sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / char / hw_random / n2-drv.c
blob3b06c1d6cfb280a18bd13716bfdbf2c38fa085ed
1 /* n2-drv.c: Niagara-2 RNG driver.
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
18 #include <asm/hypervisor.h>
20 #include "n2rng.h"
22 #define DRV_MODULE_NAME "n2rng"
23 #define PFX DRV_MODULE_NAME ": "
24 #define DRV_MODULE_VERSION "0.2"
25 #define DRV_MODULE_RELDATE "July 27, 2011"
27 static char version[] =
28 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36 * register, plus a control register. Access to the RNG is
37 * virtualized through the hypervisor so that both guests and control
38 * nodes can access the device.
40 * The entropy source consists of raw entropy sources, each
41 * constructed from a voltage controlled oscillator whose phase is
42 * jittered by thermal noise sources.
44 * The oscillator in each of the three raw entropy sources run at
45 * different frequencies. Normally, all three generator outputs are
46 * gathered, xored together, and fed into a CRC circuit, the output of
47 * which is the 64-bit read-only register.
49 * Some time is necessary for all the necessary entropy to build up
50 * such that a full 64-bits of entropy are available in the register.
51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52 * an interlock which blocks register reads until sufficient entropy
53 * is available.
55 * A control register is provided for adjusting various aspects of RNG
56 * operation, and to enable diagnostic modes. Each of the three raw
57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
58 * provided are fields for controlling the minimum time in cycles
59 * between read accesses to the register (RNG_CTL_WAIT, this controls
60 * the interlock described in the previous paragraph).
62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63 * all three entropy sources enabled, and the interlock time set
64 * appropriately.
66 * The CRC polynomial used by the chip is:
68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 * The RNG_CTL_VCO value of each noise cell must be programmed
73 * separately. This is why 4 control register values must be provided
74 * to the hypervisor. During a write, the hypervisor writes them all,
75 * one at a time, to the actual RNG_CTL register. The first three
76 * values are used to setup the desired RNG_CTL_VCO for each entropy
77 * source, for example:
79 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 * And then the fourth value sets the final chip state and enables
84 * desired.
87 static int n2rng_hv_err_trans(unsigned long hv_err)
89 switch (hv_err) {
90 case HV_EOK:
91 return 0;
92 case HV_EWOULDBLOCK:
93 return -EAGAIN;
94 case HV_ENOACCESS:
95 return -EPERM;
96 case HV_EIO:
97 return -EIO;
98 case HV_EBUSY:
99 return -EBUSY;
100 case HV_EBADALIGN:
101 case HV_ENORADDR:
102 return -EFAULT;
103 default:
104 return -EINVAL;
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 unsigned long unit)
111 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 int block = 0, busy = 0;
114 while (1) {
115 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 &ticks,
117 &watchdog_delta,
118 &watchdog_status);
119 if (hv_err == HV_EOK)
120 break;
122 if (hv_err == HV_EBUSY) {
123 if (++busy >= N2RNG_BUSY_LIMIT)
124 break;
126 udelay(1);
127 } else if (hv_err == HV_EWOULDBLOCK) {
128 if (++block >= N2RNG_BLOCK_LIMIT)
129 break;
131 __delay(ticks);
132 } else
133 break;
136 return hv_err;
139 /* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148 unsigned long ra = __pa(&np->scratch_control[0]);
150 return n2rng_generic_read_control_v2(ra, unit);
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 unsigned long state,
155 unsigned long control_ra,
156 unsigned long watchdog_timeout,
157 unsigned long *ticks)
159 unsigned long hv_err;
161 if (np->hvapi_major == 1) {
162 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 watchdog_timeout, ticks);
164 } else {
165 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 watchdog_timeout, unit);
167 if (hv_err == HV_EOK)
168 hv_err = n2rng_control_settle_v2(np, unit);
169 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172 return hv_err;
175 static int n2rng_generic_read_data(unsigned long data_ra)
177 unsigned long ticks, hv_err;
178 int block = 0, hcheck = 0;
180 while (1) {
181 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 if (hv_err == HV_EOK)
183 return 0;
185 if (hv_err == HV_EWOULDBLOCK) {
186 if (++block >= N2RNG_BLOCK_LIMIT)
187 return -EWOULDBLOCK;
188 __delay(ticks);
189 } else if (hv_err == HV_ENOACCESS) {
190 return -EPERM;
191 } else if (hv_err == HV_EIO) {
192 if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 return -EIO;
194 udelay(10000);
195 } else
196 return -ENODEV;
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 unsigned long unit,
202 unsigned long data_ra,
203 unsigned long data_len,
204 unsigned long *ticks)
206 unsigned long hv_err;
208 if (np->hvapi_major == 1) {
209 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 } else {
211 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 unit, ticks);
213 if (!*ticks)
214 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 return hv_err;
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220 unsigned long unit,
221 unsigned long data_ra,
222 unsigned long data_len)
224 unsigned long ticks, hv_err;
225 int block = 0;
227 while (1) {
228 hv_err = n2rng_read_diag_data_one(np, unit,
229 data_ra, data_len,
230 &ticks);
231 if (hv_err == HV_EOK)
232 return 0;
234 if (hv_err == HV_EWOULDBLOCK) {
235 if (++block >= N2RNG_BLOCK_LIMIT)
236 return -EWOULDBLOCK;
237 __delay(ticks);
238 } else if (hv_err == HV_ENOACCESS) {
239 return -EPERM;
240 } else if (hv_err == HV_EIO) {
241 return -EIO;
242 } else
243 return -ENODEV;
248 static int n2rng_generic_write_control(struct n2rng *np,
249 unsigned long control_ra,
250 unsigned long unit,
251 unsigned long state)
253 unsigned long hv_err, ticks;
254 int block = 0, busy = 0;
256 while (1) {
257 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 np->wd_timeo, &ticks);
259 if (hv_err == HV_EOK)
260 return 0;
262 if (hv_err == HV_EWOULDBLOCK) {
263 if (++block >= N2RNG_BLOCK_LIMIT)
264 return -EWOULDBLOCK;
265 __delay(ticks);
266 } else if (hv_err == HV_EBUSY) {
267 if (++busy >= N2RNG_BUSY_LIMIT)
268 return -EBUSY;
269 udelay(1);
270 } else
271 return -ENODEV;
275 /* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
278 static int n2rng_try_read_ctl(struct n2rng *np)
280 unsigned long hv_err;
281 unsigned long x;
283 if (np->hvapi_major == 1) {
284 hv_err = sun4v_rng_get_diag_ctl();
285 } else {
286 /* We purposefully give invalid arguments, HV_NOACCESS
287 * is higher priority than the errors we'd get from
288 * these other cases, and that's the error we are
289 * truly interested in.
291 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 switch (hv_err) {
293 case HV_EWOULDBLOCK:
294 case HV_ENOACCESS:
295 break;
296 default:
297 hv_err = HV_EOK;
298 break;
302 return n2rng_hv_err_trans(hv_err);
305 #define CONTROL_DEFAULT_BASE \
306 ((2 << RNG_CTL_ASEL_SHIFT) | \
307 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
308 RNG_CTL_LFSR)
310 #define CONTROL_DEFAULT_0 \
311 (CONTROL_DEFAULT_BASE | \
312 (1 << RNG_CTL_VCO_SHIFT) | \
313 RNG_CTL_ES1)
314 #define CONTROL_DEFAULT_1 \
315 (CONTROL_DEFAULT_BASE | \
316 (2 << RNG_CTL_VCO_SHIFT) | \
317 RNG_CTL_ES2)
318 #define CONTROL_DEFAULT_2 \
319 (CONTROL_DEFAULT_BASE | \
320 (3 << RNG_CTL_VCO_SHIFT) | \
321 RNG_CTL_ES3)
322 #define CONTROL_DEFAULT_3 \
323 (CONTROL_DEFAULT_BASE | \
324 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326 static void n2rng_control_swstate_init(struct n2rng *np)
328 int i;
330 np->flags |= N2RNG_FLAG_CONTROL;
332 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336 for (i = 0; i < np->num_units; i++) {
337 struct n2rng_unit *up = &np->units[i];
339 up->control[0] = CONTROL_DEFAULT_0;
340 up->control[1] = CONTROL_DEFAULT_1;
341 up->control[2] = CONTROL_DEFAULT_2;
342 up->control[3] = CONTROL_DEFAULT_3;
345 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
348 static int n2rng_grab_diag_control(struct n2rng *np)
350 int i, busy_count, err = -ENODEV;
352 busy_count = 0;
353 for (i = 0; i < 100; i++) {
354 err = n2rng_try_read_ctl(np);
355 if (err != -EAGAIN)
356 break;
358 if (++busy_count > 100) {
359 dev_err(&np->op->dev,
360 "Grab diag control timeout.\n");
361 return -ENODEV;
364 udelay(1);
367 return err;
370 static int n2rng_init_control(struct n2rng *np)
372 int err = n2rng_grab_diag_control(np);
374 /* Not in the control domain, that's OK we are only a consumer
375 * of the RNG data, we don't setup and program it.
377 if (err == -EPERM)
378 return 0;
379 if (err)
380 return err;
382 n2rng_control_swstate_init(np);
384 return 0;
387 static int n2rng_data_read(struct hwrng *rng, u32 *data)
389 struct n2rng *np = (struct n2rng *) rng->priv;
390 unsigned long ra = __pa(&np->test_data);
391 int len;
393 if (!(np->flags & N2RNG_FLAG_READY)) {
394 len = 0;
395 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397 *data = np->buffer;
398 len = 4;
399 } else {
400 int err = n2rng_generic_read_data(ra);
401 if (!err) {
402 np->buffer = np->test_data >> 32;
403 *data = np->test_data & 0xffffffff;
404 len = 4;
405 } else {
406 dev_err(&np->op->dev, "RNG error, restesting\n");
407 np->flags &= ~N2RNG_FLAG_READY;
408 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409 schedule_delayed_work(&np->work, 0);
410 len = 0;
414 return len;
417 /* On a guest node, just make sure we can read random data properly.
418 * If a control node reboots or reloads it's n2rng driver, this won't
419 * work during that time. So we have to keep probing until the device
420 * becomes usable.
422 static int n2rng_guest_check(struct n2rng *np)
424 unsigned long ra = __pa(&np->test_data);
426 return n2rng_generic_read_data(ra);
429 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430 u64 *pre_control, u64 pre_state,
431 u64 *buffer, unsigned long buf_len,
432 u64 *post_control, u64 post_state)
434 unsigned long post_ctl_ra = __pa(post_control);
435 unsigned long pre_ctl_ra = __pa(pre_control);
436 unsigned long buffer_ra = __pa(buffer);
437 int err;
439 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440 if (err)
441 return err;
443 err = n2rng_generic_read_diag_data(np, unit,
444 buffer_ra, buf_len);
446 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447 post_state);
449 return err;
452 static u64 advance_polynomial(u64 poly, u64 val, int count)
454 int i;
456 for (i = 0; i < count; i++) {
457 int highbit_set = ((s64)val < 0);
459 val <<= 1;
460 if (highbit_set)
461 val ^= poly;
464 return val;
467 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469 int i, count = 0;
471 /* Purposefully skip over the first word. */
472 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473 if (np->test_buffer[i] == val)
474 count++;
476 return count;
479 static void n2rng_dump_test_buffer(struct n2rng *np)
481 int i;
483 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485 i, np->test_buffer[i]);
488 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490 u64 val = SELFTEST_VAL;
491 int err, matches, limit;
493 matches = 0;
494 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495 matches += n2rng_test_buffer_find(np, val);
496 if (matches >= SELFTEST_MATCH_GOAL)
497 break;
498 val = advance_polynomial(SELFTEST_POLY, val, 1);
501 err = 0;
502 if (limit >= SELFTEST_LOOPS_MAX) {
503 err = -ENODEV;
504 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505 n2rng_dump_test_buffer(np);
506 } else
507 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509 return err;
512 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514 int err;
516 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520 RNG_CTL_LFSR |
521 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
524 err = n2rng_entropy_diag_read(np, unit, np->test_control,
525 HV_RNG_STATE_HEALTHCHECK,
526 np->test_buffer,
527 sizeof(np->test_buffer),
528 &np->units[unit].control[0],
529 np->hv_state);
530 if (err)
531 return err;
533 return n2rng_check_selftest_buffer(np, unit);
536 static int n2rng_control_check(struct n2rng *np)
538 int i;
540 for (i = 0; i < np->num_units; i++) {
541 int err = n2rng_control_selftest(np, i);
542 if (err)
543 return err;
545 return 0;
548 /* The sanity checks passed, install the final configuration into the
549 * chip, it's ready to use.
551 static int n2rng_control_configure_units(struct n2rng *np)
553 int unit, err;
555 err = 0;
556 for (unit = 0; unit < np->num_units; unit++) {
557 struct n2rng_unit *up = &np->units[unit];
558 unsigned long ctl_ra = __pa(&up->control[0]);
559 int esrc;
560 u64 base;
562 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563 (2 << RNG_CTL_ASEL_SHIFT) |
564 RNG_CTL_LFSR);
566 /* XXX This isn't the best. We should fetch a bunch
567 * XXX of words using each entropy source combined XXX
568 * with each VCO setting, and see which combinations
569 * XXX give the best random data.
571 for (esrc = 0; esrc < 3; esrc++)
572 up->control[esrc] = base |
573 (esrc << RNG_CTL_VCO_SHIFT) |
574 (RNG_CTL_ES1 << esrc);
576 up->control[3] = base |
577 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579 err = n2rng_generic_write_control(np, ctl_ra, unit,
580 HV_RNG_STATE_CONFIGURED);
581 if (err)
582 break;
585 return err;
588 static void n2rng_work(struct work_struct *work)
590 struct n2rng *np = container_of(work, struct n2rng, work.work);
591 int err = 0;
593 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594 err = n2rng_guest_check(np);
595 } else {
596 preempt_disable();
597 err = n2rng_control_check(np);
598 preempt_enable();
600 if (!err)
601 err = n2rng_control_configure_units(np);
604 if (!err) {
605 np->flags |= N2RNG_FLAG_READY;
606 dev_info(&np->op->dev, "RNG ready\n");
609 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610 schedule_delayed_work(&np->work, HZ * 2);
613 static void n2rng_driver_version(void)
615 static int n2rng_version_printed;
617 if (n2rng_version_printed++ == 0)
618 pr_info("%s", version);
621 static const struct of_device_id n2rng_match[];
622 static int n2rng_probe(struct platform_device *op)
624 const struct of_device_id *match;
625 int multi_capable;
626 int err = -ENOMEM;
627 struct n2rng *np;
629 match = of_match_device(n2rng_match, &op->dev);
630 if (!match)
631 return -EINVAL;
632 multi_capable = (match->data != NULL);
634 n2rng_driver_version();
635 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636 if (!np)
637 goto out;
638 np->op = op;
640 INIT_DELAYED_WORK(&np->work, n2rng_work);
642 if (multi_capable)
643 np->flags |= N2RNG_FLAG_MULTI;
645 err = -ENODEV;
646 np->hvapi_major = 2;
647 if (sun4v_hvapi_register(HV_GRP_RNG,
648 np->hvapi_major,
649 &np->hvapi_minor)) {
650 np->hvapi_major = 1;
651 if (sun4v_hvapi_register(HV_GRP_RNG,
652 np->hvapi_major,
653 &np->hvapi_minor)) {
654 dev_err(&op->dev, "Cannot register suitable "
655 "HVAPI version.\n");
656 goto out;
660 if (np->flags & N2RNG_FLAG_MULTI) {
661 if (np->hvapi_major < 2) {
662 dev_err(&op->dev, "multi-unit-capable RNG requires "
663 "HVAPI major version 2 or later, got %lu\n",
664 np->hvapi_major);
665 goto out_hvapi_unregister;
667 np->num_units = of_getintprop_default(op->dev.of_node,
668 "rng-#units", 0);
669 if (!np->num_units) {
670 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671 goto out_hvapi_unregister;
673 } else
674 np->num_units = 1;
676 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677 np->hvapi_major, np->hvapi_minor);
679 np->units = devm_kzalloc(&op->dev,
680 sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_hvapi_unregister;
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_hvapi_unregister;
703 platform_set_drvdata(op, np);
705 schedule_delayed_work(&np->work, 0);
707 return 0;
709 out_hvapi_unregister:
710 sun4v_hvapi_unregister(HV_GRP_RNG);
712 out:
713 return err;
716 static int n2rng_remove(struct platform_device *op)
718 struct n2rng *np = platform_get_drvdata(op);
720 np->flags |= N2RNG_FLAG_SHUTDOWN;
722 cancel_delayed_work_sync(&np->work);
724 hwrng_unregister(&np->hwrng);
726 sun4v_hvapi_unregister(HV_GRP_RNG);
728 return 0;
731 static const struct of_device_id n2rng_match[] = {
733 .name = "random-number-generator",
734 .compatible = "SUNW,n2-rng",
737 .name = "random-number-generator",
738 .compatible = "SUNW,vf-rng",
739 .data = (void *) 1,
742 .name = "random-number-generator",
743 .compatible = "SUNW,kt-rng",
744 .data = (void *) 1,
747 .name = "random-number-generator",
748 .compatible = "ORCL,m4-rng",
749 .data = (void *) 1,
752 .name = "random-number-generator",
753 .compatible = "ORCL,m7-rng",
754 .data = (void *) 1,
758 MODULE_DEVICE_TABLE(of, n2rng_match);
760 static struct platform_driver n2rng_driver = {
761 .driver = {
762 .name = "n2rng",
763 .of_match_table = n2rng_match,
765 .probe = n2rng_probe,
766 .remove = n2rng_remove,
769 module_platform_driver(n2rng_driver);