sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / acpi / cppc_acpi.c
blob3ca0729f7e0e5743fd48b68939e998a109c5c8d5
1 /*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
46 #include <acpi/cppc_acpi.h>
48 struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 int pcc_subspace_idx;
52 bool pcc_channel_acquired;
53 ktime_t deadline;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
61 * Lock to provide controlled access to the PCC channel.
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
74 struct rw_semaphore pcc_lock;
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
83 .platform_owns_pcc = true,
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500
121 struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136 struct attribute *attr, char *buf)
138 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139 struct cppc_perf_fb_ctrs fb_ctrs = {0};
141 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
143 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144 fb_ctrs.reference, fb_ctrs.delivered);
146 define_one_cppc_ro(feedback_ctrs);
148 static ssize_t show_reference_perf(struct kobject *kobj,
149 struct attribute *attr, char *buf)
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152 struct cppc_perf_fb_ctrs fb_ctrs = {0};
154 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
156 return scnprintf(buf, PAGE_SIZE, "%llu\n",
157 fb_ctrs.reference_perf);
159 define_one_cppc_ro(reference_perf);
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162 struct attribute *attr, char *buf)
164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165 struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
169 return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
172 define_one_cppc_ro(wraparound_time);
174 static struct attribute *cppc_attrs[] = {
175 &feedback_ctrs.attr,
176 &reference_perf.attr,
177 &wraparound_time.attr,
178 NULL
181 static struct kobj_type cppc_ktype = {
182 .sysfs_ops = &kobj_sysfs_ops,
183 .default_attrs = cppc_attrs,
186 static int check_pcc_chan(bool chk_err_bit)
188 int ret = -EIO, status = 0;
189 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
192 if (!pcc_data.platform_owns_pcc)
193 return 0;
195 /* Retry in case the remote processor was too slow to catch up. */
196 while (!ktime_after(ktime_get(), next_deadline)) {
198 * Per spec, prior to boot the PCC space wil be initialized by
199 * platform and should have set the command completion bit when
200 * PCC can be used by OSPM
202 status = readw_relaxed(&generic_comm_base->status);
203 if (status & PCC_CMD_COMPLETE_MASK) {
204 ret = 0;
205 if (chk_err_bit && (status & PCC_ERROR_MASK))
206 ret = -EIO;
207 break;
210 * Reducing the bus traffic in case this loop takes longer than
211 * a few retries.
213 udelay(3);
216 if (likely(!ret))
217 pcc_data.platform_owns_pcc = false;
218 else
219 pr_err("PCC check channel failed. Status=%x\n", status);
221 return ret;
225 * This function transfers the ownership of the PCC to the platform
226 * So it must be called while holding write_lock(pcc_lock)
228 static int send_pcc_cmd(u16 cmd)
230 int ret = -EIO, i;
231 struct acpi_pcct_shared_memory *generic_comm_base =
232 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234 static int mpar_count;
235 unsigned int time_delta;
238 * For CMD_WRITE we know for a fact the caller should have checked
239 * the channel before writing to PCC space
241 if (cmd == CMD_READ) {
243 * If there are pending cpc_writes, then we stole the channel
244 * before write completion, so first send a WRITE command to
245 * platform
247 if (pcc_data.pending_pcc_write_cmd)
248 send_pcc_cmd(CMD_WRITE);
250 ret = check_pcc_chan(false);
251 if (ret)
252 goto end;
253 } else /* CMD_WRITE */
254 pcc_data.pending_pcc_write_cmd = FALSE;
257 * Handle the Minimum Request Turnaround Time(MRTT)
258 * "The minimum amount of time that OSPM must wait after the completion
259 * of a command before issuing the next command, in microseconds"
261 if (pcc_data.pcc_mrtt) {
262 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263 if (pcc_data.pcc_mrtt > time_delta)
264 udelay(pcc_data.pcc_mrtt - time_delta);
268 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269 * "The maximum number of periodic requests that the subspace channel can
270 * support, reported in commands per minute. 0 indicates no limitation."
272 * This parameter should be ideally zero or large enough so that it can
273 * handle maximum number of requests that all the cores in the system can
274 * collectively generate. If it is not, we will follow the spec and just
275 * not send the request to the platform after hitting the MPAR limit in
276 * any 60s window
278 if (pcc_data.pcc_mpar) {
279 if (mpar_count == 0) {
280 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281 if (time_delta < 60 * MSEC_PER_SEC) {
282 pr_debug("PCC cmd not sent due to MPAR limit");
283 ret = -EIO;
284 goto end;
286 last_mpar_reset = ktime_get();
287 mpar_count = pcc_data.pcc_mpar;
289 mpar_count--;
292 /* Write to the shared comm region. */
293 writew_relaxed(cmd, &generic_comm_base->command);
295 /* Flip CMD COMPLETE bit */
296 writew_relaxed(0, &generic_comm_base->status);
298 pcc_data.platform_owns_pcc = true;
300 /* Ring doorbell */
301 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302 if (ret < 0) {
303 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304 cmd, ret);
305 goto end;
308 /* wait for completion and check for PCC errro bit */
309 ret = check_pcc_chan(true);
311 if (pcc_data.pcc_mrtt)
312 last_cmd_cmpl_time = ktime_get();
314 if (pcc_data.pcc_channel->mbox->txdone_irq)
315 mbox_chan_txdone(pcc_data.pcc_channel, ret);
316 else
317 mbox_client_txdone(pcc_data.pcc_channel, ret);
319 end:
320 if (cmd == CMD_WRITE) {
321 if (unlikely(ret)) {
322 for_each_possible_cpu(i) {
323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324 if (!desc)
325 continue;
327 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328 desc->write_cmd_status = ret;
331 pcc_data.pcc_write_cnt++;
332 wake_up_all(&pcc_data.pcc_write_wait_q);
335 return ret;
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
340 if (ret < 0)
341 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342 *(u16 *)msg, ret);
343 else
344 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345 *(u16 *)msg, ret);
348 struct mbox_client cppc_mbox_cl = {
349 .tx_done = cppc_chan_tx_done,
350 .knows_txdone = true,
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
355 int result = -EFAULT;
356 acpi_status status = AE_OK;
357 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359 struct acpi_buffer state = {0, NULL};
360 union acpi_object *psd = NULL;
361 struct acpi_psd_package *pdomain;
363 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
364 ACPI_TYPE_PACKAGE);
365 if (ACPI_FAILURE(status))
366 return -ENODEV;
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
371 goto end;
374 pdomain = &(cpc_ptr->domain_info);
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
379 status = acpi_extract_package(&(psd->package.elements[0]),
380 &format, &state);
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383 goto end;
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388 goto end;
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393 goto end;
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
403 result = 0;
404 end:
405 kfree(buffer.pointer);
406 return result;
410 * acpi_get_psd_map - Map the CPUs in a common freq domain.
411 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
413 * Return: 0 for success or negative value for err.
415 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
417 int count_target;
418 int retval = 0;
419 unsigned int i, j;
420 cpumask_var_t covered_cpus;
421 struct cppc_cpudata *pr, *match_pr;
422 struct acpi_psd_package *pdomain;
423 struct acpi_psd_package *match_pdomain;
424 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
426 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
427 return -ENOMEM;
430 * Now that we have _PSD data from all CPUs, lets setup P-state
431 * domain info.
433 for_each_possible_cpu(i) {
434 pr = all_cpu_data[i];
435 if (!pr)
436 continue;
438 if (cpumask_test_cpu(i, covered_cpus))
439 continue;
441 cpc_ptr = per_cpu(cpc_desc_ptr, i);
442 if (!cpc_ptr) {
443 retval = -EFAULT;
444 goto err_ret;
447 pdomain = &(cpc_ptr->domain_info);
448 cpumask_set_cpu(i, pr->shared_cpu_map);
449 cpumask_set_cpu(i, covered_cpus);
450 if (pdomain->num_processors <= 1)
451 continue;
453 /* Validate the Domain info */
454 count_target = pdomain->num_processors;
455 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
456 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
458 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
459 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
460 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
462 for_each_possible_cpu(j) {
463 if (i == j)
464 continue;
466 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
467 if (!match_cpc_ptr) {
468 retval = -EFAULT;
469 goto err_ret;
472 match_pdomain = &(match_cpc_ptr->domain_info);
473 if (match_pdomain->domain != pdomain->domain)
474 continue;
476 /* Here i and j are in the same domain */
477 if (match_pdomain->num_processors != count_target) {
478 retval = -EFAULT;
479 goto err_ret;
482 if (pdomain->coord_type != match_pdomain->coord_type) {
483 retval = -EFAULT;
484 goto err_ret;
487 cpumask_set_cpu(j, covered_cpus);
488 cpumask_set_cpu(j, pr->shared_cpu_map);
491 for_each_possible_cpu(j) {
492 if (i == j)
493 continue;
495 match_pr = all_cpu_data[j];
496 if (!match_pr)
497 continue;
499 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
500 if (!match_cpc_ptr) {
501 retval = -EFAULT;
502 goto err_ret;
505 match_pdomain = &(match_cpc_ptr->domain_info);
506 if (match_pdomain->domain != pdomain->domain)
507 continue;
509 match_pr->shared_type = pr->shared_type;
510 cpumask_copy(match_pr->shared_cpu_map,
511 pr->shared_cpu_map);
515 err_ret:
516 for_each_possible_cpu(i) {
517 pr = all_cpu_data[i];
518 if (!pr)
519 continue;
521 /* Assume no coordination on any error parsing domain info */
522 if (retval) {
523 cpumask_clear(pr->shared_cpu_map);
524 cpumask_set_cpu(i, pr->shared_cpu_map);
525 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
529 free_cpumask_var(covered_cpus);
530 return retval;
532 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
534 static int register_pcc_channel(int pcc_subspace_idx)
536 struct acpi_pcct_hw_reduced *cppc_ss;
537 u64 usecs_lat;
539 if (pcc_subspace_idx >= 0) {
540 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
541 pcc_subspace_idx);
543 if (IS_ERR(pcc_data.pcc_channel)) {
544 pr_err("Failed to find PCC communication channel\n");
545 return -ENODEV;
549 * The PCC mailbox controller driver should
550 * have parsed the PCCT (global table of all
551 * PCC channels) and stored pointers to the
552 * subspace communication region in con_priv.
554 cppc_ss = (pcc_data.pcc_channel)->con_priv;
556 if (!cppc_ss) {
557 pr_err("No PCC subspace found for CPPC\n");
558 return -ENODEV;
562 * cppc_ss->latency is just a Nominal value. In reality
563 * the remote processor could be much slower to reply.
564 * So add an arbitrary amount of wait on top of Nominal.
566 usecs_lat = NUM_RETRIES * cppc_ss->latency;
567 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
568 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
569 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
570 pcc_data.pcc_nominal = cppc_ss->latency;
572 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
573 if (!pcc_data.pcc_comm_addr) {
574 pr_err("Failed to ioremap PCC comm region mem\n");
575 return -ENOMEM;
578 /* Set flag so that we dont come here for each CPU. */
579 pcc_data.pcc_channel_acquired = true;
582 return 0;
586 * cpc_ffh_supported() - check if FFH reading supported
588 * Check if the architecture has support for functional fixed hardware
589 * read/write capability.
591 * Return: true for supported, false for not supported
593 bool __weak cpc_ffh_supported(void)
595 return false;
599 * An example CPC table looks like the following.
601 * Name(_CPC, Package()
603 * 17,
604 * NumEntries
605 * 1,
606 * // Revision
607 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
608 * // Highest Performance
609 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
610 * // Nominal Performance
611 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
612 * // Lowest Nonlinear Performance
613 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
614 * // Lowest Performance
615 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
616 * // Guaranteed Performance Register
617 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
618 * // Desired Performance Register
619 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
620 * ..
621 * ..
622 * ..
625 * Each Register() encodes how to access that specific register.
626 * e.g. a sample PCC entry has the following encoding:
628 * Register (
629 * PCC,
630 * AddressSpaceKeyword
631 * 8,
632 * //RegisterBitWidth
633 * 8,
634 * //RegisterBitOffset
635 * 0x30,
636 * //RegisterAddress
638 * //AccessSize (subspace ID)
645 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
646 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
648 * Return: 0 for success or negative value for err.
650 int acpi_cppc_processor_probe(struct acpi_processor *pr)
652 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
653 union acpi_object *out_obj, *cpc_obj;
654 struct cpc_desc *cpc_ptr;
655 struct cpc_reg *gas_t;
656 struct device *cpu_dev;
657 acpi_handle handle = pr->handle;
658 unsigned int num_ent, i, cpc_rev;
659 acpi_status status;
660 int ret = -EFAULT;
662 /* Parse the ACPI _CPC table for this cpu. */
663 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
664 ACPI_TYPE_PACKAGE);
665 if (ACPI_FAILURE(status)) {
666 ret = -ENODEV;
667 goto out_buf_free;
670 out_obj = (union acpi_object *) output.pointer;
672 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
673 if (!cpc_ptr) {
674 ret = -ENOMEM;
675 goto out_buf_free;
678 /* First entry is NumEntries. */
679 cpc_obj = &out_obj->package.elements[0];
680 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
681 num_ent = cpc_obj->integer.value;
682 } else {
683 pr_debug("Unexpected entry type(%d) for NumEntries\n",
684 cpc_obj->type);
685 goto out_free;
688 /* Only support CPPCv2. Bail otherwise. */
689 if (num_ent != CPPC_NUM_ENT) {
690 pr_debug("Firmware exports %d entries. Expected: %d\n",
691 num_ent, CPPC_NUM_ENT);
692 goto out_free;
695 cpc_ptr->num_entries = num_ent;
697 /* Second entry should be revision. */
698 cpc_obj = &out_obj->package.elements[1];
699 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
700 cpc_rev = cpc_obj->integer.value;
701 } else {
702 pr_debug("Unexpected entry type(%d) for Revision\n",
703 cpc_obj->type);
704 goto out_free;
707 if (cpc_rev != CPPC_REV) {
708 pr_debug("Firmware exports revision:%d. Expected:%d\n",
709 cpc_rev, CPPC_REV);
710 goto out_free;
713 /* Iterate through remaining entries in _CPC */
714 for (i = 2; i < num_ent; i++) {
715 cpc_obj = &out_obj->package.elements[i];
717 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
718 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
719 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
720 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
721 gas_t = (struct cpc_reg *)
722 cpc_obj->buffer.pointer;
725 * The PCC Subspace index is encoded inside
726 * the CPC table entries. The same PCC index
727 * will be used for all the PCC entries,
728 * so extract it only once.
730 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
731 if (pcc_data.pcc_subspace_idx < 0)
732 pcc_data.pcc_subspace_idx = gas_t->access_width;
733 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
734 pr_debug("Mismatched PCC ids.\n");
735 goto out_free;
737 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
738 if (gas_t->address) {
739 void __iomem *addr;
741 addr = ioremap(gas_t->address, gas_t->bit_width/8);
742 if (!addr)
743 goto out_free;
744 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
746 } else {
747 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
748 /* Support only PCC ,SYS MEM and FFH type regs */
749 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
750 goto out_free;
754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
755 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
756 } else {
757 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
758 goto out_free;
761 /* Store CPU Logical ID */
762 cpc_ptr->cpu_id = pr->id;
764 /* Parse PSD data for this CPU */
765 ret = acpi_get_psd(cpc_ptr, handle);
766 if (ret)
767 goto out_free;
769 /* Register PCC channel once for all CPUs. */
770 if (!pcc_data.pcc_channel_acquired) {
771 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
772 if (ret)
773 goto out_free;
775 init_rwsem(&pcc_data.pcc_lock);
776 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
779 /* Everything looks okay */
780 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
782 /* Add per logical CPU nodes for reading its feedback counters. */
783 cpu_dev = get_cpu_device(pr->id);
784 if (!cpu_dev) {
785 ret = -EINVAL;
786 goto out_free;
789 /* Plug PSD data into this CPUs CPC descriptor. */
790 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
792 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
793 "acpi_cppc");
794 if (ret) {
795 per_cpu(cpc_desc_ptr, pr->id) = NULL;
796 goto out_free;
799 kfree(output.pointer);
800 return 0;
802 out_free:
803 /* Free all the mapped sys mem areas for this CPU */
804 for (i = 2; i < cpc_ptr->num_entries; i++) {
805 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
807 if (addr)
808 iounmap(addr);
810 kfree(cpc_ptr);
812 out_buf_free:
813 kfree(output.pointer);
814 return ret;
816 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
819 * acpi_cppc_processor_exit - Cleanup CPC structs.
820 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
822 * Return: Void
824 void acpi_cppc_processor_exit(struct acpi_processor *pr)
826 struct cpc_desc *cpc_ptr;
827 unsigned int i;
828 void __iomem *addr;
830 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
831 if (!cpc_ptr)
832 return;
834 /* Free all the mapped sys mem areas for this CPU */
835 for (i = 2; i < cpc_ptr->num_entries; i++) {
836 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
837 if (addr)
838 iounmap(addr);
841 kobject_put(&cpc_ptr->kobj);
842 kfree(cpc_ptr);
844 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
847 * cpc_read_ffh() - Read FFH register
848 * @cpunum: cpu number to read
849 * @reg: cppc register information
850 * @val: place holder for return value
852 * Read bit_width bits from a specified address and bit_offset
854 * Return: 0 for success and error code
856 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
858 return -ENOTSUPP;
862 * cpc_write_ffh() - Write FFH register
863 * @cpunum: cpu number to write
864 * @reg: cppc register information
865 * @val: value to write
867 * Write value of bit_width bits to a specified address and bit_offset
869 * Return: 0 for success and error code
871 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
873 return -ENOTSUPP;
877 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
878 * as fast as possible. We have already mapped the PCC subspace during init, so
879 * we can directly write to it.
882 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
884 int ret_val = 0;
885 void __iomem *vaddr = 0;
886 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
888 if (reg_res->type == ACPI_TYPE_INTEGER) {
889 *val = reg_res->cpc_entry.int_value;
890 return ret_val;
893 *val = 0;
894 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
895 vaddr = GET_PCC_VADDR(reg->address);
896 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
897 vaddr = reg_res->sys_mem_vaddr;
898 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
899 return cpc_read_ffh(cpu, reg, val);
900 else
901 return acpi_os_read_memory((acpi_physical_address)reg->address,
902 val, reg->bit_width);
904 switch (reg->bit_width) {
905 case 8:
906 *val = readb_relaxed(vaddr);
907 break;
908 case 16:
909 *val = readw_relaxed(vaddr);
910 break;
911 case 32:
912 *val = readl_relaxed(vaddr);
913 break;
914 case 64:
915 *val = readq_relaxed(vaddr);
916 break;
917 default:
918 pr_debug("Error: Cannot read %u bit width from PCC\n",
919 reg->bit_width);
920 ret_val = -EFAULT;
923 return ret_val;
926 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
928 int ret_val = 0;
929 void __iomem *vaddr = 0;
930 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
932 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
933 vaddr = GET_PCC_VADDR(reg->address);
934 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
935 vaddr = reg_res->sys_mem_vaddr;
936 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
937 return cpc_write_ffh(cpu, reg, val);
938 else
939 return acpi_os_write_memory((acpi_physical_address)reg->address,
940 val, reg->bit_width);
942 switch (reg->bit_width) {
943 case 8:
944 writeb_relaxed(val, vaddr);
945 break;
946 case 16:
947 writew_relaxed(val, vaddr);
948 break;
949 case 32:
950 writel_relaxed(val, vaddr);
951 break;
952 case 64:
953 writeq_relaxed(val, vaddr);
954 break;
955 default:
956 pr_debug("Error: Cannot write %u bit width to PCC\n",
957 reg->bit_width);
958 ret_val = -EFAULT;
959 break;
962 return ret_val;
966 * cppc_get_perf_caps - Get a CPUs performance capabilities.
967 * @cpunum: CPU from which to get capabilities info.
968 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
970 * Return: 0 for success with perf_caps populated else -ERRNO.
972 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
974 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
975 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
976 *nom_perf;
977 u64 high, low, nom;
978 int ret = 0, regs_in_pcc = 0;
980 if (!cpc_desc) {
981 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
982 return -ENODEV;
985 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
986 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
987 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
988 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
990 /* Are any of the regs PCC ?*/
991 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
992 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
993 regs_in_pcc = 1;
994 down_write(&pcc_data.pcc_lock);
995 /* Ring doorbell once to update PCC subspace */
996 if (send_pcc_cmd(CMD_READ) < 0) {
997 ret = -EIO;
998 goto out_err;
1002 cpc_read(cpunum, highest_reg, &high);
1003 perf_caps->highest_perf = high;
1005 cpc_read(cpunum, lowest_reg, &low);
1006 perf_caps->lowest_perf = low;
1008 cpc_read(cpunum, nom_perf, &nom);
1009 perf_caps->nominal_perf = nom;
1011 if (!high || !low || !nom)
1012 ret = -EFAULT;
1014 out_err:
1015 if (regs_in_pcc)
1016 up_write(&pcc_data.pcc_lock);
1017 return ret;
1019 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1022 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1023 * @cpunum: CPU from which to read counters.
1024 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1026 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1028 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1030 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1031 struct cpc_register_resource *delivered_reg, *reference_reg,
1032 *ref_perf_reg, *ctr_wrap_reg;
1033 u64 delivered, reference, ref_perf, ctr_wrap_time;
1034 int ret = 0, regs_in_pcc = 0;
1036 if (!cpc_desc) {
1037 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1038 return -ENODEV;
1041 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1042 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1043 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1044 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1047 * If refernce perf register is not supported then we should
1048 * use the nominal perf value
1050 if (!CPC_SUPPORTED(ref_perf_reg))
1051 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1053 /* Are any of the regs PCC ?*/
1054 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1055 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1056 down_write(&pcc_data.pcc_lock);
1057 regs_in_pcc = 1;
1058 /* Ring doorbell once to update PCC subspace */
1059 if (send_pcc_cmd(CMD_READ) < 0) {
1060 ret = -EIO;
1061 goto out_err;
1065 cpc_read(cpunum, delivered_reg, &delivered);
1066 cpc_read(cpunum, reference_reg, &reference);
1067 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1070 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1071 * performance counters are assumed to never wrap during the lifetime of
1072 * platform
1074 ctr_wrap_time = (u64)(~((u64)0));
1075 if (CPC_SUPPORTED(ctr_wrap_reg))
1076 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1078 if (!delivered || !reference || !ref_perf) {
1079 ret = -EFAULT;
1080 goto out_err;
1083 perf_fb_ctrs->delivered = delivered;
1084 perf_fb_ctrs->reference = reference;
1085 perf_fb_ctrs->reference_perf = ref_perf;
1086 perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1087 out_err:
1088 if (regs_in_pcc)
1089 up_write(&pcc_data.pcc_lock);
1090 return ret;
1092 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1095 * cppc_set_perf - Set a CPUs performance controls.
1096 * @cpu: CPU for which to set performance controls.
1097 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1099 * Return: 0 for success, -ERRNO otherwise.
1101 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1103 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1104 struct cpc_register_resource *desired_reg;
1105 int ret = 0;
1107 if (!cpc_desc) {
1108 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1109 return -ENODEV;
1112 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1115 * This is Phase-I where we want to write to CPC registers
1116 * -> We want all CPUs to be able to execute this phase in parallel
1118 * Since read_lock can be acquired by multiple CPUs simultaneously we
1119 * achieve that goal here
1121 if (CPC_IN_PCC(desired_reg)) {
1122 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
1123 if (pcc_data.platform_owns_pcc) {
1124 ret = check_pcc_chan(false);
1125 if (ret) {
1126 up_read(&pcc_data.pcc_lock);
1127 return ret;
1131 * Update the pending_write to make sure a PCC CMD_READ will not
1132 * arrive and steal the channel during the switch to write lock
1134 pcc_data.pending_pcc_write_cmd = true;
1135 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1136 cpc_desc->write_cmd_status = 0;
1140 * Skip writing MIN/MAX until Linux knows how to come up with
1141 * useful values.
1143 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1145 if (CPC_IN_PCC(desired_reg))
1146 up_read(&pcc_data.pcc_lock); /* END Phase-I */
1148 * This is Phase-II where we transfer the ownership of PCC to Platform
1150 * Short Summary: Basically if we think of a group of cppc_set_perf
1151 * requests that happened in short overlapping interval. The last CPU to
1152 * come out of Phase-I will enter Phase-II and ring the doorbell.
1154 * We have the following requirements for Phase-II:
1155 * 1. We want to execute Phase-II only when there are no CPUs
1156 * currently executing in Phase-I
1157 * 2. Once we start Phase-II we want to avoid all other CPUs from
1158 * entering Phase-I.
1159 * 3. We want only one CPU among all those who went through Phase-I
1160 * to run phase-II
1162 * If write_trylock fails to get the lock and doesn't transfer the
1163 * PCC ownership to the platform, then one of the following will be TRUE
1164 * 1. There is at-least one CPU in Phase-I which will later execute
1165 * write_trylock, so the CPUs in Phase-I will be responsible for
1166 * executing the Phase-II.
1167 * 2. Some other CPU has beaten this CPU to successfully execute the
1168 * write_trylock and has already acquired the write_lock. We know for a
1169 * fact it(other CPU acquiring the write_lock) couldn't have happened
1170 * before this CPU's Phase-I as we held the read_lock.
1171 * 3. Some other CPU executing pcc CMD_READ has stolen the
1172 * down_write, in which case, send_pcc_cmd will check for pending
1173 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1174 * So this CPU can be certain that its request will be delivered
1175 * So in all cases, this CPU knows that its request will be delivered
1176 * by another CPU and can return
1178 * After getting the down_write we still need to check for
1179 * pending_pcc_write_cmd to take care of the following scenario
1180 * The thread running this code could be scheduled out between
1181 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1182 * could have delivered the request to Platform by triggering the
1183 * doorbell and transferred the ownership of PCC to platform. So this
1184 * avoids triggering an unnecessary doorbell and more importantly before
1185 * triggering the doorbell it makes sure that the PCC channel ownership
1186 * is still with OSPM.
1187 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1188 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1189 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1190 * case during a CMD_READ and if there are pending writes it delivers
1191 * the write command before servicing the read command
1193 if (CPC_IN_PCC(desired_reg)) {
1194 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
1195 /* Update only if there are pending write commands */
1196 if (pcc_data.pending_pcc_write_cmd)
1197 send_pcc_cmd(CMD_WRITE);
1198 up_write(&pcc_data.pcc_lock); /* END Phase-II */
1199 } else
1200 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1201 wait_event(pcc_data.pcc_write_wait_q,
1202 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1204 /* send_pcc_cmd updates the status in case of failure */
1205 ret = cpc_desc->write_cmd_status;
1207 return ret;
1209 EXPORT_SYMBOL_GPL(cppc_set_perf);
1212 * cppc_get_transition_latency - returns frequency transition latency in ns
1214 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1215 * transition latency for perfromance change requests. The closest we have
1216 * is the timing information from the PCCT tables which provides the info
1217 * on the number and frequency of PCC commands the platform can handle.
1219 unsigned int cppc_get_transition_latency(int cpu_num)
1222 * Expected transition latency is based on the PCCT timing values
1223 * Below are definition from ACPI spec:
1224 * pcc_nominal- Expected latency to process a command, in microseconds
1225 * pcc_mpar - The maximum number of periodic requests that the subspace
1226 * channel can support, reported in commands per minute. 0
1227 * indicates no limitation.
1228 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1229 * completion of a command before issuing the next command,
1230 * in microseconds.
1232 unsigned int latency_ns = 0;
1233 struct cpc_desc *cpc_desc;
1234 struct cpc_register_resource *desired_reg;
1236 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1237 if (!cpc_desc)
1238 return CPUFREQ_ETERNAL;
1240 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1241 if (!CPC_IN_PCC(desired_reg))
1242 return CPUFREQ_ETERNAL;
1244 if (pcc_data.pcc_mpar)
1245 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1247 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1248 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1250 return latency_ns;
1252 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);