2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #define pr_fmt(fmt) "ACPI: " fmt
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
38 * Include the apic definitions for x86 to have the APIC timer related defines
39 * available also for UP (on SMP it gets magically included via linux/smp.h).
40 * asm/acpi.h is not an option, as it would require more include magic. Also
41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
47 #define ACPI_PROCESSOR_CLASS "processor"
48 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
51 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
52 module_param(max_cstate
, uint
, 0000);
53 static unsigned int nocst __read_mostly
;
54 module_param(nocst
, uint
, 0000);
55 static int bm_check_disable __read_mostly
;
56 module_param(bm_check_disable
, uint
, 0000);
58 static unsigned int latency_factor __read_mostly
= 2;
59 module_param(latency_factor
, uint
, 0644);
61 static DEFINE_PER_CPU(struct cpuidle_device
*, acpi_cpuidle_device
);
63 struct cpuidle_driver acpi_idle_driver
= {
68 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
70 DEFINE_PER_CPU(struct acpi_processor_cx
* [CPUIDLE_STATE_MAX
], acpi_cstate
);
72 static int disabled_by_idle_boot_param(void)
74 return boot_option_idle_override
== IDLE_POLL
||
75 boot_option_idle_override
== IDLE_HALT
;
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
82 * To skip this limit, boot/load with a large max_cstate limit.
84 static int set_max_cstate(const struct dmi_system_id
*id
)
86 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
89 pr_notice("%s detected - limiting to C%ld max_cstate."
90 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
91 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
93 max_cstate
= (long)id
->driver_data
;
98 static const struct dmi_system_id processor_power_dmi_table
[] = {
99 { set_max_cstate
, "Clevo 5600D", {
100 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
101 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
103 { set_max_cstate
, "Pavilion zv5000", {
104 DMI_MATCH(DMI_SYS_VENDOR
, "Hewlett-Packard"),
105 DMI_MATCH(DMI_PRODUCT_NAME
,"Pavilion zv5000 (DS502A#ABA)")},
107 { set_max_cstate
, "Asus L8400B", {
108 DMI_MATCH(DMI_SYS_VENDOR
, "ASUSTeK Computer Inc."),
109 DMI_MATCH(DMI_PRODUCT_NAME
,"L8400B series Notebook PC")},
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
119 static void __cpuidle
acpi_safe_halt(void)
121 if (!tif_need_resched()) {
127 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 * Some BIOS implementations switch to C3 in the published C2 state.
131 * This seems to be a common problem on AMD boxen, but other vendors
132 * are affected too. We pick the most conservative approach: we assume
133 * that the local APIC stops in both C2 and C3.
135 static void lapic_timer_check_state(int state
, struct acpi_processor
*pr
,
136 struct acpi_processor_cx
*cx
)
138 struct acpi_processor_power
*pwr
= &pr
->power
;
139 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
141 if (cpu_has(&cpu_data(pr
->id
), X86_FEATURE_ARAT
))
144 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
))
145 type
= ACPI_STATE_C1
;
148 * Check, if one of the previous states already marked the lapic
151 if (pwr
->timer_broadcast_on_state
< state
)
154 if (cx
->type
>= type
)
155 pr
->power
.timer_broadcast_on_state
= state
;
158 static void __lapic_timer_propagate_broadcast(void *arg
)
160 struct acpi_processor
*pr
= (struct acpi_processor
*) arg
;
162 if (pr
->power
.timer_broadcast_on_state
< INT_MAX
)
163 tick_broadcast_enable();
165 tick_broadcast_disable();
168 static void lapic_timer_propagate_broadcast(struct acpi_processor
*pr
)
170 smp_call_function_single(pr
->id
, __lapic_timer_propagate_broadcast
,
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor
*pr
,
176 struct acpi_processor_cx
*cx
,
179 int state
= cx
- pr
->power
.states
;
181 if (state
>= pr
->power
.timer_broadcast_on_state
) {
183 tick_broadcast_enter();
185 tick_broadcast_exit();
191 static void lapic_timer_check_state(int state
, struct acpi_processor
*pr
,
192 struct acpi_processor_cx
*cstate
) { }
193 static void lapic_timer_propagate_broadcast(struct acpi_processor
*pr
) { }
194 static void lapic_timer_state_broadcast(struct acpi_processor
*pr
,
195 struct acpi_processor_cx
*cx
,
202 #if defined(CONFIG_X86)
203 static void tsc_check_state(int state
)
205 switch (boot_cpu_data
.x86_vendor
) {
207 case X86_VENDOR_INTEL
:
209 * AMD Fam10h TSC will tick in all
210 * C/P/S0/S1 states when this bit is set.
212 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
217 /* TSC could halt in idle, so notify users */
218 if (state
> ACPI_STATE_C1
)
219 mark_tsc_unstable("TSC halts in idle");
223 static void tsc_check_state(int state
) { return; }
226 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
232 /* if info is obtained from pblk/fadt, type equals state */
233 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
234 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
236 #ifndef CONFIG_HOTPLUG_CPU
238 * Check for P_LVL2_UP flag before entering C2 and above on
241 if ((num_online_cpus() > 1) &&
242 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
246 /* determine C2 and C3 address from pblk */
247 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
248 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
250 /* determine latencies from FADT */
251 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.c2_latency
;
252 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.c3_latency
;
255 * FADT specified C2 latency must be less than or equal to
258 if (acpi_gbl_FADT
.c2_latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
259 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
260 "C2 latency too large [%d]\n", acpi_gbl_FADT
.c2_latency
));
262 pr
->power
.states
[ACPI_STATE_C2
].address
= 0;
266 * FADT supplied C3 latency must be less than or equal to
269 if (acpi_gbl_FADT
.c3_latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
270 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
271 "C3 latency too large [%d]\n", acpi_gbl_FADT
.c3_latency
));
273 pr
->power
.states
[ACPI_STATE_C3
].address
= 0;
276 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
277 "lvl2[0x%08x] lvl3[0x%08x]\n",
278 pr
->power
.states
[ACPI_STATE_C2
].address
,
279 pr
->power
.states
[ACPI_STATE_C3
].address
));
284 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
286 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
287 /* set the first C-State to C1 */
288 /* all processors need to support C1 */
289 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
290 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
291 pr
->power
.states
[ACPI_STATE_C1
].entry_method
= ACPI_CSTATE_HALT
;
293 /* the C0 state only exists as a filler in our array */
294 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
298 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
304 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
305 union acpi_object
*cst
;
312 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
313 if (ACPI_FAILURE(status
)) {
314 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
318 cst
= buffer
.pointer
;
320 /* There must be at least 2 elements */
321 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
322 pr_err("not enough elements in _CST\n");
327 count
= cst
->package
.elements
[0].integer
.value
;
329 /* Validate number of power states. */
330 if (count
< 1 || count
!= cst
->package
.count
- 1) {
331 pr_err("count given by _CST is not valid\n");
336 /* Tell driver that at least _CST is supported. */
337 pr
->flags
.has_cst
= 1;
339 for (i
= 1; i
<= count
; i
++) {
340 union acpi_object
*element
;
341 union acpi_object
*obj
;
342 struct acpi_power_register
*reg
;
343 struct acpi_processor_cx cx
;
345 memset(&cx
, 0, sizeof(cx
));
347 element
= &(cst
->package
.elements
[i
]);
348 if (element
->type
!= ACPI_TYPE_PACKAGE
)
351 if (element
->package
.count
!= 4)
354 obj
= &(element
->package
.elements
[0]);
356 if (obj
->type
!= ACPI_TYPE_BUFFER
)
359 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
361 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
362 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
365 /* There should be an easy way to extract an integer... */
366 obj
= &(element
->package
.elements
[1]);
367 if (obj
->type
!= ACPI_TYPE_INTEGER
)
370 cx
.type
= obj
->integer
.value
;
372 * Some buggy BIOSes won't list C1 in _CST -
373 * Let acpi_processor_get_power_info_default() handle them later
375 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
378 cx
.address
= reg
->address
;
379 cx
.index
= current_count
+ 1;
381 cx
.entry_method
= ACPI_CSTATE_SYSTEMIO
;
382 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
383 if (acpi_processor_ffh_cstate_probe
384 (pr
->id
, &cx
, reg
) == 0) {
385 cx
.entry_method
= ACPI_CSTATE_FFH
;
386 } else if (cx
.type
== ACPI_STATE_C1
) {
388 * C1 is a special case where FIXED_HARDWARE
389 * can be handled in non-MWAIT way as well.
390 * In that case, save this _CST entry info.
391 * Otherwise, ignore this info and continue.
393 cx
.entry_method
= ACPI_CSTATE_HALT
;
394 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
398 if (cx
.type
== ACPI_STATE_C1
&&
399 (boot_option_idle_override
== IDLE_NOMWAIT
)) {
401 * In most cases the C1 space_id obtained from
402 * _CST object is FIXED_HARDWARE access mode.
403 * But when the option of idle=halt is added,
404 * the entry_method type should be changed from
405 * CSTATE_FFH to CSTATE_HALT.
406 * When the option of idle=nomwait is added,
407 * the C1 entry_method type should be
410 cx
.entry_method
= ACPI_CSTATE_HALT
;
411 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
414 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI IOPORT 0x%x",
418 if (cx
.type
== ACPI_STATE_C1
) {
422 obj
= &(element
->package
.elements
[2]);
423 if (obj
->type
!= ACPI_TYPE_INTEGER
)
426 cx
.latency
= obj
->integer
.value
;
428 obj
= &(element
->package
.elements
[3]);
429 if (obj
->type
!= ACPI_TYPE_INTEGER
)
433 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
436 * We support total ACPI_PROCESSOR_MAX_POWER - 1
437 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
439 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
440 pr_warn("Limiting number of power states to max (%d)\n",
441 ACPI_PROCESSOR_MAX_POWER
);
442 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
447 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
450 /* Validate number of power states discovered */
451 if (current_count
< 2)
455 kfree(buffer
.pointer
);
460 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
461 struct acpi_processor_cx
*cx
)
463 static int bm_check_flag
= -1;
464 static int bm_control_flag
= -1;
471 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
472 * DMA transfers are used by any ISA device to avoid livelock.
473 * Note that we could disable Type-F DMA (as recommended by
474 * the erratum), but this is known to disrupt certain ISA
475 * devices thus we take the conservative approach.
477 else if (errata
.piix4
.fdma
) {
478 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
479 "C3 not supported on PIIX4 with Type-F DMA\n"));
483 /* All the logic here assumes flags.bm_check is same across all CPUs */
484 if (bm_check_flag
== -1) {
485 /* Determine whether bm_check is needed based on CPU */
486 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
487 bm_check_flag
= pr
->flags
.bm_check
;
488 bm_control_flag
= pr
->flags
.bm_control
;
490 pr
->flags
.bm_check
= bm_check_flag
;
491 pr
->flags
.bm_control
= bm_control_flag
;
494 if (pr
->flags
.bm_check
) {
495 if (!pr
->flags
.bm_control
) {
496 if (pr
->flags
.has_cst
!= 1) {
497 /* bus mastering control is necessary */
498 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
499 "C3 support requires BM control\n"));
502 /* Here we enter C3 without bus mastering */
503 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
504 "C3 support without BM control\n"));
509 * WBINVD should be set in fadt, for C3 state to be
510 * supported on when bm_check is not required.
512 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
513 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
514 "Cache invalidation should work properly"
515 " for C3 to be enabled on SMP systems\n"));
521 * Otherwise we've met all of our C3 requirements.
522 * Normalize the C3 latency to expidite policy. Enable
523 * checking of bus mastering status (bm_check) so we can
524 * use this in our C3 policy
529 * On older chipsets, BM_RLD needs to be set
530 * in order for Bus Master activity to wake the
531 * system from C3. Newer chipsets handle DMA
532 * during C3 automatically and BM_RLD is a NOP.
533 * In either case, the proper way to
534 * handle BM_RLD is to set it and leave it set.
536 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
541 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
544 unsigned int working
= 0;
546 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
548 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
549 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
563 acpi_processor_power_verify_c3(pr
, cx
);
569 lapic_timer_check_state(i
, pr
, cx
);
570 tsc_check_state(cx
->type
);
574 lapic_timer_propagate_broadcast(pr
);
579 static int acpi_processor_get_cstate_info(struct acpi_processor
*pr
)
585 /* NOTE: the idle thread may not be running while calling
588 /* Zero initialize all the C-states info. */
589 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
591 result
= acpi_processor_get_power_info_cst(pr
);
592 if (result
== -ENODEV
)
593 result
= acpi_processor_get_power_info_fadt(pr
);
598 acpi_processor_get_power_info_default(pr
);
600 pr
->power
.count
= acpi_processor_power_verify(pr
);
603 * if one state of type C2 or C3 is available, mark this
604 * CPU as being "idle manageable"
606 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
607 if (pr
->power
.states
[i
].valid
) {
609 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
618 * acpi_idle_bm_check - checks if bus master activity was detected
620 static int acpi_idle_bm_check(void)
624 if (bm_check_disable
)
627 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
629 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
631 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
632 * the true state of bus mastering activity; forcing us to
633 * manually check the BMIDEA bit of each IDE channel.
635 else if (errata
.piix4
.bmisx
) {
636 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
637 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
644 * acpi_idle_do_entry - enter idle state using the appropriate method
647 * Caller disables interrupt before call and enables interrupt after return.
649 static void __cpuidle
acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
651 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
652 /* Call into architectural FFH based C-state */
653 acpi_processor_ffh_cstate_enter(cx
);
654 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
657 /* IO port based C-state */
659 /* Dummy wait op - must do something useless after P_LVL2 read
660 because chipsets cannot guarantee that STPCLK# signal
661 gets asserted in time to freeze execution properly. */
662 inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
668 * @dev: the target CPU
669 * @index: the index of suggested state
671 static int acpi_idle_play_dead(struct cpuidle_device
*dev
, int index
)
673 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
675 ACPI_FLUSH_CPU_CACHE();
679 if (cx
->entry_method
== ACPI_CSTATE_HALT
)
681 else if (cx
->entry_method
== ACPI_CSTATE_SYSTEMIO
) {
683 /* See comment in acpi_idle_do_entry() */
684 inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
693 static bool acpi_idle_fallback_to_c1(struct acpi_processor
*pr
)
695 return IS_ENABLED(CONFIG_HOTPLUG_CPU
) && !pr
->flags
.has_cst
&&
696 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
);
699 static int c3_cpu_count
;
700 static DEFINE_RAW_SPINLOCK(c3_lock
);
703 * acpi_idle_enter_bm - enters C3 with proper BM handling
704 * @pr: Target processor
705 * @cx: Target state context
706 * @timer_bc: Whether or not to change timer mode to broadcast
708 static void acpi_idle_enter_bm(struct acpi_processor
*pr
,
709 struct acpi_processor_cx
*cx
, bool timer_bc
)
711 acpi_unlazy_tlb(smp_processor_id());
714 * Must be done before busmaster disable as we might need to
718 lapic_timer_state_broadcast(pr
, cx
, 1);
722 * bm_check implies we need ARB_DIS
723 * bm_control implies whether we can do ARB_DIS
725 * That leaves a case where bm_check is set and bm_control is
726 * not set. In that case we cannot do much, we enter C3
727 * without doing anything.
729 if (pr
->flags
.bm_control
) {
730 raw_spin_lock(&c3_lock
);
732 /* Disable bus master arbitration when all CPUs are in C3 */
733 if (c3_cpu_count
== num_online_cpus())
734 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE
, 1);
735 raw_spin_unlock(&c3_lock
);
738 acpi_idle_do_entry(cx
);
740 /* Re-enable bus master arbitration */
741 if (pr
->flags
.bm_control
) {
742 raw_spin_lock(&c3_lock
);
743 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE
, 0);
745 raw_spin_unlock(&c3_lock
);
749 lapic_timer_state_broadcast(pr
, cx
, 0);
752 static int acpi_idle_enter(struct cpuidle_device
*dev
,
753 struct cpuidle_driver
*drv
, int index
)
755 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
756 struct acpi_processor
*pr
;
758 pr
= __this_cpu_read(processors
);
762 if (cx
->type
!= ACPI_STATE_C1
) {
763 if (acpi_idle_fallback_to_c1(pr
) && num_online_cpus() > 1) {
764 index
= CPUIDLE_DRIVER_STATE_START
;
765 cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
766 } else if (cx
->type
== ACPI_STATE_C3
&& pr
->flags
.bm_check
) {
767 if (cx
->bm_sts_skip
|| !acpi_idle_bm_check()) {
768 acpi_idle_enter_bm(pr
, cx
, true);
770 } else if (drv
->safe_state_index
>= 0) {
771 index
= drv
->safe_state_index
;
772 cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
780 lapic_timer_state_broadcast(pr
, cx
, 1);
782 if (cx
->type
== ACPI_STATE_C3
)
783 ACPI_FLUSH_CPU_CACHE();
785 acpi_idle_do_entry(cx
);
787 lapic_timer_state_broadcast(pr
, cx
, 0);
792 static void acpi_idle_enter_freeze(struct cpuidle_device
*dev
,
793 struct cpuidle_driver
*drv
, int index
)
795 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
797 if (cx
->type
== ACPI_STATE_C3
) {
798 struct acpi_processor
*pr
= __this_cpu_read(processors
);
803 if (pr
->flags
.bm_check
) {
804 acpi_idle_enter_bm(pr
, cx
, false);
807 ACPI_FLUSH_CPU_CACHE();
810 acpi_idle_do_entry(cx
);
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor
*pr
,
814 struct cpuidle_device
*dev
)
816 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
817 struct acpi_processor_cx
*cx
;
822 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
823 cx
= &pr
->power
.states
[i
];
828 per_cpu(acpi_cstate
[count
], dev
->cpu
) = cx
;
831 if (count
== CPUIDLE_STATE_MAX
)
841 static int acpi_processor_setup_cstates(struct acpi_processor
*pr
)
843 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
844 struct acpi_processor_cx
*cx
;
845 struct cpuidle_state
*state
;
846 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
851 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
852 cx
= &pr
->power
.states
[i
];
857 state
= &drv
->states
[count
];
858 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
859 strlcpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
860 state
->exit_latency
= cx
->latency
;
861 state
->target_residency
= cx
->latency
* latency_factor
;
862 state
->enter
= acpi_idle_enter
;
865 if (cx
->type
== ACPI_STATE_C1
|| cx
->type
== ACPI_STATE_C2
) {
866 state
->enter_dead
= acpi_idle_play_dead
;
867 drv
->safe_state_index
= count
;
870 * Halt-induced C1 is not good for ->enter_freeze, because it
871 * re-enables interrupts on exit. Moreover, C1 is generally not
872 * particularly interesting from the suspend-to-idle angle, so
873 * avoid C1 and the situations in which we may need to fall back
876 if (cx
->type
!= ACPI_STATE_C1
&& !acpi_idle_fallback_to_c1(pr
))
877 state
->enter_freeze
= acpi_idle_enter_freeze
;
880 if (count
== CPUIDLE_STATE_MAX
)
884 drv
->state_count
= count
;
892 static inline void acpi_processor_cstate_first_run_checks(void)
895 static int first_run
;
899 dmi_check_system(processor_power_dmi_table
);
900 max_cstate
= acpi_processor_cstate_check(max_cstate
);
901 if (max_cstate
< ACPI_C_STATES_MAX
)
902 pr_notice("ACPI: processor limited to max C-state %d\n",
906 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
907 status
= acpi_os_write_port(acpi_gbl_FADT
.smi_command
,
908 acpi_gbl_FADT
.cst_control
, 8);
909 if (ACPI_FAILURE(status
))
910 ACPI_EXCEPTION((AE_INFO
, status
,
911 "Notifying BIOS of _CST ability failed"));
916 static inline int disabled_by_idle_boot_param(void) { return 0; }
917 static inline void acpi_processor_cstate_first_run_checks(void) { }
918 static int acpi_processor_get_cstate_info(struct acpi_processor
*pr
)
923 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor
*pr
,
924 struct cpuidle_device
*dev
)
929 static int acpi_processor_setup_cstates(struct acpi_processor
*pr
)
934 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
936 struct acpi_lpi_states_array
{
938 unsigned int composite_states_size
;
939 struct acpi_lpi_state
*entries
;
940 struct acpi_lpi_state
*composite_states
[ACPI_PROCESSOR_MAX_POWER
];
943 static int obj_get_integer(union acpi_object
*obj
, u32
*value
)
945 if (obj
->type
!= ACPI_TYPE_INTEGER
)
948 *value
= obj
->integer
.value
;
952 static int acpi_processor_evaluate_lpi(acpi_handle handle
,
953 struct acpi_lpi_states_array
*info
)
957 int pkg_count
, state_idx
= 1, loop
;
958 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
959 union acpi_object
*lpi_data
;
960 struct acpi_lpi_state
*lpi_state
;
962 status
= acpi_evaluate_object(handle
, "_LPI", NULL
, &buffer
);
963 if (ACPI_FAILURE(status
)) {
964 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _LPI, giving up\n"));
968 lpi_data
= buffer
.pointer
;
970 /* There must be at least 4 elements = 3 elements + 1 package */
971 if (!lpi_data
|| lpi_data
->type
!= ACPI_TYPE_PACKAGE
||
972 lpi_data
->package
.count
< 4) {
973 pr_debug("not enough elements in _LPI\n");
978 pkg_count
= lpi_data
->package
.elements
[2].integer
.value
;
980 /* Validate number of power states. */
981 if (pkg_count
< 1 || pkg_count
!= lpi_data
->package
.count
- 3) {
982 pr_debug("count given by _LPI is not valid\n");
987 lpi_state
= kcalloc(pkg_count
, sizeof(*lpi_state
), GFP_KERNEL
);
993 info
->size
= pkg_count
;
994 info
->entries
= lpi_state
;
996 /* LPI States start at index 3 */
997 for (loop
= 3; state_idx
<= pkg_count
; loop
++, state_idx
++, lpi_state
++) {
998 union acpi_object
*element
, *pkg_elem
, *obj
;
1000 element
= &lpi_data
->package
.elements
[loop
];
1001 if (element
->type
!= ACPI_TYPE_PACKAGE
|| element
->package
.count
< 7)
1004 pkg_elem
= element
->package
.elements
;
1007 if (obj
->type
== ACPI_TYPE_BUFFER
) {
1008 struct acpi_power_register
*reg
;
1010 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
1011 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
1012 reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)
1015 lpi_state
->address
= reg
->address
;
1016 lpi_state
->entry_method
=
1017 reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
?
1018 ACPI_CSTATE_FFH
: ACPI_CSTATE_SYSTEMIO
;
1019 } else if (obj
->type
== ACPI_TYPE_INTEGER
) {
1020 lpi_state
->entry_method
= ACPI_CSTATE_INTEGER
;
1021 lpi_state
->address
= obj
->integer
.value
;
1026 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1029 if (obj
->type
== ACPI_TYPE_STRING
)
1030 strlcpy(lpi_state
->desc
, obj
->string
.pointer
,
1033 lpi_state
->index
= state_idx
;
1034 if (obj_get_integer(pkg_elem
+ 0, &lpi_state
->min_residency
)) {
1035 pr_debug("No min. residency found, assuming 10 us\n");
1036 lpi_state
->min_residency
= 10;
1039 if (obj_get_integer(pkg_elem
+ 1, &lpi_state
->wake_latency
)) {
1040 pr_debug("No wakeup residency found, assuming 10 us\n");
1041 lpi_state
->wake_latency
= 10;
1044 if (obj_get_integer(pkg_elem
+ 2, &lpi_state
->flags
))
1045 lpi_state
->flags
= 0;
1047 if (obj_get_integer(pkg_elem
+ 3, &lpi_state
->arch_flags
))
1048 lpi_state
->arch_flags
= 0;
1050 if (obj_get_integer(pkg_elem
+ 4, &lpi_state
->res_cnt_freq
))
1051 lpi_state
->res_cnt_freq
= 1;
1053 if (obj_get_integer(pkg_elem
+ 5, &lpi_state
->enable_parent_state
))
1054 lpi_state
->enable_parent_state
= 0;
1057 acpi_handle_debug(handle
, "Found %d power states\n", state_idx
);
1059 kfree(buffer
.pointer
);
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1066 static int flat_state_cnt
;
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1075 static bool combine_lpi_states(struct acpi_lpi_state
*local
,
1076 struct acpi_lpi_state
*parent
,
1077 struct acpi_lpi_state
*result
)
1079 if (parent
->entry_method
== ACPI_CSTATE_INTEGER
) {
1080 if (!parent
->address
) /* 0 means autopromotable */
1082 result
->address
= local
->address
+ parent
->address
;
1084 result
->address
= parent
->address
;
1087 result
->min_residency
= max(local
->min_residency
, parent
->min_residency
);
1088 result
->wake_latency
= local
->wake_latency
+ parent
->wake_latency
;
1089 result
->enable_parent_state
= parent
->enable_parent_state
;
1090 result
->entry_method
= local
->entry_method
;
1092 result
->flags
= parent
->flags
;
1093 result
->arch_flags
= parent
->arch_flags
;
1094 result
->index
= parent
->index
;
1096 strlcpy(result
->desc
, local
->desc
, ACPI_CX_DESC_LEN
);
1097 strlcat(result
->desc
, "+", ACPI_CX_DESC_LEN
);
1098 strlcat(result
->desc
, parent
->desc
, ACPI_CX_DESC_LEN
);
1102 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1104 static void stash_composite_state(struct acpi_lpi_states_array
*curr_level
,
1105 struct acpi_lpi_state
*t
)
1107 curr_level
->composite_states
[curr_level
->composite_states_size
++] = t
;
1110 static int flatten_lpi_states(struct acpi_processor
*pr
,
1111 struct acpi_lpi_states_array
*curr_level
,
1112 struct acpi_lpi_states_array
*prev_level
)
1114 int i
, j
, state_count
= curr_level
->size
;
1115 struct acpi_lpi_state
*p
, *t
= curr_level
->entries
;
1117 curr_level
->composite_states_size
= 0;
1118 for (j
= 0; j
< state_count
; j
++, t
++) {
1119 struct acpi_lpi_state
*flpi
;
1121 if (!(t
->flags
& ACPI_LPI_STATE_FLAGS_ENABLED
))
1124 if (flat_state_cnt
>= ACPI_PROCESSOR_MAX_POWER
) {
1125 pr_warn("Limiting number of LPI states to max (%d)\n",
1126 ACPI_PROCESSOR_MAX_POWER
);
1127 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1131 flpi
= &pr
->power
.lpi_states
[flat_state_cnt
];
1133 if (!prev_level
) { /* leaf/processor node */
1134 memcpy(flpi
, t
, sizeof(*t
));
1135 stash_composite_state(curr_level
, flpi
);
1140 for (i
= 0; i
< prev_level
->composite_states_size
; i
++) {
1141 p
= prev_level
->composite_states
[i
];
1142 if (t
->index
<= p
->enable_parent_state
&&
1143 combine_lpi_states(p
, t
, flpi
)) {
1144 stash_composite_state(curr_level
, flpi
);
1151 kfree(curr_level
->entries
);
1155 static int acpi_processor_get_lpi_info(struct acpi_processor
*pr
)
1159 acpi_handle handle
= pr
->handle
, pr_ahandle
;
1160 struct acpi_device
*d
= NULL
;
1161 struct acpi_lpi_states_array info
[2], *tmp
, *prev
, *curr
;
1163 if (!osc_pc_lpi_support_confirmed
)
1166 if (!acpi_has_method(handle
, "_LPI"))
1172 handle
= pr
->handle
;
1173 ret
= acpi_processor_evaluate_lpi(handle
, prev
);
1176 flatten_lpi_states(pr
, prev
, NULL
);
1178 status
= acpi_get_parent(handle
, &pr_ahandle
);
1179 while (ACPI_SUCCESS(status
)) {
1180 acpi_bus_get_device(pr_ahandle
, &d
);
1181 handle
= pr_ahandle
;
1183 if (strcmp(acpi_device_hid(d
), ACPI_PROCESSOR_CONTAINER_HID
))
1186 /* can be optional ? */
1187 if (!acpi_has_method(handle
, "_LPI"))
1190 ret
= acpi_processor_evaluate_lpi(handle
, curr
);
1194 /* flatten all the LPI states in this level of hierarchy */
1195 flatten_lpi_states(pr
, curr
, prev
);
1197 tmp
= prev
, prev
= curr
, curr
= tmp
;
1199 status
= acpi_get_parent(handle
, &pr_ahandle
);
1202 pr
->power
.count
= flat_state_cnt
;
1203 /* reset the index after flattening */
1204 for (i
= 0; i
< pr
->power
.count
; i
++)
1205 pr
->power
.lpi_states
[i
].index
= i
;
1207 /* Tell driver that _LPI is supported. */
1208 pr
->flags
.has_lpi
= 1;
1209 pr
->flags
.power
= 1;
1214 int __weak
acpi_processor_ffh_lpi_probe(unsigned int cpu
)
1219 int __weak
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state
*lpi
)
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1230 * Return: 0 for success or negative value for error
1232 static int acpi_idle_lpi_enter(struct cpuidle_device
*dev
,
1233 struct cpuidle_driver
*drv
, int index
)
1235 struct acpi_processor
*pr
;
1236 struct acpi_lpi_state
*lpi
;
1238 pr
= __this_cpu_read(processors
);
1243 lpi
= &pr
->power
.lpi_states
[index
];
1244 if (lpi
->entry_method
== ACPI_CSTATE_FFH
)
1245 return acpi_processor_ffh_lpi_enter(lpi
);
1250 static int acpi_processor_setup_lpi_states(struct acpi_processor
*pr
)
1253 struct acpi_lpi_state
*lpi
;
1254 struct cpuidle_state
*state
;
1255 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
1257 if (!pr
->flags
.has_lpi
)
1260 for (i
= 0; i
< pr
->power
.count
&& i
< CPUIDLE_STATE_MAX
; i
++) {
1261 lpi
= &pr
->power
.lpi_states
[i
];
1263 state
= &drv
->states
[i
];
1264 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "LPI-%d", i
);
1265 strlcpy(state
->desc
, lpi
->desc
, CPUIDLE_DESC_LEN
);
1266 state
->exit_latency
= lpi
->wake_latency
;
1267 state
->target_residency
= lpi
->min_residency
;
1268 if (lpi
->arch_flags
)
1269 state
->flags
|= CPUIDLE_FLAG_TIMER_STOP
;
1270 state
->enter
= acpi_idle_lpi_enter
;
1271 drv
->safe_state_index
= i
;
1274 drv
->state_count
= i
;
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1283 * @pr: the ACPI processor
1285 static int acpi_processor_setup_cpuidle_states(struct acpi_processor
*pr
)
1288 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
1290 if (!pr
->flags
.power_setup_done
|| !pr
->flags
.power
)
1293 drv
->safe_state_index
= -1;
1294 for (i
= CPUIDLE_DRIVER_STATE_START
; i
< CPUIDLE_STATE_MAX
; i
++) {
1295 drv
->states
[i
].name
[0] = '\0';
1296 drv
->states
[i
].desc
[0] = '\0';
1299 if (pr
->flags
.has_lpi
)
1300 return acpi_processor_setup_lpi_states(pr
);
1302 return acpi_processor_setup_cstates(pr
);
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1312 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor
*pr
,
1313 struct cpuidle_device
*dev
)
1315 if (!pr
->flags
.power_setup_done
|| !pr
->flags
.power
|| !dev
)
1319 if (pr
->flags
.has_lpi
)
1320 return acpi_processor_ffh_lpi_probe(pr
->id
);
1322 return acpi_processor_setup_cpuidle_cx(pr
, dev
);
1325 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1329 ret
= acpi_processor_get_lpi_info(pr
);
1331 ret
= acpi_processor_get_cstate_info(pr
);
1336 int acpi_processor_hotplug(struct acpi_processor
*pr
)
1339 struct cpuidle_device
*dev
;
1341 if (disabled_by_idle_boot_param())
1344 if (!pr
->flags
.power_setup_done
)
1347 dev
= per_cpu(acpi_cpuidle_device
, pr
->id
);
1348 cpuidle_pause_and_lock();
1349 cpuidle_disable_device(dev
);
1350 ret
= acpi_processor_get_power_info(pr
);
1351 if (!ret
&& pr
->flags
.power
) {
1352 acpi_processor_setup_cpuidle_dev(pr
, dev
);
1353 ret
= cpuidle_enable_device(dev
);
1355 cpuidle_resume_and_unlock();
1360 int acpi_processor_power_state_has_changed(struct acpi_processor
*pr
)
1363 struct acpi_processor
*_pr
;
1364 struct cpuidle_device
*dev
;
1366 if (disabled_by_idle_boot_param())
1369 if (!pr
->flags
.power_setup_done
)
1373 * FIXME: Design the ACPI notification to make it once per
1374 * system instead of once per-cpu. This condition is a hack
1375 * to make the code that updates C-States be called once.
1378 if (pr
->id
== 0 && cpuidle_get_driver() == &acpi_idle_driver
) {
1380 /* Protect against cpu-hotplug */
1382 cpuidle_pause_and_lock();
1384 /* Disable all cpuidle devices */
1385 for_each_online_cpu(cpu
) {
1386 _pr
= per_cpu(processors
, cpu
);
1387 if (!_pr
|| !_pr
->flags
.power_setup_done
)
1389 dev
= per_cpu(acpi_cpuidle_device
, cpu
);
1390 cpuidle_disable_device(dev
);
1393 /* Populate Updated C-state information */
1394 acpi_processor_get_power_info(pr
);
1395 acpi_processor_setup_cpuidle_states(pr
);
1397 /* Enable all cpuidle devices */
1398 for_each_online_cpu(cpu
) {
1399 _pr
= per_cpu(processors
, cpu
);
1400 if (!_pr
|| !_pr
->flags
.power_setup_done
)
1402 acpi_processor_get_power_info(_pr
);
1403 if (_pr
->flags
.power
) {
1404 dev
= per_cpu(acpi_cpuidle_device
, cpu
);
1405 acpi_processor_setup_cpuidle_dev(_pr
, dev
);
1406 cpuidle_enable_device(dev
);
1409 cpuidle_resume_and_unlock();
1416 static int acpi_processor_registered
;
1418 int acpi_processor_power_init(struct acpi_processor
*pr
)
1421 struct cpuidle_device
*dev
;
1423 if (disabled_by_idle_boot_param())
1426 acpi_processor_cstate_first_run_checks();
1428 if (!acpi_processor_get_power_info(pr
))
1429 pr
->flags
.power_setup_done
= 1;
1432 * Install the idle handler if processor power management is supported.
1433 * Note that we use previously set idle handler will be used on
1434 * platforms that only support C1.
1436 if (pr
->flags
.power
) {
1437 /* Register acpi_idle_driver if not already registered */
1438 if (!acpi_processor_registered
) {
1439 acpi_processor_setup_cpuidle_states(pr
);
1440 retval
= cpuidle_register_driver(&acpi_idle_driver
);
1443 pr_debug("%s registered with cpuidle\n",
1444 acpi_idle_driver
.name
);
1447 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1450 per_cpu(acpi_cpuidle_device
, pr
->id
) = dev
;
1452 acpi_processor_setup_cpuidle_dev(pr
, dev
);
1454 /* Register per-cpu cpuidle_device. Cpuidle driver
1455 * must already be registered before registering device
1457 retval
= cpuidle_register_device(dev
);
1459 if (acpi_processor_registered
== 0)
1460 cpuidle_unregister_driver(&acpi_idle_driver
);
1463 acpi_processor_registered
++;
1468 int acpi_processor_power_exit(struct acpi_processor
*pr
)
1470 struct cpuidle_device
*dev
= per_cpu(acpi_cpuidle_device
, pr
->id
);
1472 if (disabled_by_idle_boot_param())
1475 if (pr
->flags
.power
) {
1476 cpuidle_unregister_device(dev
);
1477 acpi_processor_registered
--;
1478 if (acpi_processor_registered
== 0)
1479 cpuidle_unregister_driver(&acpi_idle_driver
);
1482 pr
->flags
.power_setup_done
= 0;