2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
42 #include <asm/irq_regs.h>
44 struct remote_function_call
{
45 struct task_struct
*p
;
46 int (*func
)(void *info
);
51 static void remote_function(void *data
)
53 struct remote_function_call
*tfc
= data
;
54 struct task_struct
*p
= tfc
->p
;
58 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
62 tfc
->ret
= tfc
->func(tfc
->info
);
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
79 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
81 struct remote_function_call data
= {
85 .ret
= -ESRCH
, /* No such (running) process */
89 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
105 struct remote_function_call data
= {
109 .ret
= -ENXIO
, /* No such CPU */
112 smp_call_function_single(cpu
, remote_function
, &data
, 1);
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
122 EVENT_FLEXIBLE
= 0x1,
124 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key perf_sched_events __read_mostly
;
132 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
134 static atomic_t nr_mmap_events __read_mostly
;
135 static atomic_t nr_comm_events __read_mostly
;
136 static atomic_t nr_task_events __read_mostly
;
138 static LIST_HEAD(pmus
);
139 static DEFINE_MUTEX(pmus_lock
);
140 static struct srcu_struct pmus_srcu
;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly
= 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
159 static int max_samples_per_tick __read_mostly
=
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
162 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
163 void __user
*buffer
, size_t *lenp
,
166 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
171 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
176 static atomic64_t perf_event_id
;
178 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
179 enum event_type_t event_type
);
181 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
182 enum event_type_t event_type
,
183 struct task_struct
*task
);
185 static void update_context_time(struct perf_event_context
*ctx
);
186 static u64
perf_event_time(struct perf_event
*event
);
188 void __weak
perf_event_print_debug(void) { }
190 extern __weak
const char *perf_pmu_name(void)
195 static inline u64
perf_clock(void)
197 return local_clock();
200 static inline struct perf_cpu_context
*
201 __get_cpu_context(struct perf_event_context
*ctx
)
203 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
206 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
207 struct perf_event_context
*ctx
)
209 raw_spin_lock(&cpuctx
->ctx
.lock
);
211 raw_spin_lock(&ctx
->lock
);
214 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
215 struct perf_event_context
*ctx
)
218 raw_spin_unlock(&ctx
->lock
);
219 raw_spin_unlock(&cpuctx
->ctx
.lock
);
222 #ifdef CONFIG_CGROUP_PERF
225 * Must ensure cgroup is pinned (css_get) before calling
226 * this function. In other words, we cannot call this function
227 * if there is no cgroup event for the current CPU context.
229 static inline struct perf_cgroup
*
230 perf_cgroup_from_task(struct task_struct
*task
)
232 return container_of(task_subsys_state(task
, perf_subsys_id
),
233 struct perf_cgroup
, css
);
237 perf_cgroup_match(struct perf_event
*event
)
239 struct perf_event_context
*ctx
= event
->ctx
;
240 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
242 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
245 static inline void perf_get_cgroup(struct perf_event
*event
)
247 css_get(&event
->cgrp
->css
);
250 static inline void perf_put_cgroup(struct perf_event
*event
)
252 css_put(&event
->cgrp
->css
);
255 static inline void perf_detach_cgroup(struct perf_event
*event
)
257 perf_put_cgroup(event
);
261 static inline int is_cgroup_event(struct perf_event
*event
)
263 return event
->cgrp
!= NULL
;
266 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
268 struct perf_cgroup_info
*t
;
270 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
274 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
276 struct perf_cgroup_info
*info
;
281 info
= this_cpu_ptr(cgrp
->info
);
283 info
->time
+= now
- info
->timestamp
;
284 info
->timestamp
= now
;
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
289 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
291 __update_cgrp_time(cgrp_out
);
294 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
296 struct perf_cgroup
*cgrp
;
299 * ensure we access cgroup data only when needed and
300 * when we know the cgroup is pinned (css_get)
302 if (!is_cgroup_event(event
))
305 cgrp
= perf_cgroup_from_task(current
);
307 * Do not update time when cgroup is not active
309 if (cgrp
== event
->cgrp
)
310 __update_cgrp_time(event
->cgrp
);
314 perf_cgroup_set_timestamp(struct task_struct
*task
,
315 struct perf_event_context
*ctx
)
317 struct perf_cgroup
*cgrp
;
318 struct perf_cgroup_info
*info
;
321 * ctx->lock held by caller
322 * ensure we do not access cgroup data
323 * unless we have the cgroup pinned (css_get)
325 if (!task
|| !ctx
->nr_cgroups
)
328 cgrp
= perf_cgroup_from_task(task
);
329 info
= this_cpu_ptr(cgrp
->info
);
330 info
->timestamp
= ctx
->timestamp
;
333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
337 * reschedule events based on the cgroup constraint of task.
339 * mode SWOUT : schedule out everything
340 * mode SWIN : schedule in based on cgroup for next
342 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
344 struct perf_cpu_context
*cpuctx
;
349 * disable interrupts to avoid geting nr_cgroup
350 * changes via __perf_event_disable(). Also
353 local_irq_save(flags
);
356 * we reschedule only in the presence of cgroup
357 * constrained events.
361 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
362 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
365 * perf_cgroup_events says at least one
366 * context on this CPU has cgroup events.
368 * ctx->nr_cgroups reports the number of cgroup
369 * events for a context.
371 if (cpuctx
->ctx
.nr_cgroups
> 0) {
372 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
373 perf_pmu_disable(cpuctx
->ctx
.pmu
);
375 if (mode
& PERF_CGROUP_SWOUT
) {
376 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
378 * must not be done before ctxswout due
379 * to event_filter_match() in event_sched_out()
384 if (mode
& PERF_CGROUP_SWIN
) {
385 WARN_ON_ONCE(cpuctx
->cgrp
);
386 /* set cgrp before ctxsw in to
387 * allow event_filter_match() to not
388 * have to pass task around
390 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
391 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
393 perf_pmu_enable(cpuctx
->ctx
.pmu
);
394 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
400 local_irq_restore(flags
);
403 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
404 struct task_struct
*next
)
406 struct perf_cgroup
*cgrp1
;
407 struct perf_cgroup
*cgrp2
= NULL
;
410 * we come here when we know perf_cgroup_events > 0
412 cgrp1
= perf_cgroup_from_task(task
);
415 * next is NULL when called from perf_event_enable_on_exec()
416 * that will systematically cause a cgroup_switch()
419 cgrp2
= perf_cgroup_from_task(next
);
422 * only schedule out current cgroup events if we know
423 * that we are switching to a different cgroup. Otherwise,
424 * do no touch the cgroup events.
427 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
430 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
431 struct task_struct
*task
)
433 struct perf_cgroup
*cgrp1
;
434 struct perf_cgroup
*cgrp2
= NULL
;
437 * we come here when we know perf_cgroup_events > 0
439 cgrp1
= perf_cgroup_from_task(task
);
441 /* prev can never be NULL */
442 cgrp2
= perf_cgroup_from_task(prev
);
445 * only need to schedule in cgroup events if we are changing
446 * cgroup during ctxsw. Cgroup events were not scheduled
447 * out of ctxsw out if that was not the case.
450 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
453 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
454 struct perf_event_attr
*attr
,
455 struct perf_event
*group_leader
)
457 struct perf_cgroup
*cgrp
;
458 struct cgroup_subsys_state
*css
;
460 int ret
= 0, fput_needed
;
462 file
= fget_light(fd
, &fput_needed
);
466 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
472 cgrp
= container_of(css
, struct perf_cgroup
, css
);
475 /* must be done before we fput() the file */
476 perf_get_cgroup(event
);
479 * all events in a group must monitor
480 * the same cgroup because a task belongs
481 * to only one perf cgroup at a time
483 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
484 perf_detach_cgroup(event
);
488 fput_light(file
, fput_needed
);
493 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
495 struct perf_cgroup_info
*t
;
496 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
497 event
->shadow_ctx_time
= now
- t
->timestamp
;
501 perf_cgroup_defer_enabled(struct perf_event
*event
)
504 * when the current task's perf cgroup does not match
505 * the event's, we need to remember to call the
506 * perf_mark_enable() function the first time a task with
507 * a matching perf cgroup is scheduled in.
509 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
510 event
->cgrp_defer_enabled
= 1;
514 perf_cgroup_mark_enabled(struct perf_event
*event
,
515 struct perf_event_context
*ctx
)
517 struct perf_event
*sub
;
518 u64 tstamp
= perf_event_time(event
);
520 if (!event
->cgrp_defer_enabled
)
523 event
->cgrp_defer_enabled
= 0;
525 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
526 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
527 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
528 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
529 sub
->cgrp_defer_enabled
= 0;
533 #else /* !CONFIG_CGROUP_PERF */
536 perf_cgroup_match(struct perf_event
*event
)
541 static inline void perf_detach_cgroup(struct perf_event
*event
)
544 static inline int is_cgroup_event(struct perf_event
*event
)
549 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
554 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
562 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
563 struct task_struct
*next
)
567 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
568 struct task_struct
*task
)
572 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
573 struct perf_event_attr
*attr
,
574 struct perf_event
*group_leader
)
580 perf_cgroup_set_timestamp(struct task_struct
*task
,
581 struct perf_event_context
*ctx
)
586 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
591 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
595 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
601 perf_cgroup_defer_enabled(struct perf_event
*event
)
606 perf_cgroup_mark_enabled(struct perf_event
*event
,
607 struct perf_event_context
*ctx
)
612 void perf_pmu_disable(struct pmu
*pmu
)
614 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
616 pmu
->pmu_disable(pmu
);
619 void perf_pmu_enable(struct pmu
*pmu
)
621 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
623 pmu
->pmu_enable(pmu
);
626 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
630 * because they're strictly cpu affine and rotate_start is called with IRQs
631 * disabled, while rotate_context is called from IRQ context.
633 static void perf_pmu_rotate_start(struct pmu
*pmu
)
635 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
636 struct list_head
*head
= &__get_cpu_var(rotation_list
);
638 WARN_ON(!irqs_disabled());
640 if (list_empty(&cpuctx
->rotation_list
))
641 list_add(&cpuctx
->rotation_list
, head
);
644 static void get_ctx(struct perf_event_context
*ctx
)
646 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
649 static void put_ctx(struct perf_event_context
*ctx
)
651 if (atomic_dec_and_test(&ctx
->refcount
)) {
653 put_ctx(ctx
->parent_ctx
);
655 put_task_struct(ctx
->task
);
656 kfree_rcu(ctx
, rcu_head
);
660 static void unclone_ctx(struct perf_event_context
*ctx
)
662 if (ctx
->parent_ctx
) {
663 put_ctx(ctx
->parent_ctx
);
664 ctx
->parent_ctx
= NULL
;
668 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
671 * only top level events have the pid namespace they were created in
674 event
= event
->parent
;
676 return task_tgid_nr_ns(p
, event
->ns
);
679 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
682 * only top level events have the pid namespace they were created in
685 event
= event
->parent
;
687 return task_pid_nr_ns(p
, event
->ns
);
691 * If we inherit events we want to return the parent event id
694 static u64
primary_event_id(struct perf_event
*event
)
699 id
= event
->parent
->id
;
705 * Get the perf_event_context for a task and lock it.
706 * This has to cope with with the fact that until it is locked,
707 * the context could get moved to another task.
709 static struct perf_event_context
*
710 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
712 struct perf_event_context
*ctx
;
716 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
719 * If this context is a clone of another, it might
720 * get swapped for another underneath us by
721 * perf_event_task_sched_out, though the
722 * rcu_read_lock() protects us from any context
723 * getting freed. Lock the context and check if it
724 * got swapped before we could get the lock, and retry
725 * if so. If we locked the right context, then it
726 * can't get swapped on us any more.
728 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
729 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
730 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
734 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
735 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
744 * Get the context for a task and increment its pin_count so it
745 * can't get swapped to another task. This also increments its
746 * reference count so that the context can't get freed.
748 static struct perf_event_context
*
749 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
751 struct perf_event_context
*ctx
;
754 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
757 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
762 static void perf_unpin_context(struct perf_event_context
*ctx
)
766 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
768 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
772 * Update the record of the current time in a context.
774 static void update_context_time(struct perf_event_context
*ctx
)
776 u64 now
= perf_clock();
778 ctx
->time
+= now
- ctx
->timestamp
;
779 ctx
->timestamp
= now
;
782 static u64
perf_event_time(struct perf_event
*event
)
784 struct perf_event_context
*ctx
= event
->ctx
;
786 if (is_cgroup_event(event
))
787 return perf_cgroup_event_time(event
);
789 return ctx
? ctx
->time
: 0;
793 * Update the total_time_enabled and total_time_running fields for a event.
794 * The caller of this function needs to hold the ctx->lock.
796 static void update_event_times(struct perf_event
*event
)
798 struct perf_event_context
*ctx
= event
->ctx
;
801 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
802 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
805 * in cgroup mode, time_enabled represents
806 * the time the event was enabled AND active
807 * tasks were in the monitored cgroup. This is
808 * independent of the activity of the context as
809 * there may be a mix of cgroup and non-cgroup events.
811 * That is why we treat cgroup events differently
814 if (is_cgroup_event(event
))
815 run_end
= perf_event_time(event
);
816 else if (ctx
->is_active
)
819 run_end
= event
->tstamp_stopped
;
821 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
823 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
824 run_end
= event
->tstamp_stopped
;
826 run_end
= perf_event_time(event
);
828 event
->total_time_running
= run_end
- event
->tstamp_running
;
833 * Update total_time_enabled and total_time_running for all events in a group.
835 static void update_group_times(struct perf_event
*leader
)
837 struct perf_event
*event
;
839 update_event_times(leader
);
840 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
841 update_event_times(event
);
844 static struct list_head
*
845 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
847 if (event
->attr
.pinned
)
848 return &ctx
->pinned_groups
;
850 return &ctx
->flexible_groups
;
854 * Add a event from the lists for its context.
855 * Must be called with ctx->mutex and ctx->lock held.
858 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
860 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
861 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
864 * If we're a stand alone event or group leader, we go to the context
865 * list, group events are kept attached to the group so that
866 * perf_group_detach can, at all times, locate all siblings.
868 if (event
->group_leader
== event
) {
869 struct list_head
*list
;
871 if (is_software_event(event
))
872 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
874 list
= ctx_group_list(event
, ctx
);
875 list_add_tail(&event
->group_entry
, list
);
878 if (is_cgroup_event(event
))
881 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
883 perf_pmu_rotate_start(ctx
->pmu
);
885 if (event
->attr
.inherit_stat
)
890 * Called at perf_event creation and when events are attached/detached from a
893 static void perf_event__read_size(struct perf_event
*event
)
895 int entry
= sizeof(u64
); /* value */
899 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
902 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
905 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
906 entry
+= sizeof(u64
);
908 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
909 nr
+= event
->group_leader
->nr_siblings
;
914 event
->read_size
= size
;
917 static void perf_event__header_size(struct perf_event
*event
)
919 struct perf_sample_data
*data
;
920 u64 sample_type
= event
->attr
.sample_type
;
923 perf_event__read_size(event
);
925 if (sample_type
& PERF_SAMPLE_IP
)
926 size
+= sizeof(data
->ip
);
928 if (sample_type
& PERF_SAMPLE_ADDR
)
929 size
+= sizeof(data
->addr
);
931 if (sample_type
& PERF_SAMPLE_PERIOD
)
932 size
+= sizeof(data
->period
);
934 if (sample_type
& PERF_SAMPLE_READ
)
935 size
+= event
->read_size
;
937 event
->header_size
= size
;
940 static void perf_event__id_header_size(struct perf_event
*event
)
942 struct perf_sample_data
*data
;
943 u64 sample_type
= event
->attr
.sample_type
;
946 if (sample_type
& PERF_SAMPLE_TID
)
947 size
+= sizeof(data
->tid_entry
);
949 if (sample_type
& PERF_SAMPLE_TIME
)
950 size
+= sizeof(data
->time
);
952 if (sample_type
& PERF_SAMPLE_ID
)
953 size
+= sizeof(data
->id
);
955 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
956 size
+= sizeof(data
->stream_id
);
958 if (sample_type
& PERF_SAMPLE_CPU
)
959 size
+= sizeof(data
->cpu_entry
);
961 event
->id_header_size
= size
;
964 static void perf_group_attach(struct perf_event
*event
)
966 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
969 * We can have double attach due to group movement in perf_event_open.
971 if (event
->attach_state
& PERF_ATTACH_GROUP
)
974 event
->attach_state
|= PERF_ATTACH_GROUP
;
976 if (group_leader
== event
)
979 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
980 !is_software_event(event
))
981 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
983 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
984 group_leader
->nr_siblings
++;
986 perf_event__header_size(group_leader
);
988 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
989 perf_event__header_size(pos
);
993 * Remove a event from the lists for its context.
994 * Must be called with ctx->mutex and ctx->lock held.
997 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
999 struct perf_cpu_context
*cpuctx
;
1001 * We can have double detach due to exit/hot-unplug + close.
1003 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1006 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1008 if (is_cgroup_event(event
)) {
1010 cpuctx
= __get_cpu_context(ctx
);
1012 * if there are no more cgroup events
1013 * then cler cgrp to avoid stale pointer
1014 * in update_cgrp_time_from_cpuctx()
1016 if (!ctx
->nr_cgroups
)
1017 cpuctx
->cgrp
= NULL
;
1021 if (event
->attr
.inherit_stat
)
1024 list_del_rcu(&event
->event_entry
);
1026 if (event
->group_leader
== event
)
1027 list_del_init(&event
->group_entry
);
1029 update_group_times(event
);
1032 * If event was in error state, then keep it
1033 * that way, otherwise bogus counts will be
1034 * returned on read(). The only way to get out
1035 * of error state is by explicit re-enabling
1038 if (event
->state
> PERF_EVENT_STATE_OFF
)
1039 event
->state
= PERF_EVENT_STATE_OFF
;
1042 static void perf_group_detach(struct perf_event
*event
)
1044 struct perf_event
*sibling
, *tmp
;
1045 struct list_head
*list
= NULL
;
1048 * We can have double detach due to exit/hot-unplug + close.
1050 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1053 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1056 * If this is a sibling, remove it from its group.
1058 if (event
->group_leader
!= event
) {
1059 list_del_init(&event
->group_entry
);
1060 event
->group_leader
->nr_siblings
--;
1064 if (!list_empty(&event
->group_entry
))
1065 list
= &event
->group_entry
;
1068 * If this was a group event with sibling events then
1069 * upgrade the siblings to singleton events by adding them
1070 * to whatever list we are on.
1072 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1074 list_move_tail(&sibling
->group_entry
, list
);
1075 sibling
->group_leader
= sibling
;
1077 /* Inherit group flags from the previous leader */
1078 sibling
->group_flags
= event
->group_flags
;
1082 perf_event__header_size(event
->group_leader
);
1084 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1085 perf_event__header_size(tmp
);
1089 event_filter_match(struct perf_event
*event
)
1091 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1092 && perf_cgroup_match(event
);
1096 event_sched_out(struct perf_event
*event
,
1097 struct perf_cpu_context
*cpuctx
,
1098 struct perf_event_context
*ctx
)
1100 u64 tstamp
= perf_event_time(event
);
1103 * An event which could not be activated because of
1104 * filter mismatch still needs to have its timings
1105 * maintained, otherwise bogus information is return
1106 * via read() for time_enabled, time_running:
1108 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1109 && !event_filter_match(event
)) {
1110 delta
= tstamp
- event
->tstamp_stopped
;
1111 event
->tstamp_running
+= delta
;
1112 event
->tstamp_stopped
= tstamp
;
1115 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1118 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1119 if (event
->pending_disable
) {
1120 event
->pending_disable
= 0;
1121 event
->state
= PERF_EVENT_STATE_OFF
;
1123 event
->tstamp_stopped
= tstamp
;
1124 event
->pmu
->del(event
, 0);
1127 if (!is_software_event(event
))
1128 cpuctx
->active_oncpu
--;
1130 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1131 cpuctx
->exclusive
= 0;
1135 group_sched_out(struct perf_event
*group_event
,
1136 struct perf_cpu_context
*cpuctx
,
1137 struct perf_event_context
*ctx
)
1139 struct perf_event
*event
;
1140 int state
= group_event
->state
;
1142 event_sched_out(group_event
, cpuctx
, ctx
);
1145 * Schedule out siblings (if any):
1147 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1148 event_sched_out(event
, cpuctx
, ctx
);
1150 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1151 cpuctx
->exclusive
= 0;
1155 * Cross CPU call to remove a performance event
1157 * We disable the event on the hardware level first. After that we
1158 * remove it from the context list.
1160 static int __perf_remove_from_context(void *info
)
1162 struct perf_event
*event
= info
;
1163 struct perf_event_context
*ctx
= event
->ctx
;
1164 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1166 raw_spin_lock(&ctx
->lock
);
1167 event_sched_out(event
, cpuctx
, ctx
);
1168 list_del_event(event
, ctx
);
1169 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1171 cpuctx
->task_ctx
= NULL
;
1173 raw_spin_unlock(&ctx
->lock
);
1180 * Remove the event from a task's (or a CPU's) list of events.
1182 * CPU events are removed with a smp call. For task events we only
1183 * call when the task is on a CPU.
1185 * If event->ctx is a cloned context, callers must make sure that
1186 * every task struct that event->ctx->task could possibly point to
1187 * remains valid. This is OK when called from perf_release since
1188 * that only calls us on the top-level context, which can't be a clone.
1189 * When called from perf_event_exit_task, it's OK because the
1190 * context has been detached from its task.
1192 static void perf_remove_from_context(struct perf_event
*event
)
1194 struct perf_event_context
*ctx
= event
->ctx
;
1195 struct task_struct
*task
= ctx
->task
;
1197 lockdep_assert_held(&ctx
->mutex
);
1201 * Per cpu events are removed via an smp call and
1202 * the removal is always successful.
1204 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1209 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1212 raw_spin_lock_irq(&ctx
->lock
);
1214 * If we failed to find a running task, but find the context active now
1215 * that we've acquired the ctx->lock, retry.
1217 if (ctx
->is_active
) {
1218 raw_spin_unlock_irq(&ctx
->lock
);
1223 * Since the task isn't running, its safe to remove the event, us
1224 * holding the ctx->lock ensures the task won't get scheduled in.
1226 list_del_event(event
, ctx
);
1227 raw_spin_unlock_irq(&ctx
->lock
);
1231 * Cross CPU call to disable a performance event
1233 static int __perf_event_disable(void *info
)
1235 struct perf_event
*event
= info
;
1236 struct perf_event_context
*ctx
= event
->ctx
;
1237 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1240 * If this is a per-task event, need to check whether this
1241 * event's task is the current task on this cpu.
1243 * Can trigger due to concurrent perf_event_context_sched_out()
1244 * flipping contexts around.
1246 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1249 raw_spin_lock(&ctx
->lock
);
1252 * If the event is on, turn it off.
1253 * If it is in error state, leave it in error state.
1255 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1256 update_context_time(ctx
);
1257 update_cgrp_time_from_event(event
);
1258 update_group_times(event
);
1259 if (event
== event
->group_leader
)
1260 group_sched_out(event
, cpuctx
, ctx
);
1262 event_sched_out(event
, cpuctx
, ctx
);
1263 event
->state
= PERF_EVENT_STATE_OFF
;
1266 raw_spin_unlock(&ctx
->lock
);
1274 * If event->ctx is a cloned context, callers must make sure that
1275 * every task struct that event->ctx->task could possibly point to
1276 * remains valid. This condition is satisifed when called through
1277 * perf_event_for_each_child or perf_event_for_each because they
1278 * hold the top-level event's child_mutex, so any descendant that
1279 * goes to exit will block in sync_child_event.
1280 * When called from perf_pending_event it's OK because event->ctx
1281 * is the current context on this CPU and preemption is disabled,
1282 * hence we can't get into perf_event_task_sched_out for this context.
1284 void perf_event_disable(struct perf_event
*event
)
1286 struct perf_event_context
*ctx
= event
->ctx
;
1287 struct task_struct
*task
= ctx
->task
;
1291 * Disable the event on the cpu that it's on
1293 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1298 if (!task_function_call(task
, __perf_event_disable
, event
))
1301 raw_spin_lock_irq(&ctx
->lock
);
1303 * If the event is still active, we need to retry the cross-call.
1305 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1306 raw_spin_unlock_irq(&ctx
->lock
);
1308 * Reload the task pointer, it might have been changed by
1309 * a concurrent perf_event_context_sched_out().
1316 * Since we have the lock this context can't be scheduled
1317 * in, so we can change the state safely.
1319 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1320 update_group_times(event
);
1321 event
->state
= PERF_EVENT_STATE_OFF
;
1323 raw_spin_unlock_irq(&ctx
->lock
);
1326 static void perf_set_shadow_time(struct perf_event
*event
,
1327 struct perf_event_context
*ctx
,
1331 * use the correct time source for the time snapshot
1333 * We could get by without this by leveraging the
1334 * fact that to get to this function, the caller
1335 * has most likely already called update_context_time()
1336 * and update_cgrp_time_xx() and thus both timestamp
1337 * are identical (or very close). Given that tstamp is,
1338 * already adjusted for cgroup, we could say that:
1339 * tstamp - ctx->timestamp
1341 * tstamp - cgrp->timestamp.
1343 * Then, in perf_output_read(), the calculation would
1344 * work with no changes because:
1345 * - event is guaranteed scheduled in
1346 * - no scheduled out in between
1347 * - thus the timestamp would be the same
1349 * But this is a bit hairy.
1351 * So instead, we have an explicit cgroup call to remain
1352 * within the time time source all along. We believe it
1353 * is cleaner and simpler to understand.
1355 if (is_cgroup_event(event
))
1356 perf_cgroup_set_shadow_time(event
, tstamp
);
1358 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1361 #define MAX_INTERRUPTS (~0ULL)
1363 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1366 event_sched_in(struct perf_event
*event
,
1367 struct perf_cpu_context
*cpuctx
,
1368 struct perf_event_context
*ctx
)
1370 u64 tstamp
= perf_event_time(event
);
1372 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1375 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1376 event
->oncpu
= smp_processor_id();
1379 * Unthrottle events, since we scheduled we might have missed several
1380 * ticks already, also for a heavily scheduling task there is little
1381 * guarantee it'll get a tick in a timely manner.
1383 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1384 perf_log_throttle(event
, 1);
1385 event
->hw
.interrupts
= 0;
1389 * The new state must be visible before we turn it on in the hardware:
1393 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1394 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1399 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1401 perf_set_shadow_time(event
, ctx
, tstamp
);
1403 if (!is_software_event(event
))
1404 cpuctx
->active_oncpu
++;
1407 if (event
->attr
.exclusive
)
1408 cpuctx
->exclusive
= 1;
1414 group_sched_in(struct perf_event
*group_event
,
1415 struct perf_cpu_context
*cpuctx
,
1416 struct perf_event_context
*ctx
)
1418 struct perf_event
*event
, *partial_group
= NULL
;
1419 struct pmu
*pmu
= group_event
->pmu
;
1420 u64 now
= ctx
->time
;
1421 bool simulate
= false;
1423 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1426 pmu
->start_txn(pmu
);
1428 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1429 pmu
->cancel_txn(pmu
);
1434 * Schedule in siblings as one group (if any):
1436 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1437 if (event_sched_in(event
, cpuctx
, ctx
)) {
1438 partial_group
= event
;
1443 if (!pmu
->commit_txn(pmu
))
1448 * Groups can be scheduled in as one unit only, so undo any
1449 * partial group before returning:
1450 * The events up to the failed event are scheduled out normally,
1451 * tstamp_stopped will be updated.
1453 * The failed events and the remaining siblings need to have
1454 * their timings updated as if they had gone thru event_sched_in()
1455 * and event_sched_out(). This is required to get consistent timings
1456 * across the group. This also takes care of the case where the group
1457 * could never be scheduled by ensuring tstamp_stopped is set to mark
1458 * the time the event was actually stopped, such that time delta
1459 * calculation in update_event_times() is correct.
1461 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1462 if (event
== partial_group
)
1466 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1467 event
->tstamp_stopped
= now
;
1469 event_sched_out(event
, cpuctx
, ctx
);
1472 event_sched_out(group_event
, cpuctx
, ctx
);
1474 pmu
->cancel_txn(pmu
);
1480 * Work out whether we can put this event group on the CPU now.
1482 static int group_can_go_on(struct perf_event
*event
,
1483 struct perf_cpu_context
*cpuctx
,
1487 * Groups consisting entirely of software events can always go on.
1489 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1492 * If an exclusive group is already on, no other hardware
1495 if (cpuctx
->exclusive
)
1498 * If this group is exclusive and there are already
1499 * events on the CPU, it can't go on.
1501 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1504 * Otherwise, try to add it if all previous groups were able
1510 static void add_event_to_ctx(struct perf_event
*event
,
1511 struct perf_event_context
*ctx
)
1513 u64 tstamp
= perf_event_time(event
);
1515 list_add_event(event
, ctx
);
1516 perf_group_attach(event
);
1517 event
->tstamp_enabled
= tstamp
;
1518 event
->tstamp_running
= tstamp
;
1519 event
->tstamp_stopped
= tstamp
;
1522 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1524 ctx_sched_in(struct perf_event_context
*ctx
,
1525 struct perf_cpu_context
*cpuctx
,
1526 enum event_type_t event_type
,
1527 struct task_struct
*task
);
1529 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1530 struct perf_event_context
*ctx
,
1531 struct task_struct
*task
)
1533 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1535 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1536 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1538 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1542 * Cross CPU call to install and enable a performance event
1544 * Must be called with ctx->mutex held
1546 static int __perf_install_in_context(void *info
)
1548 struct perf_event
*event
= info
;
1549 struct perf_event_context
*ctx
= event
->ctx
;
1550 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1551 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1552 struct task_struct
*task
= current
;
1554 perf_ctx_lock(cpuctx
, task_ctx
);
1555 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1558 * If there was an active task_ctx schedule it out.
1561 task_ctx_sched_out(task_ctx
);
1564 * If the context we're installing events in is not the
1565 * active task_ctx, flip them.
1567 if (ctx
->task
&& task_ctx
!= ctx
) {
1569 raw_spin_unlock(&task_ctx
->lock
);
1570 raw_spin_lock(&ctx
->lock
);
1575 cpuctx
->task_ctx
= task_ctx
;
1576 task
= task_ctx
->task
;
1579 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1581 update_context_time(ctx
);
1583 * update cgrp time only if current cgrp
1584 * matches event->cgrp. Must be done before
1585 * calling add_event_to_ctx()
1587 update_cgrp_time_from_event(event
);
1589 add_event_to_ctx(event
, ctx
);
1592 * Schedule everything back in
1594 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1596 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1597 perf_ctx_unlock(cpuctx
, task_ctx
);
1603 * Attach a performance event to a context
1605 * First we add the event to the list with the hardware enable bit
1606 * in event->hw_config cleared.
1608 * If the event is attached to a task which is on a CPU we use a smp
1609 * call to enable it in the task context. The task might have been
1610 * scheduled away, but we check this in the smp call again.
1613 perf_install_in_context(struct perf_event_context
*ctx
,
1614 struct perf_event
*event
,
1617 struct task_struct
*task
= ctx
->task
;
1619 lockdep_assert_held(&ctx
->mutex
);
1625 * Per cpu events are installed via an smp call and
1626 * the install is always successful.
1628 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1633 if (!task_function_call(task
, __perf_install_in_context
, event
))
1636 raw_spin_lock_irq(&ctx
->lock
);
1638 * If we failed to find a running task, but find the context active now
1639 * that we've acquired the ctx->lock, retry.
1641 if (ctx
->is_active
) {
1642 raw_spin_unlock_irq(&ctx
->lock
);
1647 * Since the task isn't running, its safe to add the event, us holding
1648 * the ctx->lock ensures the task won't get scheduled in.
1650 add_event_to_ctx(event
, ctx
);
1651 raw_spin_unlock_irq(&ctx
->lock
);
1655 * Put a event into inactive state and update time fields.
1656 * Enabling the leader of a group effectively enables all
1657 * the group members that aren't explicitly disabled, so we
1658 * have to update their ->tstamp_enabled also.
1659 * Note: this works for group members as well as group leaders
1660 * since the non-leader members' sibling_lists will be empty.
1662 static void __perf_event_mark_enabled(struct perf_event
*event
,
1663 struct perf_event_context
*ctx
)
1665 struct perf_event
*sub
;
1666 u64 tstamp
= perf_event_time(event
);
1668 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1669 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1670 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1671 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1672 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1677 * Cross CPU call to enable a performance event
1679 static int __perf_event_enable(void *info
)
1681 struct perf_event
*event
= info
;
1682 struct perf_event_context
*ctx
= event
->ctx
;
1683 struct perf_event
*leader
= event
->group_leader
;
1684 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1687 if (WARN_ON_ONCE(!ctx
->is_active
))
1690 raw_spin_lock(&ctx
->lock
);
1691 update_context_time(ctx
);
1693 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1697 * set current task's cgroup time reference point
1699 perf_cgroup_set_timestamp(current
, ctx
);
1701 __perf_event_mark_enabled(event
, ctx
);
1703 if (!event_filter_match(event
)) {
1704 if (is_cgroup_event(event
))
1705 perf_cgroup_defer_enabled(event
);
1710 * If the event is in a group and isn't the group leader,
1711 * then don't put it on unless the group is on.
1713 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1716 if (!group_can_go_on(event
, cpuctx
, 1)) {
1719 if (event
== leader
)
1720 err
= group_sched_in(event
, cpuctx
, ctx
);
1722 err
= event_sched_in(event
, cpuctx
, ctx
);
1727 * If this event can't go on and it's part of a
1728 * group, then the whole group has to come off.
1730 if (leader
!= event
)
1731 group_sched_out(leader
, cpuctx
, ctx
);
1732 if (leader
->attr
.pinned
) {
1733 update_group_times(leader
);
1734 leader
->state
= PERF_EVENT_STATE_ERROR
;
1739 raw_spin_unlock(&ctx
->lock
);
1747 * If event->ctx is a cloned context, callers must make sure that
1748 * every task struct that event->ctx->task could possibly point to
1749 * remains valid. This condition is satisfied when called through
1750 * perf_event_for_each_child or perf_event_for_each as described
1751 * for perf_event_disable.
1753 void perf_event_enable(struct perf_event
*event
)
1755 struct perf_event_context
*ctx
= event
->ctx
;
1756 struct task_struct
*task
= ctx
->task
;
1760 * Enable the event on the cpu that it's on
1762 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1766 raw_spin_lock_irq(&ctx
->lock
);
1767 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1771 * If the event is in error state, clear that first.
1772 * That way, if we see the event in error state below, we
1773 * know that it has gone back into error state, as distinct
1774 * from the task having been scheduled away before the
1775 * cross-call arrived.
1777 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1778 event
->state
= PERF_EVENT_STATE_OFF
;
1781 if (!ctx
->is_active
) {
1782 __perf_event_mark_enabled(event
, ctx
);
1786 raw_spin_unlock_irq(&ctx
->lock
);
1788 if (!task_function_call(task
, __perf_event_enable
, event
))
1791 raw_spin_lock_irq(&ctx
->lock
);
1794 * If the context is active and the event is still off,
1795 * we need to retry the cross-call.
1797 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1799 * task could have been flipped by a concurrent
1800 * perf_event_context_sched_out()
1807 raw_spin_unlock_irq(&ctx
->lock
);
1810 int perf_event_refresh(struct perf_event
*event
, int refresh
)
1813 * not supported on inherited events
1815 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1818 atomic_add(refresh
, &event
->event_limit
);
1819 perf_event_enable(event
);
1823 EXPORT_SYMBOL_GPL(perf_event_refresh
);
1825 static void ctx_sched_out(struct perf_event_context
*ctx
,
1826 struct perf_cpu_context
*cpuctx
,
1827 enum event_type_t event_type
)
1829 struct perf_event
*event
;
1830 int is_active
= ctx
->is_active
;
1832 ctx
->is_active
&= ~event_type
;
1833 if (likely(!ctx
->nr_events
))
1836 update_context_time(ctx
);
1837 update_cgrp_time_from_cpuctx(cpuctx
);
1838 if (!ctx
->nr_active
)
1841 perf_pmu_disable(ctx
->pmu
);
1842 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
1843 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1844 group_sched_out(event
, cpuctx
, ctx
);
1847 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
1848 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1849 group_sched_out(event
, cpuctx
, ctx
);
1851 perf_pmu_enable(ctx
->pmu
);
1855 * Test whether two contexts are equivalent, i.e. whether they
1856 * have both been cloned from the same version of the same context
1857 * and they both have the same number of enabled events.
1858 * If the number of enabled events is the same, then the set
1859 * of enabled events should be the same, because these are both
1860 * inherited contexts, therefore we can't access individual events
1861 * in them directly with an fd; we can only enable/disable all
1862 * events via prctl, or enable/disable all events in a family
1863 * via ioctl, which will have the same effect on both contexts.
1865 static int context_equiv(struct perf_event_context
*ctx1
,
1866 struct perf_event_context
*ctx2
)
1868 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1869 && ctx1
->parent_gen
== ctx2
->parent_gen
1870 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1873 static void __perf_event_sync_stat(struct perf_event
*event
,
1874 struct perf_event
*next_event
)
1878 if (!event
->attr
.inherit_stat
)
1882 * Update the event value, we cannot use perf_event_read()
1883 * because we're in the middle of a context switch and have IRQs
1884 * disabled, which upsets smp_call_function_single(), however
1885 * we know the event must be on the current CPU, therefore we
1886 * don't need to use it.
1888 switch (event
->state
) {
1889 case PERF_EVENT_STATE_ACTIVE
:
1890 event
->pmu
->read(event
);
1893 case PERF_EVENT_STATE_INACTIVE
:
1894 update_event_times(event
);
1902 * In order to keep per-task stats reliable we need to flip the event
1903 * values when we flip the contexts.
1905 value
= local64_read(&next_event
->count
);
1906 value
= local64_xchg(&event
->count
, value
);
1907 local64_set(&next_event
->count
, value
);
1909 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1910 swap(event
->total_time_running
, next_event
->total_time_running
);
1913 * Since we swizzled the values, update the user visible data too.
1915 perf_event_update_userpage(event
);
1916 perf_event_update_userpage(next_event
);
1919 #define list_next_entry(pos, member) \
1920 list_entry(pos->member.next, typeof(*pos), member)
1922 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1923 struct perf_event_context
*next_ctx
)
1925 struct perf_event
*event
, *next_event
;
1930 update_context_time(ctx
);
1932 event
= list_first_entry(&ctx
->event_list
,
1933 struct perf_event
, event_entry
);
1935 next_event
= list_first_entry(&next_ctx
->event_list
,
1936 struct perf_event
, event_entry
);
1938 while (&event
->event_entry
!= &ctx
->event_list
&&
1939 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1941 __perf_event_sync_stat(event
, next_event
);
1943 event
= list_next_entry(event
, event_entry
);
1944 next_event
= list_next_entry(next_event
, event_entry
);
1948 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1949 struct task_struct
*next
)
1951 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1952 struct perf_event_context
*next_ctx
;
1953 struct perf_event_context
*parent
;
1954 struct perf_cpu_context
*cpuctx
;
1960 cpuctx
= __get_cpu_context(ctx
);
1961 if (!cpuctx
->task_ctx
)
1965 parent
= rcu_dereference(ctx
->parent_ctx
);
1966 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1967 if (parent
&& next_ctx
&&
1968 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1970 * Looks like the two contexts are clones, so we might be
1971 * able to optimize the context switch. We lock both
1972 * contexts and check that they are clones under the
1973 * lock (including re-checking that neither has been
1974 * uncloned in the meantime). It doesn't matter which
1975 * order we take the locks because no other cpu could
1976 * be trying to lock both of these tasks.
1978 raw_spin_lock(&ctx
->lock
);
1979 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1980 if (context_equiv(ctx
, next_ctx
)) {
1982 * XXX do we need a memory barrier of sorts
1983 * wrt to rcu_dereference() of perf_event_ctxp
1985 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1986 next
->perf_event_ctxp
[ctxn
] = ctx
;
1988 next_ctx
->task
= task
;
1991 perf_event_sync_stat(ctx
, next_ctx
);
1993 raw_spin_unlock(&next_ctx
->lock
);
1994 raw_spin_unlock(&ctx
->lock
);
1999 raw_spin_lock(&ctx
->lock
);
2000 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2001 cpuctx
->task_ctx
= NULL
;
2002 raw_spin_unlock(&ctx
->lock
);
2006 #define for_each_task_context_nr(ctxn) \
2007 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2010 * Called from scheduler to remove the events of the current task,
2011 * with interrupts disabled.
2013 * We stop each event and update the event value in event->count.
2015 * This does not protect us against NMI, but disable()
2016 * sets the disabled bit in the control field of event _before_
2017 * accessing the event control register. If a NMI hits, then it will
2018 * not restart the event.
2020 void __perf_event_task_sched_out(struct task_struct
*task
,
2021 struct task_struct
*next
)
2025 for_each_task_context_nr(ctxn
)
2026 perf_event_context_sched_out(task
, ctxn
, next
);
2029 * if cgroup events exist on this CPU, then we need
2030 * to check if we have to switch out PMU state.
2031 * cgroup event are system-wide mode only
2033 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2034 perf_cgroup_sched_out(task
, next
);
2037 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2039 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2041 if (!cpuctx
->task_ctx
)
2044 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2047 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2048 cpuctx
->task_ctx
= NULL
;
2052 * Called with IRQs disabled
2054 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2055 enum event_type_t event_type
)
2057 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2061 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2062 struct perf_cpu_context
*cpuctx
)
2064 struct perf_event
*event
;
2066 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2067 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2069 if (!event_filter_match(event
))
2072 /* may need to reset tstamp_enabled */
2073 if (is_cgroup_event(event
))
2074 perf_cgroup_mark_enabled(event
, ctx
);
2076 if (group_can_go_on(event
, cpuctx
, 1))
2077 group_sched_in(event
, cpuctx
, ctx
);
2080 * If this pinned group hasn't been scheduled,
2081 * put it in error state.
2083 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2084 update_group_times(event
);
2085 event
->state
= PERF_EVENT_STATE_ERROR
;
2091 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2092 struct perf_cpu_context
*cpuctx
)
2094 struct perf_event
*event
;
2097 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2098 /* Ignore events in OFF or ERROR state */
2099 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2102 * Listen to the 'cpu' scheduling filter constraint
2105 if (!event_filter_match(event
))
2108 /* may need to reset tstamp_enabled */
2109 if (is_cgroup_event(event
))
2110 perf_cgroup_mark_enabled(event
, ctx
);
2112 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2113 if (group_sched_in(event
, cpuctx
, ctx
))
2120 ctx_sched_in(struct perf_event_context
*ctx
,
2121 struct perf_cpu_context
*cpuctx
,
2122 enum event_type_t event_type
,
2123 struct task_struct
*task
)
2126 int is_active
= ctx
->is_active
;
2128 ctx
->is_active
|= event_type
;
2129 if (likely(!ctx
->nr_events
))
2133 ctx
->timestamp
= now
;
2134 perf_cgroup_set_timestamp(task
, ctx
);
2136 * First go through the list and put on any pinned groups
2137 * in order to give them the best chance of going on.
2139 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2140 ctx_pinned_sched_in(ctx
, cpuctx
);
2142 /* Then walk through the lower prio flexible groups */
2143 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2144 ctx_flexible_sched_in(ctx
, cpuctx
);
2147 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2148 enum event_type_t event_type
,
2149 struct task_struct
*task
)
2151 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2153 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2156 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2157 struct task_struct
*task
)
2159 struct perf_cpu_context
*cpuctx
;
2161 cpuctx
= __get_cpu_context(ctx
);
2162 if (cpuctx
->task_ctx
== ctx
)
2165 perf_ctx_lock(cpuctx
, ctx
);
2166 perf_pmu_disable(ctx
->pmu
);
2168 * We want to keep the following priority order:
2169 * cpu pinned (that don't need to move), task pinned,
2170 * cpu flexible, task flexible.
2172 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2174 perf_event_sched_in(cpuctx
, ctx
, task
);
2176 cpuctx
->task_ctx
= ctx
;
2178 perf_pmu_enable(ctx
->pmu
);
2179 perf_ctx_unlock(cpuctx
, ctx
);
2182 * Since these rotations are per-cpu, we need to ensure the
2183 * cpu-context we got scheduled on is actually rotating.
2185 perf_pmu_rotate_start(ctx
->pmu
);
2189 * Called from scheduler to add the events of the current task
2190 * with interrupts disabled.
2192 * We restore the event value and then enable it.
2194 * This does not protect us against NMI, but enable()
2195 * sets the enabled bit in the control field of event _before_
2196 * accessing the event control register. If a NMI hits, then it will
2197 * keep the event running.
2199 void __perf_event_task_sched_in(struct task_struct
*prev
,
2200 struct task_struct
*task
)
2202 struct perf_event_context
*ctx
;
2205 for_each_task_context_nr(ctxn
) {
2206 ctx
= task
->perf_event_ctxp
[ctxn
];
2210 perf_event_context_sched_in(ctx
, task
);
2213 * if cgroup events exist on this CPU, then we need
2214 * to check if we have to switch in PMU state.
2215 * cgroup event are system-wide mode only
2217 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2218 perf_cgroup_sched_in(prev
, task
);
2221 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2223 u64 frequency
= event
->attr
.sample_freq
;
2224 u64 sec
= NSEC_PER_SEC
;
2225 u64 divisor
, dividend
;
2227 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2229 count_fls
= fls64(count
);
2230 nsec_fls
= fls64(nsec
);
2231 frequency_fls
= fls64(frequency
);
2235 * We got @count in @nsec, with a target of sample_freq HZ
2236 * the target period becomes:
2239 * period = -------------------
2240 * @nsec * sample_freq
2245 * Reduce accuracy by one bit such that @a and @b converge
2246 * to a similar magnitude.
2248 #define REDUCE_FLS(a, b) \
2250 if (a##_fls > b##_fls) { \
2260 * Reduce accuracy until either term fits in a u64, then proceed with
2261 * the other, so that finally we can do a u64/u64 division.
2263 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2264 REDUCE_FLS(nsec
, frequency
);
2265 REDUCE_FLS(sec
, count
);
2268 if (count_fls
+ sec_fls
> 64) {
2269 divisor
= nsec
* frequency
;
2271 while (count_fls
+ sec_fls
> 64) {
2272 REDUCE_FLS(count
, sec
);
2276 dividend
= count
* sec
;
2278 dividend
= count
* sec
;
2280 while (nsec_fls
+ frequency_fls
> 64) {
2281 REDUCE_FLS(nsec
, frequency
);
2285 divisor
= nsec
* frequency
;
2291 return div64_u64(dividend
, divisor
);
2294 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2296 struct hw_perf_event
*hwc
= &event
->hw
;
2297 s64 period
, sample_period
;
2300 period
= perf_calculate_period(event
, nsec
, count
);
2302 delta
= (s64
)(period
- hwc
->sample_period
);
2303 delta
= (delta
+ 7) / 8; /* low pass filter */
2305 sample_period
= hwc
->sample_period
+ delta
;
2310 hwc
->sample_period
= sample_period
;
2312 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2313 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2314 local64_set(&hwc
->period_left
, 0);
2315 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2319 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
2321 struct perf_event
*event
;
2322 struct hw_perf_event
*hwc
;
2323 u64 interrupts
, now
;
2326 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2327 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2330 if (!event_filter_match(event
))
2335 interrupts
= hwc
->interrupts
;
2336 hwc
->interrupts
= 0;
2339 * unthrottle events on the tick
2341 if (interrupts
== MAX_INTERRUPTS
) {
2342 perf_log_throttle(event
, 1);
2343 event
->pmu
->start(event
, 0);
2346 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2349 event
->pmu
->read(event
);
2350 now
= local64_read(&event
->count
);
2351 delta
= now
- hwc
->freq_count_stamp
;
2352 hwc
->freq_count_stamp
= now
;
2355 perf_adjust_period(event
, period
, delta
);
2360 * Round-robin a context's events:
2362 static void rotate_ctx(struct perf_event_context
*ctx
)
2365 * Rotate the first entry last of non-pinned groups. Rotation might be
2366 * disabled by the inheritance code.
2368 if (!ctx
->rotate_disable
)
2369 list_rotate_left(&ctx
->flexible_groups
);
2373 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2374 * because they're strictly cpu affine and rotate_start is called with IRQs
2375 * disabled, while rotate_context is called from IRQ context.
2377 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2379 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
2380 struct perf_event_context
*ctx
= NULL
;
2381 int rotate
= 0, remove
= 1;
2383 if (cpuctx
->ctx
.nr_events
) {
2385 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2389 ctx
= cpuctx
->task_ctx
;
2390 if (ctx
&& ctx
->nr_events
) {
2392 if (ctx
->nr_events
!= ctx
->nr_active
)
2396 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2397 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2398 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
2400 perf_ctx_adjust_freq(ctx
, interval
);
2405 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2407 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2409 rotate_ctx(&cpuctx
->ctx
);
2413 perf_event_sched_in(cpuctx
, ctx
, current
);
2417 list_del_init(&cpuctx
->rotation_list
);
2419 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2420 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2423 void perf_event_task_tick(void)
2425 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2426 struct perf_cpu_context
*cpuctx
, *tmp
;
2428 WARN_ON(!irqs_disabled());
2430 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2431 if (cpuctx
->jiffies_interval
== 1 ||
2432 !(jiffies
% cpuctx
->jiffies_interval
))
2433 perf_rotate_context(cpuctx
);
2437 static int event_enable_on_exec(struct perf_event
*event
,
2438 struct perf_event_context
*ctx
)
2440 if (!event
->attr
.enable_on_exec
)
2443 event
->attr
.enable_on_exec
= 0;
2444 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2447 __perf_event_mark_enabled(event
, ctx
);
2453 * Enable all of a task's events that have been marked enable-on-exec.
2454 * This expects task == current.
2456 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2458 struct perf_event
*event
;
2459 unsigned long flags
;
2463 local_irq_save(flags
);
2464 if (!ctx
|| !ctx
->nr_events
)
2468 * We must ctxsw out cgroup events to avoid conflict
2469 * when invoking perf_task_event_sched_in() later on
2470 * in this function. Otherwise we end up trying to
2471 * ctxswin cgroup events which are already scheduled
2474 perf_cgroup_sched_out(current
, NULL
);
2476 raw_spin_lock(&ctx
->lock
);
2477 task_ctx_sched_out(ctx
);
2479 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2480 ret
= event_enable_on_exec(event
, ctx
);
2485 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2486 ret
= event_enable_on_exec(event
, ctx
);
2492 * Unclone this context if we enabled any event.
2497 raw_spin_unlock(&ctx
->lock
);
2500 * Also calls ctxswin for cgroup events, if any:
2502 perf_event_context_sched_in(ctx
, ctx
->task
);
2504 local_irq_restore(flags
);
2508 * Cross CPU call to read the hardware event
2510 static void __perf_event_read(void *info
)
2512 struct perf_event
*event
= info
;
2513 struct perf_event_context
*ctx
= event
->ctx
;
2514 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2517 * If this is a task context, we need to check whether it is
2518 * the current task context of this cpu. If not it has been
2519 * scheduled out before the smp call arrived. In that case
2520 * event->count would have been updated to a recent sample
2521 * when the event was scheduled out.
2523 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2526 raw_spin_lock(&ctx
->lock
);
2527 if (ctx
->is_active
) {
2528 update_context_time(ctx
);
2529 update_cgrp_time_from_event(event
);
2531 update_event_times(event
);
2532 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2533 event
->pmu
->read(event
);
2534 raw_spin_unlock(&ctx
->lock
);
2537 static inline u64
perf_event_count(struct perf_event
*event
)
2539 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2542 static u64
perf_event_read(struct perf_event
*event
)
2545 * If event is enabled and currently active on a CPU, update the
2546 * value in the event structure:
2548 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2549 smp_call_function_single(event
->oncpu
,
2550 __perf_event_read
, event
, 1);
2551 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2552 struct perf_event_context
*ctx
= event
->ctx
;
2553 unsigned long flags
;
2555 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2557 * may read while context is not active
2558 * (e.g., thread is blocked), in that case
2559 * we cannot update context time
2561 if (ctx
->is_active
) {
2562 update_context_time(ctx
);
2563 update_cgrp_time_from_event(event
);
2565 update_event_times(event
);
2566 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2569 return perf_event_count(event
);
2576 struct callchain_cpus_entries
{
2577 struct rcu_head rcu_head
;
2578 struct perf_callchain_entry
*cpu_entries
[0];
2581 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
2582 static atomic_t nr_callchain_events
;
2583 static DEFINE_MUTEX(callchain_mutex
);
2584 struct callchain_cpus_entries
*callchain_cpus_entries
;
2587 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
2588 struct pt_regs
*regs
)
2592 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
2593 struct pt_regs
*regs
)
2597 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
2599 struct callchain_cpus_entries
*entries
;
2602 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
2604 for_each_possible_cpu(cpu
)
2605 kfree(entries
->cpu_entries
[cpu
]);
2610 static void release_callchain_buffers(void)
2612 struct callchain_cpus_entries
*entries
;
2614 entries
= callchain_cpus_entries
;
2615 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2616 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2619 static int alloc_callchain_buffers(void)
2623 struct callchain_cpus_entries
*entries
;
2626 * We can't use the percpu allocation API for data that can be
2627 * accessed from NMI. Use a temporary manual per cpu allocation
2628 * until that gets sorted out.
2630 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2632 entries
= kzalloc(size
, GFP_KERNEL
);
2636 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2638 for_each_possible_cpu(cpu
) {
2639 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2641 if (!entries
->cpu_entries
[cpu
])
2645 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2650 for_each_possible_cpu(cpu
)
2651 kfree(entries
->cpu_entries
[cpu
]);
2657 static int get_callchain_buffers(void)
2662 mutex_lock(&callchain_mutex
);
2664 count
= atomic_inc_return(&nr_callchain_events
);
2665 if (WARN_ON_ONCE(count
< 1)) {
2671 /* If the allocation failed, give up */
2672 if (!callchain_cpus_entries
)
2677 err
= alloc_callchain_buffers();
2679 release_callchain_buffers();
2681 mutex_unlock(&callchain_mutex
);
2686 static void put_callchain_buffers(void)
2688 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2689 release_callchain_buffers();
2690 mutex_unlock(&callchain_mutex
);
2694 static int get_recursion_context(int *recursion
)
2702 else if (in_softirq())
2707 if (recursion
[rctx
])
2716 static inline void put_recursion_context(int *recursion
, int rctx
)
2722 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2725 struct callchain_cpus_entries
*entries
;
2727 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2731 entries
= rcu_dereference(callchain_cpus_entries
);
2735 cpu
= smp_processor_id();
2737 return &entries
->cpu_entries
[cpu
][*rctx
];
2741 put_callchain_entry(int rctx
)
2743 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2746 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2749 struct perf_callchain_entry
*entry
;
2752 entry
= get_callchain_entry(&rctx
);
2761 if (!user_mode(regs
)) {
2762 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2763 perf_callchain_kernel(entry
, regs
);
2765 regs
= task_pt_regs(current
);
2771 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2772 perf_callchain_user(entry
, regs
);
2776 put_callchain_entry(rctx
);
2782 * Initialize the perf_event context in a task_struct:
2784 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2786 raw_spin_lock_init(&ctx
->lock
);
2787 mutex_init(&ctx
->mutex
);
2788 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2789 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2790 INIT_LIST_HEAD(&ctx
->event_list
);
2791 atomic_set(&ctx
->refcount
, 1);
2794 static struct perf_event_context
*
2795 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2797 struct perf_event_context
*ctx
;
2799 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2803 __perf_event_init_context(ctx
);
2806 get_task_struct(task
);
2813 static struct task_struct
*
2814 find_lively_task_by_vpid(pid_t vpid
)
2816 struct task_struct
*task
;
2823 task
= find_task_by_vpid(vpid
);
2825 get_task_struct(task
);
2829 return ERR_PTR(-ESRCH
);
2831 /* Reuse ptrace permission checks for now. */
2833 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2838 put_task_struct(task
);
2839 return ERR_PTR(err
);
2844 * Returns a matching context with refcount and pincount.
2846 static struct perf_event_context
*
2847 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2849 struct perf_event_context
*ctx
;
2850 struct perf_cpu_context
*cpuctx
;
2851 unsigned long flags
;
2855 /* Must be root to operate on a CPU event: */
2856 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2857 return ERR_PTR(-EACCES
);
2860 * We could be clever and allow to attach a event to an
2861 * offline CPU and activate it when the CPU comes up, but
2864 if (!cpu_online(cpu
))
2865 return ERR_PTR(-ENODEV
);
2867 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2876 ctxn
= pmu
->task_ctx_nr
;
2881 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2885 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2887 ctx
= alloc_perf_context(pmu
, task
);
2893 mutex_lock(&task
->perf_event_mutex
);
2895 * If it has already passed perf_event_exit_task().
2896 * we must see PF_EXITING, it takes this mutex too.
2898 if (task
->flags
& PF_EXITING
)
2900 else if (task
->perf_event_ctxp
[ctxn
])
2905 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2907 mutex_unlock(&task
->perf_event_mutex
);
2909 if (unlikely(err
)) {
2921 return ERR_PTR(err
);
2924 static void perf_event_free_filter(struct perf_event
*event
);
2926 static void free_event_rcu(struct rcu_head
*head
)
2928 struct perf_event
*event
;
2930 event
= container_of(head
, struct perf_event
, rcu_head
);
2932 put_pid_ns(event
->ns
);
2933 perf_event_free_filter(event
);
2937 static void ring_buffer_put(struct ring_buffer
*rb
);
2939 static void free_event(struct perf_event
*event
)
2941 irq_work_sync(&event
->pending
);
2943 if (!event
->parent
) {
2944 if (event
->attach_state
& PERF_ATTACH_TASK
)
2945 jump_label_dec(&perf_sched_events
);
2946 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2947 atomic_dec(&nr_mmap_events
);
2948 if (event
->attr
.comm
)
2949 atomic_dec(&nr_comm_events
);
2950 if (event
->attr
.task
)
2951 atomic_dec(&nr_task_events
);
2952 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2953 put_callchain_buffers();
2954 if (is_cgroup_event(event
)) {
2955 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2956 jump_label_dec(&perf_sched_events
);
2961 ring_buffer_put(event
->rb
);
2965 if (is_cgroup_event(event
))
2966 perf_detach_cgroup(event
);
2969 event
->destroy(event
);
2972 put_ctx(event
->ctx
);
2974 call_rcu(&event
->rcu_head
, free_event_rcu
);
2977 int perf_event_release_kernel(struct perf_event
*event
)
2979 struct perf_event_context
*ctx
= event
->ctx
;
2981 WARN_ON_ONCE(ctx
->parent_ctx
);
2983 * There are two ways this annotation is useful:
2985 * 1) there is a lock recursion from perf_event_exit_task
2986 * see the comment there.
2988 * 2) there is a lock-inversion with mmap_sem through
2989 * perf_event_read_group(), which takes faults while
2990 * holding ctx->mutex, however this is called after
2991 * the last filedesc died, so there is no possibility
2992 * to trigger the AB-BA case.
2994 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2995 raw_spin_lock_irq(&ctx
->lock
);
2996 perf_group_detach(event
);
2997 raw_spin_unlock_irq(&ctx
->lock
);
2998 perf_remove_from_context(event
);
2999 mutex_unlock(&ctx
->mutex
);
3005 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3008 * Called when the last reference to the file is gone.
3010 static int perf_release(struct inode
*inode
, struct file
*file
)
3012 struct perf_event
*event
= file
->private_data
;
3013 struct task_struct
*owner
;
3015 file
->private_data
= NULL
;
3018 owner
= ACCESS_ONCE(event
->owner
);
3020 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3021 * !owner it means the list deletion is complete and we can indeed
3022 * free this event, otherwise we need to serialize on
3023 * owner->perf_event_mutex.
3025 smp_read_barrier_depends();
3028 * Since delayed_put_task_struct() also drops the last
3029 * task reference we can safely take a new reference
3030 * while holding the rcu_read_lock().
3032 get_task_struct(owner
);
3037 mutex_lock(&owner
->perf_event_mutex
);
3039 * We have to re-check the event->owner field, if it is cleared
3040 * we raced with perf_event_exit_task(), acquiring the mutex
3041 * ensured they're done, and we can proceed with freeing the
3045 list_del_init(&event
->owner_entry
);
3046 mutex_unlock(&owner
->perf_event_mutex
);
3047 put_task_struct(owner
);
3050 return perf_event_release_kernel(event
);
3053 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3055 struct perf_event
*child
;
3061 mutex_lock(&event
->child_mutex
);
3062 total
+= perf_event_read(event
);
3063 *enabled
+= event
->total_time_enabled
+
3064 atomic64_read(&event
->child_total_time_enabled
);
3065 *running
+= event
->total_time_running
+
3066 atomic64_read(&event
->child_total_time_running
);
3068 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3069 total
+= perf_event_read(child
);
3070 *enabled
+= child
->total_time_enabled
;
3071 *running
+= child
->total_time_running
;
3073 mutex_unlock(&event
->child_mutex
);
3077 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3079 static int perf_event_read_group(struct perf_event
*event
,
3080 u64 read_format
, char __user
*buf
)
3082 struct perf_event
*leader
= event
->group_leader
, *sub
;
3083 int n
= 0, size
= 0, ret
= -EFAULT
;
3084 struct perf_event_context
*ctx
= leader
->ctx
;
3086 u64 count
, enabled
, running
;
3088 mutex_lock(&ctx
->mutex
);
3089 count
= perf_event_read_value(leader
, &enabled
, &running
);
3091 values
[n
++] = 1 + leader
->nr_siblings
;
3092 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3093 values
[n
++] = enabled
;
3094 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3095 values
[n
++] = running
;
3096 values
[n
++] = count
;
3097 if (read_format
& PERF_FORMAT_ID
)
3098 values
[n
++] = primary_event_id(leader
);
3100 size
= n
* sizeof(u64
);
3102 if (copy_to_user(buf
, values
, size
))
3107 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3110 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3111 if (read_format
& PERF_FORMAT_ID
)
3112 values
[n
++] = primary_event_id(sub
);
3114 size
= n
* sizeof(u64
);
3116 if (copy_to_user(buf
+ ret
, values
, size
)) {
3124 mutex_unlock(&ctx
->mutex
);
3129 static int perf_event_read_one(struct perf_event
*event
,
3130 u64 read_format
, char __user
*buf
)
3132 u64 enabled
, running
;
3136 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3137 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3138 values
[n
++] = enabled
;
3139 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3140 values
[n
++] = running
;
3141 if (read_format
& PERF_FORMAT_ID
)
3142 values
[n
++] = primary_event_id(event
);
3144 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3147 return n
* sizeof(u64
);
3151 * Read the performance event - simple non blocking version for now
3154 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3156 u64 read_format
= event
->attr
.read_format
;
3160 * Return end-of-file for a read on a event that is in
3161 * error state (i.e. because it was pinned but it couldn't be
3162 * scheduled on to the CPU at some point).
3164 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3167 if (count
< event
->read_size
)
3170 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3171 if (read_format
& PERF_FORMAT_GROUP
)
3172 ret
= perf_event_read_group(event
, read_format
, buf
);
3174 ret
= perf_event_read_one(event
, read_format
, buf
);
3180 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3182 struct perf_event
*event
= file
->private_data
;
3184 return perf_read_hw(event
, buf
, count
);
3187 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3189 struct perf_event
*event
= file
->private_data
;
3190 struct ring_buffer
*rb
;
3191 unsigned int events
= POLL_HUP
;
3194 rb
= rcu_dereference(event
->rb
);
3196 events
= atomic_xchg(&rb
->poll
, 0);
3199 poll_wait(file
, &event
->waitq
, wait
);
3204 static void perf_event_reset(struct perf_event
*event
)
3206 (void)perf_event_read(event
);
3207 local64_set(&event
->count
, 0);
3208 perf_event_update_userpage(event
);
3212 * Holding the top-level event's child_mutex means that any
3213 * descendant process that has inherited this event will block
3214 * in sync_child_event if it goes to exit, thus satisfying the
3215 * task existence requirements of perf_event_enable/disable.
3217 static void perf_event_for_each_child(struct perf_event
*event
,
3218 void (*func
)(struct perf_event
*))
3220 struct perf_event
*child
;
3222 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3223 mutex_lock(&event
->child_mutex
);
3225 list_for_each_entry(child
, &event
->child_list
, child_list
)
3227 mutex_unlock(&event
->child_mutex
);
3230 static void perf_event_for_each(struct perf_event
*event
,
3231 void (*func
)(struct perf_event
*))
3233 struct perf_event_context
*ctx
= event
->ctx
;
3234 struct perf_event
*sibling
;
3236 WARN_ON_ONCE(ctx
->parent_ctx
);
3237 mutex_lock(&ctx
->mutex
);
3238 event
= event
->group_leader
;
3240 perf_event_for_each_child(event
, func
);
3242 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3243 perf_event_for_each_child(event
, func
);
3244 mutex_unlock(&ctx
->mutex
);
3247 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3249 struct perf_event_context
*ctx
= event
->ctx
;
3253 if (!is_sampling_event(event
))
3256 if (copy_from_user(&value
, arg
, sizeof(value
)))
3262 raw_spin_lock_irq(&ctx
->lock
);
3263 if (event
->attr
.freq
) {
3264 if (value
> sysctl_perf_event_sample_rate
) {
3269 event
->attr
.sample_freq
= value
;
3271 event
->attr
.sample_period
= value
;
3272 event
->hw
.sample_period
= value
;
3275 raw_spin_unlock_irq(&ctx
->lock
);
3280 static const struct file_operations perf_fops
;
3282 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3286 file
= fget_light(fd
, fput_needed
);
3288 return ERR_PTR(-EBADF
);
3290 if (file
->f_op
!= &perf_fops
) {
3291 fput_light(file
, *fput_needed
);
3293 return ERR_PTR(-EBADF
);
3296 return file
->private_data
;
3299 static int perf_event_set_output(struct perf_event
*event
,
3300 struct perf_event
*output_event
);
3301 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3303 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3305 struct perf_event
*event
= file
->private_data
;
3306 void (*func
)(struct perf_event
*);
3310 case PERF_EVENT_IOC_ENABLE
:
3311 func
= perf_event_enable
;
3313 case PERF_EVENT_IOC_DISABLE
:
3314 func
= perf_event_disable
;
3316 case PERF_EVENT_IOC_RESET
:
3317 func
= perf_event_reset
;
3320 case PERF_EVENT_IOC_REFRESH
:
3321 return perf_event_refresh(event
, arg
);
3323 case PERF_EVENT_IOC_PERIOD
:
3324 return perf_event_period(event
, (u64 __user
*)arg
);
3326 case PERF_EVENT_IOC_SET_OUTPUT
:
3328 struct perf_event
*output_event
= NULL
;
3329 int fput_needed
= 0;
3333 output_event
= perf_fget_light(arg
, &fput_needed
);
3334 if (IS_ERR(output_event
))
3335 return PTR_ERR(output_event
);
3338 ret
= perf_event_set_output(event
, output_event
);
3340 fput_light(output_event
->filp
, fput_needed
);
3345 case PERF_EVENT_IOC_SET_FILTER
:
3346 return perf_event_set_filter(event
, (void __user
*)arg
);
3352 if (flags
& PERF_IOC_FLAG_GROUP
)
3353 perf_event_for_each(event
, func
);
3355 perf_event_for_each_child(event
, func
);
3360 int perf_event_task_enable(void)
3362 struct perf_event
*event
;
3364 mutex_lock(¤t
->perf_event_mutex
);
3365 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3366 perf_event_for_each_child(event
, perf_event_enable
);
3367 mutex_unlock(¤t
->perf_event_mutex
);
3372 int perf_event_task_disable(void)
3374 struct perf_event
*event
;
3376 mutex_lock(¤t
->perf_event_mutex
);
3377 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3378 perf_event_for_each_child(event
, perf_event_disable
);
3379 mutex_unlock(¤t
->perf_event_mutex
);
3384 #ifndef PERF_EVENT_INDEX_OFFSET
3385 # define PERF_EVENT_INDEX_OFFSET 0
3388 static int perf_event_index(struct perf_event
*event
)
3390 if (event
->hw
.state
& PERF_HES_STOPPED
)
3393 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3396 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
3399 static void calc_timer_values(struct perf_event
*event
,
3406 ctx_time
= event
->shadow_ctx_time
+ now
;
3407 *enabled
= ctx_time
- event
->tstamp_enabled
;
3408 *running
= ctx_time
- event
->tstamp_running
;
3412 * Callers need to ensure there can be no nesting of this function, otherwise
3413 * the seqlock logic goes bad. We can not serialize this because the arch
3414 * code calls this from NMI context.
3416 void perf_event_update_userpage(struct perf_event
*event
)
3418 struct perf_event_mmap_page
*userpg
;
3419 struct ring_buffer
*rb
;
3420 u64 enabled
, running
;
3424 * compute total_time_enabled, total_time_running
3425 * based on snapshot values taken when the event
3426 * was last scheduled in.
3428 * we cannot simply called update_context_time()
3429 * because of locking issue as we can be called in
3432 calc_timer_values(event
, &enabled
, &running
);
3433 rb
= rcu_dereference(event
->rb
);
3437 userpg
= rb
->user_page
;
3440 * Disable preemption so as to not let the corresponding user-space
3441 * spin too long if we get preempted.
3446 userpg
->index
= perf_event_index(event
);
3447 userpg
->offset
= perf_event_count(event
);
3448 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3449 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3451 userpg
->time_enabled
= enabled
+
3452 atomic64_read(&event
->child_total_time_enabled
);
3454 userpg
->time_running
= running
+
3455 atomic64_read(&event
->child_total_time_running
);
3464 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3466 struct perf_event
*event
= vma
->vm_file
->private_data
;
3467 struct ring_buffer
*rb
;
3468 int ret
= VM_FAULT_SIGBUS
;
3470 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3471 if (vmf
->pgoff
== 0)
3477 rb
= rcu_dereference(event
->rb
);
3481 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3484 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
3488 get_page(vmf
->page
);
3489 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3490 vmf
->page
->index
= vmf
->pgoff
;
3499 static void rb_free_rcu(struct rcu_head
*rcu_head
)
3501 struct ring_buffer
*rb
;
3503 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
3507 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
3509 struct ring_buffer
*rb
;
3512 rb
= rcu_dereference(event
->rb
);
3514 if (!atomic_inc_not_zero(&rb
->refcount
))
3522 static void ring_buffer_put(struct ring_buffer
*rb
)
3524 if (!atomic_dec_and_test(&rb
->refcount
))
3527 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
3530 static void perf_mmap_open(struct vm_area_struct
*vma
)
3532 struct perf_event
*event
= vma
->vm_file
->private_data
;
3534 atomic_inc(&event
->mmap_count
);
3537 static void perf_mmap_close(struct vm_area_struct
*vma
)
3539 struct perf_event
*event
= vma
->vm_file
->private_data
;
3541 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3542 unsigned long size
= perf_data_size(event
->rb
);
3543 struct user_struct
*user
= event
->mmap_user
;
3544 struct ring_buffer
*rb
= event
->rb
;
3546 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3547 vma
->vm_mm
->pinned_vm
-= event
->mmap_locked
;
3548 rcu_assign_pointer(event
->rb
, NULL
);
3549 mutex_unlock(&event
->mmap_mutex
);
3551 ring_buffer_put(rb
);
3556 static const struct vm_operations_struct perf_mmap_vmops
= {
3557 .open
= perf_mmap_open
,
3558 .close
= perf_mmap_close
,
3559 .fault
= perf_mmap_fault
,
3560 .page_mkwrite
= perf_mmap_fault
,
3563 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3565 struct perf_event
*event
= file
->private_data
;
3566 unsigned long user_locked
, user_lock_limit
;
3567 struct user_struct
*user
= current_user();
3568 unsigned long locked
, lock_limit
;
3569 struct ring_buffer
*rb
;
3570 unsigned long vma_size
;
3571 unsigned long nr_pages
;
3572 long user_extra
, extra
;
3573 int ret
= 0, flags
= 0;
3576 * Don't allow mmap() of inherited per-task counters. This would
3577 * create a performance issue due to all children writing to the
3580 if (event
->cpu
== -1 && event
->attr
.inherit
)
3583 if (!(vma
->vm_flags
& VM_SHARED
))
3586 vma_size
= vma
->vm_end
- vma
->vm_start
;
3587 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3590 * If we have rb pages ensure they're a power-of-two number, so we
3591 * can do bitmasks instead of modulo.
3593 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3596 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3599 if (vma
->vm_pgoff
!= 0)
3602 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3603 mutex_lock(&event
->mmap_mutex
);
3605 if (event
->rb
->nr_pages
== nr_pages
)
3606 atomic_inc(&event
->rb
->refcount
);
3612 user_extra
= nr_pages
+ 1;
3613 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3616 * Increase the limit linearly with more CPUs:
3618 user_lock_limit
*= num_online_cpus();
3620 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3623 if (user_locked
> user_lock_limit
)
3624 extra
= user_locked
- user_lock_limit
;
3626 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3627 lock_limit
>>= PAGE_SHIFT
;
3628 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
3630 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3631 !capable(CAP_IPC_LOCK
)) {
3638 if (vma
->vm_flags
& VM_WRITE
)
3639 flags
|= RING_BUFFER_WRITABLE
;
3641 rb
= rb_alloc(nr_pages
,
3642 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
3649 rcu_assign_pointer(event
->rb
, rb
);
3651 atomic_long_add(user_extra
, &user
->locked_vm
);
3652 event
->mmap_locked
= extra
;
3653 event
->mmap_user
= get_current_user();
3654 vma
->vm_mm
->pinned_vm
+= event
->mmap_locked
;
3658 atomic_inc(&event
->mmap_count
);
3659 mutex_unlock(&event
->mmap_mutex
);
3661 vma
->vm_flags
|= VM_RESERVED
;
3662 vma
->vm_ops
= &perf_mmap_vmops
;
3667 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3669 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3670 struct perf_event
*event
= filp
->private_data
;
3673 mutex_lock(&inode
->i_mutex
);
3674 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3675 mutex_unlock(&inode
->i_mutex
);
3683 static const struct file_operations perf_fops
= {
3684 .llseek
= no_llseek
,
3685 .release
= perf_release
,
3688 .unlocked_ioctl
= perf_ioctl
,
3689 .compat_ioctl
= perf_ioctl
,
3691 .fasync
= perf_fasync
,
3697 * If there's data, ensure we set the poll() state and publish everything
3698 * to user-space before waking everybody up.
3701 void perf_event_wakeup(struct perf_event
*event
)
3703 wake_up_all(&event
->waitq
);
3705 if (event
->pending_kill
) {
3706 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3707 event
->pending_kill
= 0;
3711 static void perf_pending_event(struct irq_work
*entry
)
3713 struct perf_event
*event
= container_of(entry
,
3714 struct perf_event
, pending
);
3716 if (event
->pending_disable
) {
3717 event
->pending_disable
= 0;
3718 __perf_event_disable(event
);
3721 if (event
->pending_wakeup
) {
3722 event
->pending_wakeup
= 0;
3723 perf_event_wakeup(event
);
3728 * We assume there is only KVM supporting the callbacks.
3729 * Later on, we might change it to a list if there is
3730 * another virtualization implementation supporting the callbacks.
3732 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3734 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3736 perf_guest_cbs
= cbs
;
3739 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3741 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3743 perf_guest_cbs
= NULL
;
3746 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3748 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3749 struct perf_sample_data
*data
,
3750 struct perf_event
*event
)
3752 u64 sample_type
= event
->attr
.sample_type
;
3754 data
->type
= sample_type
;
3755 header
->size
+= event
->id_header_size
;
3757 if (sample_type
& PERF_SAMPLE_TID
) {
3758 /* namespace issues */
3759 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3760 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3763 if (sample_type
& PERF_SAMPLE_TIME
)
3764 data
->time
= perf_clock();
3766 if (sample_type
& PERF_SAMPLE_ID
)
3767 data
->id
= primary_event_id(event
);
3769 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3770 data
->stream_id
= event
->id
;
3772 if (sample_type
& PERF_SAMPLE_CPU
) {
3773 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3774 data
->cpu_entry
.reserved
= 0;
3778 void perf_event_header__init_id(struct perf_event_header
*header
,
3779 struct perf_sample_data
*data
,
3780 struct perf_event
*event
)
3782 if (event
->attr
.sample_id_all
)
3783 __perf_event_header__init_id(header
, data
, event
);
3786 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3787 struct perf_sample_data
*data
)
3789 u64 sample_type
= data
->type
;
3791 if (sample_type
& PERF_SAMPLE_TID
)
3792 perf_output_put(handle
, data
->tid_entry
);
3794 if (sample_type
& PERF_SAMPLE_TIME
)
3795 perf_output_put(handle
, data
->time
);
3797 if (sample_type
& PERF_SAMPLE_ID
)
3798 perf_output_put(handle
, data
->id
);
3800 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3801 perf_output_put(handle
, data
->stream_id
);
3803 if (sample_type
& PERF_SAMPLE_CPU
)
3804 perf_output_put(handle
, data
->cpu_entry
);
3807 void perf_event__output_id_sample(struct perf_event
*event
,
3808 struct perf_output_handle
*handle
,
3809 struct perf_sample_data
*sample
)
3811 if (event
->attr
.sample_id_all
)
3812 __perf_event__output_id_sample(handle
, sample
);
3815 static void perf_output_read_one(struct perf_output_handle
*handle
,
3816 struct perf_event
*event
,
3817 u64 enabled
, u64 running
)
3819 u64 read_format
= event
->attr
.read_format
;
3823 values
[n
++] = perf_event_count(event
);
3824 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3825 values
[n
++] = enabled
+
3826 atomic64_read(&event
->child_total_time_enabled
);
3828 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3829 values
[n
++] = running
+
3830 atomic64_read(&event
->child_total_time_running
);
3832 if (read_format
& PERF_FORMAT_ID
)
3833 values
[n
++] = primary_event_id(event
);
3835 __output_copy(handle
, values
, n
* sizeof(u64
));
3839 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3841 static void perf_output_read_group(struct perf_output_handle
*handle
,
3842 struct perf_event
*event
,
3843 u64 enabled
, u64 running
)
3845 struct perf_event
*leader
= event
->group_leader
, *sub
;
3846 u64 read_format
= event
->attr
.read_format
;
3850 values
[n
++] = 1 + leader
->nr_siblings
;
3852 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3853 values
[n
++] = enabled
;
3855 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3856 values
[n
++] = running
;
3858 if (leader
!= event
)
3859 leader
->pmu
->read(leader
);
3861 values
[n
++] = perf_event_count(leader
);
3862 if (read_format
& PERF_FORMAT_ID
)
3863 values
[n
++] = primary_event_id(leader
);
3865 __output_copy(handle
, values
, n
* sizeof(u64
));
3867 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3871 sub
->pmu
->read(sub
);
3873 values
[n
++] = perf_event_count(sub
);
3874 if (read_format
& PERF_FORMAT_ID
)
3875 values
[n
++] = primary_event_id(sub
);
3877 __output_copy(handle
, values
, n
* sizeof(u64
));
3881 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3882 PERF_FORMAT_TOTAL_TIME_RUNNING)
3884 static void perf_output_read(struct perf_output_handle
*handle
,
3885 struct perf_event
*event
)
3887 u64 enabled
= 0, running
= 0;
3888 u64 read_format
= event
->attr
.read_format
;
3891 * compute total_time_enabled, total_time_running
3892 * based on snapshot values taken when the event
3893 * was last scheduled in.
3895 * we cannot simply called update_context_time()
3896 * because of locking issue as we are called in
3899 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
3900 calc_timer_values(event
, &enabled
, &running
);
3902 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3903 perf_output_read_group(handle
, event
, enabled
, running
);
3905 perf_output_read_one(handle
, event
, enabled
, running
);
3908 void perf_output_sample(struct perf_output_handle
*handle
,
3909 struct perf_event_header
*header
,
3910 struct perf_sample_data
*data
,
3911 struct perf_event
*event
)
3913 u64 sample_type
= data
->type
;
3915 perf_output_put(handle
, *header
);
3917 if (sample_type
& PERF_SAMPLE_IP
)
3918 perf_output_put(handle
, data
->ip
);
3920 if (sample_type
& PERF_SAMPLE_TID
)
3921 perf_output_put(handle
, data
->tid_entry
);
3923 if (sample_type
& PERF_SAMPLE_TIME
)
3924 perf_output_put(handle
, data
->time
);
3926 if (sample_type
& PERF_SAMPLE_ADDR
)
3927 perf_output_put(handle
, data
->addr
);
3929 if (sample_type
& PERF_SAMPLE_ID
)
3930 perf_output_put(handle
, data
->id
);
3932 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3933 perf_output_put(handle
, data
->stream_id
);
3935 if (sample_type
& PERF_SAMPLE_CPU
)
3936 perf_output_put(handle
, data
->cpu_entry
);
3938 if (sample_type
& PERF_SAMPLE_PERIOD
)
3939 perf_output_put(handle
, data
->period
);
3941 if (sample_type
& PERF_SAMPLE_READ
)
3942 perf_output_read(handle
, event
);
3944 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3945 if (data
->callchain
) {
3948 if (data
->callchain
)
3949 size
+= data
->callchain
->nr
;
3951 size
*= sizeof(u64
);
3953 __output_copy(handle
, data
->callchain
, size
);
3956 perf_output_put(handle
, nr
);
3960 if (sample_type
& PERF_SAMPLE_RAW
) {
3962 perf_output_put(handle
, data
->raw
->size
);
3963 __output_copy(handle
, data
->raw
->data
,
3970 .size
= sizeof(u32
),
3973 perf_output_put(handle
, raw
);
3977 if (!event
->attr
.watermark
) {
3978 int wakeup_events
= event
->attr
.wakeup_events
;
3980 if (wakeup_events
) {
3981 struct ring_buffer
*rb
= handle
->rb
;
3982 int events
= local_inc_return(&rb
->events
);
3984 if (events
>= wakeup_events
) {
3985 local_sub(wakeup_events
, &rb
->events
);
3986 local_inc(&rb
->wakeup
);
3992 void perf_prepare_sample(struct perf_event_header
*header
,
3993 struct perf_sample_data
*data
,
3994 struct perf_event
*event
,
3995 struct pt_regs
*regs
)
3997 u64 sample_type
= event
->attr
.sample_type
;
3999 header
->type
= PERF_RECORD_SAMPLE
;
4000 header
->size
= sizeof(*header
) + event
->header_size
;
4003 header
->misc
|= perf_misc_flags(regs
);
4005 __perf_event_header__init_id(header
, data
, event
);
4007 if (sample_type
& PERF_SAMPLE_IP
)
4008 data
->ip
= perf_instruction_pointer(regs
);
4010 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4013 data
->callchain
= perf_callchain(regs
);
4015 if (data
->callchain
)
4016 size
+= data
->callchain
->nr
;
4018 header
->size
+= size
* sizeof(u64
);
4021 if (sample_type
& PERF_SAMPLE_RAW
) {
4022 int size
= sizeof(u32
);
4025 size
+= data
->raw
->size
;
4027 size
+= sizeof(u32
);
4029 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4030 header
->size
+= size
;
4034 static void perf_event_output(struct perf_event
*event
,
4035 struct perf_sample_data
*data
,
4036 struct pt_regs
*regs
)
4038 struct perf_output_handle handle
;
4039 struct perf_event_header header
;
4041 /* protect the callchain buffers */
4044 perf_prepare_sample(&header
, data
, event
, regs
);
4046 if (perf_output_begin(&handle
, event
, header
.size
))
4049 perf_output_sample(&handle
, &header
, data
, event
);
4051 perf_output_end(&handle
);
4061 struct perf_read_event
{
4062 struct perf_event_header header
;
4069 perf_event_read_event(struct perf_event
*event
,
4070 struct task_struct
*task
)
4072 struct perf_output_handle handle
;
4073 struct perf_sample_data sample
;
4074 struct perf_read_event read_event
= {
4076 .type
= PERF_RECORD_READ
,
4078 .size
= sizeof(read_event
) + event
->read_size
,
4080 .pid
= perf_event_pid(event
, task
),
4081 .tid
= perf_event_tid(event
, task
),
4085 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4086 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
4090 perf_output_put(&handle
, read_event
);
4091 perf_output_read(&handle
, event
);
4092 perf_event__output_id_sample(event
, &handle
, &sample
);
4094 perf_output_end(&handle
);
4098 * task tracking -- fork/exit
4100 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4103 struct perf_task_event
{
4104 struct task_struct
*task
;
4105 struct perf_event_context
*task_ctx
;
4108 struct perf_event_header header
;
4118 static void perf_event_task_output(struct perf_event
*event
,
4119 struct perf_task_event
*task_event
)
4121 struct perf_output_handle handle
;
4122 struct perf_sample_data sample
;
4123 struct task_struct
*task
= task_event
->task
;
4124 int ret
, size
= task_event
->event_id
.header
.size
;
4126 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4128 ret
= perf_output_begin(&handle
, event
,
4129 task_event
->event_id
.header
.size
);
4133 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4134 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4136 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4137 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4139 perf_output_put(&handle
, task_event
->event_id
);
4141 perf_event__output_id_sample(event
, &handle
, &sample
);
4143 perf_output_end(&handle
);
4145 task_event
->event_id
.header
.size
= size
;
4148 static int perf_event_task_match(struct perf_event
*event
)
4150 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4153 if (!event_filter_match(event
))
4156 if (event
->attr
.comm
|| event
->attr
.mmap
||
4157 event
->attr
.mmap_data
|| event
->attr
.task
)
4163 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4164 struct perf_task_event
*task_event
)
4166 struct perf_event
*event
;
4168 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4169 if (perf_event_task_match(event
))
4170 perf_event_task_output(event
, task_event
);
4174 static void perf_event_task_event(struct perf_task_event
*task_event
)
4176 struct perf_cpu_context
*cpuctx
;
4177 struct perf_event_context
*ctx
;
4182 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4183 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4184 if (cpuctx
->active_pmu
!= pmu
)
4186 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4188 ctx
= task_event
->task_ctx
;
4190 ctxn
= pmu
->task_ctx_nr
;
4193 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4196 perf_event_task_ctx(ctx
, task_event
);
4198 put_cpu_ptr(pmu
->pmu_cpu_context
);
4203 static void perf_event_task(struct task_struct
*task
,
4204 struct perf_event_context
*task_ctx
,
4207 struct perf_task_event task_event
;
4209 if (!atomic_read(&nr_comm_events
) &&
4210 !atomic_read(&nr_mmap_events
) &&
4211 !atomic_read(&nr_task_events
))
4214 task_event
= (struct perf_task_event
){
4216 .task_ctx
= task_ctx
,
4219 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4221 .size
= sizeof(task_event
.event_id
),
4227 .time
= perf_clock(),
4231 perf_event_task_event(&task_event
);
4234 void perf_event_fork(struct task_struct
*task
)
4236 perf_event_task(task
, NULL
, 1);
4243 struct perf_comm_event
{
4244 struct task_struct
*task
;
4249 struct perf_event_header header
;
4256 static void perf_event_comm_output(struct perf_event
*event
,
4257 struct perf_comm_event
*comm_event
)
4259 struct perf_output_handle handle
;
4260 struct perf_sample_data sample
;
4261 int size
= comm_event
->event_id
.header
.size
;
4264 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4265 ret
= perf_output_begin(&handle
, event
,
4266 comm_event
->event_id
.header
.size
);
4271 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4272 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4274 perf_output_put(&handle
, comm_event
->event_id
);
4275 __output_copy(&handle
, comm_event
->comm
,
4276 comm_event
->comm_size
);
4278 perf_event__output_id_sample(event
, &handle
, &sample
);
4280 perf_output_end(&handle
);
4282 comm_event
->event_id
.header
.size
= size
;
4285 static int perf_event_comm_match(struct perf_event
*event
)
4287 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4290 if (!event_filter_match(event
))
4293 if (event
->attr
.comm
)
4299 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4300 struct perf_comm_event
*comm_event
)
4302 struct perf_event
*event
;
4304 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4305 if (perf_event_comm_match(event
))
4306 perf_event_comm_output(event
, comm_event
);
4310 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4312 struct perf_cpu_context
*cpuctx
;
4313 struct perf_event_context
*ctx
;
4314 char comm
[TASK_COMM_LEN
];
4319 memset(comm
, 0, sizeof(comm
));
4320 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4321 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4323 comm_event
->comm
= comm
;
4324 comm_event
->comm_size
= size
;
4326 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4328 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4329 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4330 if (cpuctx
->active_pmu
!= pmu
)
4332 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4334 ctxn
= pmu
->task_ctx_nr
;
4338 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4340 perf_event_comm_ctx(ctx
, comm_event
);
4342 put_cpu_ptr(pmu
->pmu_cpu_context
);
4347 void perf_event_comm(struct task_struct
*task
)
4349 struct perf_comm_event comm_event
;
4350 struct perf_event_context
*ctx
;
4353 for_each_task_context_nr(ctxn
) {
4354 ctx
= task
->perf_event_ctxp
[ctxn
];
4358 perf_event_enable_on_exec(ctx
);
4361 if (!atomic_read(&nr_comm_events
))
4364 comm_event
= (struct perf_comm_event
){
4370 .type
= PERF_RECORD_COMM
,
4379 perf_event_comm_event(&comm_event
);
4386 struct perf_mmap_event
{
4387 struct vm_area_struct
*vma
;
4389 const char *file_name
;
4393 struct perf_event_header header
;
4403 static void perf_event_mmap_output(struct perf_event
*event
,
4404 struct perf_mmap_event
*mmap_event
)
4406 struct perf_output_handle handle
;
4407 struct perf_sample_data sample
;
4408 int size
= mmap_event
->event_id
.header
.size
;
4411 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4412 ret
= perf_output_begin(&handle
, event
,
4413 mmap_event
->event_id
.header
.size
);
4417 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4418 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4420 perf_output_put(&handle
, mmap_event
->event_id
);
4421 __output_copy(&handle
, mmap_event
->file_name
,
4422 mmap_event
->file_size
);
4424 perf_event__output_id_sample(event
, &handle
, &sample
);
4426 perf_output_end(&handle
);
4428 mmap_event
->event_id
.header
.size
= size
;
4431 static int perf_event_mmap_match(struct perf_event
*event
,
4432 struct perf_mmap_event
*mmap_event
,
4435 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4438 if (!event_filter_match(event
))
4441 if ((!executable
&& event
->attr
.mmap_data
) ||
4442 (executable
&& event
->attr
.mmap
))
4448 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4449 struct perf_mmap_event
*mmap_event
,
4452 struct perf_event
*event
;
4454 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4455 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4456 perf_event_mmap_output(event
, mmap_event
);
4460 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4462 struct perf_cpu_context
*cpuctx
;
4463 struct perf_event_context
*ctx
;
4464 struct vm_area_struct
*vma
= mmap_event
->vma
;
4465 struct file
*file
= vma
->vm_file
;
4473 memset(tmp
, 0, sizeof(tmp
));
4477 * d_path works from the end of the rb backwards, so we
4478 * need to add enough zero bytes after the string to handle
4479 * the 64bit alignment we do later.
4481 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4483 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4486 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4488 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4492 if (arch_vma_name(mmap_event
->vma
)) {
4493 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4499 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4501 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4502 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4503 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4505 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4506 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4507 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4511 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4516 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4518 mmap_event
->file_name
= name
;
4519 mmap_event
->file_size
= size
;
4521 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4524 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4525 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4526 if (cpuctx
->active_pmu
!= pmu
)
4528 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4529 vma
->vm_flags
& VM_EXEC
);
4531 ctxn
= pmu
->task_ctx_nr
;
4535 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4537 perf_event_mmap_ctx(ctx
, mmap_event
,
4538 vma
->vm_flags
& VM_EXEC
);
4541 put_cpu_ptr(pmu
->pmu_cpu_context
);
4548 void perf_event_mmap(struct vm_area_struct
*vma
)
4550 struct perf_mmap_event mmap_event
;
4552 if (!atomic_read(&nr_mmap_events
))
4555 mmap_event
= (struct perf_mmap_event
){
4561 .type
= PERF_RECORD_MMAP
,
4562 .misc
= PERF_RECORD_MISC_USER
,
4567 .start
= vma
->vm_start
,
4568 .len
= vma
->vm_end
- vma
->vm_start
,
4569 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4573 perf_event_mmap_event(&mmap_event
);
4577 * IRQ throttle logging
4580 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4582 struct perf_output_handle handle
;
4583 struct perf_sample_data sample
;
4587 struct perf_event_header header
;
4591 } throttle_event
= {
4593 .type
= PERF_RECORD_THROTTLE
,
4595 .size
= sizeof(throttle_event
),
4597 .time
= perf_clock(),
4598 .id
= primary_event_id(event
),
4599 .stream_id
= event
->id
,
4603 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4605 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4607 ret
= perf_output_begin(&handle
, event
,
4608 throttle_event
.header
.size
);
4612 perf_output_put(&handle
, throttle_event
);
4613 perf_event__output_id_sample(event
, &handle
, &sample
);
4614 perf_output_end(&handle
);
4618 * Generic event overflow handling, sampling.
4621 static int __perf_event_overflow(struct perf_event
*event
,
4622 int throttle
, struct perf_sample_data
*data
,
4623 struct pt_regs
*regs
)
4625 int events
= atomic_read(&event
->event_limit
);
4626 struct hw_perf_event
*hwc
= &event
->hw
;
4630 * Non-sampling counters might still use the PMI to fold short
4631 * hardware counters, ignore those.
4633 if (unlikely(!is_sampling_event(event
)))
4636 if (unlikely(hwc
->interrupts
>= max_samples_per_tick
)) {
4638 hwc
->interrupts
= MAX_INTERRUPTS
;
4639 perf_log_throttle(event
, 0);
4645 if (event
->attr
.freq
) {
4646 u64 now
= perf_clock();
4647 s64 delta
= now
- hwc
->freq_time_stamp
;
4649 hwc
->freq_time_stamp
= now
;
4651 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4652 perf_adjust_period(event
, delta
, hwc
->last_period
);
4656 * XXX event_limit might not quite work as expected on inherited
4660 event
->pending_kill
= POLL_IN
;
4661 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4663 event
->pending_kill
= POLL_HUP
;
4664 event
->pending_disable
= 1;
4665 irq_work_queue(&event
->pending
);
4668 if (event
->overflow_handler
)
4669 event
->overflow_handler(event
, data
, regs
);
4671 perf_event_output(event
, data
, regs
);
4673 if (event
->fasync
&& event
->pending_kill
) {
4674 event
->pending_wakeup
= 1;
4675 irq_work_queue(&event
->pending
);
4681 int perf_event_overflow(struct perf_event
*event
,
4682 struct perf_sample_data
*data
,
4683 struct pt_regs
*regs
)
4685 return __perf_event_overflow(event
, 1, data
, regs
);
4689 * Generic software event infrastructure
4692 struct swevent_htable
{
4693 struct swevent_hlist
*swevent_hlist
;
4694 struct mutex hlist_mutex
;
4697 /* Recursion avoidance in each contexts */
4698 int recursion
[PERF_NR_CONTEXTS
];
4701 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4704 * We directly increment event->count and keep a second value in
4705 * event->hw.period_left to count intervals. This period event
4706 * is kept in the range [-sample_period, 0] so that we can use the
4710 static u64
perf_swevent_set_period(struct perf_event
*event
)
4712 struct hw_perf_event
*hwc
= &event
->hw
;
4713 u64 period
= hwc
->last_period
;
4717 hwc
->last_period
= hwc
->sample_period
;
4720 old
= val
= local64_read(&hwc
->period_left
);
4724 nr
= div64_u64(period
+ val
, period
);
4725 offset
= nr
* period
;
4727 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4733 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4734 struct perf_sample_data
*data
,
4735 struct pt_regs
*regs
)
4737 struct hw_perf_event
*hwc
= &event
->hw
;
4740 data
->period
= event
->hw
.last_period
;
4742 overflow
= perf_swevent_set_period(event
);
4744 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4747 for (; overflow
; overflow
--) {
4748 if (__perf_event_overflow(event
, throttle
,
4751 * We inhibit the overflow from happening when
4752 * hwc->interrupts == MAX_INTERRUPTS.
4760 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4761 struct perf_sample_data
*data
,
4762 struct pt_regs
*regs
)
4764 struct hw_perf_event
*hwc
= &event
->hw
;
4766 local64_add(nr
, &event
->count
);
4771 if (!is_sampling_event(event
))
4774 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4775 return perf_swevent_overflow(event
, 1, data
, regs
);
4777 if (local64_add_negative(nr
, &hwc
->period_left
))
4780 perf_swevent_overflow(event
, 0, data
, regs
);
4783 static int perf_exclude_event(struct perf_event
*event
,
4784 struct pt_regs
*regs
)
4786 if (event
->hw
.state
& PERF_HES_STOPPED
)
4790 if (event
->attr
.exclude_user
&& user_mode(regs
))
4793 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4800 static int perf_swevent_match(struct perf_event
*event
,
4801 enum perf_type_id type
,
4803 struct perf_sample_data
*data
,
4804 struct pt_regs
*regs
)
4806 if (event
->attr
.type
!= type
)
4809 if (event
->attr
.config
!= event_id
)
4812 if (perf_exclude_event(event
, regs
))
4818 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4820 u64 val
= event_id
| (type
<< 32);
4822 return hash_64(val
, SWEVENT_HLIST_BITS
);
4825 static inline struct hlist_head
*
4826 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4828 u64 hash
= swevent_hash(type
, event_id
);
4830 return &hlist
->heads
[hash
];
4833 /* For the read side: events when they trigger */
4834 static inline struct hlist_head
*
4835 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4837 struct swevent_hlist
*hlist
;
4839 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4843 return __find_swevent_head(hlist
, type
, event_id
);
4846 /* For the event head insertion and removal in the hlist */
4847 static inline struct hlist_head
*
4848 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4850 struct swevent_hlist
*hlist
;
4851 u32 event_id
= event
->attr
.config
;
4852 u64 type
= event
->attr
.type
;
4855 * Event scheduling is always serialized against hlist allocation
4856 * and release. Which makes the protected version suitable here.
4857 * The context lock guarantees that.
4859 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4860 lockdep_is_held(&event
->ctx
->lock
));
4864 return __find_swevent_head(hlist
, type
, event_id
);
4867 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4869 struct perf_sample_data
*data
,
4870 struct pt_regs
*regs
)
4872 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4873 struct perf_event
*event
;
4874 struct hlist_node
*node
;
4875 struct hlist_head
*head
;
4878 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4882 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4883 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4884 perf_swevent_event(event
, nr
, data
, regs
);
4890 int perf_swevent_get_recursion_context(void)
4892 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4894 return get_recursion_context(swhash
->recursion
);
4896 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4898 inline void perf_swevent_put_recursion_context(int rctx
)
4900 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4902 put_recursion_context(swhash
->recursion
, rctx
);
4905 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
4907 struct perf_sample_data data
;
4910 preempt_disable_notrace();
4911 rctx
= perf_swevent_get_recursion_context();
4915 perf_sample_data_init(&data
, addr
);
4917 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
4919 perf_swevent_put_recursion_context(rctx
);
4920 preempt_enable_notrace();
4923 static void perf_swevent_read(struct perf_event
*event
)
4927 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4929 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4930 struct hw_perf_event
*hwc
= &event
->hw
;
4931 struct hlist_head
*head
;
4933 if (is_sampling_event(event
)) {
4934 hwc
->last_period
= hwc
->sample_period
;
4935 perf_swevent_set_period(event
);
4938 hwc
->state
= !(flags
& PERF_EF_START
);
4940 head
= find_swevent_head(swhash
, event
);
4941 if (WARN_ON_ONCE(!head
))
4944 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4949 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4951 hlist_del_rcu(&event
->hlist_entry
);
4954 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4956 event
->hw
.state
= 0;
4959 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4961 event
->hw
.state
= PERF_HES_STOPPED
;
4964 /* Deref the hlist from the update side */
4965 static inline struct swevent_hlist
*
4966 swevent_hlist_deref(struct swevent_htable
*swhash
)
4968 return rcu_dereference_protected(swhash
->swevent_hlist
,
4969 lockdep_is_held(&swhash
->hlist_mutex
));
4972 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4974 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4979 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4980 kfree_rcu(hlist
, rcu_head
);
4983 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4985 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4987 mutex_lock(&swhash
->hlist_mutex
);
4989 if (!--swhash
->hlist_refcount
)
4990 swevent_hlist_release(swhash
);
4992 mutex_unlock(&swhash
->hlist_mutex
);
4995 static void swevent_hlist_put(struct perf_event
*event
)
4999 if (event
->cpu
!= -1) {
5000 swevent_hlist_put_cpu(event
, event
->cpu
);
5004 for_each_possible_cpu(cpu
)
5005 swevent_hlist_put_cpu(event
, cpu
);
5008 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5010 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5013 mutex_lock(&swhash
->hlist_mutex
);
5015 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5016 struct swevent_hlist
*hlist
;
5018 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5023 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5025 swhash
->hlist_refcount
++;
5027 mutex_unlock(&swhash
->hlist_mutex
);
5032 static int swevent_hlist_get(struct perf_event
*event
)
5035 int cpu
, failed_cpu
;
5037 if (event
->cpu
!= -1)
5038 return swevent_hlist_get_cpu(event
, event
->cpu
);
5041 for_each_possible_cpu(cpu
) {
5042 err
= swevent_hlist_get_cpu(event
, cpu
);
5052 for_each_possible_cpu(cpu
) {
5053 if (cpu
== failed_cpu
)
5055 swevent_hlist_put_cpu(event
, cpu
);
5062 struct jump_label_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5064 static void sw_perf_event_destroy(struct perf_event
*event
)
5066 u64 event_id
= event
->attr
.config
;
5068 WARN_ON(event
->parent
);
5070 jump_label_dec(&perf_swevent_enabled
[event_id
]);
5071 swevent_hlist_put(event
);
5074 static int perf_swevent_init(struct perf_event
*event
)
5076 int event_id
= event
->attr
.config
;
5078 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5082 case PERF_COUNT_SW_CPU_CLOCK
:
5083 case PERF_COUNT_SW_TASK_CLOCK
:
5090 if (event_id
>= PERF_COUNT_SW_MAX
)
5093 if (!event
->parent
) {
5096 err
= swevent_hlist_get(event
);
5100 jump_label_inc(&perf_swevent_enabled
[event_id
]);
5101 event
->destroy
= sw_perf_event_destroy
;
5107 static struct pmu perf_swevent
= {
5108 .task_ctx_nr
= perf_sw_context
,
5110 .event_init
= perf_swevent_init
,
5111 .add
= perf_swevent_add
,
5112 .del
= perf_swevent_del
,
5113 .start
= perf_swevent_start
,
5114 .stop
= perf_swevent_stop
,
5115 .read
= perf_swevent_read
,
5118 #ifdef CONFIG_EVENT_TRACING
5120 static int perf_tp_filter_match(struct perf_event
*event
,
5121 struct perf_sample_data
*data
)
5123 void *record
= data
->raw
->data
;
5125 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5130 static int perf_tp_event_match(struct perf_event
*event
,
5131 struct perf_sample_data
*data
,
5132 struct pt_regs
*regs
)
5134 if (event
->hw
.state
& PERF_HES_STOPPED
)
5137 * All tracepoints are from kernel-space.
5139 if (event
->attr
.exclude_kernel
)
5142 if (!perf_tp_filter_match(event
, data
))
5148 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5149 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5151 struct perf_sample_data data
;
5152 struct perf_event
*event
;
5153 struct hlist_node
*node
;
5155 struct perf_raw_record raw
= {
5160 perf_sample_data_init(&data
, addr
);
5163 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5164 if (perf_tp_event_match(event
, &data
, regs
))
5165 perf_swevent_event(event
, count
, &data
, regs
);
5168 perf_swevent_put_recursion_context(rctx
);
5170 EXPORT_SYMBOL_GPL(perf_tp_event
);
5172 static void tp_perf_event_destroy(struct perf_event
*event
)
5174 perf_trace_destroy(event
);
5177 static int perf_tp_event_init(struct perf_event
*event
)
5181 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5184 err
= perf_trace_init(event
);
5188 event
->destroy
= tp_perf_event_destroy
;
5193 static struct pmu perf_tracepoint
= {
5194 .task_ctx_nr
= perf_sw_context
,
5196 .event_init
= perf_tp_event_init
,
5197 .add
= perf_trace_add
,
5198 .del
= perf_trace_del
,
5199 .start
= perf_swevent_start
,
5200 .stop
= perf_swevent_stop
,
5201 .read
= perf_swevent_read
,
5204 static inline void perf_tp_register(void)
5206 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5209 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5214 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5217 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5218 if (IS_ERR(filter_str
))
5219 return PTR_ERR(filter_str
);
5221 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5227 static void perf_event_free_filter(struct perf_event
*event
)
5229 ftrace_profile_free_filter(event
);
5234 static inline void perf_tp_register(void)
5238 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5243 static void perf_event_free_filter(struct perf_event
*event
)
5247 #endif /* CONFIG_EVENT_TRACING */
5249 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5250 void perf_bp_event(struct perf_event
*bp
, void *data
)
5252 struct perf_sample_data sample
;
5253 struct pt_regs
*regs
= data
;
5255 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5257 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5258 perf_swevent_event(bp
, 1, &sample
, regs
);
5263 * hrtimer based swevent callback
5266 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5268 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5269 struct perf_sample_data data
;
5270 struct pt_regs
*regs
;
5271 struct perf_event
*event
;
5274 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5276 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5277 return HRTIMER_NORESTART
;
5279 event
->pmu
->read(event
);
5281 perf_sample_data_init(&data
, 0);
5282 data
.period
= event
->hw
.last_period
;
5283 regs
= get_irq_regs();
5285 if (regs
&& !perf_exclude_event(event
, regs
)) {
5286 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5287 if (perf_event_overflow(event
, &data
, regs
))
5288 ret
= HRTIMER_NORESTART
;
5291 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5292 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5297 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5299 struct hw_perf_event
*hwc
= &event
->hw
;
5302 if (!is_sampling_event(event
))
5305 period
= local64_read(&hwc
->period_left
);
5310 local64_set(&hwc
->period_left
, 0);
5312 period
= max_t(u64
, 10000, hwc
->sample_period
);
5314 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5315 ns_to_ktime(period
), 0,
5316 HRTIMER_MODE_REL_PINNED
, 0);
5319 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5321 struct hw_perf_event
*hwc
= &event
->hw
;
5323 if (is_sampling_event(event
)) {
5324 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5325 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5327 hrtimer_cancel(&hwc
->hrtimer
);
5331 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5333 struct hw_perf_event
*hwc
= &event
->hw
;
5335 if (!is_sampling_event(event
))
5338 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5339 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5342 * Since hrtimers have a fixed rate, we can do a static freq->period
5343 * mapping and avoid the whole period adjust feedback stuff.
5345 if (event
->attr
.freq
) {
5346 long freq
= event
->attr
.sample_freq
;
5348 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5349 hwc
->sample_period
= event
->attr
.sample_period
;
5350 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5351 event
->attr
.freq
= 0;
5356 * Software event: cpu wall time clock
5359 static void cpu_clock_event_update(struct perf_event
*event
)
5364 now
= local_clock();
5365 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5366 local64_add(now
- prev
, &event
->count
);
5369 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5371 local64_set(&event
->hw
.prev_count
, local_clock());
5372 perf_swevent_start_hrtimer(event
);
5375 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5377 perf_swevent_cancel_hrtimer(event
);
5378 cpu_clock_event_update(event
);
5381 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5383 if (flags
& PERF_EF_START
)
5384 cpu_clock_event_start(event
, flags
);
5389 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5391 cpu_clock_event_stop(event
, flags
);
5394 static void cpu_clock_event_read(struct perf_event
*event
)
5396 cpu_clock_event_update(event
);
5399 static int cpu_clock_event_init(struct perf_event
*event
)
5401 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5404 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5407 perf_swevent_init_hrtimer(event
);
5412 static struct pmu perf_cpu_clock
= {
5413 .task_ctx_nr
= perf_sw_context
,
5415 .event_init
= cpu_clock_event_init
,
5416 .add
= cpu_clock_event_add
,
5417 .del
= cpu_clock_event_del
,
5418 .start
= cpu_clock_event_start
,
5419 .stop
= cpu_clock_event_stop
,
5420 .read
= cpu_clock_event_read
,
5424 * Software event: task time clock
5427 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5432 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5434 local64_add(delta
, &event
->count
);
5437 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5439 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5440 perf_swevent_start_hrtimer(event
);
5443 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5445 perf_swevent_cancel_hrtimer(event
);
5446 task_clock_event_update(event
, event
->ctx
->time
);
5449 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5451 if (flags
& PERF_EF_START
)
5452 task_clock_event_start(event
, flags
);
5457 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5459 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5462 static void task_clock_event_read(struct perf_event
*event
)
5464 u64 now
= perf_clock();
5465 u64 delta
= now
- event
->ctx
->timestamp
;
5466 u64 time
= event
->ctx
->time
+ delta
;
5468 task_clock_event_update(event
, time
);
5471 static int task_clock_event_init(struct perf_event
*event
)
5473 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5476 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5479 perf_swevent_init_hrtimer(event
);
5484 static struct pmu perf_task_clock
= {
5485 .task_ctx_nr
= perf_sw_context
,
5487 .event_init
= task_clock_event_init
,
5488 .add
= task_clock_event_add
,
5489 .del
= task_clock_event_del
,
5490 .start
= task_clock_event_start
,
5491 .stop
= task_clock_event_stop
,
5492 .read
= task_clock_event_read
,
5495 static void perf_pmu_nop_void(struct pmu
*pmu
)
5499 static int perf_pmu_nop_int(struct pmu
*pmu
)
5504 static void perf_pmu_start_txn(struct pmu
*pmu
)
5506 perf_pmu_disable(pmu
);
5509 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5511 perf_pmu_enable(pmu
);
5515 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5517 perf_pmu_enable(pmu
);
5521 * Ensures all contexts with the same task_ctx_nr have the same
5522 * pmu_cpu_context too.
5524 static void *find_pmu_context(int ctxn
)
5531 list_for_each_entry(pmu
, &pmus
, entry
) {
5532 if (pmu
->task_ctx_nr
== ctxn
)
5533 return pmu
->pmu_cpu_context
;
5539 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5543 for_each_possible_cpu(cpu
) {
5544 struct perf_cpu_context
*cpuctx
;
5546 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5548 if (cpuctx
->active_pmu
== old_pmu
)
5549 cpuctx
->active_pmu
= pmu
;
5553 static void free_pmu_context(struct pmu
*pmu
)
5557 mutex_lock(&pmus_lock
);
5559 * Like a real lame refcount.
5561 list_for_each_entry(i
, &pmus
, entry
) {
5562 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5563 update_pmu_context(i
, pmu
);
5568 free_percpu(pmu
->pmu_cpu_context
);
5570 mutex_unlock(&pmus_lock
);
5572 static struct idr pmu_idr
;
5575 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5577 struct pmu
*pmu
= dev_get_drvdata(dev
);
5579 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5582 static struct device_attribute pmu_dev_attrs
[] = {
5587 static int pmu_bus_running
;
5588 static struct bus_type pmu_bus
= {
5589 .name
= "event_source",
5590 .dev_attrs
= pmu_dev_attrs
,
5593 static void pmu_dev_release(struct device
*dev
)
5598 static int pmu_dev_alloc(struct pmu
*pmu
)
5602 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5606 device_initialize(pmu
->dev
);
5607 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5611 dev_set_drvdata(pmu
->dev
, pmu
);
5612 pmu
->dev
->bus
= &pmu_bus
;
5613 pmu
->dev
->release
= pmu_dev_release
;
5614 ret
= device_add(pmu
->dev
);
5622 put_device(pmu
->dev
);
5626 static struct lock_class_key cpuctx_mutex
;
5627 static struct lock_class_key cpuctx_lock
;
5629 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5633 mutex_lock(&pmus_lock
);
5635 pmu
->pmu_disable_count
= alloc_percpu(int);
5636 if (!pmu
->pmu_disable_count
)
5645 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5649 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5657 if (pmu_bus_running
) {
5658 ret
= pmu_dev_alloc(pmu
);
5664 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5665 if (pmu
->pmu_cpu_context
)
5666 goto got_cpu_context
;
5668 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5669 if (!pmu
->pmu_cpu_context
)
5672 for_each_possible_cpu(cpu
) {
5673 struct perf_cpu_context
*cpuctx
;
5675 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5676 __perf_event_init_context(&cpuctx
->ctx
);
5677 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5678 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
5679 cpuctx
->ctx
.type
= cpu_context
;
5680 cpuctx
->ctx
.pmu
= pmu
;
5681 cpuctx
->jiffies_interval
= 1;
5682 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5683 cpuctx
->active_pmu
= pmu
;
5687 if (!pmu
->start_txn
) {
5688 if (pmu
->pmu_enable
) {
5690 * If we have pmu_enable/pmu_disable calls, install
5691 * transaction stubs that use that to try and batch
5692 * hardware accesses.
5694 pmu
->start_txn
= perf_pmu_start_txn
;
5695 pmu
->commit_txn
= perf_pmu_commit_txn
;
5696 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5698 pmu
->start_txn
= perf_pmu_nop_void
;
5699 pmu
->commit_txn
= perf_pmu_nop_int
;
5700 pmu
->cancel_txn
= perf_pmu_nop_void
;
5704 if (!pmu
->pmu_enable
) {
5705 pmu
->pmu_enable
= perf_pmu_nop_void
;
5706 pmu
->pmu_disable
= perf_pmu_nop_void
;
5709 list_add_rcu(&pmu
->entry
, &pmus
);
5712 mutex_unlock(&pmus_lock
);
5717 device_del(pmu
->dev
);
5718 put_device(pmu
->dev
);
5721 if (pmu
->type
>= PERF_TYPE_MAX
)
5722 idr_remove(&pmu_idr
, pmu
->type
);
5725 free_percpu(pmu
->pmu_disable_count
);
5729 void perf_pmu_unregister(struct pmu
*pmu
)
5731 mutex_lock(&pmus_lock
);
5732 list_del_rcu(&pmu
->entry
);
5733 mutex_unlock(&pmus_lock
);
5736 * We dereference the pmu list under both SRCU and regular RCU, so
5737 * synchronize against both of those.
5739 synchronize_srcu(&pmus_srcu
);
5742 free_percpu(pmu
->pmu_disable_count
);
5743 if (pmu
->type
>= PERF_TYPE_MAX
)
5744 idr_remove(&pmu_idr
, pmu
->type
);
5745 device_del(pmu
->dev
);
5746 put_device(pmu
->dev
);
5747 free_pmu_context(pmu
);
5750 struct pmu
*perf_init_event(struct perf_event
*event
)
5752 struct pmu
*pmu
= NULL
;
5756 idx
= srcu_read_lock(&pmus_srcu
);
5759 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5763 ret
= pmu
->event_init(event
);
5769 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5771 ret
= pmu
->event_init(event
);
5775 if (ret
!= -ENOENT
) {
5780 pmu
= ERR_PTR(-ENOENT
);
5782 srcu_read_unlock(&pmus_srcu
, idx
);
5788 * Allocate and initialize a event structure
5790 static struct perf_event
*
5791 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5792 struct task_struct
*task
,
5793 struct perf_event
*group_leader
,
5794 struct perf_event
*parent_event
,
5795 perf_overflow_handler_t overflow_handler
,
5799 struct perf_event
*event
;
5800 struct hw_perf_event
*hwc
;
5803 if ((unsigned)cpu
>= nr_cpu_ids
) {
5804 if (!task
|| cpu
!= -1)
5805 return ERR_PTR(-EINVAL
);
5808 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5810 return ERR_PTR(-ENOMEM
);
5813 * Single events are their own group leaders, with an
5814 * empty sibling list:
5817 group_leader
= event
;
5819 mutex_init(&event
->child_mutex
);
5820 INIT_LIST_HEAD(&event
->child_list
);
5822 INIT_LIST_HEAD(&event
->group_entry
);
5823 INIT_LIST_HEAD(&event
->event_entry
);
5824 INIT_LIST_HEAD(&event
->sibling_list
);
5825 init_waitqueue_head(&event
->waitq
);
5826 init_irq_work(&event
->pending
, perf_pending_event
);
5828 mutex_init(&event
->mmap_mutex
);
5831 event
->attr
= *attr
;
5832 event
->group_leader
= group_leader
;
5836 event
->parent
= parent_event
;
5838 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5839 event
->id
= atomic64_inc_return(&perf_event_id
);
5841 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5844 event
->attach_state
= PERF_ATTACH_TASK
;
5845 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5847 * hw_breakpoint is a bit difficult here..
5849 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5850 event
->hw
.bp_target
= task
;
5854 if (!overflow_handler
&& parent_event
) {
5855 overflow_handler
= parent_event
->overflow_handler
;
5856 context
= parent_event
->overflow_handler_context
;
5859 event
->overflow_handler
= overflow_handler
;
5860 event
->overflow_handler_context
= context
;
5863 event
->state
= PERF_EVENT_STATE_OFF
;
5868 hwc
->sample_period
= attr
->sample_period
;
5869 if (attr
->freq
&& attr
->sample_freq
)
5870 hwc
->sample_period
= 1;
5871 hwc
->last_period
= hwc
->sample_period
;
5873 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5876 * we currently do not support PERF_FORMAT_GROUP on inherited events
5878 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5881 pmu
= perf_init_event(event
);
5887 else if (IS_ERR(pmu
))
5892 put_pid_ns(event
->ns
);
5894 return ERR_PTR(err
);
5897 if (!event
->parent
) {
5898 if (event
->attach_state
& PERF_ATTACH_TASK
)
5899 jump_label_inc(&perf_sched_events
);
5900 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5901 atomic_inc(&nr_mmap_events
);
5902 if (event
->attr
.comm
)
5903 atomic_inc(&nr_comm_events
);
5904 if (event
->attr
.task
)
5905 atomic_inc(&nr_task_events
);
5906 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5907 err
= get_callchain_buffers();
5910 return ERR_PTR(err
);
5918 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5919 struct perf_event_attr
*attr
)
5924 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5928 * zero the full structure, so that a short copy will be nice.
5930 memset(attr
, 0, sizeof(*attr
));
5932 ret
= get_user(size
, &uattr
->size
);
5936 if (size
> PAGE_SIZE
) /* silly large */
5939 if (!size
) /* abi compat */
5940 size
= PERF_ATTR_SIZE_VER0
;
5942 if (size
< PERF_ATTR_SIZE_VER0
)
5946 * If we're handed a bigger struct than we know of,
5947 * ensure all the unknown bits are 0 - i.e. new
5948 * user-space does not rely on any kernel feature
5949 * extensions we dont know about yet.
5951 if (size
> sizeof(*attr
)) {
5952 unsigned char __user
*addr
;
5953 unsigned char __user
*end
;
5956 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5957 end
= (void __user
*)uattr
+ size
;
5959 for (; addr
< end
; addr
++) {
5960 ret
= get_user(val
, addr
);
5966 size
= sizeof(*attr
);
5969 ret
= copy_from_user(attr
, uattr
, size
);
5973 if (attr
->__reserved_1
)
5976 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5979 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5986 put_user(sizeof(*attr
), &uattr
->size
);
5992 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5994 struct ring_buffer
*rb
= NULL
, *old_rb
= NULL
;
6000 /* don't allow circular references */
6001 if (event
== output_event
)
6005 * Don't allow cross-cpu buffers
6007 if (output_event
->cpu
!= event
->cpu
)
6011 * If its not a per-cpu rb, it must be the same task.
6013 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6017 mutex_lock(&event
->mmap_mutex
);
6018 /* Can't redirect output if we've got an active mmap() */
6019 if (atomic_read(&event
->mmap_count
))
6023 /* get the rb we want to redirect to */
6024 rb
= ring_buffer_get(output_event
);
6030 rcu_assign_pointer(event
->rb
, rb
);
6033 mutex_unlock(&event
->mmap_mutex
);
6036 ring_buffer_put(old_rb
);
6042 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6044 * @attr_uptr: event_id type attributes for monitoring/sampling
6047 * @group_fd: group leader event fd
6049 SYSCALL_DEFINE5(perf_event_open
,
6050 struct perf_event_attr __user
*, attr_uptr
,
6051 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6053 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6054 struct perf_event
*event
, *sibling
;
6055 struct perf_event_attr attr
;
6056 struct perf_event_context
*ctx
;
6057 struct file
*event_file
= NULL
;
6058 struct file
*group_file
= NULL
;
6059 struct task_struct
*task
= NULL
;
6063 int fput_needed
= 0;
6066 /* for future expandability... */
6067 if (flags
& ~PERF_FLAG_ALL
)
6070 err
= perf_copy_attr(attr_uptr
, &attr
);
6074 if (!attr
.exclude_kernel
) {
6075 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6080 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6085 * In cgroup mode, the pid argument is used to pass the fd
6086 * opened to the cgroup directory in cgroupfs. The cpu argument
6087 * designates the cpu on which to monitor threads from that
6090 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6093 event_fd
= get_unused_fd_flags(O_RDWR
);
6097 if (group_fd
!= -1) {
6098 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6099 if (IS_ERR(group_leader
)) {
6100 err
= PTR_ERR(group_leader
);
6103 group_file
= group_leader
->filp
;
6104 if (flags
& PERF_FLAG_FD_OUTPUT
)
6105 output_event
= group_leader
;
6106 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6107 group_leader
= NULL
;
6110 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6111 task
= find_lively_task_by_vpid(pid
);
6113 err
= PTR_ERR(task
);
6118 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
6120 if (IS_ERR(event
)) {
6121 err
= PTR_ERR(event
);
6125 if (flags
& PERF_FLAG_PID_CGROUP
) {
6126 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6131 * - that has cgroup constraint on event->cpu
6132 * - that may need work on context switch
6134 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6135 jump_label_inc(&perf_sched_events
);
6139 * Special case software events and allow them to be part of
6140 * any hardware group.
6145 (is_software_event(event
) != is_software_event(group_leader
))) {
6146 if (is_software_event(event
)) {
6148 * If event and group_leader are not both a software
6149 * event, and event is, then group leader is not.
6151 * Allow the addition of software events to !software
6152 * groups, this is safe because software events never
6155 pmu
= group_leader
->pmu
;
6156 } else if (is_software_event(group_leader
) &&
6157 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6159 * In case the group is a pure software group, and we
6160 * try to add a hardware event, move the whole group to
6161 * the hardware context.
6168 * Get the target context (task or percpu):
6170 ctx
= find_get_context(pmu
, task
, cpu
);
6177 put_task_struct(task
);
6182 * Look up the group leader (we will attach this event to it):
6188 * Do not allow a recursive hierarchy (this new sibling
6189 * becoming part of another group-sibling):
6191 if (group_leader
->group_leader
!= group_leader
)
6194 * Do not allow to attach to a group in a different
6195 * task or CPU context:
6198 if (group_leader
->ctx
->type
!= ctx
->type
)
6201 if (group_leader
->ctx
!= ctx
)
6206 * Only a group leader can be exclusive or pinned
6208 if (attr
.exclusive
|| attr
.pinned
)
6213 err
= perf_event_set_output(event
, output_event
);
6218 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6219 if (IS_ERR(event_file
)) {
6220 err
= PTR_ERR(event_file
);
6225 struct perf_event_context
*gctx
= group_leader
->ctx
;
6227 mutex_lock(&gctx
->mutex
);
6228 perf_remove_from_context(group_leader
);
6229 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6231 perf_remove_from_context(sibling
);
6234 mutex_unlock(&gctx
->mutex
);
6238 event
->filp
= event_file
;
6239 WARN_ON_ONCE(ctx
->parent_ctx
);
6240 mutex_lock(&ctx
->mutex
);
6243 perf_install_in_context(ctx
, group_leader
, cpu
);
6245 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6247 perf_install_in_context(ctx
, sibling
, cpu
);
6252 perf_install_in_context(ctx
, event
, cpu
);
6254 perf_unpin_context(ctx
);
6255 mutex_unlock(&ctx
->mutex
);
6257 event
->owner
= current
;
6259 mutex_lock(¤t
->perf_event_mutex
);
6260 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6261 mutex_unlock(¤t
->perf_event_mutex
);
6264 * Precalculate sample_data sizes
6266 perf_event__header_size(event
);
6267 perf_event__id_header_size(event
);
6270 * Drop the reference on the group_event after placing the
6271 * new event on the sibling_list. This ensures destruction
6272 * of the group leader will find the pointer to itself in
6273 * perf_group_detach().
6275 fput_light(group_file
, fput_needed
);
6276 fd_install(event_fd
, event_file
);
6280 perf_unpin_context(ctx
);
6286 put_task_struct(task
);
6288 fput_light(group_file
, fput_needed
);
6290 put_unused_fd(event_fd
);
6295 * perf_event_create_kernel_counter
6297 * @attr: attributes of the counter to create
6298 * @cpu: cpu in which the counter is bound
6299 * @task: task to profile (NULL for percpu)
6302 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6303 struct task_struct
*task
,
6304 perf_overflow_handler_t overflow_handler
,
6307 struct perf_event_context
*ctx
;
6308 struct perf_event
*event
;
6312 * Get the target context (task or percpu):
6315 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
6316 overflow_handler
, context
);
6317 if (IS_ERR(event
)) {
6318 err
= PTR_ERR(event
);
6322 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6329 WARN_ON_ONCE(ctx
->parent_ctx
);
6330 mutex_lock(&ctx
->mutex
);
6331 perf_install_in_context(ctx
, event
, cpu
);
6333 perf_unpin_context(ctx
);
6334 mutex_unlock(&ctx
->mutex
);
6341 return ERR_PTR(err
);
6343 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6345 static void sync_child_event(struct perf_event
*child_event
,
6346 struct task_struct
*child
)
6348 struct perf_event
*parent_event
= child_event
->parent
;
6351 if (child_event
->attr
.inherit_stat
)
6352 perf_event_read_event(child_event
, child
);
6354 child_val
= perf_event_count(child_event
);
6357 * Add back the child's count to the parent's count:
6359 atomic64_add(child_val
, &parent_event
->child_count
);
6360 atomic64_add(child_event
->total_time_enabled
,
6361 &parent_event
->child_total_time_enabled
);
6362 atomic64_add(child_event
->total_time_running
,
6363 &parent_event
->child_total_time_running
);
6366 * Remove this event from the parent's list
6368 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6369 mutex_lock(&parent_event
->child_mutex
);
6370 list_del_init(&child_event
->child_list
);
6371 mutex_unlock(&parent_event
->child_mutex
);
6374 * Release the parent event, if this was the last
6377 fput(parent_event
->filp
);
6381 __perf_event_exit_task(struct perf_event
*child_event
,
6382 struct perf_event_context
*child_ctx
,
6383 struct task_struct
*child
)
6385 if (child_event
->parent
) {
6386 raw_spin_lock_irq(&child_ctx
->lock
);
6387 perf_group_detach(child_event
);
6388 raw_spin_unlock_irq(&child_ctx
->lock
);
6391 perf_remove_from_context(child_event
);
6394 * It can happen that the parent exits first, and has events
6395 * that are still around due to the child reference. These
6396 * events need to be zapped.
6398 if (child_event
->parent
) {
6399 sync_child_event(child_event
, child
);
6400 free_event(child_event
);
6404 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6406 struct perf_event
*child_event
, *tmp
;
6407 struct perf_event_context
*child_ctx
;
6408 unsigned long flags
;
6410 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6411 perf_event_task(child
, NULL
, 0);
6415 local_irq_save(flags
);
6417 * We can't reschedule here because interrupts are disabled,
6418 * and either child is current or it is a task that can't be
6419 * scheduled, so we are now safe from rescheduling changing
6422 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6425 * Take the context lock here so that if find_get_context is
6426 * reading child->perf_event_ctxp, we wait until it has
6427 * incremented the context's refcount before we do put_ctx below.
6429 raw_spin_lock(&child_ctx
->lock
);
6430 task_ctx_sched_out(child_ctx
);
6431 child
->perf_event_ctxp
[ctxn
] = NULL
;
6433 * If this context is a clone; unclone it so it can't get
6434 * swapped to another process while we're removing all
6435 * the events from it.
6437 unclone_ctx(child_ctx
);
6438 update_context_time(child_ctx
);
6439 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6442 * Report the task dead after unscheduling the events so that we
6443 * won't get any samples after PERF_RECORD_EXIT. We can however still
6444 * get a few PERF_RECORD_READ events.
6446 perf_event_task(child
, child_ctx
, 0);
6449 * We can recurse on the same lock type through:
6451 * __perf_event_exit_task()
6452 * sync_child_event()
6453 * fput(parent_event->filp)
6455 * mutex_lock(&ctx->mutex)
6457 * But since its the parent context it won't be the same instance.
6459 mutex_lock(&child_ctx
->mutex
);
6462 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6464 __perf_event_exit_task(child_event
, child_ctx
, child
);
6466 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6468 __perf_event_exit_task(child_event
, child_ctx
, child
);
6471 * If the last event was a group event, it will have appended all
6472 * its siblings to the list, but we obtained 'tmp' before that which
6473 * will still point to the list head terminating the iteration.
6475 if (!list_empty(&child_ctx
->pinned_groups
) ||
6476 !list_empty(&child_ctx
->flexible_groups
))
6479 mutex_unlock(&child_ctx
->mutex
);
6485 * When a child task exits, feed back event values to parent events.
6487 void perf_event_exit_task(struct task_struct
*child
)
6489 struct perf_event
*event
, *tmp
;
6492 mutex_lock(&child
->perf_event_mutex
);
6493 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6495 list_del_init(&event
->owner_entry
);
6498 * Ensure the list deletion is visible before we clear
6499 * the owner, closes a race against perf_release() where
6500 * we need to serialize on the owner->perf_event_mutex.
6503 event
->owner
= NULL
;
6505 mutex_unlock(&child
->perf_event_mutex
);
6507 for_each_task_context_nr(ctxn
)
6508 perf_event_exit_task_context(child
, ctxn
);
6511 static void perf_free_event(struct perf_event
*event
,
6512 struct perf_event_context
*ctx
)
6514 struct perf_event
*parent
= event
->parent
;
6516 if (WARN_ON_ONCE(!parent
))
6519 mutex_lock(&parent
->child_mutex
);
6520 list_del_init(&event
->child_list
);
6521 mutex_unlock(&parent
->child_mutex
);
6525 perf_group_detach(event
);
6526 list_del_event(event
, ctx
);
6531 * free an unexposed, unused context as created by inheritance by
6532 * perf_event_init_task below, used by fork() in case of fail.
6534 void perf_event_free_task(struct task_struct
*task
)
6536 struct perf_event_context
*ctx
;
6537 struct perf_event
*event
, *tmp
;
6540 for_each_task_context_nr(ctxn
) {
6541 ctx
= task
->perf_event_ctxp
[ctxn
];
6545 mutex_lock(&ctx
->mutex
);
6547 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6549 perf_free_event(event
, ctx
);
6551 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6553 perf_free_event(event
, ctx
);
6555 if (!list_empty(&ctx
->pinned_groups
) ||
6556 !list_empty(&ctx
->flexible_groups
))
6559 mutex_unlock(&ctx
->mutex
);
6565 void perf_event_delayed_put(struct task_struct
*task
)
6569 for_each_task_context_nr(ctxn
)
6570 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6574 * inherit a event from parent task to child task:
6576 static struct perf_event
*
6577 inherit_event(struct perf_event
*parent_event
,
6578 struct task_struct
*parent
,
6579 struct perf_event_context
*parent_ctx
,
6580 struct task_struct
*child
,
6581 struct perf_event
*group_leader
,
6582 struct perf_event_context
*child_ctx
)
6584 struct perf_event
*child_event
;
6585 unsigned long flags
;
6588 * Instead of creating recursive hierarchies of events,
6589 * we link inherited events back to the original parent,
6590 * which has a filp for sure, which we use as the reference
6593 if (parent_event
->parent
)
6594 parent_event
= parent_event
->parent
;
6596 child_event
= perf_event_alloc(&parent_event
->attr
,
6599 group_leader
, parent_event
,
6601 if (IS_ERR(child_event
))
6606 * Make the child state follow the state of the parent event,
6607 * not its attr.disabled bit. We hold the parent's mutex,
6608 * so we won't race with perf_event_{en, dis}able_family.
6610 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6611 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6613 child_event
->state
= PERF_EVENT_STATE_OFF
;
6615 if (parent_event
->attr
.freq
) {
6616 u64 sample_period
= parent_event
->hw
.sample_period
;
6617 struct hw_perf_event
*hwc
= &child_event
->hw
;
6619 hwc
->sample_period
= sample_period
;
6620 hwc
->last_period
= sample_period
;
6622 local64_set(&hwc
->period_left
, sample_period
);
6625 child_event
->ctx
= child_ctx
;
6626 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6627 child_event
->overflow_handler_context
6628 = parent_event
->overflow_handler_context
;
6631 * Precalculate sample_data sizes
6633 perf_event__header_size(child_event
);
6634 perf_event__id_header_size(child_event
);
6637 * Link it up in the child's context:
6639 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6640 add_event_to_ctx(child_event
, child_ctx
);
6641 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6644 * Get a reference to the parent filp - we will fput it
6645 * when the child event exits. This is safe to do because
6646 * we are in the parent and we know that the filp still
6647 * exists and has a nonzero count:
6649 atomic_long_inc(&parent_event
->filp
->f_count
);
6652 * Link this into the parent event's child list
6654 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6655 mutex_lock(&parent_event
->child_mutex
);
6656 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6657 mutex_unlock(&parent_event
->child_mutex
);
6662 static int inherit_group(struct perf_event
*parent_event
,
6663 struct task_struct
*parent
,
6664 struct perf_event_context
*parent_ctx
,
6665 struct task_struct
*child
,
6666 struct perf_event_context
*child_ctx
)
6668 struct perf_event
*leader
;
6669 struct perf_event
*sub
;
6670 struct perf_event
*child_ctr
;
6672 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6673 child
, NULL
, child_ctx
);
6675 return PTR_ERR(leader
);
6676 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6677 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6678 child
, leader
, child_ctx
);
6679 if (IS_ERR(child_ctr
))
6680 return PTR_ERR(child_ctr
);
6686 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6687 struct perf_event_context
*parent_ctx
,
6688 struct task_struct
*child
, int ctxn
,
6692 struct perf_event_context
*child_ctx
;
6694 if (!event
->attr
.inherit
) {
6699 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6702 * This is executed from the parent task context, so
6703 * inherit events that have been marked for cloning.
6704 * First allocate and initialize a context for the
6708 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6712 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6715 ret
= inherit_group(event
, parent
, parent_ctx
,
6725 * Initialize the perf_event context in task_struct
6727 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6729 struct perf_event_context
*child_ctx
, *parent_ctx
;
6730 struct perf_event_context
*cloned_ctx
;
6731 struct perf_event
*event
;
6732 struct task_struct
*parent
= current
;
6733 int inherited_all
= 1;
6734 unsigned long flags
;
6737 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6741 * If the parent's context is a clone, pin it so it won't get
6744 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6747 * No need to check if parent_ctx != NULL here; since we saw
6748 * it non-NULL earlier, the only reason for it to become NULL
6749 * is if we exit, and since we're currently in the middle of
6750 * a fork we can't be exiting at the same time.
6754 * Lock the parent list. No need to lock the child - not PID
6755 * hashed yet and not running, so nobody can access it.
6757 mutex_lock(&parent_ctx
->mutex
);
6760 * We dont have to disable NMIs - we are only looking at
6761 * the list, not manipulating it:
6763 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6764 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6765 child
, ctxn
, &inherited_all
);
6771 * We can't hold ctx->lock when iterating the ->flexible_group list due
6772 * to allocations, but we need to prevent rotation because
6773 * rotate_ctx() will change the list from interrupt context.
6775 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6776 parent_ctx
->rotate_disable
= 1;
6777 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6779 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6780 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6781 child
, ctxn
, &inherited_all
);
6786 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6787 parent_ctx
->rotate_disable
= 0;
6789 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6791 if (child_ctx
&& inherited_all
) {
6793 * Mark the child context as a clone of the parent
6794 * context, or of whatever the parent is a clone of.
6796 * Note that if the parent is a clone, the holding of
6797 * parent_ctx->lock avoids it from being uncloned.
6799 cloned_ctx
= parent_ctx
->parent_ctx
;
6801 child_ctx
->parent_ctx
= cloned_ctx
;
6802 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6804 child_ctx
->parent_ctx
= parent_ctx
;
6805 child_ctx
->parent_gen
= parent_ctx
->generation
;
6807 get_ctx(child_ctx
->parent_ctx
);
6810 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6811 mutex_unlock(&parent_ctx
->mutex
);
6813 perf_unpin_context(parent_ctx
);
6814 put_ctx(parent_ctx
);
6820 * Initialize the perf_event context in task_struct
6822 int perf_event_init_task(struct task_struct
*child
)
6826 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6827 mutex_init(&child
->perf_event_mutex
);
6828 INIT_LIST_HEAD(&child
->perf_event_list
);
6830 for_each_task_context_nr(ctxn
) {
6831 ret
= perf_event_init_context(child
, ctxn
);
6839 static void __init
perf_event_init_all_cpus(void)
6841 struct swevent_htable
*swhash
;
6844 for_each_possible_cpu(cpu
) {
6845 swhash
= &per_cpu(swevent_htable
, cpu
);
6846 mutex_init(&swhash
->hlist_mutex
);
6847 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6851 static void __cpuinit
perf_event_init_cpu(int cpu
)
6853 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6855 mutex_lock(&swhash
->hlist_mutex
);
6856 if (swhash
->hlist_refcount
> 0) {
6857 struct swevent_hlist
*hlist
;
6859 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6861 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6863 mutex_unlock(&swhash
->hlist_mutex
);
6866 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6867 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6869 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6871 WARN_ON(!irqs_disabled());
6873 list_del_init(&cpuctx
->rotation_list
);
6876 static void __perf_event_exit_context(void *__info
)
6878 struct perf_event_context
*ctx
= __info
;
6879 struct perf_event
*event
, *tmp
;
6881 perf_pmu_rotate_stop(ctx
->pmu
);
6883 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6884 __perf_remove_from_context(event
);
6885 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6886 __perf_remove_from_context(event
);
6889 static void perf_event_exit_cpu_context(int cpu
)
6891 struct perf_event_context
*ctx
;
6895 idx
= srcu_read_lock(&pmus_srcu
);
6896 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6897 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6899 mutex_lock(&ctx
->mutex
);
6900 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6901 mutex_unlock(&ctx
->mutex
);
6903 srcu_read_unlock(&pmus_srcu
, idx
);
6906 static void perf_event_exit_cpu(int cpu
)
6908 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6910 mutex_lock(&swhash
->hlist_mutex
);
6911 swevent_hlist_release(swhash
);
6912 mutex_unlock(&swhash
->hlist_mutex
);
6914 perf_event_exit_cpu_context(cpu
);
6917 static inline void perf_event_exit_cpu(int cpu
) { }
6921 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
6925 for_each_online_cpu(cpu
)
6926 perf_event_exit_cpu(cpu
);
6932 * Run the perf reboot notifier at the very last possible moment so that
6933 * the generic watchdog code runs as long as possible.
6935 static struct notifier_block perf_reboot_notifier
= {
6936 .notifier_call
= perf_reboot
,
6937 .priority
= INT_MIN
,
6940 static int __cpuinit
6941 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6943 unsigned int cpu
= (long)hcpu
;
6945 switch (action
& ~CPU_TASKS_FROZEN
) {
6947 case CPU_UP_PREPARE
:
6948 case CPU_DOWN_FAILED
:
6949 perf_event_init_cpu(cpu
);
6952 case CPU_UP_CANCELED
:
6953 case CPU_DOWN_PREPARE
:
6954 perf_event_exit_cpu(cpu
);
6964 void __init
perf_event_init(void)
6970 perf_event_init_all_cpus();
6971 init_srcu_struct(&pmus_srcu
);
6972 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
6973 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
6974 perf_pmu_register(&perf_task_clock
, NULL
, -1);
6976 perf_cpu_notifier(perf_cpu_notify
);
6977 register_reboot_notifier(&perf_reboot_notifier
);
6979 ret
= init_hw_breakpoint();
6980 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
6983 static int __init
perf_event_sysfs_init(void)
6988 mutex_lock(&pmus_lock
);
6990 ret
= bus_register(&pmu_bus
);
6994 list_for_each_entry(pmu
, &pmus
, entry
) {
6995 if (!pmu
->name
|| pmu
->type
< 0)
6998 ret
= pmu_dev_alloc(pmu
);
6999 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7001 pmu_bus_running
= 1;
7005 mutex_unlock(&pmus_lock
);
7009 device_initcall(perf_event_sysfs_init
);
7011 #ifdef CONFIG_CGROUP_PERF
7012 static struct cgroup_subsys_state
*perf_cgroup_create(
7013 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7015 struct perf_cgroup
*jc
;
7017 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
7019 return ERR_PTR(-ENOMEM
);
7021 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
7024 return ERR_PTR(-ENOMEM
);
7030 static void perf_cgroup_destroy(struct cgroup_subsys
*ss
,
7031 struct cgroup
*cont
)
7033 struct perf_cgroup
*jc
;
7034 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
7035 struct perf_cgroup
, css
);
7036 free_percpu(jc
->info
);
7040 static int __perf_cgroup_move(void *info
)
7042 struct task_struct
*task
= info
;
7043 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7048 perf_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*task
)
7050 task_function_call(task
, __perf_cgroup_move
, task
);
7053 static void perf_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7054 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7057 * cgroup_exit() is called in the copy_process() failure path.
7058 * Ignore this case since the task hasn't ran yet, this avoids
7059 * trying to poke a half freed task state from generic code.
7061 if (!(task
->flags
& PF_EXITING
))
7064 perf_cgroup_attach_task(cgrp
, task
);
7067 struct cgroup_subsys perf_subsys
= {
7068 .name
= "perf_event",
7069 .subsys_id
= perf_subsys_id
,
7070 .create
= perf_cgroup_create
,
7071 .destroy
= perf_cgroup_destroy
,
7072 .exit
= perf_cgroup_exit
,
7073 .attach_task
= perf_cgroup_attach_task
,
7075 #endif /* CONFIG_CGROUP_PERF */