get the in-core inode with the lock held exclusively.
996 * This is because we're setting fields here we need
997 * to prevent others from looking at until we're done.
999 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1000 XFS_ILOCK_EXCL, &ip);
1001 if (error)
1002 return error;
1003 ASSERT(ip != NULL);
1005 ip->i_d.di_mode = (__uint16_t)mode;
1006 ip->i_d.di_onlink = 0;
1007 ip->i_d.di_nlink = nlink;
1008 ASSERT(ip->i_d.di_nlink == nlink);
1009 ip->i_d.di_uid = current_fsuid();
1010 ip->i_d.di_gid = current_fsgid();
1011 xfs_set_projid(ip, prid);
1012 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1015 * If the superblock version is up to where we support new format
1016 * inodes and this is currently an old format inode, then change
1017 * the inode version number now. This way we only do the conversion
1018 * here rather than here and in the flush/logging code.
1020 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1021 ip->i_d.di_version == 1) {
1022 ip->i_d.di_version = 2;
1024 * We've already zeroed the old link count, the projid field,
1025 * and the pad field.
1030 * Project ids won't be stored on disk if we are using a version 1 inode.
1032 if ((prid != 0) && (ip->i_d.di_version == 1))
1033 xfs_bump_ino_vers2(tp, ip);
1035 if (pip && XFS_INHERIT_GID(pip)) {
1036 ip->i_d.di_gid = pip->i_d.di_gid;
1037 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1038 ip->i_d.di_mode |= S_ISGID;
1043 * If the group ID of the new file does not match the effective group
1044 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1045 * (and only if the irix_sgid_inherit compatibility variable is set).
1047 if ((irix_sgid_inherit) &&
1048 (ip->i_d.di_mode & S_ISGID) &&
1049 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1050 ip->i_d.di_mode &= ~S_ISGID;
1053 ip->i_d.di_size = 0;
1054 ip->i_size = 0;
1055 ip->i_d.di_nextents = 0;
1056 ASSERT(ip->i_d.di_nblocks == 0);
1058 nanotime(&tv);
1059 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1060 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1061 ip->i_d.di_atime = ip->i_d.di_mtime;
1062 ip->i_d.di_ctime = ip->i_d.di_mtime;
1065 * di_gen will have been taken care of in xfs_iread.
1067 ip->i_d.di_extsize = 0;
1068 ip->i_d.di_dmevmask = 0;
1069 ip->i_d.di_dmstate = 0;
1070 ip->i_d.di_flags = 0;
1071 flags = XFS_ILOG_CORE;
1072 switch (mode & S_IFMT) {
1073 case S_IFIFO:
1074 case S_IFCHR:
1075 case S_IFBLK:
1076 case S_IFSOCK:
1077 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1078 ip->i_df.if_u2.if_rdev = rdev;
1079 ip->i_df.if_flags = 0;
1080 flags |= XFS_ILOG_DEV;
1081 break;
1082 case S_IFREG:
1084 * we can't set up filestreams until after the VFS inode
1085 * is set up properly.
1087 if (pip && xfs_inode_is_filestream(pip))
1088 filestreams = 1;
1089 /* fall through */
1090 case S_IFDIR:
1091 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1092 uint di_flags = 0;
1094 if (S_ISDIR(mode)) {
1095 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1096 di_flags |= XFS_DIFLAG_RTINHERIT;
1097 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1098 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1099 ip->i_d.di_extsize = pip->i_d.di_extsize;
1101 } else if (S_ISREG(mode)) {
1102 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1103 di_flags |= XFS_DIFLAG_REALTIME;
1104 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1105 di_flags |= XFS_DIFLAG_EXTSIZE;
1106 ip->i_d.di_extsize = pip->i_d.di_extsize;
1109 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1110 xfs_inherit_noatime)
1111 di_flags |= XFS_DIFLAG_NOATIME;
1112 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1113 xfs_inherit_nodump)
1114 di_flags |= XFS_DIFLAG_NODUMP;
1115 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1116 xfs_inherit_sync)
1117 di_flags |= XFS_DIFLAG_SYNC;
1118 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1119 xfs_inherit_nosymlinks)
1120 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1121 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1122 di_flags |= XFS_DIFLAG_PROJINHERIT;
1123 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1124 xfs_inherit_nodefrag)
1125 di_flags |= XFS_DIFLAG_NODEFRAG;
1126 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1127 di_flags |= XFS_DIFLAG_FILESTREAM;
1128 ip->i_d.di_flags |= di_flags;
1130 /* FALLTHROUGH */
1131 case S_IFLNK:
1132 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1133 ip->i_df.if_flags = XFS_IFEXTENTS;
1134 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1135 ip->i_df.if_u1.if_extents = NULL;
1136 break;
1137 default:
1138 ASSERT(0);
1141 * Attribute fork settings for new inode.
1143 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1144 ip->i_d.di_anextents = 0;
1147 * Log the new values stuffed into the inode.
1149 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1150 xfs_trans_log_inode(tp, ip, flags);
1152 /* now that we have an i_mode we can setup inode ops and unlock */
1153 xfs_setup_inode(ip);
1155 /* now we have set up the vfs inode we can associate the filestream */
1156 if (filestreams) {
1157 error = xfs_filestream_associate(pip, ip);
1158 if (error < 0)
1159 return -error;
1160 if (!error)
1161 xfs_iflags_set(ip, XFS_IFILESTREAM);
1164 *ipp = ip;
1165 return 0;
1169 * Check to make sure that there are no blocks allocated to the
1170 * file beyond the size of the file. We don't check this for
1171 * files with fixed size extents or real time extents, but we
1172 * at least do it for regular files.
1174 #ifdef DEBUG
1175 STATIC void
1176 xfs_isize_check(
1177 struct xfs_inode *ip,
1178 xfs_fsize_t isize)
1180 struct xfs_mount *mp = ip->i_mount;
1181 xfs_fileoff_t map_first;
1182 int nimaps;
1183 xfs_bmbt_irec_t imaps[2];
1184 int error;
1186 if (!S_ISREG(ip->i_d.di_mode))
1187 return;
1189 if (XFS_IS_REALTIME_INODE(ip))
1190 return;
1192 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1193 return;
1195 nimaps = 2;
1196 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1198 * The filesystem could be shutting down, so bmapi may return
1199 * an error.
1201 error = xfs_bmapi_read(ip, map_first,
1202 (XFS_B_TO_FSB(mp,
1203 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - map_first),
1204 imaps, &nimaps, XFS_BMAPI_ENTIRE);
1205 if (error)
1206 return;
1207 ASSERT(nimaps == 1);
1208 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1210 #else /* DEBUG */
1211 #define xfs_isize_check(ip, isize)
1212 #endif /* DEBUG */
1215 * Free up the underlying blocks past new_size. The new size must be smaller
1216 * than the current size. This routine can be used both for the attribute and
1217 * data fork, and does not modify the inode size, which is left to the caller.
1219 * The transaction passed to this routine must have made a permanent log
1220 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1221 * given transaction and start new ones, so make sure everything involved in
1222 * the transaction is tidy before calling here. Some transaction will be
1223 * returned to the caller to be committed. The incoming transaction must
1224 * already include the inode, and both inode locks must be held exclusively.
1225 * The inode must also be "held" within the transaction. On return the inode
1226 * will be "held" within the returned transaction. This routine does NOT
1227 * require any disk space to be reserved for it within the transaction.
1229 * If we get an error, we must return with the inode locked and linked into the
1230 * current transaction. This keeps things simple for the higher level code,
1231 * because it always knows that the inode is locked and held in the transaction
1232 * that returns to it whether errors occur or not. We don't mark the inode
1233 * dirty on error so that transactions can be easily aborted if possible.
1236 xfs_itruncate_extents(
1237 struct xfs_trans **tpp,
1238 struct xfs_inode *ip,
1239 int whichfork,
1240 xfs_fsize_t new_size)
1242 struct xfs_mount *mp = ip->i_mount;
1243 struct xfs_trans *tp = *tpp;
1244 struct xfs_trans *ntp;
1245 xfs_bmap_free_t free_list;
1246 xfs_fsblock_t first_block;
1247 xfs_fileoff_t first_unmap_block;
1248 xfs_fileoff_t last_block;
1249 xfs_filblks_t unmap_len;
1250 int committed;
1251 int error = 0;
1252 int done = 0;
1254 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1255 ASSERT(new_size <= ip->i_size);
1256 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1257 ASSERT(ip->i_itemp != NULL);
1258 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1259 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1262 * Since it is possible for space to become allocated beyond
1263 * the end of the file (in a crash where the space is allocated
1264 * but the inode size is not yet updated), simply remove any
1265 * blocks which show up between the new EOF and the maximum
1266 * possible file size. If the first block to be removed is
1267 * beyond the maximum file size (ie it is the same as last_block),
1268 * then there is nothing to do.
1270 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1271 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1272 if (first_unmap_block == last_block)
1273 return 0;
1275 ASSERT(first_unmap_block < last_block);
1276 unmap_len = last_block - first_unmap_block + 1;
1277 while (!done) {
1278 xfs_bmap_init(&free_list, &first_block);
1279 error = xfs_bunmapi(tp, ip,
1280 first_unmap_block, unmap_len,
1281 xfs_bmapi_aflag(whichfork),
1282 XFS_ITRUNC_MAX_EXTENTS,
1283 &first_block, &free_list,
1284 &done);
1285 if (error)
1286 goto out_bmap_cancel;
1289 * Duplicate the transaction that has the permanent
1290 * reservation and commit the old transaction.
1292 error = xfs_bmap_finish(&tp, &free_list, &committed);
1293 if (committed)
1294 xfs_trans_ijoin(tp, ip, 0);
1295 if (error)
1296 goto out_bmap_cancel;
1298 if (committed) {
1300 * Mark the inode dirty so it will be logged and
1301 * moved forward in the log as part of every commit.
1303 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1306 ntp = xfs_trans_dup(tp);
1307 error = xfs_trans_commit(tp, 0);
1308 tp = ntp;
1310 xfs_trans_ijoin(tp, ip, 0);
1312 if (error)
1313 goto out;
1316 * Transaction commit worked ok so we can drop the extra ticket
1317 * reference that we gained in xfs_trans_dup()
1319 xfs_log_ticket_put(tp->t_ticket);
1320 error = xfs_trans_reserve(tp, 0,
1321 XFS_ITRUNCATE_LOG_RES(mp), 0,
1322 XFS_TRANS_PERM_LOG_RES,
1323 XFS_ITRUNCATE_LOG_COUNT);
1324 if (error)
1325 goto out;
1328 out:
1329 *tpp = tp;
1330 return error;
1331 out_bmap_cancel:
1333 * If the bunmapi call encounters an error, return to the caller where
1334 * the transaction can be properly aborted. We just need to make sure
1335 * we're not holding any resources that we were not when we came in.
1337 xfs_bmap_cancel(&free_list);
1338 goto out;
1342 xfs_itruncate_data(
1343 struct xfs_trans **tpp,
1344 struct xfs_inode *ip,
1345 xfs_fsize_t new_size)
1347 int error;
1349 trace_xfs_itruncate_data_start(ip, new_size);
1352 * The first thing we do is set the size to new_size permanently on
1353 * disk. This way we don't have to worry about anyone ever being able
1354 * to look at the data being freed even in the face of a crash.
1355 * What we're getting around here is the case where we free a block, it
1356 * is allocated to another file, it is written to, and then we crash.
1357 * If the new data gets written to the file but the log buffers
1358 * containing the free and reallocation don't, then we'd end up with
1359 * garbage in the blocks being freed. As long as we make the new_size
1360 * permanent before actually freeing any blocks it doesn't matter if
1361 * they get written to.
1363 if (ip->i_d.di_nextents > 0) {
1365 * If we are not changing the file size then do not update
1366 * the on-disk file size - we may be called from
1367 * xfs_inactive_free_eofblocks(). If we update the on-disk
1368 * file size and then the system crashes before the contents
1369 * of the file are flushed to disk then the files may be
1370 * full of holes (ie NULL files bug).
1372 if (ip->i_size != new_size) {
1373 ip->i_d.di_size = new_size;
1374 ip->i_size = new_size;
1375 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1379 error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
1380 if (error)
1381 return error;
1384 * If we are not changing the file size then do not update the on-disk
1385 * file size - we may be called from xfs_inactive_free_eofblocks().
1386 * If we update the on-disk file size and then the system crashes
1387 * before the contents of the file are flushed to disk then the files
1388 * may be full of holes (ie NULL files bug).
1390 xfs_isize_check(ip, new_size);
1391 if (ip->i_size != new_size) {
1392 ip->i_d.di_size = new_size;
1393 ip->i_size = new_size;
1396 ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1397 ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
1400 * Always re-log the inode so that our permanent transaction can keep
1401 * on rolling it forward in the log.
1403 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1405 trace_xfs_itruncate_data_end(ip, new_size);
1406 return 0;
1410 * This is called when the inode's link count goes to 0.
1411 * We place the on-disk inode on a list in the AGI. It
1412 * will be pulled from this list when the inode is freed.
1415 xfs_iunlink(
1416 xfs_trans_t *tp,
1417 xfs_inode_t *ip)
1419 xfs_mount_t *mp;
1420 xfs_agi_t *agi;
1421 xfs_dinode_t *dip;
1422 xfs_buf_t *agibp;
1423 xfs_buf_t *ibp;
1424 xfs_agino_t agino;
1425 short bucket_index;
1426 int offset;
1427 int error;
1429 ASSERT(ip->i_d.di_nlink == 0);
1430 ASSERT(ip->i_d.di_mode != 0);
1432 mp = tp->t_mountp;
1435 * Get the agi buffer first. It ensures lock ordering
1436 * on the list.
1438 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1439 if (error)
1440 return error;
1441 agi = XFS_BUF_TO_AGI(agibp);
1444 * Get the index into the agi hash table for the
1445 * list this inode will go on.
1447 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1448 ASSERT(agino != 0);
1449 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1450 ASSERT(agi->agi_unlinked[bucket_index]);
1451 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1453 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1455 * There is already another inode in the bucket we need
1456 * to add ourselves to. Add us at the front of the list.
1457 * Here we put the head pointer into our next pointer,
1458 * and then we fall through to point the head at us.
1460 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1461 if (error)
1462 return error;
1464 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1465 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1466 offset = ip->i_imap.im_boffset +
1467 offsetof(xfs_dinode_t, di_next_unlinked);
1468 xfs_trans_inode_buf(tp, ibp);
1469 xfs_trans_log_buf(tp, ibp, offset,
1470 (offset + sizeof(xfs_agino_t) - 1));
1471 xfs_inobp_check(mp, ibp);
1475 * Point the bucket head pointer at the inode being inserted.
1477 ASSERT(agino != 0);
1478 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1479 offset = offsetof(xfs_agi_t, agi_unlinked) +
1480 (sizeof(xfs_agino_t) * bucket_index);
1481 xfs_trans_log_buf(tp, agibp, offset,
1482 (offset + sizeof(xfs_agino_t) - 1));
1483 return 0;
1487 * Pull the on-disk inode from the AGI unlinked list.
1489 STATIC int
1490 xfs_iunlink_remove(
1491 xfs_trans_t *tp,
1492 xfs_inode_t *ip)
1494 xfs_ino_t next_ino;
1495 xfs_mount_t *mp;
1496 xfs_agi_t *agi;
1497 xfs_dinode_t *dip;
1498 xfs_buf_t *agibp;
1499 xfs_buf_t *ibp;
1500 xfs_agnumber_t agno;
1501 xfs_agino_t agino;
1502 xfs_agino_t next_agino;
1503 xfs_buf_t *last_ibp;
1504 xfs_dinode_t *last_dip = NULL;
1505 short bucket_index;
1506 int offset, last_offset = 0;
1507 int error;
1509 mp = tp->t_mountp;
1510 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1513 * Get the agi buffer first. It ensures lock ordering
1514 * on the list.
1516 error = xfs_read_agi(mp, tp, agno, &agibp);
1517 if (error)
1518 return error;
1520 agi = XFS_BUF_TO_AGI(agibp);
1523 * Get the index into the agi hash table for the
1524 * list this inode will go on.
1526 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1527 ASSERT(agino != 0);
1528 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1529 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1530 ASSERT(agi->agi_unlinked[bucket_index]);
1532 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1534 * We're at the head of the list. Get the inode's
1535 * on-disk buffer to see if there is anyone after us
1536 * on the list. Only modify our next pointer if it
1537 * is not already NULLAGINO. This saves us the overhead
1538 * of dealing with the buffer when there is no need to
1539 * change it.
1541 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1542 if (error) {
1543 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1544 __func__, error);
1545 return error;
1547 next_agino = be32_to_cpu(dip->di_next_unlinked);
1548 ASSERT(next_agino != 0);
1549 if (next_agino != NULLAGINO) {
1550 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1551 offset = ip->i_imap.im_boffset +
1552 offsetof(xfs_dinode_t, di_next_unlinked);
1553 xfs_trans_inode_buf(tp, ibp);
1554 xfs_trans_log_buf(tp, ibp, offset,
1555 (offset + sizeof(xfs_agino_t) - 1));
1556 xfs_inobp_check(mp, ibp);
1557 } else {
1558 xfs_trans_brelse(tp, ibp);
1561 * Point the bucket head pointer at the next inode.
1563 ASSERT(next_agino != 0);
1564 ASSERT(next_agino != agino);
1565 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1566 offset = offsetof(xfs_agi_t, agi_unlinked) +
1567 (sizeof(xfs_agino_t) * bucket_index);
1568 xfs_trans_log_buf(tp, agibp, offset,
1569 (offset + sizeof(xfs_agino_t) - 1));
1570 } else {
1572 * We need to search the list for the inode being freed.
1574 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1575 last_ibp = NULL;
1576 while (next_agino != agino) {
1578 * If the last inode wasn't the one pointing to
1579 * us, then release its buffer since we're not
1580 * going to do anything with it.
1582 if (last_ibp != NULL) {
1583 xfs_trans_brelse(tp, last_ibp);
1585 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1586 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1587 &last_ibp, &last_offset, 0);
1588 if (error) {
1589 xfs_warn(mp,
1590 "%s: xfs_inotobp() returned error %d.",
1591 __func__, error);
1592 return error;
1594 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1595 ASSERT(next_agino != NULLAGINO);
1596 ASSERT(next_agino != 0);
1599 * Now last_ibp points to the buffer previous to us on
1600 * the unlinked list. Pull us from the list.
1602 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1603 if (error) {
1604 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1605 __func__, error);
1606 return error;
1608 next_agino = be32_to_cpu(dip->di_next_unlinked);
1609 ASSERT(next_agino != 0);
1610 ASSERT(next_agino != agino);
1611 if (next_agino != NULLAGINO) {
1612 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1613 offset = ip->i_imap.im_boffset +
1614 offsetof(xfs_dinode_t, di_next_unlinked);
1615 xfs_trans_inode_buf(tp, ibp);
1616 xfs_trans_log_buf(tp, ibp, offset,
1617 (offset + sizeof(xfs_agino_t) - 1));
1618 xfs_inobp_check(mp, ibp);
1619 } else {
1620 xfs_trans_brelse(tp, ibp);
1623 * Point the previous inode on the list to the next inode.
1625 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1626 ASSERT(next_agino != 0);
1627 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1628 xfs_trans_inode_buf(tp, last_ibp);
1629 xfs_trans_log_buf(tp, last_ibp, offset,
1630 (offset + sizeof(xfs_agino_t) - 1));
1631 xfs_inobp_check(mp, last_ibp);
1633 return 0;
1637 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1638 * inodes that are in memory - they all must be marked stale and attached to
1639 * the cluster buffer.
1641 STATIC int
1642 xfs_ifree_cluster(
1643 xfs_inode_t *free_ip,
1644 xfs_trans_t *tp,
1645 xfs_ino_t inum)
1647 xfs_mount_t *mp = free_ip->i_mount;
1648 int blks_per_cluster;
1649 int nbufs;
1650 int ninodes;
1651 int i, j;
1652 xfs_daddr_t blkno;
1653 xfs_buf_t *bp;
1654 xfs_inode_t *ip;
1655 xfs_inode_log_item_t *iip;
1656 xfs_log_item_t *lip;
1657 struct xfs_perag *pag;
1659 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1660 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1661 blks_per_cluster = 1;
1662 ninodes = mp->m_sb.sb_inopblock;
1663 nbufs = XFS_IALLOC_BLOCKS(mp);
1664 } else {
1665 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1666 mp->m_sb.sb_blocksize;
1667 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1668 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1671 for (j = 0; j < nbufs; j++, inum += ninodes) {
1672 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1673 XFS_INO_TO_AGBNO(mp, inum));
1676 * We obtain and lock the backing buffer first in the process
1677 * here, as we have to ensure that any dirty inode that we
1678 * can't get the flush lock on is attached to the buffer.
1679 * If we scan the in-memory inodes first, then buffer IO can
1680 * complete before we get a lock on it, and hence we may fail
1681 * to mark all the active inodes on the buffer stale.
1683 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1684 mp->m_bsize * blks_per_cluster,
1685 XBF_LOCK);
1687 if (!bp)
1688 return ENOMEM;
1690 * Walk the inodes already attached to the buffer and mark them
1691 * stale. These will all have the flush locks held, so an
1692 * in-memory inode walk can't lock them. By marking them all
1693 * stale first, we will not attempt to lock them in the loop
1694 * below as the XFS_ISTALE flag will be set.
1696 lip = bp->b_fspriv;
1697 while (lip) {
1698 if (lip->li_type == XFS_LI_INODE) {
1699 iip = (xfs_inode_log_item_t *)lip;
1700 ASSERT(iip->ili_logged == 1);
1701 lip->li_cb = xfs_istale_done;
1702 xfs_trans_ail_copy_lsn(mp->m_ail,
1703 &iip->ili_flush_lsn,
1704 &iip->ili_item.li_lsn);
1705 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1707 lip = lip->li_bio_list;
1712 * For each inode in memory attempt to add it to the inode
1713 * buffer and set it up for being staled on buffer IO
1714 * completion. This is safe as we've locked out tail pushing
1715 * and flushing by locking the buffer.
1717 * We have already marked every inode that was part of a
1718 * transaction stale above, which means there is no point in
1719 * even trying to lock them.
1721 for (i = 0; i < ninodes; i++) {
1722 retry:
1723 rcu_read_lock();
1724 ip = radix_tree_lookup(&pag->pag_ici_root,
1725 XFS_INO_TO_AGINO(mp, (inum + i)));
1727 /* Inode not in memory, nothing to do */
1728 if (!ip) {
1729 rcu_read_unlock();
1730 continue;
1734 * because this is an RCU protected lookup, we could
1735 * find a recently freed or even reallocated inode
1736 * during the lookup. We need to check under the
1737 * i_flags_lock for a valid inode here. Skip it if it
1738 * is not valid, the wrong inode or stale.
1740 spin_lock(&ip->i_flags_lock);
1741 if (ip->i_ino != inum + i ||
1742 __xfs_iflags_test(ip, XFS_ISTALE)) {
1743 spin_unlock(&ip->i_flags_lock);
1744 rcu_read_unlock();
1745 continue;
1747 spin_unlock(&ip->i_flags_lock);
1750 * Don't try to lock/unlock the current inode, but we
1751 * _cannot_ skip the other inodes that we did not find
1752 * in the list attached to the buffer and are not
1753 * already marked stale. If we can't lock it, back off
1754 * and retry.
1756 if (ip != free_ip &&
1757 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1758 rcu_read_unlock();
1759 delay(1);
1760 goto retry;
1762 rcu_read_unlock();
1764 xfs_iflock(ip);
1765 xfs_iflags_set(ip, XFS_ISTALE);
1768 * we don't need to attach clean inodes or those only
1769 * with unlogged changes (which we throw away, anyway).
1771 iip = ip->i_itemp;
1772 if (!iip || xfs_inode_clean(ip)) {
1773 ASSERT(ip != free_ip);
1774 ip->i_update_core = 0;
1775 xfs_ifunlock(ip);
1776 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1777 continue;
1780 iip->ili_last_fields = iip->ili_format.ilf_fields;
1781 iip->ili_format.ilf_fields = 0;
1782 iip->ili_logged = 1;
1783 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1784 &iip->ili_item.li_lsn);
1786 xfs_buf_attach_iodone(bp, xfs_istale_done,
1787 &iip->ili_item);
1789 if (ip != free_ip)
1790 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1793 xfs_trans_stale_inode_buf(tp, bp);
1794 xfs_trans_binval(tp, bp);
1797 xfs_perag_put(pag);
1798 return 0;
1802 * This is called to return an inode to the inode free list.
1803 * The inode should already be truncated to 0 length and have
1804 * no pages associated with it. This routine also assumes that
1805 * the inode is already a part of the transaction.
1807 * The on-disk copy of the inode will have been added to the list
1808 * of unlinked inodes in the AGI. We need to remove the inode from
1809 * that list atomically with respect to freeing it here.
1812 xfs_ifree(
1813 xfs_trans_t *tp,
1814 xfs_inode_t *ip,
1815 xfs_bmap_free_t *flist)
1817 int error;
1818 int delete;
1819 xfs_ino_t first_ino;
1820 xfs_dinode_t *dip;
1821 xfs_buf_t *ibp;
1823 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1824 ASSERT(ip->i_d.di_nlink == 0);
1825 ASSERT(ip->i_d.di_nextents == 0);
1826 ASSERT(ip->i_d.di_anextents == 0);
1827 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1828 (!S_ISREG(ip->i_d.di_mode)));
1829 ASSERT(ip->i_d.di_nblocks == 0);
1832 * Pull the on-disk inode from the AGI unlinked list.
1834 error = xfs_iunlink_remove(tp, ip);
1835 if (error != 0) {
1836 return error;
1839 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1840 if (error != 0) {
1841 return error;
1843 ip->i_d.di_mode = 0; /* mark incore inode as free */
1844 ip->i_d.di_flags = 0;
1845 ip->i_d.di_dmevmask = 0;
1846 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1847 ip->i_df.if_ext_max =
1848 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1849 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1850 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1852 * Bump the generation count so no one will be confused
1853 * by reincarnations of this inode.
1855 ip->i_d.di_gen++;
1857 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1859 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1860 if (error)
1861 return error;
1864 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1865 * from picking up this inode when it is reclaimed (its incore state
1866 * initialzed but not flushed to disk yet). The in-core di_mode is
1867 * already cleared and a corresponding transaction logged.
1868 * The hack here just synchronizes the in-core to on-disk
1869 * di_mode value in advance before the actual inode sync to disk.
1870 * This is OK because the inode is already unlinked and would never
1871 * change its di_mode again for this inode generation.
1872 * This is a temporary hack that would require a proper fix
1873 * in the future.
1875 dip->di_mode = 0;
1877 if (delete) {
1878 error = xfs_ifree_cluster(ip, tp, first_ino);
1881 return error;
1885 * Reallocate the space for if_broot based on the number of records
1886 * being added or deleted as indicated in rec_diff. Move the records
1887 * and pointers in if_broot to fit the new size. When shrinking this
1888 * will eliminate holes between the records and pointers created by
1889 * the caller. When growing this will create holes to be filled in
1890 * by the caller.
1892 * The caller must not request to add more records than would fit in
1893 * the on-disk inode root. If the if_broot is currently NULL, then
1894 * if we adding records one will be allocated. The caller must also
1895 * not request that the number of records go below zero, although
1896 * it can go to zero.
1898 * ip -- the inode whose if_broot area is changing
1899 * ext_diff -- the change in the number of records, positive or negative,
1900 * requested for the if_broot array.
1902 void
1903 xfs_iroot_realloc(
1904 xfs_inode_t *ip,
1905 int rec_diff,
1906 int whichfork)
1908 struct xfs_mount *mp = ip->i_mount;
1909 int cur_max;
1910 xfs_ifork_t *ifp;
1911 struct xfs_btree_block *new_broot;
1912 int new_max;
1913 size_t new_size;
1914 char *np;
1915 char *op;
1918 * Handle the degenerate case quietly.
1920 if (rec_diff == 0) {
1921 return;
1924 ifp = XFS_IFORK_PTR(ip, whichfork);
1925 if (rec_diff > 0) {
1927 * If there wasn't any memory allocated before, just
1928 * allocate it now and get out.
1930 if (ifp->if_broot_bytes == 0) {
1931 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1932 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1933 ifp->if_broot_bytes = (int)new_size;
1934 return;
1938 * If there is already an existing if_broot, then we need
1939 * to realloc() it and shift the pointers to their new
1940 * location. The records don't change location because
1941 * they are kept butted up against the btree block header.
1943 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1944 new_max = cur_max + rec_diff;
1945 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1946 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1947 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1948 KM_SLEEP | KM_NOFS);
1949 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1950 ifp->if_broot_bytes);
1951 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1952 (int)new_size);
1953 ifp->if_broot_bytes = (int)new_size;
1954 ASSERT(ifp->if_broot_bytes <=
1955 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1956 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1957 return;
1961 * rec_diff is less than 0. In this case, we are shrinking the
1962 * if_broot buffer. It must already exist. If we go to zero
1963 * records, just get rid of the root and clear the status bit.
1965 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1966 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1967 new_max = cur_max + rec_diff;
1968 ASSERT(new_max >= 0);
1969 if (new_max > 0)
1970 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1971 else
1972 new_size = 0;
1973 if (new_size > 0) {
1974 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1976 * First copy over the btree block header.
1978 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1979 } else {
1980 new_broot = NULL;
1981 ifp->if_flags &= ~XFS_IFBROOT;
1985 * Only copy the records and pointers if there are any.
1987 if (new_max > 0) {
1989 * First copy the records.
1991 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1992 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1993 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1996 * Then copy the pointers.
1998 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1999 ifp->if_broot_bytes);
2000 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2001 (int)new_size);
2002 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2004 kmem_free(ifp->if_broot);
2005 ifp->if_broot = new_broot;
2006 ifp->if_broot_bytes = (int)new_size;
2007 ASSERT(ifp->if_broot_bytes <=
2008 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2009 return;
2014 * This is called when the amount of space needed for if_data
2015 * is increased or decreased. The change in size is indicated by
2016 * the number of bytes that need to be added or deleted in the
2017 * byte_diff parameter.
2019 * If the amount of space needed has decreased below the size of the
2020 * inline buffer, then switch to using the inline buffer. Otherwise,
2021 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2022 * to what is needed.
2024 * ip -- the inode whose if_data area is changing
2025 * byte_diff -- the change in the number of bytes, positive or negative,
2026 * requested for the if_data array.
2028 void
2029 xfs_idata_realloc(
2030 xfs_inode_t *ip,
2031 int byte_diff,
2032 int whichfork)
2034 xfs_ifork_t *ifp;
2035 int new_size;
2036 int real_size;
2038 if (byte_diff == 0) {
2039 return;
2042 ifp = XFS_IFORK_PTR(ip, whichfork);
2043 new_size = (int)ifp->if_bytes + byte_diff;
2044 ASSERT(new_size >= 0);
2046 if (new_size == 0) {
2047 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2048 kmem_free(ifp->if_u1.if_data);
2050 ifp->if_u1.if_data = NULL;
2051 real_size = 0;
2052 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2054 * If the valid extents/data can fit in if_inline_ext/data,
2055 * copy them from the malloc'd vector and free it.
2057 if (ifp->if_u1.if_data == NULL) {
2058 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2059 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2060 ASSERT(ifp->if_real_bytes != 0);
2061 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2062 new_size);
2063 kmem_free(ifp->if_u1.if_data);
2064 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2066 real_size = 0;
2067 } else {
2069 * Stuck with malloc/realloc.
2070 * For inline data, the underlying buffer must be
2071 * a multiple of 4 bytes in size so that it can be
2072 * logged and stay on word boundaries. We enforce
2073 * that here.
2075 real_size = roundup(new_size, 4);
2076 if (ifp->if_u1.if_data == NULL) {
2077 ASSERT(ifp->if_real_bytes == 0);
2078 ifp->if_u1.if_data = kmem_alloc(real_size,
2079 KM_SLEEP | KM_NOFS);
2080 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2082 * Only do the realloc if the underlying size
2083 * is really changing.
2085 if (ifp->if_real_bytes != real_size) {
2086 ifp->if_u1.if_data =
2087 kmem_realloc(ifp->if_u1.if_data,
2088 real_size,
2089 ifp->if_real_bytes,
2090 KM_SLEEP | KM_NOFS);
2092 } else {
2093 ASSERT(ifp->if_real_bytes == 0);
2094 ifp->if_u1.if_data = kmem_alloc(real_size,
2095 KM_SLEEP | KM_NOFS);
2096 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2097 ifp->if_bytes);
2100 ifp->if_real_bytes = real_size;
2101 ifp->if_bytes = new_size;
2102 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2105 void
2106 xfs_idestroy_fork(
2107 xfs_inode_t *ip,
2108 int whichfork)
2110 xfs_ifork_t *ifp;
2112 ifp = XFS_IFORK_PTR(ip, whichfork);
2113 if (ifp->if_broot != NULL) {
2114 kmem_free(ifp->if_broot);
2115 ifp->if_broot = NULL;
2119 * If the format is local, then we can't have an extents
2120 * array so just look for an inline data array. If we're
2121 * not local then we may or may not have an extents list,
2122 * so check and free it up if we do.
2124 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2125 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2126 (ifp->if_u1.if_data != NULL)) {
2127 ASSERT(ifp->if_real_bytes != 0);
2128 kmem_free(ifp->if_u1.if_data);
2129 ifp->if_u1.if_data = NULL;
2130 ifp->if_real_bytes = 0;
2132 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2133 ((ifp->if_flags & XFS_IFEXTIREC) ||
2134 ((ifp->if_u1.if_extents != NULL) &&
2135 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2136 ASSERT(ifp->if_real_bytes != 0);
2137 xfs_iext_destroy(ifp);
2139 ASSERT(ifp->if_u1.if_extents == NULL ||
2140 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2141 ASSERT(ifp->if_real_bytes == 0);
2142 if (whichfork == XFS_ATTR_FORK) {
2143 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2144 ip->i_afp = NULL;
2149 * This is called to unpin an inode. The caller must have the inode locked
2150 * in at least shared mode so that the buffer cannot be subsequently pinned
2151 * once someone is waiting for it to be unpinned.
2153 static void
2154 xfs_iunpin_nowait(
2155 struct xfs_inode *ip)
2157 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2159 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2161 /* Give the log a push to start the unpinning I/O */
2162 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2166 void
2167 xfs_iunpin_wait(
2168 struct xfs_inode *ip)
2170 if (xfs_ipincount(ip)) {
2171 xfs_iunpin_nowait(ip);
2172 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2177 * xfs_iextents_copy()
2179 * This is called to copy the REAL extents (as opposed to the delayed
2180 * allocation extents) from the inode into the given buffer. It
2181 * returns the number of bytes copied into the buffer.
2183 * If there are no delayed allocation extents, then we can just
2184 * memcpy() the extents into the buffer. Otherwise, we need to
2185 * examine each extent in turn and skip those which are delayed.
2188 xfs_iextents_copy(
2189 xfs_inode_t *ip,
2190 xfs_bmbt_rec_t *dp,
2191 int whichfork)
2193 int copied;
2194 int i;
2195 xfs_ifork_t *ifp;
2196 int nrecs;
2197 xfs_fsblock_t start_block;
2199 ifp = XFS_IFORK_PTR(ip, whichfork);
2200 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2201 ASSERT(ifp->if_bytes > 0);
2203 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2204 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2205 ASSERT(nrecs > 0);
2208 * There are some delayed allocation extents in the
2209 * inode, so copy the extents one at a time and skip
2210 * the delayed ones. There must be at least one
2211 * non-delayed extent.
2213 copied = 0;
2214 for (i = 0; i < nrecs; i++) {
2215 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2216 start_block = xfs_bmbt_get_startblock(ep);
2217 if (isnullstartblock(start_block)) {
2219 * It's a delayed allocation extent, so skip it.
2221 continue;
2224 /* Translate to on disk format */
2225 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2226 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2227 dp++;
2228 copied++;
2230 ASSERT(copied != 0);
2231 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2233 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2237 * Each of the following cases stores data into the same region
2238 * of the on-disk inode, so only one of them can be valid at
2239 * any given time. While it is possible to have conflicting formats
2240 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2241 * in EXTENTS format, this can only happen when the fork has
2242 * changed formats after being modified but before being flushed.
2243 * In these cases, the format always takes precedence, because the
2244 * format indicates the current state of the fork.
2246 /*ARGSUSED*/
2247 STATIC void
2248 xfs_iflush_fork(
2249 xfs_inode_t *ip,
2250 xfs_dinode_t *dip,
2251 xfs_inode_log_item_t *iip,
2252 int whichfork,
2253 xfs_buf_t *bp)
2255 char *cp;
2256 xfs_ifork_t *ifp;
2257 xfs_mount_t *mp;
2258 #ifdef XFS_TRANS_DEBUG
2259 int first;
2260 #endif
2261 static const short brootflag[2] =
2262 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2263 static const short dataflag[2] =
2264 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2265 static const short extflag[2] =
2266 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2268 if (!iip)
2269 return;
2270 ifp = XFS_IFORK_PTR(ip, whichfork);
2272 * This can happen if we gave up in iformat in an error path,
2273 * for the attribute fork.
2275 if (!ifp) {
2276 ASSERT(whichfork == XFS_ATTR_FORK);
2277 return;
2279 cp = XFS_DFORK_PTR(dip, whichfork);
2280 mp = ip->i_mount;
2281 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2282 case XFS_DINODE_FMT_LOCAL:
2283 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2284 (ifp->if_bytes > 0)) {
2285 ASSERT(ifp->if_u1.if_data != NULL);
2286 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2287 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2289 break;
2291 case XFS_DINODE_FMT_EXTENTS:
2292 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2293 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2294 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2295 (ifp->if_bytes > 0)) {
2296 ASSERT(xfs_iext_get_ext(ifp, 0));
2297 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2298 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2299 whichfork);
2301 break;
2303 case XFS_DINODE_FMT_BTREE:
2304 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2305 (ifp->if_broot_bytes > 0)) {
2306 ASSERT(ifp->if_broot != NULL);
2307 ASSERT(ifp->if_broot_bytes <=
2308 (XFS_IFORK_SIZE(ip, whichfork) +
2309 XFS_BROOT_SIZE_ADJ));
2310 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2311 (xfs_bmdr_block_t *)cp,
2312 XFS_DFORK_SIZE(dip, mp, whichfork));
2314 break;
2316 case XFS_DINODE_FMT_DEV:
2317 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2318 ASSERT(whichfork == XFS_DATA_FORK);
2319 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2321 break;
2323 case XFS_DINODE_FMT_UUID:
2324 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2325 ASSERT(whichfork == XFS_DATA_FORK);
2326 memcpy(XFS_DFORK_DPTR(dip),
2327 &ip->i_df.if_u2.if_uuid,
2328 sizeof(uuid_t));
2330 break;
2332 default:
2333 ASSERT(0);
2334 break;
2338 STATIC int
2339 xfs_iflush_cluster(
2340 xfs_inode_t *ip,
2341 xfs_buf_t *bp)
2343 xfs_mount_t *mp = ip->i_mount;
2344 struct xfs_perag *pag;
2345 unsigned long first_index, mask;
2346 unsigned long inodes_per_cluster;
2347 int ilist_size;
2348 xfs_inode_t **ilist;
2349 xfs_inode_t *iq;
2350 int nr_found;
2351 int clcount = 0;
2352 int bufwasdelwri;
2353 int i;
2355 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2357 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2358 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2359 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2360 if (!ilist)
2361 goto out_put;
2363 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2364 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2365 rcu_read_lock();
2366 /* really need a gang lookup range call here */
2367 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2368 first_index, inodes_per_cluster);
2369 if (nr_found == 0)
2370 goto out_free;
2372 for (i = 0; i < nr_found; i++) {
2373 iq = ilist[i];
2374 if (iq == ip)
2375 continue;
2378 * because this is an RCU protected lookup, we could find a
2379 * recently freed or even reallocated inode during the lookup.
2380 * We need to check under the i_flags_lock for a valid inode
2381 * here. Skip it if it is not valid or the wrong inode.
2383 spin_lock(&ip->i_flags_lock);
2384 if (!ip->i_ino ||
2385 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2386 spin_unlock(&ip->i_flags_lock);
2387 continue;
2389 spin_unlock(&ip->i_flags_lock);
2392 * Do an un-protected check to see if the inode is dirty and
2393 * is a candidate for flushing. These checks will be repeated
2394 * later after the appropriate locks are acquired.
2396 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2397 continue;
2400 * Try to get locks. If any are unavailable or it is pinned,
2401 * then this inode cannot be flushed and is skipped.
2404 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2405 continue;
2406 if (!xfs_iflock_nowait(iq)) {
2407 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2408 continue;
2410 if (xfs_ipincount(iq)) {
2411 xfs_ifunlock(iq);
2412 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2413 continue;
2417 * arriving here means that this inode can be flushed. First
2418 * re-check that it's dirty before flushing.
2420 if (!xfs_inode_clean(iq)) {
2421 int error;
2422 error = xfs_iflush_int(iq, bp);
2423 if (error) {
2424 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2425 goto cluster_corrupt_out;
2427 clcount++;
2428 } else {
2429 xfs_ifunlock(iq);
2431 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2434 if (clcount) {
2435 XFS_STATS_INC(xs_icluster_flushcnt);
2436 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2439 out_free:
2440 rcu_read_unlock();
2441 kmem_free(ilist);
2442 out_put:
2443 xfs_perag_put(pag);
2444 return 0;
2447 cluster_corrupt_out:
2449 * Corruption detected in the clustering loop. Invalidate the
2450 * inode buffer and shut down the filesystem.
2452 rcu_read_unlock();
2454 * Clean up the buffer. If it was B_DELWRI, just release it --
2455 * brelse can handle it with no problems. If not, shut down the
2456 * filesystem before releasing the buffer.
2458 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2459 if (bufwasdelwri)
2460 xfs_buf_relse(bp);
2462 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2464 if (!bufwasdelwri) {
2466 * Just like incore_relse: if we have b_iodone functions,
2467 * mark the buffer as an error and call them. Otherwise
2468 * mark it as stale and brelse.
2470 if (bp->b_iodone) {
2471 XFS_BUF_UNDONE(bp);
2472 xfs_buf_stale(bp);
2473 xfs_buf_ioerror(bp, EIO);
2474 xfs_buf_ioend(bp, 0);
2475 } else {
2476 xfs_buf_stale(bp);
2477 xfs_buf_relse(bp);
2482 * Unlocks the flush lock
2484 xfs_iflush_abort(iq);
2485 kmem_free(ilist);
2486 xfs_perag_put(pag);
2487 return XFS_ERROR(EFSCORRUPTED);
2491 * xfs_iflush() will write a modified inode's changes out to the
2492 * inode's on disk home. The caller must have the inode lock held
2493 * in at least shared mode and the inode flush completion must be
2494 * active as well. The inode lock will still be held upon return from
2495 * the call and the caller is free to unlock it.
2496 * The inode flush will be completed when the inode reaches the disk.
2497 * The flags indicate how the inode's buffer should be written out.
2500 xfs_iflush(
2501 xfs_inode_t *ip,
2502 uint flags)
2504 xfs_inode_log_item_t *iip;
2505 xfs_buf_t *bp;
2506 xfs_dinode_t *dip;
2507 xfs_mount_t *mp;
2508 int error;
2510 XFS_STATS_INC(xs_iflush_count);
2512 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2513 ASSERT(!completion_done(&ip->i_flush));
2514 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2515 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2517 iip = ip->i_itemp;
2518 mp = ip->i_mount;
2521 * We can't flush the inode until it is unpinned, so wait for it if we
2522 * are allowed to block. We know no one new can pin it, because we are
2523 * holding the inode lock shared and you need to hold it exclusively to
2524 * pin the inode.
2526 * If we are not allowed to block, force the log out asynchronously so
2527 * that when we come back the inode will be unpinned. If other inodes
2528 * in the same cluster are dirty, they will probably write the inode
2529 * out for us if they occur after the log force completes.
2531 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2532 xfs_iunpin_nowait(ip);
2533 xfs_ifunlock(ip);
2534 return EAGAIN;
2536 xfs_iunpin_wait(ip);
2539 * For stale inodes we cannot rely on the backing buffer remaining
2540 * stale in cache for the remaining life of the stale inode and so
2541 * xfs_itobp() below may give us a buffer that no longer contains
2542 * inodes below. We have to check this after ensuring the inode is
2543 * unpinned so that it is safe to reclaim the stale inode after the
2544 * flush call.
2546 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2547 xfs_ifunlock(ip);
2548 return 0;
2552 * This may have been unpinned because the filesystem is shutting
2553 * down forcibly. If that's the case we must not write this inode
2554 * to disk, because the log record didn't make it to disk!
2556 if (XFS_FORCED_SHUTDOWN(mp)) {
2557 ip->i_update_core = 0;
2558 if (iip)
2559 iip->ili_format.ilf_fields = 0;
2560 xfs_ifunlock(ip);
2561 return XFS_ERROR(EIO);
2565 * Get the buffer containing the on-disk inode.
2567 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2568 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2569 if (error || !bp) {
2570 xfs_ifunlock(ip);
2571 return error;
2575 * First flush out the inode that xfs_iflush was called with.
2577 error = xfs_iflush_int(ip, bp);
2578 if (error)
2579 goto corrupt_out;
2582 * If the buffer is pinned then push on the log now so we won't
2583 * get stuck waiting in the write for too long.
2585 if (xfs_buf_ispinned(bp))
2586 xfs_log_force(mp, 0);
2589 * inode clustering:
2590 * see if other inodes can be gathered into this write
2592 error = xfs_iflush_cluster(ip, bp);
2593 if (error)
2594 goto cluster_corrupt_out;
2596 if (flags & SYNC_WAIT)
2597 error = xfs_bwrite(bp);
2598 else
2599 xfs_buf_delwri_queue(bp);
2601 xfs_buf_relse(bp);
2602 return error;
2604 corrupt_out:
2605 xfs_buf_relse(bp);
2606 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2607 cluster_corrupt_out:
2609 * Unlocks the flush lock
2611 xfs_iflush_abort(ip);
2612 return XFS_ERROR(EFSCORRUPTED);
2616 STATIC int
2617 xfs_iflush_int(
2618 xfs_inode_t *ip,
2619 xfs_buf_t *bp)
2621 xfs_inode_log_item_t *iip;
2622 xfs_dinode_t *dip;
2623 xfs_mount_t *mp;
2624 #ifdef XFS_TRANS_DEBUG
2625 int first;
2626 #endif
2628 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2629 ASSERT(!completion_done(&ip->i_flush));
2630 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2631 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2633 iip = ip->i_itemp;
2634 mp = ip->i_mount;
2636 /* set *dip = inode's place in the buffer */
2637 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2640 * Clear i_update_core before copying out the data.
2641 * This is for coordination with our timestamp updates
2642 * that don't hold the inode lock. They will always
2643 * update the timestamps BEFORE setting i_update_core,
2644 * so if we clear i_update_core after they set it we
2645 * are guaranteed to see their updates to the timestamps.
2646 * I believe that this depends on strongly ordered memory
2647 * semantics, but we have that. We use the SYNCHRONIZE
2648 * macro to make sure that the compiler does not reorder
2649 * the i_update_core access below the data copy below.
2651 ip->i_update_core = 0;
2652 SYNCHRONIZE();
2655 * Make sure to get the latest timestamps from the Linux inode.
2657 xfs_synchronize_times(ip);
2659 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2660 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2661 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2662 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2663 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2664 goto corrupt_out;
2666 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2667 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2668 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2669 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2670 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2671 goto corrupt_out;
2673 if (S_ISREG(ip->i_d.di_mode)) {
2674 if (XFS_TEST_ERROR(
2675 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2676 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2677 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2678 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2679 "%s: Bad regular inode %Lu, ptr 0x%p",
2680 __func__, ip->i_ino, ip);
2681 goto corrupt_out;
2683 } else if (S_ISDIR(ip->i_d.di_mode)) {
2684 if (XFS_TEST_ERROR(
2685 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2686 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2687 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2688 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2689 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2690 "%s: Bad directory inode %Lu, ptr 0x%p",
2691 __func__, ip->i_ino, ip);
2692 goto corrupt_out;
2695 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2696 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2697 XFS_RANDOM_IFLUSH_5)) {
2698 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2699 "%s: detected corrupt incore inode %Lu, "
2700 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2701 __func__, ip->i_ino,
2702 ip->i_d.di_nextents + ip->i_d.di_anextents,
2703 ip->i_d.di_nblocks, ip);
2704 goto corrupt_out;
2706 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2707 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2708 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2709 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2710 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2711 goto corrupt_out;
2714 * bump the flush iteration count, used to detect flushes which
2715 * postdate a log record during recovery.
2718 ip->i_d.di_flushiter++;
2721 * Copy the dirty parts of the inode into the on-disk
2722 * inode. We always copy out the core of the inode,
2723 * because if the inode is dirty at all the core must
2724 * be.
2726 xfs_dinode_to_disk(dip, &ip->i_d);
2728 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2729 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2730 ip->i_d.di_flushiter = 0;
2733 * If this is really an old format inode and the superblock version
2734 * has not been updated to support only new format inodes, then
2735 * convert back to the old inode format. If the superblock version
2736 * has been updated, then make the conversion permanent.
2738 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2739 if (ip->i_d.di_version == 1) {
2740 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2742 * Convert it back.
2744 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2745 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2746 } else {
2748 * The superblock version has already been bumped,
2749 * so just make the conversion to the new inode
2750 * format permanent.
2752 ip->i_d.di_version = 2;
2753 dip->di_version = 2;
2754 ip->i_d.di_onlink = 0;
2755 dip->di_onlink = 0;
2756 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2757 memset(&(dip->di_pad[0]), 0,
2758 sizeof(dip->di_pad));
2759 ASSERT(xfs_get_projid(ip) == 0);
2763 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2764 if (XFS_IFORK_Q(ip))
2765 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2766 xfs_inobp_check(mp, bp);
2769 * We've recorded everything logged in the inode, so we'd
2770 * like to clear the ilf_fields bits so we don't log and
2771 * flush things unnecessarily. However, we can't stop
2772 * logging all this information until the data we've copied
2773 * into the disk buffer is written to disk. If we did we might
2774 * overwrite the copy of the inode in the log with all the
2775 * data after re-logging only part of it, and in the face of
2776 * a crash we wouldn't have all the data we need to recover.
2778 * What we do is move the bits to the ili_last_fields field.
2779 * When logging the inode, these bits are moved back to the
2780 * ilf_fields field. In the xfs_iflush_done() routine we
2781 * clear ili_last_fields, since we know that the information
2782 * those bits represent is permanently on disk. As long as
2783 * the flush completes before the inode is logged again, then
2784 * both ilf_fields and ili_last_fields will be cleared.
2786 * We can play with the ilf_fields bits here, because the inode
2787 * lock must be held exclusively in order to set bits there
2788 * and the flush lock protects the ili_last_fields bits.
2789 * Set ili_logged so the flush done
2790 * routine can tell whether or not to look in the AIL.
2791 * Also, store the current LSN of the inode so that we can tell
2792 * whether the item has moved in the AIL from xfs_iflush_done().
2793 * In order to read the lsn we need the AIL lock, because
2794 * it is a 64 bit value that cannot be read atomically.
2796 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2797 iip->ili_last_fields = iip->ili_format.ilf_fields;
2798 iip->ili_format.ilf_fields = 0;
2799 iip->ili_logged = 1;
2801 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2802 &iip->ili_item.li_lsn);
2805 * Attach the function xfs_iflush_done to the inode's
2806 * buffer. This will remove the inode from the AIL
2807 * and unlock the inode's flush lock when the inode is
2808 * completely written to disk.
2810 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2812 ASSERT(bp->b_fspriv != NULL);
2813 ASSERT(bp->b_iodone != NULL);
2814 } else {
2816 * We're flushing an inode which is not in the AIL and has
2817 * not been logged but has i_update_core set. For this
2818 * case we can use a B_DELWRI flush and immediately drop
2819 * the inode flush lock because we can avoid the whole
2820 * AIL state thing. It's OK to drop the flush lock now,
2821 * because we've already locked the buffer and to do anything
2822 * you really need both.
2824 if (iip != NULL) {
2825 ASSERT(iip->ili_logged == 0);
2826 ASSERT(iip->ili_last_fields == 0);
2827 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2829 xfs_ifunlock(ip);
2832 return 0;
2834 corrupt_out:
2835 return XFS_ERROR(EFSCORRUPTED);
2839 * Return a pointer to the extent record at file index idx.
2841 xfs_bmbt_rec_host_t *
2842 xfs_iext_get_ext(
2843 xfs_ifork_t *ifp, /* inode fork pointer */
2844 xfs_extnum_t idx) /* index of target extent */
2846 ASSERT(idx >= 0);
2847 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2849 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2850 return ifp->if_u1.if_ext_irec->er_extbuf;
2851 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2852 xfs_ext_irec_t *erp; /* irec pointer */
2853 int erp_idx = 0; /* irec index */
2854 xfs_extnum_t page_idx = idx; /* ext index in target list */
2856 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2857 return &erp->er_extbuf[page_idx];
2858 } else if (ifp->if_bytes) {
2859 return &ifp->if_u1.if_extents[idx];
2860 } else {
2861 return NULL;
2866 * Insert new item(s) into the extent records for incore inode
2867 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2869 void
2870 xfs_iext_insert(
2871 xfs_inode_t *ip, /* incore inode pointer */
2872 xfs_extnum_t idx, /* starting index of new items */
2873 xfs_extnum_t count, /* number of inserted items */
2874 xfs_bmbt_irec_t *new, /* items to insert */
2875 int state) /* type of extent conversion */
2877 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2878 xfs_extnum_t i; /* extent record index */
2880 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2882 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2883 xfs_iext_add(ifp, idx, count);
2884 for (i = idx; i < idx + count; i++, new++)
2885 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2889 * This is called when the amount of space required for incore file
2890 * extents needs to be increased. The ext_diff parameter stores the
2891 * number of new extents being added and the idx parameter contains
2892 * the extent index where the new extents will be added. If the new
2893 * extents are being appended, then we just need to (re)allocate and
2894 * initialize the space. Otherwise, if the new extents are being
2895 * inserted into the middle of the existing entries, a bit more work
2896 * is required to make room for the new extents to be inserted. The
2897 * caller is responsible for filling in the new extent entries upon
2898 * return.
2900 void
2901 xfs_iext_add(
2902 xfs_ifork_t *ifp, /* inode fork pointer */
2903 xfs_extnum_t idx, /* index to begin adding exts */
2904 int ext_diff) /* number of extents to add */
2906 int byte_diff; /* new bytes being added */
2907 int new_size; /* size of extents after adding */
2908 xfs_extnum_t nextents; /* number of extents in file */
2910 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2911 ASSERT((idx >= 0) && (idx <= nextents));
2912 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2913 new_size = ifp->if_bytes + byte_diff;
2915 * If the new number of extents (nextents + ext_diff)
2916 * fits inside the inode, then continue to use the inline
2917 * extent buffer.
2919 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2920 if (idx < nextents) {
2921 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2922 &ifp->if_u2.if_inline_ext[idx],
2923 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2924 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2926 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2927 ifp->if_real_bytes = 0;
2930 * Otherwise use a linear (direct) extent list.
2931 * If the extents are currently inside the inode,
2932 * xfs_iext_realloc_direct will switch us from
2933 * inline to direct extent allocation mode.
2935 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2936 xfs_iext_realloc_direct(ifp, new_size);
2937 if (idx < nextents) {
2938 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2939 &ifp->if_u1.if_extents[idx],
2940 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2941 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2944 /* Indirection array */
2945 else {
2946 xfs_ext_irec_t *erp;
2947 int erp_idx = 0;
2948 int page_idx = idx;
2950 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2951 if (ifp->if_flags & XFS_IFEXTIREC) {
2952 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2953 } else {
2954 xfs_iext_irec_init(ifp);
2955 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2956 erp = ifp->if_u1.if_ext_irec;
2958 /* Extents fit in target extent page */
2959 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2960 if (page_idx < erp->er_extcount) {
2961 memmove(&erp->er_extbuf[page_idx + ext_diff],
2962 &erp->er_extbuf[page_idx],
2963 (erp->er_extcount - page_idx) *
2964 sizeof(xfs_bmbt_rec_t));
2965 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2967 erp->er_extcount += ext_diff;
2968 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2970 /* Insert a new extent page */
2971 else if (erp) {
2972 xfs_iext_add_indirect_multi(ifp,
2973 erp_idx, page_idx, ext_diff);
2976 * If extent(s) are being appended to the last page in
2977 * the indirection array and the new extent(s) don't fit
2978 * in the page, then erp is NULL and erp_idx is set to
2979 * the next index needed in the indirection array.
2981 else {
2982 int count = ext_diff;
2984 while (count) {
2985 erp = xfs_iext_irec_new(ifp, erp_idx);
2986 erp->er_extcount = count;
2987 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2988 if (count) {
2989 erp_idx++;
2994 ifp->if_bytes = new_size;
2998 * This is called when incore extents are being added to the indirection
2999 * array and the new extents do not fit in the target extent list. The
3000 * erp_idx parameter contains the irec index for the target extent list
3001 * in the indirection array, and the idx parameter contains the extent
3002 * index within the list. The number of extents being added is stored
3003 * in the count parameter.
3005 * |-------| |-------|
3006 * | | | | idx - number of extents before idx
3007 * | idx | | count |
3008 * | | | | count - number of extents being inserted at idx
3009 * |-------| |-------|
3010 * | count | | nex2 | nex2 - number of extents after idx + count
3011 * |-------| |-------|
3013 void
3014 xfs_iext_add_indirect_multi(
3015 xfs_ifork_t *ifp, /* inode fork pointer */
3016 int erp_idx, /* target extent irec index */
3017 xfs_extnum_t idx, /* index within target list */
3018 int count) /* new extents being added */
3020 int byte_diff; /* new bytes being added */
3021 xfs_ext_irec_t *erp; /* pointer to irec entry */
3022 xfs_extnum_t ext_diff; /* number of extents to add */
3023 xfs_extnum_t ext_cnt; /* new extents still needed */
3024 xfs_extnum_t nex2; /* extents after idx + count */
3025 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3026 int nlists; /* number of irec's (lists) */
3028 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3029 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3030 nex2 = erp->er_extcount - idx;
3031 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3034 * Save second part of target extent list
3035 * (all extents past */
3036 if (nex2) {
3037 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3038 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3039 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3040 erp->er_extcount -= nex2;
3041 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3042 memset(&erp->er_extbuf[idx], 0, byte_diff);
3046 * Add the new extents to the end of the target
3047 * list, then allocate new irec record(s) and
3048 * extent buffer(s) as needed to store the rest
3049 * of the new extents.
3051 ext_cnt = count;
3052 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3053 if (ext_diff) {
3054 erp->er_extcount += ext_diff;
3055 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3056 ext_cnt -= ext_diff;
3058 while (ext_cnt) {
3059 erp_idx++;
3060 erp = xfs_iext_irec_new(ifp, erp_idx);
3061 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3062 erp->er_extcount = ext_diff;
3063 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3064 ext_cnt -= ext_diff;
3067 /* Add nex2 extents back to indirection array */
3068 if (nex2) {
3069 xfs_extnum_t ext_avail;
3070 int i;
3072 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3073 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3074 i = 0;
3076 * If nex2 extents fit in the current page, append
3077 * nex2_ep after the new extents.
3079 if (nex2 <= ext_avail) {
3080 i = erp->er_extcount;
3083 * Otherwise, check if space is available in the
3084 * next page.
3086 else if ((erp_idx < nlists - 1) &&
3087 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3088 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3089 erp_idx++;
3090 erp++;
3091 /* Create a hole for nex2 extents */
3092 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3093 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3096 * Final choice, create a new extent page for
3097 * nex2 extents.
3099 else {
3100 erp_idx++;
3101 erp = xfs_iext_irec_new(ifp, erp_idx);
3103 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3104 kmem_free(nex2_ep);
3105 erp->er_extcount += nex2;
3106 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3111 * This is called when the amount of space required for incore file
3112 * extents needs to be decreased. The ext_diff parameter stores the
3113 * number of extents to be removed and the idx parameter contains
3114 * the extent index where the extents will be removed from.
3116 * If the amount of space needed has decreased below the linear
3117 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3118 * extent array. Otherwise, use kmem_realloc() to adjust the
3119 * size to what is needed.
3121 void
3122 xfs_iext_remove(
3123 xfs_inode_t *ip, /* incore inode pointer */
3124 xfs_extnum_t idx, /* index to begin removing exts */
3125 int ext_diff, /* number of extents to remove */
3126 int state) /* type of extent conversion */
3128 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3129 xfs_extnum_t nextents; /* number of extents in file */
3130 int new_size; /* size of extents after removal */
3132 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3134 ASSERT(ext_diff > 0);
3135 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3136 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3138 if (new_size == 0) {
3139 xfs_iext_destroy(ifp);
3140 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3141 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3142 } else if (ifp->if_real_bytes) {
3143 xfs_iext_remove_direct(ifp, idx, ext_diff);
3144 } else {
3145 xfs_iext_remove_inline(ifp, idx, ext_diff);
3147 ifp->if_bytes = new_size;
3151 * This removes ext_diff extents from the inline buffer, beginning
3152 * at extent index idx.
3154 void
3155 xfs_iext_remove_inline(
3156 xfs_ifork_t *ifp, /* inode fork pointer */
3157 xfs_extnum_t idx, /* index to begin removing exts */
3158 int ext_diff) /* number of extents to remove */
3160 int nextents; /* number of extents in file */
3162 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3163 ASSERT(idx < XFS_INLINE_EXTS);
3164 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3165 ASSERT(((nextents - ext_diff) > 0) &&
3166 (nextents - ext_diff) < XFS_INLINE_EXTS);
3168 if (idx + ext_diff < nextents) {
3169 memmove(&ifp->if_u2.if_inline_ext[idx],
3170 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3171 (nextents - (idx + ext_diff)) *
3172 sizeof(xfs_bmbt_rec_t));
3173 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3174 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3175 } else {
3176 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3177 ext_diff * sizeof(xfs_bmbt_rec_t));
3182 * This removes ext_diff extents from a linear (direct) extent list,
3183 * beginning at extent index idx. If the extents are being removed
3184 * from the end of the list (ie. truncate) then we just need to re-
3185 * allocate the list to remove the extra space. Otherwise, if the
3186 * extents are being removed from the middle of the existing extent
3187 * entries, then we first need to move the extent records beginning
3188 * at idx + ext_diff up in the list to overwrite the records being
3189 * removed, then remove the extra space via kmem_realloc.
3191 void
3192 xfs_iext_remove_direct(
3193 xfs_ifork_t *ifp, /* inode fork pointer */
3194 xfs_extnum_t idx, /* index to begin removing exts */
3195 int ext_diff) /* number of extents to remove */
3197 xfs_extnum_t nextents; /* number of extents in file */
3198 int new_size; /* size of extents after removal */
3200 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3201 new_size = ifp->if_bytes -
3202 (ext_diff * sizeof(xfs_bmbt_rec_t));
3203 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3205 if (new_size == 0) {
3206 xfs_iext_destroy(ifp);
3207 return;
3209 /* Move extents up in the list (if needed) */
3210 if (idx + ext_diff < nextents) {
3211 memmove(&ifp->if_u1.if_extents[idx],
3212 &ifp->if_u1.if_extents[idx + ext_diff],
3213 (nextents - (idx + ext_diff)) *
3214 sizeof(xfs_bmbt_rec_t));
3216 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3217 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3219 * Reallocate the direct extent list. If the extents
3220 * will fit inside the inode then xfs_iext_realloc_direct
3221 * will switch from direct to inline extent allocation
3222 * mode for us.
3224 xfs_iext_realloc_direct(ifp, new_size);
3225 ifp->if_bytes = new_size;
3229 * This is called when incore extents are being removed from the
3230 * indirection array and the extents being removed span multiple extent
3231 * buffers. The idx parameter contains the file extent index where we
3232 * want to begin removing extents, and the count parameter contains
3233 * how many extents need to be removed.
3235 * |-------| |-------|
3236 * | nex1 | | | nex1 - number of extents before idx
3237 * |-------| | count |
3238 * | | | | count - number of extents being removed at idx
3239 * | count | |-------|
3240 * | | | nex2 | nex2 - number of extents after idx + count
3241 * |-------| |-------|
3243 void
3244 xfs_iext_remove_indirect(
3245 xfs_ifork_t *ifp, /* inode fork pointer */
3246 xfs_extnum_t idx, /* index to begin removing extents */
3247 int count) /* number of extents to remove */
3249 xfs_ext_irec_t *erp; /* indirection array pointer */
3250 int erp_idx = 0; /* indirection array index */
3251 xfs_extnum_t ext_cnt; /* extents left to remove */
3252 xfs_extnum_t ext_diff; /* extents to remove in current list */
3253 xfs_extnum_t nex1; /* number of extents before idx */
3254 xfs_extnum_t nex2; /* extents after idx + count */
3255 int page_idx = idx; /* index in target extent list */
3257 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3258 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3259 ASSERT(erp != NULL);
3260 nex1 = page_idx;
3261 ext_cnt = count;
3262 while (ext_cnt) {
3263 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3264 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3266 * Check for deletion of entire list;
3267 * xfs_iext_irec_remove() updates extent offsets.
3269 if (ext_diff == erp->er_extcount) {
3270 xfs_iext_irec_remove(ifp, erp_idx);
3271 ext_cnt -= ext_diff;
3272 nex1 = 0;
3273 if (ext_cnt) {
3274 ASSERT(erp_idx < ifp->if_real_bytes /
3275 XFS_IEXT_BUFSZ);
3276 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3277 nex1 = 0;
3278 continue;
3279 } else {
3280 break;
3283 /* Move extents up (if needed) */
3284 if (nex2) {
3285 memmove(&erp->er_extbuf[nex1],
3286 &erp->er_extbuf[nex1 + ext_diff],
3287 nex2 * sizeof(xfs_bmbt_rec_t));
3289 /* Zero out rest of page */
3290 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3291 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3292 /* Update remaining counters */
3293 erp->er_extcount -= ext_diff;
3294 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3295 ext_cnt -= ext_diff;
3296 nex1 = 0;
3297 erp_idx++;
3298 erp++;
3300 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3301 xfs_iext_irec_compact(ifp);
3305 * Create, destroy, or resize a linear (direct) block of extents.
3307 void
3308 xfs_iext_realloc_direct(
3309 xfs_ifork_t *ifp, /* inode fork pointer */
3310 int new_size) /* new size of extents */
3312 int rnew_size; /* real new size of extents */
3314 rnew_size = new_size;
3316 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3317 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3318 (new_size != ifp->if_real_bytes)));
3320 /* Free extent records */
3321 if (new_size == 0) {
3322 xfs_iext_destroy(ifp);
3324 /* Resize direct extent list and zero any new bytes */
3325 else if (ifp->if_real_bytes) {
3326 /* Check if extents will fit inside the inode */
3327 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3328 xfs_iext_direct_to_inline(ifp, new_size /
3329 (uint)sizeof(xfs_bmbt_rec_t));
3330 ifp->if_bytes = new_size;
3331 return;
3333 if (!is_power_of_2(new_size)){
3334 rnew_size = roundup_pow_of_two(new_size);
3336 if (rnew_size != ifp->if_real_bytes) {
3337 ifp->if_u1.if_extents =
3338 kmem_realloc(ifp->if_u1.if_extents,
3339 rnew_size,
3340 ifp->if_real_bytes, KM_NOFS);
3342 if (rnew_size > ifp->if_real_bytes) {
3343 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3344 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3345 rnew_size - ifp->if_real_bytes);
3349 * Switch from the inline extent buffer to a direct
3350 * extent list. Be sure to include the inline extent
3351 * bytes in new_size.
3353 else {
3354 new_size += ifp->if_bytes;
3355 if (!is_power_of_2(new_size)) {
3356 rnew_size = roundup_pow_of_two(new_size);
3358 xfs_iext_inline_to_direct(ifp, rnew_size);
3360 ifp->if_real_bytes = rnew_size;
3361 ifp->if_bytes = new_size;
3365 * Switch from linear (direct) extent records to inline buffer.
3367 void
3368 xfs_iext_direct_to_inline(
3369 xfs_ifork_t *ifp, /* inode fork pointer */
3370 xfs_extnum_t nextents) /* number of extents in file */
3372 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3373 ASSERT(nextents <= XFS_INLINE_EXTS);
3375 * The inline buffer was zeroed when we switched
3376 * from inline to direct extent allocation mode,
3377 * so we don't need to clear it here.
3379 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3380 nextents * sizeof(xfs_bmbt_rec_t));
3381 kmem_free(ifp->if_u1.if_extents);
3382 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3383 ifp->if_real_bytes = 0;
3387 * Switch from inline buffer to linear (direct) extent records.
3388 * new_size should already be rounded up to the next power of 2
3389 * by the caller (when appropriate), so use new_size as it is.
3390 * However, since new_size may be rounded up, we can't update
3391 * if_bytes here. It is the caller's responsibility to update
3392 * if_bytes upon return.
3394 void
3395 xfs_iext_inline_to_direct(
3396 xfs_ifork_t *ifp, /* inode fork pointer */
3397 int new_size) /* number of extents in file */
3399 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3400 memset(ifp->if_u1.if_extents, 0, new_size);
3401 if (ifp->if_bytes) {
3402 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3403 ifp->if_bytes);
3404 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3405 sizeof(xfs_bmbt_rec_t));
3407 ifp->if_real_bytes = new_size;
3411 * Resize an extent indirection array to new_size bytes.
3413 STATIC void
3414 xfs_iext_realloc_indirect(
3415 xfs_ifork_t *ifp, /* inode fork pointer */
3416 int new_size) /* new indirection array size */
3418 int nlists; /* number of irec's (ex lists) */
3419 int size; /* current indirection array size */
3421 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3422 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3423 size = nlists * sizeof(xfs_ext_irec_t);
3424 ASSERT(ifp->if_real_bytes);
3425 ASSERT((new_size >= 0) && (new_size != size));
3426 if (new_size == 0) {
3427 xfs_iext_destroy(ifp);
3428 } else {
3429 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3430 kmem_realloc(ifp->if_u1.if_ext_irec,
3431 new_size, size, KM_NOFS);
3436 * Switch from indirection array to linear (direct) extent allocations.
3438 STATIC void
3439 xfs_iext_indirect_to_direct(
3440 xfs_ifork_t *ifp) /* inode fork pointer */
3442 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3443 xfs_extnum_t nextents; /* number of extents in file */
3444 int size; /* size of file extents */
3446 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3447 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3448 ASSERT(nextents <= XFS_LINEAR_EXTS);
3449 size = nextents * sizeof(xfs_bmbt_rec_t);
3451 xfs_iext_irec_compact_pages(ifp);
3452 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3454 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3455 kmem_free(ifp->if_u1.if_ext_irec);
3456 ifp->if_flags &= ~XFS_IFEXTIREC;
3457 ifp->if_u1.if_extents = ep;
3458 ifp->if_bytes = size;
3459 if (nextents < XFS_LINEAR_EXTS) {
3460 xfs_iext_realloc_direct(ifp, size);
3465 * Free incore file extents.
3467 void
3468 xfs_iext_destroy(
3469 xfs_ifork_t *ifp) /* inode fork pointer */
3471 if (ifp->if_flags & XFS_IFEXTIREC) {
3472 int erp_idx;
3473 int nlists;
3475 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3476 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3477 xfs_iext_irec_remove(ifp, erp_idx);
3479 ifp->if_flags &= ~XFS_IFEXTIREC;
3480 } else if (ifp->if_real_bytes) {
3481 kmem_free(ifp->if_u1.if_extents);
3482 } else if (ifp->if_bytes) {
3483 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3484 sizeof(xfs_bmbt_rec_t));
3486 ifp->if_u1.if_extents = NULL;
3487 ifp->if_real_bytes = 0;
3488 ifp->if_bytes = 0;
3492 * Return a pointer to the extent record for file system block bno.
3494 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3495 xfs_iext_bno_to_ext(
3496 xfs_ifork_t *ifp, /* inode fork pointer */
3497 xfs_fileoff_t bno, /* block number to search for */
3498 xfs_extnum_t *idxp) /* index of target extent */
3500 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3501 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3502 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3503 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3504 int high; /* upper boundary in search */
3505 xfs_extnum_t idx = 0; /* index of target extent */
3506 int low; /* lower boundary in search */
3507 xfs_extnum_t nextents; /* number of file extents */
3508 xfs_fileoff_t startoff = 0; /* start offset of extent */
3510 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3511 if (nextents == 0) {
3512 *idxp = 0;
3513 return NULL;
3515 low = 0;
3516 if (ifp->if_flags & XFS_IFEXTIREC) {
3517 /* Find target extent list */
3518 int erp_idx = 0;
3519 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3520 base = erp->er_extbuf;
3521 high = erp->er_extcount - 1;
3522 } else {
3523 base = ifp->if_u1.if_extents;
3524 high = nextents - 1;
3526 /* Binary search extent records */
3527 while (low <= high) {
3528 idx = (low + high) >> 1;
3529 ep = base + idx;
3530 startoff = xfs_bmbt_get_startoff(ep);
3531 blockcount = xfs_bmbt_get_blockcount(ep);
3532 if (bno < startoff) {
3533 high = idx - 1;
3534 } else if (bno >= startoff + blockcount) {
3535 low = idx + 1;
3536 } else {
3537 /* Convert back to file-based extent index */
3538 if (ifp->if_flags & XFS_IFEXTIREC) {
3539 idx += erp->er_extoff;
3541 *idxp = idx;
3542 return ep;
3545 /* Convert back to file-based extent index */
3546 if (ifp->if_flags & XFS_IFEXTIREC) {
3547 idx += erp->er_extoff;
3549 if (bno >= startoff + blockcount) {
3550 if (++idx == nextents) {
3551 ep = NULL;
3552 } else {
3553 ep = xfs_iext_get_ext(ifp, idx);
3556 *idxp = idx;
3557 return ep;
3561 * Return a pointer to the indirection array entry containing the
3562 * extent record for filesystem block bno. Store the index of the
3563 * target irec in *erp_idxp.
3565 xfs_ext_irec_t * /* pointer to found extent record */
3566 xfs_iext_bno_to_irec(
3567 xfs_ifork_t *ifp, /* inode fork pointer */
3568 xfs_fileoff_t bno, /* block number to search for */
3569 int *erp_idxp) /* irec index of target ext list */
3571 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3572 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3573 int erp_idx; /* indirection array index */
3574 int nlists; /* number of extent irec's (lists) */
3575 int high; /* binary search upper limit */
3576 int low; /* binary search lower limit */
3578 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3579 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3580 erp_idx = 0;
3581 low = 0;
3582 high = nlists - 1;
3583 while (low <= high) {
3584 erp_idx = (low + high) >> 1;
3585 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3586 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3587 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3588 high = erp_idx - 1;
3589 } else if (erp_next && bno >=
3590 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3591 low = erp_idx + 1;
3592 } else {
3593 break;
3596 *erp_idxp = erp_idx;
3597 return erp;
3601 * Return a pointer to the indirection array entry containing the
3602 * extent record at file extent index *idxp. Store the index of the
3603 * target irec in *erp_idxp and store the page index of the target
3604 * extent record in *idxp.
3606 xfs_ext_irec_t *
3607 xfs_iext_idx_to_irec(
3608 xfs_ifork_t *ifp, /* inode fork pointer */
3609 xfs_extnum_t *idxp, /* extent index (file -> page) */
3610 int *erp_idxp, /* pointer to target irec */
3611 int realloc) /* new bytes were just added */
3613 xfs_ext_irec_t *prev; /* pointer to previous irec */
3614 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3615 int erp_idx; /* indirection array index */
3616 int nlists; /* number of irec's (ex lists) */
3617 int high; /* binary search upper limit */
3618 int low; /* binary search lower limit */
3619 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3621 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3622 ASSERT(page_idx >= 0);
3623 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3624 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3626 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3627 erp_idx = 0;
3628 low = 0;
3629 high = nlists - 1;
3631 /* Binary search extent irec's */
3632 while (low <= high) {
3633 erp_idx = (low + high) >> 1;
3634 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3635 prev = erp_idx > 0 ? erp - 1 : NULL;
3636 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3637 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3638 high = erp_idx - 1;
3639 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3640 (page_idx == erp->er_extoff + erp->er_extcount &&
3641 !realloc)) {
3642 low = erp_idx + 1;
3643 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3644 erp->er_extcount == XFS_LINEAR_EXTS) {
3645 ASSERT(realloc);
3646 page_idx = 0;
3647 erp_idx++;
3648 erp = erp_idx < nlists ? erp + 1 : NULL;
3649 break;
3650 } else {
3651 page_idx -= erp->er_extoff;
3652 break;
3655 *idxp = page_idx;
3656 *erp_idxp = erp_idx;
3657 return(erp);
3661 * Allocate and initialize an indirection array once the space needed
3662 * for incore extents increases above XFS_IEXT_BUFSZ.
3664 void
3665 xfs_iext_irec_init(
3666 xfs_ifork_t *ifp) /* inode fork pointer */
3668 xfs_ext_irec_t *erp; /* indirection array pointer */
3669 xfs_extnum_t nextents; /* number of extents in file */
3671 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3672 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3673 ASSERT(nextents <= XFS_LINEAR_EXTS);
3675 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3677 if (nextents == 0) {
3678 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3679 } else if (!ifp->if_real_bytes) {
3680 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3681 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3682 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3684 erp->er_extbuf = ifp->if_u1.if_extents;
3685 erp->er_extcount = nextents;
3686 erp->er_extoff = 0;
3688 ifp->if_flags |= XFS_IFEXTIREC;
3689 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3690 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3691 ifp->if_u1.if_ext_irec = erp;
3693 return;
3697 * Allocate and initialize a new entry in the indirection array.
3699 xfs_ext_irec_t *
3700 xfs_iext_irec_new(
3701 xfs_ifork_t *ifp, /* inode fork pointer */
3702 int erp_idx) /* index for new irec */
3704 xfs_ext_irec_t *erp; /* indirection array pointer */
3705 int i; /* loop counter */
3706 int nlists; /* number of irec's (ex lists) */
3708 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3709 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3711 /* Resize indirection array */
3712 xfs_iext_realloc_indirect(ifp, ++nlists *
3713 sizeof(xfs_ext_irec_t));
3715 * Move records down in the array so the
3716 * new page can use erp_idx.
3718 erp = ifp->if_u1.if_ext_irec;
3719 for (i = nlists - 1; i > erp_idx; i--) {
3720 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3722 ASSERT(i == erp_idx);
3724 /* Initialize new extent record */
3725 erp = ifp->if_u1.if_ext_irec;
3726 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3727 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3728 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3729 erp[erp_idx].er_extcount = 0;
3730 erp[erp_idx].er_extoff = erp_idx > 0 ?
3731 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3732 return (&erp[erp_idx]);
3736 * Remove a record from the indirection array.
3738 void
3739 xfs_iext_irec_remove(
3740 xfs_ifork_t *ifp, /* inode fork pointer */
3741 int erp_idx) /* irec index to remove */
3743 xfs_ext_irec_t *erp; /* indirection array pointer */
3744 int i; /* loop counter */
3745 int nlists; /* number of irec's (ex lists) */
3747 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3748 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3749 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3750 if (erp->er_extbuf) {
3751 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3752 -erp->er_extcount);
3753 kmem_free(erp->er_extbuf);
3755 /* Compact extent records */
3756 erp = ifp->if_u1.if_ext_irec;
3757 for (i = erp_idx; i < nlists - 1; i++) {
3758 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3761 * Manually free the last extent record from the indirection
3762 * array. A call to xfs_iext_realloc_indirect() with a size
3763 * of zero would result in a call to xfs_iext_destroy() which
3764 * would in turn call this function again, creating a nasty
3765 * infinite loop.
3767 if (--nlists) {
3768 xfs_iext_realloc_indirect(ifp,
3769 nlists * sizeof(xfs_ext_irec_t));
3770 } else {
3771 kmem_free(ifp->if_u1.if_ext_irec);
3773 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3777 * This is called to clean up large amounts of unused memory allocated
3778 * by the indirection array. Before compacting anything though, verify
3779 * that the indirection array is still needed and switch back to the
3780 * linear extent list (or even the inline buffer) if possible. The
3781 * compaction policy is as follows:
3783 * Full Compaction: Extents fit into a single page (or inline buffer)
3784 * Partial Compaction: Extents occupy less than 50% of allocated space
3785 * No Compaction: Extents occupy at least 50% of allocated space
3787 void
3788 xfs_iext_irec_compact(
3789 xfs_ifork_t *ifp) /* inode fork pointer */
3791 xfs_extnum_t nextents; /* number of extents in file */
3792 int nlists; /* number of irec's (ex lists) */
3794 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3795 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3796 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3798 if (nextents == 0) {
3799 xfs_iext_destroy(ifp);
3800 } else if (nextents <= XFS_INLINE_EXTS) {
3801 xfs_iext_indirect_to_direct(ifp);
3802 xfs_iext_direct_to_inline(ifp, nextents);
3803 } else if (nextents <= XFS_LINEAR_EXTS) {
3804 xfs_iext_indirect_to_direct(ifp);
3805 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3806 xfs_iext_irec_compact_pages(ifp);
3811 * Combine extents from neighboring extent pages.
3813 void
3814 xfs_iext_irec_compact_pages(
3815 xfs_ifork_t *ifp) /* inode fork pointer */
3817 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3818 int erp_idx = 0; /* indirection array index */
3819 int nlists; /* number of irec's (ex lists) */
3821 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3822 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3823 while (erp_idx < nlists - 1) {
3824 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3825 erp_next = erp + 1;
3826 if (erp_next->er_extcount <=
3827 (XFS_LINEAR_EXTS - erp->er_extcount)) {
3828 memcpy(&erp->er_extbuf[erp->er_extcount],
3829 erp_next->er_extbuf, erp_next->er_extcount *
3830 sizeof(xfs_bmbt_rec_t));
3831 erp->er_extcount += erp_next->er_extcount;
3833 * Free page before removing extent record
3834 * so er_extoffs don't get modified in
3835 * xfs_iext_irec_remove.
3837 kmem_free(erp_next->er_extbuf);
3838 erp_next->er_extbuf = NULL;
3839 xfs_iext_irec_remove(ifp, erp_idx + 1);
3840 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3841 } else {
3842 erp_idx++;
3848 * This is called to update the er_extoff field in the indirection
3849 * array when extents have been added or removed from one of the
3850 * extent lists. erp_idx contains the irec index to begin updating
3851 * at and ext_diff contains the number of extents that were added
3852 * or removed.
3854 void
3855 xfs_iext_irec_update_extoffs(
3856 xfs_ifork_t *ifp, /* inode fork pointer */
3857 int erp_idx, /* irec index to update */
3858 int ext_diff) /* number of new extents */
3860 int i; /* loop counter */
3861 int nlists; /* number of irec's (ex lists */
3863 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3864 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3865 for (i = erp_idx; i < nlists; i++) {
3866 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;