pinctrl: make a copy of pinmux map
[linux/fpc-iii.git] / fs / xfs / xfs_trans.c
blob1f35b2feca978a515cbdc318b93eb50e48f54127
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_error.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_btree.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_alloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_quota.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_trace.h"
46 kmem_zone_t *xfs_trans_zone;
47 kmem_zone_t *xfs_log_item_desc_zone;
51 * Various log reservation values.
53 * These are based on the size of the file system block because that is what
54 * most transactions manipulate. Each adds in an additional 128 bytes per
55 * item logged to try to account for the overhead of the transaction mechanism.
57 * Note: Most of the reservations underestimate the number of allocation
58 * groups into which they could free extents in the xfs_bmap_finish() call.
59 * This is because the number in the worst case is quite high and quite
60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
61 * extents in only a single AG at a time. This will require changes to the
62 * EFI code as well, however, so that the EFI for the extents not freed is
63 * logged again in each transaction. See SGI PV #261917.
65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
66 * register overflow from temporaries in the calculations.
71 * In a write transaction we can allocate a maximum of 2
72 * extents. This gives:
73 * the inode getting the new extents: inode size
74 * the inode's bmap btree: max depth * block size
75 * the agfs of the ags from which the extents are allocated: 2 * sector
76 * the superblock free block counter: sector size
77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78 * And the bmap_finish transaction can free bmap blocks in a join:
79 * the agfs of the ags containing the blocks: 2 * sector size
80 * the agfls of the ags containing the blocks: 2 * sector size
81 * the super block free block counter: sector size
82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
84 STATIC uint
85 xfs_calc_write_reservation(
86 struct xfs_mount *mp)
88 return XFS_DQUOT_LOGRES(mp) +
89 MAX((mp->m_sb.sb_inodesize +
90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91 2 * mp->m_sb.sb_sectsize +
92 mp->m_sb.sb_sectsize +
93 XFS_ALLOCFREE_LOG_RES(mp, 2) +
94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96 (2 * mp->m_sb.sb_sectsize +
97 2 * mp->m_sb.sb_sectsize +
98 mp->m_sb.sb_sectsize +
99 XFS_ALLOCFREE_LOG_RES(mp, 2) +
100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
104 * In truncating a file we free up to two extents at once. We can modify:
105 * the inode being truncated: inode size
106 * the inode's bmap btree: (max depth + 1) * block size
107 * And the bmap_finish transaction can free the blocks and bmap blocks:
108 * the agf for each of the ags: 4 * sector size
109 * the agfl for each of the ags: 4 * sector size
110 * the super block to reflect the freed blocks: sector size
111 * worst case split in allocation btrees per extent assuming 4 extents:
112 * 4 exts * 2 trees * (2 * max depth - 1) * block size
113 * the inode btree: max depth * blocksize
114 * the allocation btrees: 2 trees * (max depth - 1) * block size
116 STATIC uint
117 xfs_calc_itruncate_reservation(
118 struct xfs_mount *mp)
120 return XFS_DQUOT_LOGRES(mp) +
121 MAX((mp->m_sb.sb_inodesize +
122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124 (4 * mp->m_sb.sb_sectsize +
125 4 * mp->m_sb.sb_sectsize +
126 mp->m_sb.sb_sectsize +
127 XFS_ALLOCFREE_LOG_RES(mp, 4) +
128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129 128 * 5 +
130 XFS_ALLOCFREE_LOG_RES(mp, 1) +
131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
136 * In renaming a files we can modify:
137 * the four inodes involved: 4 * inode size
138 * the two directory btrees: 2 * (max depth + v2) * dir block size
139 * the two directory bmap btrees: 2 * max depth * block size
140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
141 * of bmap blocks) giving:
142 * the agf for the ags in which the blocks live: 3 * sector size
143 * the agfl for the ags in which the blocks live: 3 * sector size
144 * the superblock for the free block count: sector size
145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
147 STATIC uint
148 xfs_calc_rename_reservation(
149 struct xfs_mount *mp)
151 return XFS_DQUOT_LOGRES(mp) +
152 MAX((4 * mp->m_sb.sb_inodesize +
153 2 * XFS_DIROP_LOG_RES(mp) +
154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155 (3 * mp->m_sb.sb_sectsize +
156 3 * mp->m_sb.sb_sectsize +
157 mp->m_sb.sb_sectsize +
158 XFS_ALLOCFREE_LOG_RES(mp, 3) +
159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
163 * For creating a link to an inode:
164 * the parent directory inode: inode size
165 * the linked inode: inode size
166 * the directory btree could split: (max depth + v2) * dir block size
167 * the directory bmap btree could join or split: (max depth + v2) * blocksize
168 * And the bmap_finish transaction can free some bmap blocks giving:
169 * the agf for the ag in which the blocks live: sector size
170 * the agfl for the ag in which the blocks live: sector size
171 * the superblock for the free block count: sector size
172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
174 STATIC uint
175 xfs_calc_link_reservation(
176 struct xfs_mount *mp)
178 return XFS_DQUOT_LOGRES(mp) +
179 MAX((mp->m_sb.sb_inodesize +
180 mp->m_sb.sb_inodesize +
181 XFS_DIROP_LOG_RES(mp) +
182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183 (mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 mp->m_sb.sb_sectsize +
186 XFS_ALLOCFREE_LOG_RES(mp, 1) +
187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
191 * For removing a directory entry we can modify:
192 * the parent directory inode: inode size
193 * the removed inode: inode size
194 * the directory btree could join: (max depth + v2) * dir block size
195 * the directory bmap btree could join or split: (max depth + v2) * blocksize
196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
197 * the agf for the ag in which the blocks live: 2 * sector size
198 * the agfl for the ag in which the blocks live: 2 * sector size
199 * the superblock for the free block count: sector size
200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
202 STATIC uint
203 xfs_calc_remove_reservation(
204 struct xfs_mount *mp)
206 return XFS_DQUOT_LOGRES(mp) +
207 MAX((mp->m_sb.sb_inodesize +
208 mp->m_sb.sb_inodesize +
209 XFS_DIROP_LOG_RES(mp) +
210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211 (2 * mp->m_sb.sb_sectsize +
212 2 * mp->m_sb.sb_sectsize +
213 mp->m_sb.sb_sectsize +
214 XFS_ALLOCFREE_LOG_RES(mp, 2) +
215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
219 * For symlink we can modify:
220 * the parent directory inode: inode size
221 * the new inode: inode size
222 * the inode btree entry: 1 block
223 * the directory btree: (max depth + v2) * dir block size
224 * the directory inode's bmap btree: (max depth + v2) * block size
225 * the blocks for the symlink: 1 kB
226 * Or in the first xact we allocate some inodes giving:
227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229 * the inode btree: max depth * blocksize
230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
232 STATIC uint
233 xfs_calc_symlink_reservation(
234 struct xfs_mount *mp)
236 return XFS_DQUOT_LOGRES(mp) +
237 MAX((mp->m_sb.sb_inodesize +
238 mp->m_sb.sb_inodesize +
239 XFS_FSB_TO_B(mp, 1) +
240 XFS_DIROP_LOG_RES(mp) +
241 1024 +
242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243 (2 * mp->m_sb.sb_sectsize +
244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246 XFS_ALLOCFREE_LOG_RES(mp, 1) +
247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
252 * For create we can modify:
253 * the parent directory inode: inode size
254 * the new inode: inode size
255 * the inode btree entry: block size
256 * the superblock for the nlink flag: sector size
257 * the directory btree: (max depth + v2) * dir block size
258 * the directory inode's bmap btree: (max depth + v2) * block size
259 * Or in the first xact we allocate some inodes giving:
260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
261 * the superblock for the nlink flag: sector size
262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263 * the inode btree: max depth * blocksize
264 * the allocation btrees: 2 trees * (max depth - 1) * block size
266 STATIC uint
267 xfs_calc_create_reservation(
268 struct xfs_mount *mp)
270 return XFS_DQUOT_LOGRES(mp) +
271 MAX((mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_inodesize +
273 mp->m_sb.sb_sectsize +
274 XFS_FSB_TO_B(mp, 1) +
275 XFS_DIROP_LOG_RES(mp) +
276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277 (3 * mp->m_sb.sb_sectsize +
278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280 XFS_ALLOCFREE_LOG_RES(mp, 1) +
281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
286 * Making a new directory is the same as creating a new file.
288 STATIC uint
289 xfs_calc_mkdir_reservation(
290 struct xfs_mount *mp)
292 return xfs_calc_create_reservation(mp);
296 * In freeing an inode we can modify:
297 * the inode being freed: inode size
298 * the super block free inode counter: sector size
299 * the agi hash list and counters: sector size
300 * the inode btree entry: block size
301 * the on disk inode before ours in the agi hash list: inode cluster size
302 * the inode btree: max depth * blocksize
303 * the allocation btrees: 2 trees * (max depth - 1) * block size
305 STATIC uint
306 xfs_calc_ifree_reservation(
307 struct xfs_mount *mp)
309 return XFS_DQUOT_LOGRES(mp) +
310 mp->m_sb.sb_inodesize +
311 mp->m_sb.sb_sectsize +
312 mp->m_sb.sb_sectsize +
313 XFS_FSB_TO_B(mp, 1) +
314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315 XFS_INODE_CLUSTER_SIZE(mp)) +
316 128 * 5 +
317 XFS_ALLOCFREE_LOG_RES(mp, 1) +
318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
323 * When only changing the inode we log the inode and possibly the superblock
324 * We also add a bit of slop for the transaction stuff.
326 STATIC uint
327 xfs_calc_ichange_reservation(
328 struct xfs_mount *mp)
330 return XFS_DQUOT_LOGRES(mp) +
331 mp->m_sb.sb_inodesize +
332 mp->m_sb.sb_sectsize +
333 512;
338 * Growing the data section of the filesystem.
339 * superblock
340 * agi and agf
341 * allocation btrees
343 STATIC uint
344 xfs_calc_growdata_reservation(
345 struct xfs_mount *mp)
347 return mp->m_sb.sb_sectsize * 3 +
348 XFS_ALLOCFREE_LOG_RES(mp, 1) +
349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
353 * Growing the rt section of the filesystem.
354 * In the first set of transactions (ALLOC) we allocate space to the
355 * bitmap or summary files.
356 * superblock: sector size
357 * agf of the ag from which the extent is allocated: sector size
358 * bmap btree for bitmap/summary inode: max depth * blocksize
359 * bitmap/summary inode: inode size
360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
362 STATIC uint
363 xfs_calc_growrtalloc_reservation(
364 struct xfs_mount *mp)
366 return 2 * mp->m_sb.sb_sectsize +
367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368 mp->m_sb.sb_inodesize +
369 XFS_ALLOCFREE_LOG_RES(mp, 1) +
370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
375 * Growing the rt section of the filesystem.
376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
377 * one bitmap/summary block: blocksize
379 STATIC uint
380 xfs_calc_growrtzero_reservation(
381 struct xfs_mount *mp)
383 return mp->m_sb.sb_blocksize + 128;
387 * Growing the rt section of the filesystem.
388 * In the third set of transactions (FREE) we update metadata without
389 * allocating any new blocks.
390 * superblock: sector size
391 * bitmap inode: inode size
392 * summary inode: inode size
393 * one bitmap block: blocksize
394 * summary blocks: new summary size
396 STATIC uint
397 xfs_calc_growrtfree_reservation(
398 struct xfs_mount *mp)
400 return mp->m_sb.sb_sectsize +
401 2 * mp->m_sb.sb_inodesize +
402 mp->m_sb.sb_blocksize +
403 mp->m_rsumsize +
404 128 * 5;
408 * Logging the inode modification timestamp on a synchronous write.
409 * inode
411 STATIC uint
412 xfs_calc_swrite_reservation(
413 struct xfs_mount *mp)
415 return mp->m_sb.sb_inodesize + 128;
419 * Logging the inode mode bits when writing a setuid/setgid file
420 * inode
422 STATIC uint
423 xfs_calc_writeid_reservation(xfs_mount_t *mp)
425 return mp->m_sb.sb_inodesize + 128;
429 * Converting the inode from non-attributed to attributed.
430 * the inode being converted: inode size
431 * agf block and superblock (for block allocation)
432 * the new block (directory sized)
433 * bmap blocks for the new directory block
434 * allocation btrees
436 STATIC uint
437 xfs_calc_addafork_reservation(
438 struct xfs_mount *mp)
440 return XFS_DQUOT_LOGRES(mp) +
441 mp->m_sb.sb_inodesize +
442 mp->m_sb.sb_sectsize * 2 +
443 mp->m_dirblksize +
444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445 XFS_ALLOCFREE_LOG_RES(mp, 1) +
446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
451 * Removing the attribute fork of a file
452 * the inode being truncated: inode size
453 * the inode's bmap btree: max depth * block size
454 * And the bmap_finish transaction can free the blocks and bmap blocks:
455 * the agf for each of the ags: 4 * sector size
456 * the agfl for each of the ags: 4 * sector size
457 * the super block to reflect the freed blocks: sector size
458 * worst case split in allocation btrees per extent assuming 4 extents:
459 * 4 exts * 2 trees * (2 * max depth - 1) * block size
461 STATIC uint
462 xfs_calc_attrinval_reservation(
463 struct xfs_mount *mp)
465 return MAX((mp->m_sb.sb_inodesize +
466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468 (4 * mp->m_sb.sb_sectsize +
469 4 * mp->m_sb.sb_sectsize +
470 mp->m_sb.sb_sectsize +
471 XFS_ALLOCFREE_LOG_RES(mp, 4) +
472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
476 * Setting an attribute.
477 * the inode getting the attribute
478 * the superblock for allocations
479 * the agfs extents are allocated from
480 * the attribute btree * max depth
481 * the inode allocation btree
482 * Since attribute transaction space is dependent on the size of the attribute,
483 * the calculation is done partially at mount time and partially at runtime.
485 STATIC uint
486 xfs_calc_attrset_reservation(
487 struct xfs_mount *mp)
489 return XFS_DQUOT_LOGRES(mp) +
490 mp->m_sb.sb_inodesize +
491 mp->m_sb.sb_sectsize +
492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493 128 * (2 + XFS_DA_NODE_MAXDEPTH);
497 * Removing an attribute.
498 * the inode: inode size
499 * the attribute btree could join: max depth * block size
500 * the inode bmap btree could join or split: max depth * block size
501 * And the bmap_finish transaction can free the attr blocks freed giving:
502 * the agf for the ag in which the blocks live: 2 * sector size
503 * the agfl for the ag in which the blocks live: 2 * sector size
504 * the superblock for the free block count: sector size
505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
507 STATIC uint
508 xfs_calc_attrrm_reservation(
509 struct xfs_mount *mp)
511 return XFS_DQUOT_LOGRES(mp) +
512 MAX((mp->m_sb.sb_inodesize +
513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515 128 * (1 + XFS_DA_NODE_MAXDEPTH +
516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517 (2 * mp->m_sb.sb_sectsize +
518 2 * mp->m_sb.sb_sectsize +
519 mp->m_sb.sb_sectsize +
520 XFS_ALLOCFREE_LOG_RES(mp, 2) +
521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
525 * Clearing a bad agino number in an agi hash bucket.
527 STATIC uint
528 xfs_calc_clear_agi_bucket_reservation(
529 struct xfs_mount *mp)
531 return mp->m_sb.sb_sectsize + 128;
535 * Initialize the precomputed transaction reservation values
536 * in the mount structure.
538 void
539 xfs_trans_init(
540 struct xfs_mount *mp)
542 struct xfs_trans_reservations *resp = &mp->m_reservations;
544 resp->tr_write = xfs_calc_write_reservation(mp);
545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546 resp->tr_rename = xfs_calc_rename_reservation(mp);
547 resp->tr_link = xfs_calc_link_reservation(mp);
548 resp->tr_remove = xfs_calc_remove_reservation(mp);
549 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550 resp->tr_create = xfs_calc_create_reservation(mp);
551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
568 * This routine is called to allocate a transaction structure.
569 * The type parameter indicates the type of the transaction. These
570 * are enumerated in xfs_trans.h.
572 * Dynamically allocate the transaction structure from the transaction
573 * zone, initialize it, and return it to the caller.
575 xfs_trans_t *
576 xfs_trans_alloc(
577 xfs_mount_t *mp,
578 uint type)
580 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
581 return _xfs_trans_alloc(mp, type, KM_SLEEP);
584 xfs_trans_t *
585 _xfs_trans_alloc(
586 xfs_mount_t *mp,
587 uint type,
588 uint memflags)
590 xfs_trans_t *tp;
592 atomic_inc(&mp->m_active_trans);
594 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
595 tp->t_magic = XFS_TRANS_MAGIC;
596 tp->t_type = type;
597 tp->t_mountp = mp;
598 INIT_LIST_HEAD(&tp->t_items);
599 INIT_LIST_HEAD(&tp->t_busy);
600 return tp;
604 * Free the transaction structure. If there is more clean up
605 * to do when the structure is freed, add it here.
607 STATIC void
608 xfs_trans_free(
609 struct xfs_trans *tp)
611 xfs_alloc_busy_sort(&tp->t_busy);
612 xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
614 atomic_dec(&tp->t_mountp->m_active_trans);
615 xfs_trans_free_dqinfo(tp);
616 kmem_zone_free(xfs_trans_zone, tp);
620 * This is called to create a new transaction which will share the
621 * permanent log reservation of the given transaction. The remaining
622 * unused block and rt extent reservations are also inherited. This
623 * implies that the original transaction is no longer allowed to allocate
624 * blocks. Locks and log items, however, are no inherited. They must
625 * be added to the new transaction explicitly.
627 xfs_trans_t *
628 xfs_trans_dup(
629 xfs_trans_t *tp)
631 xfs_trans_t *ntp;
633 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
636 * Initialize the new transaction structure.
638 ntp->t_magic = XFS_TRANS_MAGIC;
639 ntp->t_type = tp->t_type;
640 ntp->t_mountp = tp->t_mountp;
641 INIT_LIST_HEAD(&ntp->t_items);
642 INIT_LIST_HEAD(&ntp->t_busy);
644 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
645 ASSERT(tp->t_ticket != NULL);
647 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
648 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
649 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
650 tp->t_blk_res = tp->t_blk_res_used;
651 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
652 tp->t_rtx_res = tp->t_rtx_res_used;
653 ntp->t_pflags = tp->t_pflags;
655 xfs_trans_dup_dqinfo(tp, ntp);
657 atomic_inc(&tp->t_mountp->m_active_trans);
658 return ntp;
662 * This is called to reserve free disk blocks and log space for the
663 * given transaction. This must be done before allocating any resources
664 * within the transaction.
666 * This will return ENOSPC if there are not enough blocks available.
667 * It will sleep waiting for available log space.
668 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
669 * is used by long running transactions. If any one of the reservations
670 * fails then they will all be backed out.
672 * This does not do quota reservations. That typically is done by the
673 * caller afterwards.
676 xfs_trans_reserve(
677 xfs_trans_t *tp,
678 uint blocks,
679 uint logspace,
680 uint rtextents,
681 uint flags,
682 uint logcount)
684 int log_flags;
685 int error = 0;
686 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
688 /* Mark this thread as being in a transaction */
689 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
692 * Attempt to reserve the needed disk blocks by decrementing
693 * the number needed from the number available. This will
694 * fail if the count would go below zero.
696 if (blocks > 0) {
697 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
698 -((int64_t)blocks), rsvd);
699 if (error != 0) {
700 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
701 return (XFS_ERROR(ENOSPC));
703 tp->t_blk_res += blocks;
707 * Reserve the log space needed for this transaction.
709 if (logspace > 0) {
710 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
711 ASSERT((tp->t_log_count == 0) ||
712 (tp->t_log_count == logcount));
713 if (flags & XFS_TRANS_PERM_LOG_RES) {
714 log_flags = XFS_LOG_PERM_RESERV;
715 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
716 } else {
717 ASSERT(tp->t_ticket == NULL);
718 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
719 log_flags = 0;
722 error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
723 &tp->t_ticket,
724 XFS_TRANSACTION, log_flags, tp->t_type);
725 if (error) {
726 goto undo_blocks;
728 tp->t_log_res = logspace;
729 tp->t_log_count = logcount;
733 * Attempt to reserve the needed realtime extents by decrementing
734 * the number needed from the number available. This will
735 * fail if the count would go below zero.
737 if (rtextents > 0) {
738 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
739 -((int64_t)rtextents), rsvd);
740 if (error) {
741 error = XFS_ERROR(ENOSPC);
742 goto undo_log;
744 tp->t_rtx_res += rtextents;
747 return 0;
750 * Error cases jump to one of these labels to undo any
751 * reservations which have already been performed.
753 undo_log:
754 if (logspace > 0) {
755 if (flags & XFS_TRANS_PERM_LOG_RES) {
756 log_flags = XFS_LOG_REL_PERM_RESERV;
757 } else {
758 log_flags = 0;
760 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
761 tp->t_ticket = NULL;
762 tp->t_log_res = 0;
763 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
766 undo_blocks:
767 if (blocks > 0) {
768 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
769 (int64_t)blocks, rsvd);
770 tp->t_blk_res = 0;
773 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
775 return error;
779 * Record the indicated change to the given field for application
780 * to the file system's superblock when the transaction commits.
781 * For now, just store the change in the transaction structure.
783 * Mark the transaction structure to indicate that the superblock
784 * needs to be updated before committing.
786 * Because we may not be keeping track of allocated/free inodes and
787 * used filesystem blocks in the superblock, we do not mark the
788 * superblock dirty in this transaction if we modify these fields.
789 * We still need to update the transaction deltas so that they get
790 * applied to the incore superblock, but we don't want them to
791 * cause the superblock to get locked and logged if these are the
792 * only fields in the superblock that the transaction modifies.
794 void
795 xfs_trans_mod_sb(
796 xfs_trans_t *tp,
797 uint field,
798 int64_t delta)
800 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
801 xfs_mount_t *mp = tp->t_mountp;
803 switch (field) {
804 case XFS_TRANS_SB_ICOUNT:
805 tp->t_icount_delta += delta;
806 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
807 flags &= ~XFS_TRANS_SB_DIRTY;
808 break;
809 case XFS_TRANS_SB_IFREE:
810 tp->t_ifree_delta += delta;
811 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
812 flags &= ~XFS_TRANS_SB_DIRTY;
813 break;
814 case XFS_TRANS_SB_FDBLOCKS:
816 * Track the number of blocks allocated in the
817 * transaction. Make sure it does not exceed the
818 * number reserved.
820 if (delta < 0) {
821 tp->t_blk_res_used += (uint)-delta;
822 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
824 tp->t_fdblocks_delta += delta;
825 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
826 flags &= ~XFS_TRANS_SB_DIRTY;
827 break;
828 case XFS_TRANS_SB_RES_FDBLOCKS:
830 * The allocation has already been applied to the
831 * in-core superblock's counter. This should only
832 * be applied to the on-disk superblock.
834 ASSERT(delta < 0);
835 tp->t_res_fdblocks_delta += delta;
836 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
837 flags &= ~XFS_TRANS_SB_DIRTY;
838 break;
839 case XFS_TRANS_SB_FREXTENTS:
841 * Track the number of blocks allocated in the
842 * transaction. Make sure it does not exceed the
843 * number reserved.
845 if (delta < 0) {
846 tp->t_rtx_res_used += (uint)-delta;
847 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
849 tp->t_frextents_delta += delta;
850 break;
851 case XFS_TRANS_SB_RES_FREXTENTS:
853 * The allocation has already been applied to the
854 * in-core superblock's counter. This should only
855 * be applied to the on-disk superblock.
857 ASSERT(delta < 0);
858 tp->t_res_frextents_delta += delta;
859 break;
860 case XFS_TRANS_SB_DBLOCKS:
861 ASSERT(delta > 0);
862 tp->t_dblocks_delta += delta;
863 break;
864 case XFS_TRANS_SB_AGCOUNT:
865 ASSERT(delta > 0);
866 tp->t_agcount_delta += delta;
867 break;
868 case XFS_TRANS_SB_IMAXPCT:
869 tp->t_imaxpct_delta += delta;
870 break;
871 case XFS_TRANS_SB_REXTSIZE:
872 tp->t_rextsize_delta += delta;
873 break;
874 case XFS_TRANS_SB_RBMBLOCKS:
875 tp->t_rbmblocks_delta += delta;
876 break;
877 case XFS_TRANS_SB_RBLOCKS:
878 tp->t_rblocks_delta += delta;
879 break;
880 case XFS_TRANS_SB_REXTENTS:
881 tp->t_rextents_delta += delta;
882 break;
883 case XFS_TRANS_SB_REXTSLOG:
884 tp->t_rextslog_delta += delta;
885 break;
886 default:
887 ASSERT(0);
888 return;
891 tp->t_flags |= flags;
895 * xfs_trans_apply_sb_deltas() is called from the commit code
896 * to bring the superblock buffer into the current transaction
897 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
899 * For now we just look at each field allowed to change and change
900 * it if necessary.
902 STATIC void
903 xfs_trans_apply_sb_deltas(
904 xfs_trans_t *tp)
906 xfs_dsb_t *sbp;
907 xfs_buf_t *bp;
908 int whole = 0;
910 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
911 sbp = XFS_BUF_TO_SBP(bp);
914 * Check that superblock mods match the mods made to AGF counters.
916 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
917 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
918 tp->t_ag_btree_delta));
921 * Only update the superblock counters if we are logging them
923 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
924 if (tp->t_icount_delta)
925 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
926 if (tp->t_ifree_delta)
927 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
928 if (tp->t_fdblocks_delta)
929 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
930 if (tp->t_res_fdblocks_delta)
931 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
934 if (tp->t_frextents_delta)
935 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
936 if (tp->t_res_frextents_delta)
937 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
939 if (tp->t_dblocks_delta) {
940 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
941 whole = 1;
943 if (tp->t_agcount_delta) {
944 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
945 whole = 1;
947 if (tp->t_imaxpct_delta) {
948 sbp->sb_imax_pct += tp->t_imaxpct_delta;
949 whole = 1;
951 if (tp->t_rextsize_delta) {
952 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
953 whole = 1;
955 if (tp->t_rbmblocks_delta) {
956 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
957 whole = 1;
959 if (tp->t_rblocks_delta) {
960 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
961 whole = 1;
963 if (tp->t_rextents_delta) {
964 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
965 whole = 1;
967 if (tp->t_rextslog_delta) {
968 sbp->sb_rextslog += tp->t_rextslog_delta;
969 whole = 1;
972 if (whole)
974 * Log the whole thing, the fields are noncontiguous.
976 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
977 else
979 * Since all the modifiable fields are contiguous, we
980 * can get away with this.
982 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
983 offsetof(xfs_dsb_t, sb_frextents) +
984 sizeof(sbp->sb_frextents) - 1);
988 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
989 * and apply superblock counter changes to the in-core superblock. The
990 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
991 * applied to the in-core superblock. The idea is that that has already been
992 * done.
994 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
995 * However, we have to ensure that we only modify each superblock field only
996 * once because the application of the delta values may not be atomic. That can
997 * lead to ENOSPC races occurring if we have two separate modifcations of the
998 * free space counter to put back the entire reservation and then take away
999 * what we used.
1001 * If we are not logging superblock counters, then the inode allocated/free and
1002 * used block counts are not updated in the on disk superblock. In this case,
1003 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1004 * still need to update the incore superblock with the changes.
1006 void
1007 xfs_trans_unreserve_and_mod_sb(
1008 xfs_trans_t *tp)
1010 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1011 xfs_mod_sb_t *msbp;
1012 xfs_mount_t *mp = tp->t_mountp;
1013 /* REFERENCED */
1014 int error;
1015 int rsvd;
1016 int64_t blkdelta = 0;
1017 int64_t rtxdelta = 0;
1018 int64_t idelta = 0;
1019 int64_t ifreedelta = 0;
1021 msbp = msb;
1022 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1024 /* calculate deltas */
1025 if (tp->t_blk_res > 0)
1026 blkdelta = tp->t_blk_res;
1027 if ((tp->t_fdblocks_delta != 0) &&
1028 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1029 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1030 blkdelta += tp->t_fdblocks_delta;
1032 if (tp->t_rtx_res > 0)
1033 rtxdelta = tp->t_rtx_res;
1034 if ((tp->t_frextents_delta != 0) &&
1035 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1036 rtxdelta += tp->t_frextents_delta;
1038 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1039 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1040 idelta = tp->t_icount_delta;
1041 ifreedelta = tp->t_ifree_delta;
1044 /* apply the per-cpu counters */
1045 if (blkdelta) {
1046 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1047 blkdelta, rsvd);
1048 if (error)
1049 goto out;
1052 if (idelta) {
1053 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1054 idelta, rsvd);
1055 if (error)
1056 goto out_undo_fdblocks;
1059 if (ifreedelta) {
1060 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1061 ifreedelta, rsvd);
1062 if (error)
1063 goto out_undo_icount;
1066 /* apply remaining deltas */
1067 if (rtxdelta != 0) {
1068 msbp->msb_field = XFS_SBS_FREXTENTS;
1069 msbp->msb_delta = rtxdelta;
1070 msbp++;
1073 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1074 if (tp->t_dblocks_delta != 0) {
1075 msbp->msb_field = XFS_SBS_DBLOCKS;
1076 msbp->msb_delta = tp->t_dblocks_delta;
1077 msbp++;
1079 if (tp->t_agcount_delta != 0) {
1080 msbp->msb_field = XFS_SBS_AGCOUNT;
1081 msbp->msb_delta = tp->t_agcount_delta;
1082 msbp++;
1084 if (tp->t_imaxpct_delta != 0) {
1085 msbp->msb_field = XFS_SBS_IMAX_PCT;
1086 msbp->msb_delta = tp->t_imaxpct_delta;
1087 msbp++;
1089 if (tp->t_rextsize_delta != 0) {
1090 msbp->msb_field = XFS_SBS_REXTSIZE;
1091 msbp->msb_delta = tp->t_rextsize_delta;
1092 msbp++;
1094 if (tp->t_rbmblocks_delta != 0) {
1095 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1096 msbp->msb_delta = tp->t_rbmblocks_delta;
1097 msbp++;
1099 if (tp->t_rblocks_delta != 0) {
1100 msbp->msb_field = XFS_SBS_RBLOCKS;
1101 msbp->msb_delta = tp->t_rblocks_delta;
1102 msbp++;
1104 if (tp->t_rextents_delta != 0) {
1105 msbp->msb_field = XFS_SBS_REXTENTS;
1106 msbp->msb_delta = tp->t_rextents_delta;
1107 msbp++;
1109 if (tp->t_rextslog_delta != 0) {
1110 msbp->msb_field = XFS_SBS_REXTSLOG;
1111 msbp->msb_delta = tp->t_rextslog_delta;
1112 msbp++;
1117 * If we need to change anything, do it.
1119 if (msbp > msb) {
1120 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1121 (uint)(msbp - msb), rsvd);
1122 if (error)
1123 goto out_undo_ifreecount;
1126 return;
1128 out_undo_ifreecount:
1129 if (ifreedelta)
1130 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1131 out_undo_icount:
1132 if (idelta)
1133 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1134 out_undo_fdblocks:
1135 if (blkdelta)
1136 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1137 out:
1138 ASSERT(error == 0);
1139 return;
1143 * Add the given log item to the transaction's list of log items.
1145 * The log item will now point to its new descriptor with its li_desc field.
1147 void
1148 xfs_trans_add_item(
1149 struct xfs_trans *tp,
1150 struct xfs_log_item *lip)
1152 struct xfs_log_item_desc *lidp;
1154 ASSERT(lip->li_mountp = tp->t_mountp);
1155 ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1157 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1159 lidp->lid_item = lip;
1160 lidp->lid_flags = 0;
1161 lidp->lid_size = 0;
1162 list_add_tail(&lidp->lid_trans, &tp->t_items);
1164 lip->li_desc = lidp;
1167 STATIC void
1168 xfs_trans_free_item_desc(
1169 struct xfs_log_item_desc *lidp)
1171 list_del_init(&lidp->lid_trans);
1172 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1176 * Unlink and free the given descriptor.
1178 void
1179 xfs_trans_del_item(
1180 struct xfs_log_item *lip)
1182 xfs_trans_free_item_desc(lip->li_desc);
1183 lip->li_desc = NULL;
1187 * Unlock all of the items of a transaction and free all the descriptors
1188 * of that transaction.
1190 void
1191 xfs_trans_free_items(
1192 struct xfs_trans *tp,
1193 xfs_lsn_t commit_lsn,
1194 int flags)
1196 struct xfs_log_item_desc *lidp, *next;
1198 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1199 struct xfs_log_item *lip = lidp->lid_item;
1201 lip->li_desc = NULL;
1203 if (commit_lsn != NULLCOMMITLSN)
1204 IOP_COMMITTING(lip, commit_lsn);
1205 if (flags & XFS_TRANS_ABORT)
1206 lip->li_flags |= XFS_LI_ABORTED;
1207 IOP_UNLOCK(lip);
1209 xfs_trans_free_item_desc(lidp);
1214 * Unlock the items associated with a transaction.
1216 * Items which were not logged should be freed. Those which were logged must
1217 * still be tracked so they can be unpinned when the transaction commits.
1219 STATIC void
1220 xfs_trans_unlock_items(
1221 struct xfs_trans *tp,
1222 xfs_lsn_t commit_lsn)
1224 struct xfs_log_item_desc *lidp, *next;
1226 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1227 struct xfs_log_item *lip = lidp->lid_item;
1229 lip->li_desc = NULL;
1231 if (commit_lsn != NULLCOMMITLSN)
1232 IOP_COMMITTING(lip, commit_lsn);
1233 IOP_UNLOCK(lip);
1236 * Free the descriptor if the item is not dirty
1237 * within this transaction.
1239 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1240 xfs_trans_free_item_desc(lidp);
1245 * Total up the number of log iovecs needed to commit this
1246 * transaction. The transaction itself needs one for the
1247 * transaction header. Ask each dirty item in turn how many
1248 * it needs to get the total.
1250 static uint
1251 xfs_trans_count_vecs(
1252 struct xfs_trans *tp)
1254 int nvecs;
1255 struct xfs_log_item_desc *lidp;
1257 nvecs = 1;
1259 /* In the non-debug case we need to start bailing out if we
1260 * didn't find a log_item here, return zero and let trans_commit
1261 * deal with it.
1263 if (list_empty(&tp->t_items)) {
1264 ASSERT(0);
1265 return 0;
1268 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1270 * Skip items which aren't dirty in this transaction.
1272 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1273 continue;
1274 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1275 nvecs += lidp->lid_size;
1278 return nvecs;
1282 * Fill in the vector with pointers to data to be logged
1283 * by this transaction. The transaction header takes
1284 * the first vector, and then each dirty item takes the
1285 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1287 * As each item fills in the entries it needs, also pin the item
1288 * so that it cannot be flushed out until the log write completes.
1290 static void
1291 xfs_trans_fill_vecs(
1292 struct xfs_trans *tp,
1293 struct xfs_log_iovec *log_vector)
1295 struct xfs_log_item_desc *lidp;
1296 struct xfs_log_iovec *vecp;
1297 uint nitems;
1300 * Skip over the entry for the transaction header, we'll
1301 * fill that in at the end.
1303 vecp = log_vector + 1;
1305 nitems = 0;
1306 ASSERT(!list_empty(&tp->t_items));
1307 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1308 /* Skip items which aren't dirty in this transaction. */
1309 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1310 continue;
1313 * The item may be marked dirty but not log anything. This can
1314 * be used to get called when a transaction is committed.
1316 if (lidp->lid_size)
1317 nitems++;
1318 IOP_FORMAT(lidp->lid_item, vecp);
1319 vecp += lidp->lid_size;
1320 IOP_PIN(lidp->lid_item);
1324 * Now that we've counted the number of items in this transaction, fill
1325 * in the transaction header. Note that the transaction header does not
1326 * have a log item.
1328 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1329 tp->t_header.th_type = tp->t_type;
1330 tp->t_header.th_num_items = nitems;
1331 log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1332 log_vector->i_len = sizeof(xfs_trans_header_t);
1333 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1337 * The committed item processing consists of calling the committed routine of
1338 * each logged item, updating the item's position in the AIL if necessary, and
1339 * unpinning each item. If the committed routine returns -1, then do nothing
1340 * further with the item because it may have been freed.
1342 * Since items are unlocked when they are copied to the incore log, it is
1343 * possible for two transactions to be completing and manipulating the same
1344 * item simultaneously. The AIL lock will protect the lsn field of each item.
1345 * The value of this field can never go backwards.
1347 * We unpin the items after repositioning them in the AIL, because otherwise
1348 * they could be immediately flushed and we'd have to race with the flusher
1349 * trying to pull the item from the AIL as we add it.
1351 static void
1352 xfs_trans_item_committed(
1353 struct xfs_log_item *lip,
1354 xfs_lsn_t commit_lsn,
1355 int aborted)
1357 xfs_lsn_t item_lsn;
1358 struct xfs_ail *ailp;
1360 if (aborted)
1361 lip->li_flags |= XFS_LI_ABORTED;
1362 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1364 /* item_lsn of -1 means the item needs no further processing */
1365 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1366 return;
1369 * If the returned lsn is greater than what it contained before, update
1370 * the location of the item in the AIL. If it is not, then do nothing.
1371 * Items can never move backwards in the AIL.
1373 * While the new lsn should usually be greater, it is possible that a
1374 * later transaction completing simultaneously with an earlier one
1375 * using the same item could complete first with a higher lsn. This
1376 * would cause the earlier transaction to fail the test below.
1378 ailp = lip->li_ailp;
1379 spin_lock(&ailp->xa_lock);
1380 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1382 * This will set the item's lsn to item_lsn and update the
1383 * position of the item in the AIL.
1385 * xfs_trans_ail_update() drops the AIL lock.
1387 xfs_trans_ail_update(ailp, lip, item_lsn);
1388 } else {
1389 spin_unlock(&ailp->xa_lock);
1393 * Now that we've repositioned the item in the AIL, unpin it so it can
1394 * be flushed. Pass information about buffer stale state down from the
1395 * log item flags, if anyone else stales the buffer we do not want to
1396 * pay any attention to it.
1398 IOP_UNPIN(lip, 0);
1402 * This is typically called by the LM when a transaction has been fully
1403 * committed to disk. It needs to unpin the items which have
1404 * been logged by the transaction and update their positions
1405 * in the AIL if necessary.
1407 * This also gets called when the transactions didn't get written out
1408 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1410 STATIC void
1411 xfs_trans_committed(
1412 void *arg,
1413 int abortflag)
1415 struct xfs_trans *tp = arg;
1416 struct xfs_log_item_desc *lidp, *next;
1418 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1419 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1420 xfs_trans_free_item_desc(lidp);
1423 xfs_trans_free(tp);
1426 static inline void
1427 xfs_log_item_batch_insert(
1428 struct xfs_ail *ailp,
1429 struct xfs_ail_cursor *cur,
1430 struct xfs_log_item **log_items,
1431 int nr_items,
1432 xfs_lsn_t commit_lsn)
1434 int i;
1436 spin_lock(&ailp->xa_lock);
1437 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1438 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1440 for (i = 0; i < nr_items; i++)
1441 IOP_UNPIN(log_items[i], 0);
1445 * Bulk operation version of xfs_trans_committed that takes a log vector of
1446 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1447 * minimise lock traffic.
1449 * If we are called with the aborted flag set, it is because a log write during
1450 * a CIL checkpoint commit has failed. In this case, all the items in the
1451 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1452 * means that checkpoint commit abort handling is treated exactly the same
1453 * as an iclog write error even though we haven't started any IO yet. Hence in
1454 * this case all we need to do is IOP_COMMITTED processing, followed by an
1455 * IOP_UNPIN(aborted) call.
1457 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1458 * at the end of the AIL, the insert cursor avoids the need to walk
1459 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1460 * call. This saves a lot of needless list walking and is a net win, even
1461 * though it slightly increases that amount of AIL lock traffic to set it up
1462 * and tear it down.
1464 void
1465 xfs_trans_committed_bulk(
1466 struct xfs_ail *ailp,
1467 struct xfs_log_vec *log_vector,
1468 xfs_lsn_t commit_lsn,
1469 int aborted)
1471 #define LOG_ITEM_BATCH_SIZE 32
1472 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1473 struct xfs_log_vec *lv;
1474 struct xfs_ail_cursor cur;
1475 int i = 0;
1477 spin_lock(&ailp->xa_lock);
1478 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1479 spin_unlock(&ailp->xa_lock);
1481 /* unpin all the log items */
1482 for (lv = log_vector; lv; lv = lv->lv_next ) {
1483 struct xfs_log_item *lip = lv->lv_item;
1484 xfs_lsn_t item_lsn;
1486 if (aborted)
1487 lip->li_flags |= XFS_LI_ABORTED;
1488 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1490 /* item_lsn of -1 means the item needs no further processing */
1491 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1492 continue;
1495 * if we are aborting the operation, no point in inserting the
1496 * object into the AIL as we are in a shutdown situation.
1498 if (aborted) {
1499 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1500 IOP_UNPIN(lip, 1);
1501 continue;
1504 if (item_lsn != commit_lsn) {
1507 * Not a bulk update option due to unusual item_lsn.
1508 * Push into AIL immediately, rechecking the lsn once
1509 * we have the ail lock. Then unpin the item. This does
1510 * not affect the AIL cursor the bulk insert path is
1511 * using.
1513 spin_lock(&ailp->xa_lock);
1514 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1515 xfs_trans_ail_update(ailp, lip, item_lsn);
1516 else
1517 spin_unlock(&ailp->xa_lock);
1518 IOP_UNPIN(lip, 0);
1519 continue;
1522 /* Item is a candidate for bulk AIL insert. */
1523 log_items[i++] = lv->lv_item;
1524 if (i >= LOG_ITEM_BATCH_SIZE) {
1525 xfs_log_item_batch_insert(ailp, &cur, log_items,
1526 LOG_ITEM_BATCH_SIZE, commit_lsn);
1527 i = 0;
1531 /* make sure we insert the remainder! */
1532 if (i)
1533 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1535 spin_lock(&ailp->xa_lock);
1536 xfs_trans_ail_cursor_done(ailp, &cur);
1537 spin_unlock(&ailp->xa_lock);
1541 * Called from the trans_commit code when we notice that the filesystem is in
1542 * the middle of a forced shutdown.
1544 * When we are called here, we have already pinned all the items in the
1545 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1546 * so we can simply walk the items in the transaction, unpin them with an abort
1547 * flag and then free the items. Note that unpinning the items can result in
1548 * them being freed immediately, so we need to use a safe list traversal method
1549 * here.
1551 STATIC void
1552 xfs_trans_uncommit(
1553 struct xfs_trans *tp,
1554 uint flags)
1556 struct xfs_log_item_desc *lidp, *n;
1558 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1559 if (lidp->lid_flags & XFS_LID_DIRTY)
1560 IOP_UNPIN(lidp->lid_item, 1);
1563 xfs_trans_unreserve_and_mod_sb(tp);
1564 xfs_trans_unreserve_and_mod_dquots(tp);
1566 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1567 xfs_trans_free(tp);
1571 * Format the transaction direct to the iclog. This isolates the physical
1572 * transaction commit operation from the logical operation and hence allows
1573 * other methods to be introduced without affecting the existing commit path.
1575 static int
1576 xfs_trans_commit_iclog(
1577 struct xfs_mount *mp,
1578 struct xfs_trans *tp,
1579 xfs_lsn_t *commit_lsn,
1580 int flags)
1582 int shutdown;
1583 int error;
1584 int log_flags = 0;
1585 struct xlog_in_core *commit_iclog;
1586 #define XFS_TRANS_LOGVEC_COUNT 16
1587 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1588 struct xfs_log_iovec *log_vector;
1589 uint nvec;
1593 * Ask each log item how many log_vector entries it will
1594 * need so we can figure out how many to allocate.
1595 * Try to avoid the kmem_alloc() call in the common case
1596 * by using a vector from the stack when it fits.
1598 nvec = xfs_trans_count_vecs(tp);
1599 if (nvec == 0) {
1600 return ENOMEM; /* triggers a shutdown! */
1601 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1602 log_vector = log_vector_fast;
1603 } else {
1604 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1605 sizeof(xfs_log_iovec_t),
1606 KM_SLEEP);
1610 * Fill in the log_vector and pin the logged items, and
1611 * then write the transaction to the log.
1613 xfs_trans_fill_vecs(tp, log_vector);
1615 if (flags & XFS_TRANS_RELEASE_LOG_RES)
1616 log_flags = XFS_LOG_REL_PERM_RESERV;
1618 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1621 * The transaction is committed incore here, and can go out to disk
1622 * at any time after this call. However, all the items associated
1623 * with the transaction are still locked and pinned in memory.
1625 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1627 tp->t_commit_lsn = *commit_lsn;
1628 trace_xfs_trans_commit_lsn(tp);
1630 if (nvec > XFS_TRANS_LOGVEC_COUNT)
1631 kmem_free(log_vector);
1634 * If we got a log write error. Unpin the logitems that we
1635 * had pinned, clean up, free trans structure, and return error.
1637 if (error || *commit_lsn == -1) {
1638 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1639 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1640 return XFS_ERROR(EIO);
1644 * Once the transaction has committed, unused
1645 * reservations need to be released and changes to
1646 * the superblock need to be reflected in the in-core
1647 * version. Do that now.
1649 xfs_trans_unreserve_and_mod_sb(tp);
1652 * Tell the LM to call the transaction completion routine
1653 * when the log write with LSN commit_lsn completes (e.g.
1654 * when the transaction commit really hits the on-disk log).
1655 * After this call we cannot reference tp, because the call
1656 * can happen at any time and the call will free the transaction
1657 * structure pointed to by tp. The only case where we call
1658 * the completion routine (xfs_trans_committed) directly is
1659 * if the log is turned off on a debug kernel or we're
1660 * running in simulation mode (the log is explicitly turned
1661 * off).
1663 tp->t_logcb.cb_func = xfs_trans_committed;
1664 tp->t_logcb.cb_arg = tp;
1667 * We need to pass the iclog buffer which was used for the
1668 * transaction commit record into this function, and attach
1669 * the callback to it. The callback must be attached before
1670 * the items are unlocked to avoid racing with other threads
1671 * waiting for an item to unlock.
1673 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1676 * Mark this thread as no longer being in a transaction
1678 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1681 * Once all the items of the transaction have been copied
1682 * to the in core log and the callback is attached, the
1683 * items can be unlocked.
1685 * This will free descriptors pointing to items which were
1686 * not logged since there is nothing more to do with them.
1687 * For items which were logged, we will keep pointers to them
1688 * so they can be unpinned after the transaction commits to disk.
1689 * This will also stamp each modified meta-data item with
1690 * the commit lsn of this transaction for dependency tracking
1691 * purposes.
1693 xfs_trans_unlock_items(tp, *commit_lsn);
1696 * If we detected a log error earlier, finish committing
1697 * the transaction now (unpin log items, etc).
1699 * Order is critical here, to avoid using the transaction
1700 * pointer after its been freed (by xfs_trans_committed
1701 * either here now, or as a callback). We cannot do this
1702 * step inside xfs_log_notify as was done earlier because
1703 * of this issue.
1705 if (shutdown)
1706 xfs_trans_committed(tp, XFS_LI_ABORTED);
1709 * Now that the xfs_trans_committed callback has been attached,
1710 * and the items are released we can finally allow the iclog to
1711 * go to disk.
1713 return xfs_log_release_iclog(mp, commit_iclog);
1717 * Walk the log items and allocate log vector structures for
1718 * each item large enough to fit all the vectors they require.
1719 * Note that this format differs from the old log vector format in
1720 * that there is no transaction header in these log vectors.
1722 STATIC struct xfs_log_vec *
1723 xfs_trans_alloc_log_vecs(
1724 xfs_trans_t *tp)
1726 struct xfs_log_item_desc *lidp;
1727 struct xfs_log_vec *lv = NULL;
1728 struct xfs_log_vec *ret_lv = NULL;
1731 /* Bail out if we didn't find a log item. */
1732 if (list_empty(&tp->t_items)) {
1733 ASSERT(0);
1734 return NULL;
1737 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1738 struct xfs_log_vec *new_lv;
1740 /* Skip items which aren't dirty in this transaction. */
1741 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1742 continue;
1744 /* Skip items that do not have any vectors for writing */
1745 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1746 if (!lidp->lid_size)
1747 continue;
1749 new_lv = kmem_zalloc(sizeof(*new_lv) +
1750 lidp->lid_size * sizeof(struct xfs_log_iovec),
1751 KM_SLEEP);
1753 /* The allocated iovec region lies beyond the log vector. */
1754 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1755 new_lv->lv_niovecs = lidp->lid_size;
1756 new_lv->lv_item = lidp->lid_item;
1757 if (!ret_lv)
1758 ret_lv = new_lv;
1759 else
1760 lv->lv_next = new_lv;
1761 lv = new_lv;
1764 return ret_lv;
1767 static int
1768 xfs_trans_commit_cil(
1769 struct xfs_mount *mp,
1770 struct xfs_trans *tp,
1771 xfs_lsn_t *commit_lsn,
1772 int flags)
1774 struct xfs_log_vec *log_vector;
1777 * Get each log item to allocate a vector structure for
1778 * the log item to to pass to the log write code. The
1779 * CIL commit code will format the vector and save it away.
1781 log_vector = xfs_trans_alloc_log_vecs(tp);
1782 if (!log_vector)
1783 return ENOMEM;
1785 xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1787 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1788 xfs_trans_free(tp);
1789 return 0;
1793 * Commit the given transaction to the log.
1795 * XFS disk error handling mechanism is not based on a typical
1796 * transaction abort mechanism. Logically after the filesystem
1797 * gets marked 'SHUTDOWN', we can't let any new transactions
1798 * be durable - ie. committed to disk - because some metadata might
1799 * be inconsistent. In such cases, this returns an error, and the
1800 * caller may assume that all locked objects joined to the transaction
1801 * have already been unlocked as if the commit had succeeded.
1802 * Do not reference the transaction structure after this call.
1805 xfs_trans_commit(
1806 struct xfs_trans *tp,
1807 uint flags)
1809 struct xfs_mount *mp = tp->t_mountp;
1810 xfs_lsn_t commit_lsn = -1;
1811 int error = 0;
1812 int log_flags = 0;
1813 int sync = tp->t_flags & XFS_TRANS_SYNC;
1816 * Determine whether this commit is releasing a permanent
1817 * log reservation or not.
1819 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1820 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1821 log_flags = XFS_LOG_REL_PERM_RESERV;
1825 * If there is nothing to be logged by the transaction,
1826 * then unlock all of the items associated with the
1827 * transaction and free the transaction structure.
1828 * Also make sure to return any reserved blocks to
1829 * the free pool.
1831 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1832 goto out_unreserve;
1834 if (XFS_FORCED_SHUTDOWN(mp)) {
1835 error = XFS_ERROR(EIO);
1836 goto out_unreserve;
1839 ASSERT(tp->t_ticket != NULL);
1842 * If we need to update the superblock, then do it now.
1844 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1845 xfs_trans_apply_sb_deltas(tp);
1846 xfs_trans_apply_dquot_deltas(tp);
1848 if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1849 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1850 else
1851 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1853 if (error == ENOMEM) {
1854 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1855 error = XFS_ERROR(EIO);
1856 goto out_unreserve;
1860 * If the transaction needs to be synchronous, then force the
1861 * log out now and wait for it.
1863 if (sync) {
1864 if (!error) {
1865 error = _xfs_log_force_lsn(mp, commit_lsn,
1866 XFS_LOG_SYNC, NULL);
1868 XFS_STATS_INC(xs_trans_sync);
1869 } else {
1870 XFS_STATS_INC(xs_trans_async);
1873 return error;
1875 out_unreserve:
1876 xfs_trans_unreserve_and_mod_sb(tp);
1879 * It is indeed possible for the transaction to be not dirty but
1880 * the dqinfo portion to be. All that means is that we have some
1881 * (non-persistent) quota reservations that need to be unreserved.
1883 xfs_trans_unreserve_and_mod_dquots(tp);
1884 if (tp->t_ticket) {
1885 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1886 if (commit_lsn == -1 && !error)
1887 error = XFS_ERROR(EIO);
1889 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1890 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1891 xfs_trans_free(tp);
1893 XFS_STATS_INC(xs_trans_empty);
1894 return error;
1898 * Unlock all of the transaction's items and free the transaction.
1899 * The transaction must not have modified any of its items, because
1900 * there is no way to restore them to their previous state.
1902 * If the transaction has made a log reservation, make sure to release
1903 * it as well.
1905 void
1906 xfs_trans_cancel(
1907 xfs_trans_t *tp,
1908 int flags)
1910 int log_flags;
1911 xfs_mount_t *mp = tp->t_mountp;
1914 * See if the caller is being too lazy to figure out if
1915 * the transaction really needs an abort.
1917 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1918 flags &= ~XFS_TRANS_ABORT;
1920 * See if the caller is relying on us to shut down the
1921 * filesystem. This happens in paths where we detect
1922 * corruption and decide to give up.
1924 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1925 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1926 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1928 #ifdef DEBUG
1929 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1930 struct xfs_log_item_desc *lidp;
1932 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1933 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1935 #endif
1936 xfs_trans_unreserve_and_mod_sb(tp);
1937 xfs_trans_unreserve_and_mod_dquots(tp);
1939 if (tp->t_ticket) {
1940 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1941 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1942 log_flags = XFS_LOG_REL_PERM_RESERV;
1943 } else {
1944 log_flags = 0;
1946 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1949 /* mark this thread as no longer being in a transaction */
1950 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1952 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1953 xfs_trans_free(tp);
1957 * Roll from one trans in the sequence of PERMANENT transactions to
1958 * the next: permanent transactions are only flushed out when
1959 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1960 * as possible to let chunks of it go to the log. So we commit the
1961 * chunk we've been working on and get a new transaction to continue.
1964 xfs_trans_roll(
1965 struct xfs_trans **tpp,
1966 struct xfs_inode *dp)
1968 struct xfs_trans *trans;
1969 unsigned int logres, count;
1970 int error;
1973 * Ensure that the inode is always logged.
1975 trans = *tpp;
1976 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1979 * Copy the critical parameters from one trans to the next.
1981 logres = trans->t_log_res;
1982 count = trans->t_log_count;
1983 *tpp = xfs_trans_dup(trans);
1986 * Commit the current transaction.
1987 * If this commit failed, then it'd just unlock those items that
1988 * are not marked ihold. That also means that a filesystem shutdown
1989 * is in progress. The caller takes the responsibility to cancel
1990 * the duplicate transaction that gets returned.
1992 error = xfs_trans_commit(trans, 0);
1993 if (error)
1994 return (error);
1996 trans = *tpp;
1999 * transaction commit worked ok so we can drop the extra ticket
2000 * reference that we gained in xfs_trans_dup()
2002 xfs_log_ticket_put(trans->t_ticket);
2006 * Reserve space in the log for th next transaction.
2007 * This also pushes items in the "AIL", the list of logged items,
2008 * out to disk if they are taking up space at the tail of the log
2009 * that we want to use. This requires that either nothing be locked
2010 * across this call, or that anything that is locked be logged in
2011 * the prior and the next transactions.
2013 error = xfs_trans_reserve(trans, 0, logres, 0,
2014 XFS_TRANS_PERM_LOG_RES, count);
2016 * Ensure that the inode is in the new transaction and locked.
2018 if (error)
2019 return error;
2021 xfs_trans_ijoin(trans, dp, 0);
2022 return 0;