4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf
);
58 static void need_waiter(ipmi_smi_t intf
);
59 static int handle_one_recv_msg(ipmi_smi_t intf
,
60 struct ipmi_smi_msg
*msg
);
62 static int initialized
;
65 static struct proc_dir_entry
*proc_ipmi_root
;
66 #endif /* CONFIG_PROC_FS */
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
71 #define MAX_EVENTS_IN_QUEUE 25
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
77 #define MAX_MSG_TIMEOUT 60000
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
94 * The main "user" data structure.
97 struct list_head link
;
99 /* Set to false when the user is destroyed. */
102 struct kref refcount
;
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl
*handler
;
108 /* The interface this user is bound to. */
111 /* Does this interface receive IPMI events? */
116 struct list_head link
;
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
131 struct cmd_rcvr
*next
;
135 unsigned int inuse
: 1;
136 unsigned int broadcast
: 1;
138 unsigned long timeout
;
139 unsigned long orig_timeout
;
140 unsigned int retries_left
;
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
154 struct ipmi_recv_msg
*recv_msg
;
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
161 #define STORE_SEQ_IN_MSGID(seq, seqid) \
162 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
164 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
166 seq = (((msgid) >> 26) & 0x3f); \
167 seqid = ((msgid) & 0x3ffffff); \
170 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
172 struct ipmi_channel
{
173 unsigned char medium
;
174 unsigned char protocol
;
177 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
178 * but may be changed by the user.
180 unsigned char address
;
183 * My LUN. This should generally stay the SMS LUN, but just in
189 #ifdef CONFIG_PROC_FS
190 struct ipmi_proc_entry
{
192 struct ipmi_proc_entry
*next
;
197 struct platform_device pdev
;
198 struct ipmi_device_id id
;
199 unsigned char guid
[16];
202 struct kref usecount
;
204 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
207 * Various statistics for IPMI, these index stats[] in the ipmi_smi
210 enum ipmi_stat_indexes
{
211 /* Commands we got from the user that were invalid. */
212 IPMI_STAT_sent_invalid_commands
= 0,
214 /* Commands we sent to the MC. */
215 IPMI_STAT_sent_local_commands
,
217 /* Responses from the MC that were delivered to a user. */
218 IPMI_STAT_handled_local_responses
,
220 /* Responses from the MC that were not delivered to a user. */
221 IPMI_STAT_unhandled_local_responses
,
223 /* Commands we sent out to the IPMB bus. */
224 IPMI_STAT_sent_ipmb_commands
,
226 /* Commands sent on the IPMB that had errors on the SEND CMD */
227 IPMI_STAT_sent_ipmb_command_errs
,
229 /* Each retransmit increments this count. */
230 IPMI_STAT_retransmitted_ipmb_commands
,
233 * When a message times out (runs out of retransmits) this is
236 IPMI_STAT_timed_out_ipmb_commands
,
239 * This is like above, but for broadcasts. Broadcasts are
240 * *not* included in the above count (they are expected to
243 IPMI_STAT_timed_out_ipmb_broadcasts
,
245 /* Responses I have sent to the IPMB bus. */
246 IPMI_STAT_sent_ipmb_responses
,
248 /* The response was delivered to the user. */
249 IPMI_STAT_handled_ipmb_responses
,
251 /* The response had invalid data in it. */
252 IPMI_STAT_invalid_ipmb_responses
,
254 /* The response didn't have anyone waiting for it. */
255 IPMI_STAT_unhandled_ipmb_responses
,
257 /* Commands we sent out to the IPMB bus. */
258 IPMI_STAT_sent_lan_commands
,
260 /* Commands sent on the IPMB that had errors on the SEND CMD */
261 IPMI_STAT_sent_lan_command_errs
,
263 /* Each retransmit increments this count. */
264 IPMI_STAT_retransmitted_lan_commands
,
267 * When a message times out (runs out of retransmits) this is
270 IPMI_STAT_timed_out_lan_commands
,
272 /* Responses I have sent to the IPMB bus. */
273 IPMI_STAT_sent_lan_responses
,
275 /* The response was delivered to the user. */
276 IPMI_STAT_handled_lan_responses
,
278 /* The response had invalid data in it. */
279 IPMI_STAT_invalid_lan_responses
,
281 /* The response didn't have anyone waiting for it. */
282 IPMI_STAT_unhandled_lan_responses
,
284 /* The command was delivered to the user. */
285 IPMI_STAT_handled_commands
,
287 /* The command had invalid data in it. */
288 IPMI_STAT_invalid_commands
,
290 /* The command didn't have anyone waiting for it. */
291 IPMI_STAT_unhandled_commands
,
293 /* Invalid data in an event. */
294 IPMI_STAT_invalid_events
,
296 /* Events that were received with the proper format. */
299 /* Retransmissions on IPMB that failed. */
300 IPMI_STAT_dropped_rexmit_ipmb_commands
,
302 /* Retransmissions on LAN that failed. */
303 IPMI_STAT_dropped_rexmit_lan_commands
,
305 /* This *must* remain last, add new values above this. */
310 #define IPMI_IPMB_NUM_SEQ 64
311 #define IPMI_MAX_CHANNELS 16
313 /* What interface number are we? */
316 struct kref refcount
;
318 /* Set when the interface is being unregistered. */
321 /* Used for a list of interfaces. */
322 struct list_head link
;
325 * The list of upper layers that are using me. seq_lock
328 struct list_head users
;
330 /* Information to supply to users. */
331 unsigned char ipmi_version_major
;
332 unsigned char ipmi_version_minor
;
334 /* Used for wake ups at startup. */
335 wait_queue_head_t waitq
;
337 struct bmc_device
*bmc
;
341 * This is the lower-layer's sender routine. Note that you
342 * must either be holding the ipmi_interfaces_mutex or be in
343 * an umpreemptible region to use this. You must fetch the
344 * value into a local variable and make sure it is not NULL.
346 const struct ipmi_smi_handlers
*handlers
;
349 #ifdef CONFIG_PROC_FS
350 /* A list of proc entries for this interface. */
351 struct mutex proc_entry_lock
;
352 struct ipmi_proc_entry
*proc_entries
;
355 /* Driver-model device for the system interface. */
356 struct device
*si_dev
;
359 * A table of sequence numbers for this interface. We use the
360 * sequence numbers for IPMB messages that go out of the
361 * interface to match them up with their responses. A routine
362 * is called periodically to time the items in this list.
365 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
369 * Messages queued for delivery. If delivery fails (out of memory
370 * for instance), They will stay in here to be processed later in a
371 * periodic timer interrupt. The tasklet is for handling received
372 * messages directly from the handler.
374 spinlock_t waiting_rcv_msgs_lock
;
375 struct list_head waiting_rcv_msgs
;
376 atomic_t watchdog_pretimeouts_to_deliver
;
377 struct tasklet_struct recv_tasklet
;
379 spinlock_t xmit_msgs_lock
;
380 struct list_head xmit_msgs
;
381 struct ipmi_smi_msg
*curr_msg
;
382 struct list_head hp_xmit_msgs
;
385 * The list of command receivers that are registered for commands
388 struct mutex cmd_rcvrs_mutex
;
389 struct list_head cmd_rcvrs
;
392 * Events that were queues because no one was there to receive
395 spinlock_t events_lock
; /* For dealing with event stuff. */
396 struct list_head waiting_events
;
397 unsigned int waiting_events_count
; /* How many events in queue? */
398 char delivering_events
;
399 char event_msg_printed
;
400 atomic_t event_waiters
;
401 unsigned int ticks_to_req_ev
;
402 int last_needs_timer
;
405 * The event receiver for my BMC, only really used at panic
406 * shutdown as a place to store this.
408 unsigned char event_receiver
;
409 unsigned char event_receiver_lun
;
410 unsigned char local_sel_device
;
411 unsigned char local_event_generator
;
413 /* For handling of maintenance mode. */
414 int maintenance_mode
;
415 bool maintenance_mode_enable
;
416 int auto_maintenance_timeout
;
417 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
420 * A cheap hack, if this is non-null and a message to an
421 * interface comes in with a NULL user, call this routine with
422 * it. Note that the message will still be freed by the
423 * caller. This only works on the system interface.
425 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
428 * When we are scanning the channels for an SMI, this will
429 * tell which channel we are scanning.
433 /* Channel information */
434 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
437 struct proc_dir_entry
*proc_dir
;
438 char proc_dir_name
[10];
440 atomic_t stats
[IPMI_NUM_STATS
];
443 * run_to_completion duplicate of smb_info, smi_info
444 * and ipmi_serial_info structures. Used to decrease numbers of
445 * parameters passed by "low" level IPMI code.
447 int run_to_completion
;
449 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
452 * The driver model view of the IPMI messaging driver.
454 static struct platform_driver ipmidriver
= {
457 .bus
= &platform_bus_type
460 static DEFINE_MUTEX(ipmidriver_mutex
);
462 static LIST_HEAD(ipmi_interfaces
);
463 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
466 * List of watchers that want to know when smi's are added and deleted.
468 static LIST_HEAD(smi_watchers
);
469 static DEFINE_MUTEX(smi_watchers_mutex
);
471 #define ipmi_inc_stat(intf, stat) \
472 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
473 #define ipmi_get_stat(intf, stat) \
474 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
476 static const char * const addr_src_to_str
[] = {
477 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
481 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src
)
484 src
= 0; /* Invalid */
485 return addr_src_to_str
[src
];
487 EXPORT_SYMBOL(ipmi_addr_src_to_str
);
489 static int is_lan_addr(struct ipmi_addr
*addr
)
491 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
494 static int is_ipmb_addr(struct ipmi_addr
*addr
)
496 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
499 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
501 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
504 static void free_recv_msg_list(struct list_head
*q
)
506 struct ipmi_recv_msg
*msg
, *msg2
;
508 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
509 list_del(&msg
->link
);
510 ipmi_free_recv_msg(msg
);
514 static void free_smi_msg_list(struct list_head
*q
)
516 struct ipmi_smi_msg
*msg
, *msg2
;
518 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
519 list_del(&msg
->link
);
520 ipmi_free_smi_msg(msg
);
524 static void clean_up_interface_data(ipmi_smi_t intf
)
527 struct cmd_rcvr
*rcvr
, *rcvr2
;
528 struct list_head list
;
530 tasklet_kill(&intf
->recv_tasklet
);
532 free_smi_msg_list(&intf
->waiting_rcv_msgs
);
533 free_recv_msg_list(&intf
->waiting_events
);
536 * Wholesale remove all the entries from the list in the
537 * interface and wait for RCU to know that none are in use.
539 mutex_lock(&intf
->cmd_rcvrs_mutex
);
540 INIT_LIST_HEAD(&list
);
541 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
542 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
544 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
547 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
548 if ((intf
->seq_table
[i
].inuse
)
549 && (intf
->seq_table
[i
].recv_msg
))
550 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
554 static void intf_free(struct kref
*ref
)
556 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
558 clean_up_interface_data(intf
);
562 struct watcher_entry
{
565 struct list_head link
;
568 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
571 LIST_HEAD(to_deliver
);
572 struct watcher_entry
*e
, *e2
;
574 mutex_lock(&smi_watchers_mutex
);
576 mutex_lock(&ipmi_interfaces_mutex
);
578 /* Build a list of things to deliver. */
579 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
580 if (intf
->intf_num
== -1)
582 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
585 kref_get(&intf
->refcount
);
587 e
->intf_num
= intf
->intf_num
;
588 list_add_tail(&e
->link
, &to_deliver
);
591 /* We will succeed, so add it to the list. */
592 list_add(&watcher
->link
, &smi_watchers
);
594 mutex_unlock(&ipmi_interfaces_mutex
);
596 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
598 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
599 kref_put(&e
->intf
->refcount
, intf_free
);
603 mutex_unlock(&smi_watchers_mutex
);
608 mutex_unlock(&ipmi_interfaces_mutex
);
609 mutex_unlock(&smi_watchers_mutex
);
610 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
612 kref_put(&e
->intf
->refcount
, intf_free
);
617 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
619 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
621 mutex_lock(&smi_watchers_mutex
);
622 list_del(&(watcher
->link
));
623 mutex_unlock(&smi_watchers_mutex
);
626 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
629 * Must be called with smi_watchers_mutex held.
632 call_smi_watchers(int i
, struct device
*dev
)
634 struct ipmi_smi_watcher
*w
;
636 list_for_each_entry(w
, &smi_watchers
, link
) {
637 if (try_module_get(w
->owner
)) {
639 module_put(w
->owner
);
645 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
647 if (addr1
->addr_type
!= addr2
->addr_type
)
650 if (addr1
->channel
!= addr2
->channel
)
653 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
654 struct ipmi_system_interface_addr
*smi_addr1
655 = (struct ipmi_system_interface_addr
*) addr1
;
656 struct ipmi_system_interface_addr
*smi_addr2
657 = (struct ipmi_system_interface_addr
*) addr2
;
658 return (smi_addr1
->lun
== smi_addr2
->lun
);
661 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
662 struct ipmi_ipmb_addr
*ipmb_addr1
663 = (struct ipmi_ipmb_addr
*) addr1
;
664 struct ipmi_ipmb_addr
*ipmb_addr2
665 = (struct ipmi_ipmb_addr
*) addr2
;
667 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
668 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
671 if (is_lan_addr(addr1
)) {
672 struct ipmi_lan_addr
*lan_addr1
673 = (struct ipmi_lan_addr
*) addr1
;
674 struct ipmi_lan_addr
*lan_addr2
675 = (struct ipmi_lan_addr
*) addr2
;
677 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
678 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
679 && (lan_addr1
->session_handle
680 == lan_addr2
->session_handle
)
681 && (lan_addr1
->lun
== lan_addr2
->lun
));
687 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
689 if (len
< sizeof(struct ipmi_system_interface_addr
))
692 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
693 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
698 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
699 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
700 || (addr
->channel
< 0))
703 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
704 if (len
< sizeof(struct ipmi_ipmb_addr
))
709 if (is_lan_addr(addr
)) {
710 if (len
< sizeof(struct ipmi_lan_addr
))
717 EXPORT_SYMBOL(ipmi_validate_addr
);
719 unsigned int ipmi_addr_length(int addr_type
)
721 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
722 return sizeof(struct ipmi_system_interface_addr
);
724 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
725 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
726 return sizeof(struct ipmi_ipmb_addr
);
728 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
729 return sizeof(struct ipmi_lan_addr
);
733 EXPORT_SYMBOL(ipmi_addr_length
);
735 static void deliver_response(struct ipmi_recv_msg
*msg
)
738 ipmi_smi_t intf
= msg
->user_msg_data
;
740 /* Special handling for NULL users. */
741 if (intf
->null_user_handler
) {
742 intf
->null_user_handler(intf
, msg
);
743 ipmi_inc_stat(intf
, handled_local_responses
);
745 /* No handler, so give up. */
746 ipmi_inc_stat(intf
, unhandled_local_responses
);
748 ipmi_free_recv_msg(msg
);
749 } else if (!oops_in_progress
) {
751 * If we are running in the panic context, calling the
752 * receive handler doesn't much meaning and has a deadlock
753 * risk. At this moment, simply skip it in that case.
756 ipmi_user_t user
= msg
->user
;
757 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
762 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
764 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
765 msg
->msg_data
[0] = err
;
766 msg
->msg
.netfn
|= 1; /* Convert to a response. */
767 msg
->msg
.data_len
= 1;
768 msg
->msg
.data
= msg
->msg_data
;
769 deliver_response(msg
);
773 * Find the next sequence number not being used and add the given
774 * message with the given timeout to the sequence table. This must be
775 * called with the interface's seq_lock held.
777 static int intf_next_seq(ipmi_smi_t intf
,
778 struct ipmi_recv_msg
*recv_msg
,
779 unsigned long timeout
,
788 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
789 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
790 if (!intf
->seq_table
[i
].inuse
)
794 if (!intf
->seq_table
[i
].inuse
) {
795 intf
->seq_table
[i
].recv_msg
= recv_msg
;
798 * Start with the maximum timeout, when the send response
799 * comes in we will start the real timer.
801 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
802 intf
->seq_table
[i
].orig_timeout
= timeout
;
803 intf
->seq_table
[i
].retries_left
= retries
;
804 intf
->seq_table
[i
].broadcast
= broadcast
;
805 intf
->seq_table
[i
].inuse
= 1;
806 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
808 *seqid
= intf
->seq_table
[i
].seqid
;
809 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
819 * Return the receive message for the given sequence number and
820 * release the sequence number so it can be reused. Some other data
821 * is passed in to be sure the message matches up correctly (to help
822 * guard against message coming in after their timeout and the
823 * sequence number being reused).
825 static int intf_find_seq(ipmi_smi_t intf
,
830 struct ipmi_addr
*addr
,
831 struct ipmi_recv_msg
**recv_msg
)
836 if (seq
>= IPMI_IPMB_NUM_SEQ
)
839 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
840 if (intf
->seq_table
[seq
].inuse
) {
841 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
843 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
844 && (msg
->msg
.netfn
== netfn
)
845 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
847 intf
->seq_table
[seq
].inuse
= 0;
851 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
857 /* Start the timer for a specific sequence table entry. */
858 static int intf_start_seq_timer(ipmi_smi_t intf
,
867 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
869 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
871 * We do this verification because the user can be deleted
872 * while a message is outstanding.
874 if ((intf
->seq_table
[seq
].inuse
)
875 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
876 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
877 ent
->timeout
= ent
->orig_timeout
;
880 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
885 /* Got an error for the send message for a specific sequence number. */
886 static int intf_err_seq(ipmi_smi_t intf
,
894 struct ipmi_recv_msg
*msg
= NULL
;
897 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
899 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
901 * We do this verification because the user can be deleted
902 * while a message is outstanding.
904 if ((intf
->seq_table
[seq
].inuse
)
905 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
906 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
912 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
915 deliver_err_response(msg
, err
);
921 int ipmi_create_user(unsigned int if_num
,
922 struct ipmi_user_hndl
*handler
,
927 ipmi_user_t new_user
;
932 * There is no module usecount here, because it's not
933 * required. Since this can only be used by and called from
934 * other modules, they will implicitly use this module, and
935 * thus this can't be removed unless the other modules are
943 * Make sure the driver is actually initialized, this handles
944 * problems with initialization order.
947 rv
= ipmi_init_msghandler();
952 * The init code doesn't return an error if it was turned
953 * off, but it won't initialize. Check that.
959 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
963 mutex_lock(&ipmi_interfaces_mutex
);
964 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
965 if (intf
->intf_num
== if_num
)
968 /* Not found, return an error */
973 /* Note that each existing user holds a refcount to the interface. */
974 kref_get(&intf
->refcount
);
976 kref_init(&new_user
->refcount
);
977 new_user
->handler
= handler
;
978 new_user
->handler_data
= handler_data
;
979 new_user
->intf
= intf
;
980 new_user
->gets_events
= false;
982 if (!try_module_get(intf
->handlers
->owner
)) {
987 if (intf
->handlers
->inc_usecount
) {
988 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
990 module_put(intf
->handlers
->owner
);
996 * Hold the lock so intf->handlers is guaranteed to be good
999 mutex_unlock(&ipmi_interfaces_mutex
);
1001 new_user
->valid
= true;
1002 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1003 list_add_rcu(&new_user
->link
, &intf
->users
);
1004 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1005 if (handler
->ipmi_watchdog_pretimeout
) {
1006 /* User wants pretimeouts, so make sure to watch for them. */
1007 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1014 kref_put(&intf
->refcount
, intf_free
);
1016 mutex_unlock(&ipmi_interfaces_mutex
);
1020 EXPORT_SYMBOL(ipmi_create_user
);
1022 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
1026 const struct ipmi_smi_handlers
*handlers
;
1028 mutex_lock(&ipmi_interfaces_mutex
);
1029 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
1030 if (intf
->intf_num
== if_num
)
1033 /* Not found, return an error */
1035 mutex_unlock(&ipmi_interfaces_mutex
);
1039 handlers
= intf
->handlers
;
1041 if (handlers
->get_smi_info
)
1042 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
1043 mutex_unlock(&ipmi_interfaces_mutex
);
1047 EXPORT_SYMBOL(ipmi_get_smi_info
);
1049 static void free_user(struct kref
*ref
)
1051 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1055 int ipmi_destroy_user(ipmi_user_t user
)
1057 ipmi_smi_t intf
= user
->intf
;
1059 unsigned long flags
;
1060 struct cmd_rcvr
*rcvr
;
1061 struct cmd_rcvr
*rcvrs
= NULL
;
1063 user
->valid
= false;
1065 if (user
->handler
->ipmi_watchdog_pretimeout
)
1066 atomic_dec(&intf
->event_waiters
);
1068 if (user
->gets_events
)
1069 atomic_dec(&intf
->event_waiters
);
1071 /* Remove the user from the interface's sequence table. */
1072 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1073 list_del_rcu(&user
->link
);
1075 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1076 if (intf
->seq_table
[i
].inuse
1077 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1078 intf
->seq_table
[i
].inuse
= 0;
1079 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1082 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1085 * Remove the user from the command receiver's table. First
1086 * we build a list of everything (not using the standard link,
1087 * since other things may be using it till we do
1088 * synchronize_rcu()) then free everything in that list.
1090 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1091 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1092 if (rcvr
->user
== user
) {
1093 list_del_rcu(&rcvr
->link
);
1098 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1106 mutex_lock(&ipmi_interfaces_mutex
);
1107 if (intf
->handlers
) {
1108 module_put(intf
->handlers
->owner
);
1109 if (intf
->handlers
->dec_usecount
)
1110 intf
->handlers
->dec_usecount(intf
->send_info
);
1112 mutex_unlock(&ipmi_interfaces_mutex
);
1114 kref_put(&intf
->refcount
, intf_free
);
1116 kref_put(&user
->refcount
, free_user
);
1120 EXPORT_SYMBOL(ipmi_destroy_user
);
1122 void ipmi_get_version(ipmi_user_t user
,
1123 unsigned char *major
,
1124 unsigned char *minor
)
1126 *major
= user
->intf
->ipmi_version_major
;
1127 *minor
= user
->intf
->ipmi_version_minor
;
1129 EXPORT_SYMBOL(ipmi_get_version
);
1131 int ipmi_set_my_address(ipmi_user_t user
,
1132 unsigned int channel
,
1133 unsigned char address
)
1135 if (channel
>= IPMI_MAX_CHANNELS
)
1137 user
->intf
->channels
[channel
].address
= address
;
1140 EXPORT_SYMBOL(ipmi_set_my_address
);
1142 int ipmi_get_my_address(ipmi_user_t user
,
1143 unsigned int channel
,
1144 unsigned char *address
)
1146 if (channel
>= IPMI_MAX_CHANNELS
)
1148 *address
= user
->intf
->channels
[channel
].address
;
1151 EXPORT_SYMBOL(ipmi_get_my_address
);
1153 int ipmi_set_my_LUN(ipmi_user_t user
,
1154 unsigned int channel
,
1157 if (channel
>= IPMI_MAX_CHANNELS
)
1159 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1162 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1164 int ipmi_get_my_LUN(ipmi_user_t user
,
1165 unsigned int channel
,
1166 unsigned char *address
)
1168 if (channel
>= IPMI_MAX_CHANNELS
)
1170 *address
= user
->intf
->channels
[channel
].lun
;
1173 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1175 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1178 unsigned long flags
;
1180 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1181 mode
= user
->intf
->maintenance_mode
;
1182 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1186 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1188 static void maintenance_mode_update(ipmi_smi_t intf
)
1190 if (intf
->handlers
->set_maintenance_mode
)
1191 intf
->handlers
->set_maintenance_mode(
1192 intf
->send_info
, intf
->maintenance_mode_enable
);
1195 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1198 unsigned long flags
;
1199 ipmi_smi_t intf
= user
->intf
;
1201 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1202 if (intf
->maintenance_mode
!= mode
) {
1204 case IPMI_MAINTENANCE_MODE_AUTO
:
1205 intf
->maintenance_mode_enable
1206 = (intf
->auto_maintenance_timeout
> 0);
1209 case IPMI_MAINTENANCE_MODE_OFF
:
1210 intf
->maintenance_mode_enable
= false;
1213 case IPMI_MAINTENANCE_MODE_ON
:
1214 intf
->maintenance_mode_enable
= true;
1221 intf
->maintenance_mode
= mode
;
1223 maintenance_mode_update(intf
);
1226 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1230 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1232 int ipmi_set_gets_events(ipmi_user_t user
, bool val
)
1234 unsigned long flags
;
1235 ipmi_smi_t intf
= user
->intf
;
1236 struct ipmi_recv_msg
*msg
, *msg2
;
1237 struct list_head msgs
;
1239 INIT_LIST_HEAD(&msgs
);
1241 spin_lock_irqsave(&intf
->events_lock
, flags
);
1242 if (user
->gets_events
== val
)
1245 user
->gets_events
= val
;
1248 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1251 atomic_dec(&intf
->event_waiters
);
1254 if (intf
->delivering_events
)
1256 * Another thread is delivering events for this, so
1257 * let it handle any new events.
1261 /* Deliver any queued events. */
1262 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1263 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1264 list_move_tail(&msg
->link
, &msgs
);
1265 intf
->waiting_events_count
= 0;
1266 if (intf
->event_msg_printed
) {
1267 printk(KERN_WARNING PFX
"Event queue no longer"
1269 intf
->event_msg_printed
= 0;
1272 intf
->delivering_events
= 1;
1273 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1275 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1277 kref_get(&user
->refcount
);
1278 deliver_response(msg
);
1281 spin_lock_irqsave(&intf
->events_lock
, flags
);
1282 intf
->delivering_events
= 0;
1286 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1290 EXPORT_SYMBOL(ipmi_set_gets_events
);
1292 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1293 unsigned char netfn
,
1297 struct cmd_rcvr
*rcvr
;
1299 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1300 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1301 && (rcvr
->chans
& (1 << chan
)))
1307 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1308 unsigned char netfn
,
1312 struct cmd_rcvr
*rcvr
;
1314 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1315 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1316 && (rcvr
->chans
& chans
))
1322 int ipmi_register_for_cmd(ipmi_user_t user
,
1323 unsigned char netfn
,
1327 ipmi_smi_t intf
= user
->intf
;
1328 struct cmd_rcvr
*rcvr
;
1332 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1336 rcvr
->netfn
= netfn
;
1337 rcvr
->chans
= chans
;
1340 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1341 /* Make sure the command/netfn is not already registered. */
1342 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1347 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1350 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1353 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1359 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1361 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1362 unsigned char netfn
,
1366 ipmi_smi_t intf
= user
->intf
;
1367 struct cmd_rcvr
*rcvr
;
1368 struct cmd_rcvr
*rcvrs
= NULL
;
1369 int i
, rv
= -ENOENT
;
1371 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1372 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1373 if (((1 << i
) & chans
) == 0)
1375 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1378 if (rcvr
->user
== user
) {
1380 rcvr
->chans
&= ~chans
;
1381 if (rcvr
->chans
== 0) {
1382 list_del_rcu(&rcvr
->link
);
1388 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1391 atomic_dec(&intf
->event_waiters
);
1398 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1400 static unsigned char
1401 ipmb_checksum(unsigned char *data
, int size
)
1403 unsigned char csum
= 0;
1405 for (; size
> 0; size
--, data
++)
1411 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1412 struct kernel_ipmi_msg
*msg
,
1413 struct ipmi_ipmb_addr
*ipmb_addr
,
1415 unsigned char ipmb_seq
,
1417 unsigned char source_address
,
1418 unsigned char source_lun
)
1422 /* Format the IPMB header data. */
1423 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1424 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1425 smi_msg
->data
[2] = ipmb_addr
->channel
;
1427 smi_msg
->data
[3] = 0;
1428 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1429 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1430 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1431 smi_msg
->data
[i
+6] = source_address
;
1432 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1433 smi_msg
->data
[i
+8] = msg
->cmd
;
1435 /* Now tack on the data to the message. */
1436 if (msg
->data_len
> 0)
1437 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1439 smi_msg
->data_size
= msg
->data_len
+ 9;
1441 /* Now calculate the checksum and tack it on. */
1442 smi_msg
->data
[i
+smi_msg
->data_size
]
1443 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1444 smi_msg
->data_size
-6);
1447 * Add on the checksum size and the offset from the
1450 smi_msg
->data_size
+= 1 + i
;
1452 smi_msg
->msgid
= msgid
;
1455 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1456 struct kernel_ipmi_msg
*msg
,
1457 struct ipmi_lan_addr
*lan_addr
,
1459 unsigned char ipmb_seq
,
1460 unsigned char source_lun
)
1462 /* Format the IPMB header data. */
1463 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1464 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1465 smi_msg
->data
[2] = lan_addr
->channel
;
1466 smi_msg
->data
[3] = lan_addr
->session_handle
;
1467 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1468 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1469 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1470 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1471 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1472 smi_msg
->data
[9] = msg
->cmd
;
1474 /* Now tack on the data to the message. */
1475 if (msg
->data_len
> 0)
1476 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1478 smi_msg
->data_size
= msg
->data_len
+ 10;
1480 /* Now calculate the checksum and tack it on. */
1481 smi_msg
->data
[smi_msg
->data_size
]
1482 = ipmb_checksum(&(smi_msg
->data
[7]),
1483 smi_msg
->data_size
-7);
1486 * Add on the checksum size and the offset from the
1489 smi_msg
->data_size
+= 1;
1491 smi_msg
->msgid
= msgid
;
1494 static struct ipmi_smi_msg
*smi_add_send_msg(ipmi_smi_t intf
,
1495 struct ipmi_smi_msg
*smi_msg
,
1498 if (intf
->curr_msg
) {
1500 list_add_tail(&smi_msg
->link
, &intf
->hp_xmit_msgs
);
1502 list_add_tail(&smi_msg
->link
, &intf
->xmit_msgs
);
1505 intf
->curr_msg
= smi_msg
;
1512 static void smi_send(ipmi_smi_t intf
, const struct ipmi_smi_handlers
*handlers
,
1513 struct ipmi_smi_msg
*smi_msg
, int priority
)
1515 int run_to_completion
= intf
->run_to_completion
;
1517 if (run_to_completion
) {
1518 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1520 unsigned long flags
;
1522 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
1523 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1524 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
1528 handlers
->sender(intf
->send_info
, smi_msg
);
1532 * Separate from ipmi_request so that the user does not have to be
1533 * supplied in certain circumstances (mainly at panic time). If
1534 * messages are supplied, they will be freed, even if an error
1537 static int i_ipmi_request(ipmi_user_t user
,
1539 struct ipmi_addr
*addr
,
1541 struct kernel_ipmi_msg
*msg
,
1542 void *user_msg_data
,
1544 struct ipmi_recv_msg
*supplied_recv
,
1546 unsigned char source_address
,
1547 unsigned char source_lun
,
1549 unsigned int retry_time_ms
)
1552 struct ipmi_smi_msg
*smi_msg
;
1553 struct ipmi_recv_msg
*recv_msg
;
1554 unsigned long flags
;
1558 recv_msg
= supplied_recv
;
1560 recv_msg
= ipmi_alloc_recv_msg();
1561 if (recv_msg
== NULL
)
1564 recv_msg
->user_msg_data
= user_msg_data
;
1567 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1569 smi_msg
= ipmi_alloc_smi_msg();
1570 if (smi_msg
== NULL
) {
1571 ipmi_free_recv_msg(recv_msg
);
1577 if (intf
->in_shutdown
) {
1582 recv_msg
->user
= user
;
1584 kref_get(&user
->refcount
);
1585 recv_msg
->msgid
= msgid
;
1587 * Store the message to send in the receive message so timeout
1588 * responses can get the proper response data.
1590 recv_msg
->msg
= *msg
;
1592 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1593 struct ipmi_system_interface_addr
*smi_addr
;
1595 if (msg
->netfn
& 1) {
1596 /* Responses are not allowed to the SMI. */
1601 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1602 if (smi_addr
->lun
> 3) {
1603 ipmi_inc_stat(intf
, sent_invalid_commands
);
1608 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1610 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1611 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1612 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1613 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1615 * We don't let the user do these, since we manage
1616 * the sequence numbers.
1618 ipmi_inc_stat(intf
, sent_invalid_commands
);
1623 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1624 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1625 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1626 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1627 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1628 intf
->auto_maintenance_timeout
1629 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1630 if (!intf
->maintenance_mode
1631 && !intf
->maintenance_mode_enable
) {
1632 intf
->maintenance_mode_enable
= true;
1633 maintenance_mode_update(intf
);
1635 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1639 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1640 ipmi_inc_stat(intf
, sent_invalid_commands
);
1645 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1646 smi_msg
->data
[1] = msg
->cmd
;
1647 smi_msg
->msgid
= msgid
;
1648 smi_msg
->user_data
= recv_msg
;
1649 if (msg
->data_len
> 0)
1650 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1651 smi_msg
->data_size
= msg
->data_len
+ 2;
1652 ipmi_inc_stat(intf
, sent_local_commands
);
1653 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1654 struct ipmi_ipmb_addr
*ipmb_addr
;
1655 unsigned char ipmb_seq
;
1659 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1660 ipmi_inc_stat(intf
, sent_invalid_commands
);
1665 if (intf
->channels
[addr
->channel
].medium
1666 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1667 ipmi_inc_stat(intf
, sent_invalid_commands
);
1673 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1674 retries
= 0; /* Don't retry broadcasts. */
1678 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1680 * Broadcasts add a zero at the beginning of the
1681 * message, but otherwise is the same as an IPMB
1684 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1689 /* Default to 1 second retries. */
1690 if (retry_time_ms
== 0)
1691 retry_time_ms
= 1000;
1694 * 9 for the header and 1 for the checksum, plus
1695 * possibly one for the broadcast.
1697 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1698 ipmi_inc_stat(intf
, sent_invalid_commands
);
1703 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1704 if (ipmb_addr
->lun
> 3) {
1705 ipmi_inc_stat(intf
, sent_invalid_commands
);
1710 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1712 if (recv_msg
->msg
.netfn
& 0x1) {
1714 * It's a response, so use the user's sequence
1717 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1718 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1720 source_address
, source_lun
);
1723 * Save the receive message so we can use it
1724 * to deliver the response.
1726 smi_msg
->user_data
= recv_msg
;
1728 /* It's a command, so get a sequence for it. */
1730 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1733 * Create a sequence number with a 1 second
1734 * timeout and 4 retries.
1736 rv
= intf_next_seq(intf
,
1745 * We have used up all the sequence numbers,
1746 * probably, so abort.
1748 spin_unlock_irqrestore(&(intf
->seq_lock
),
1753 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1756 * Store the sequence number in the message,
1757 * so that when the send message response
1758 * comes back we can start the timer.
1760 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1761 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1762 ipmb_seq
, broadcast
,
1763 source_address
, source_lun
);
1766 * Copy the message into the recv message data, so we
1767 * can retransmit it later if necessary.
1769 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1770 smi_msg
->data_size
);
1771 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1772 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1775 * We don't unlock until here, because we need
1776 * to copy the completed message into the
1777 * recv_msg before we release the lock.
1778 * Otherwise, race conditions may bite us. I
1779 * know that's pretty paranoid, but I prefer
1782 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1784 } else if (is_lan_addr(addr
)) {
1785 struct ipmi_lan_addr
*lan_addr
;
1786 unsigned char ipmb_seq
;
1789 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1790 ipmi_inc_stat(intf
, sent_invalid_commands
);
1795 if ((intf
->channels
[addr
->channel
].medium
1796 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1797 && (intf
->channels
[addr
->channel
].medium
1798 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1799 ipmi_inc_stat(intf
, sent_invalid_commands
);
1806 /* Default to 1 second retries. */
1807 if (retry_time_ms
== 0)
1808 retry_time_ms
= 1000;
1810 /* 11 for the header and 1 for the checksum. */
1811 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1812 ipmi_inc_stat(intf
, sent_invalid_commands
);
1817 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1818 if (lan_addr
->lun
> 3) {
1819 ipmi_inc_stat(intf
, sent_invalid_commands
);
1824 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1826 if (recv_msg
->msg
.netfn
& 0x1) {
1828 * It's a response, so use the user's sequence
1831 ipmi_inc_stat(intf
, sent_lan_responses
);
1832 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1836 * Save the receive message so we can use it
1837 * to deliver the response.
1839 smi_msg
->user_data
= recv_msg
;
1841 /* It's a command, so get a sequence for it. */
1843 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1846 * Create a sequence number with a 1 second
1847 * timeout and 4 retries.
1849 rv
= intf_next_seq(intf
,
1858 * We have used up all the sequence numbers,
1859 * probably, so abort.
1861 spin_unlock_irqrestore(&(intf
->seq_lock
),
1866 ipmi_inc_stat(intf
, sent_lan_commands
);
1869 * Store the sequence number in the message,
1870 * so that when the send message response
1871 * comes back we can start the timer.
1873 format_lan_msg(smi_msg
, msg
, lan_addr
,
1874 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1875 ipmb_seq
, source_lun
);
1878 * Copy the message into the recv message data, so we
1879 * can retransmit it later if necessary.
1881 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1882 smi_msg
->data_size
);
1883 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1884 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1887 * We don't unlock until here, because we need
1888 * to copy the completed message into the
1889 * recv_msg before we release the lock.
1890 * Otherwise, race conditions may bite us. I
1891 * know that's pretty paranoid, but I prefer
1894 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1897 /* Unknown address type. */
1898 ipmi_inc_stat(intf
, sent_invalid_commands
);
1906 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1907 printk(" %2.2x", smi_msg
->data
[m
]);
1912 smi_send(intf
, intf
->handlers
, smi_msg
, priority
);
1919 ipmi_free_smi_msg(smi_msg
);
1920 ipmi_free_recv_msg(recv_msg
);
1924 static int check_addr(ipmi_smi_t intf
,
1925 struct ipmi_addr
*addr
,
1926 unsigned char *saddr
,
1929 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1931 *lun
= intf
->channels
[addr
->channel
].lun
;
1932 *saddr
= intf
->channels
[addr
->channel
].address
;
1936 int ipmi_request_settime(ipmi_user_t user
,
1937 struct ipmi_addr
*addr
,
1939 struct kernel_ipmi_msg
*msg
,
1940 void *user_msg_data
,
1943 unsigned int retry_time_ms
)
1945 unsigned char saddr
= 0, lun
= 0;
1950 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1953 return i_ipmi_request(user
,
1966 EXPORT_SYMBOL(ipmi_request_settime
);
1968 int ipmi_request_supply_msgs(ipmi_user_t user
,
1969 struct ipmi_addr
*addr
,
1971 struct kernel_ipmi_msg
*msg
,
1972 void *user_msg_data
,
1974 struct ipmi_recv_msg
*supplied_recv
,
1977 unsigned char saddr
= 0, lun
= 0;
1982 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1985 return i_ipmi_request(user
,
1998 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
2000 #ifdef CONFIG_PROC_FS
2001 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
2003 ipmi_smi_t intf
= m
->private;
2006 seq_printf(m
, "%x", intf
->channels
[0].address
);
2007 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
2008 seq_printf(m
, " %x", intf
->channels
[i
].address
);
2014 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
2016 return single_open(file
, smi_ipmb_proc_show
, PDE_DATA(inode
));
2019 static const struct file_operations smi_ipmb_proc_ops
= {
2020 .open
= smi_ipmb_proc_open
,
2022 .llseek
= seq_lseek
,
2023 .release
= single_release
,
2026 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
2028 ipmi_smi_t intf
= m
->private;
2030 seq_printf(m
, "%u.%u\n",
2031 ipmi_version_major(&intf
->bmc
->id
),
2032 ipmi_version_minor(&intf
->bmc
->id
));
2037 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
2039 return single_open(file
, smi_version_proc_show
, PDE_DATA(inode
));
2042 static const struct file_operations smi_version_proc_ops
= {
2043 .open
= smi_version_proc_open
,
2045 .llseek
= seq_lseek
,
2046 .release
= single_release
,
2049 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
2051 ipmi_smi_t intf
= m
->private;
2053 seq_printf(m
, "sent_invalid_commands: %u\n",
2054 ipmi_get_stat(intf
, sent_invalid_commands
));
2055 seq_printf(m
, "sent_local_commands: %u\n",
2056 ipmi_get_stat(intf
, sent_local_commands
));
2057 seq_printf(m
, "handled_local_responses: %u\n",
2058 ipmi_get_stat(intf
, handled_local_responses
));
2059 seq_printf(m
, "unhandled_local_responses: %u\n",
2060 ipmi_get_stat(intf
, unhandled_local_responses
));
2061 seq_printf(m
, "sent_ipmb_commands: %u\n",
2062 ipmi_get_stat(intf
, sent_ipmb_commands
));
2063 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
2064 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
2065 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
2066 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
2067 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
2068 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
2069 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
2070 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
2071 seq_printf(m
, "sent_ipmb_responses: %u\n",
2072 ipmi_get_stat(intf
, sent_ipmb_responses
));
2073 seq_printf(m
, "handled_ipmb_responses: %u\n",
2074 ipmi_get_stat(intf
, handled_ipmb_responses
));
2075 seq_printf(m
, "invalid_ipmb_responses: %u\n",
2076 ipmi_get_stat(intf
, invalid_ipmb_responses
));
2077 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
2078 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
2079 seq_printf(m
, "sent_lan_commands: %u\n",
2080 ipmi_get_stat(intf
, sent_lan_commands
));
2081 seq_printf(m
, "sent_lan_command_errs: %u\n",
2082 ipmi_get_stat(intf
, sent_lan_command_errs
));
2083 seq_printf(m
, "retransmitted_lan_commands: %u\n",
2084 ipmi_get_stat(intf
, retransmitted_lan_commands
));
2085 seq_printf(m
, "timed_out_lan_commands: %u\n",
2086 ipmi_get_stat(intf
, timed_out_lan_commands
));
2087 seq_printf(m
, "sent_lan_responses: %u\n",
2088 ipmi_get_stat(intf
, sent_lan_responses
));
2089 seq_printf(m
, "handled_lan_responses: %u\n",
2090 ipmi_get_stat(intf
, handled_lan_responses
));
2091 seq_printf(m
, "invalid_lan_responses: %u\n",
2092 ipmi_get_stat(intf
, invalid_lan_responses
));
2093 seq_printf(m
, "unhandled_lan_responses: %u\n",
2094 ipmi_get_stat(intf
, unhandled_lan_responses
));
2095 seq_printf(m
, "handled_commands: %u\n",
2096 ipmi_get_stat(intf
, handled_commands
));
2097 seq_printf(m
, "invalid_commands: %u\n",
2098 ipmi_get_stat(intf
, invalid_commands
));
2099 seq_printf(m
, "unhandled_commands: %u\n",
2100 ipmi_get_stat(intf
, unhandled_commands
));
2101 seq_printf(m
, "invalid_events: %u\n",
2102 ipmi_get_stat(intf
, invalid_events
));
2103 seq_printf(m
, "events: %u\n",
2104 ipmi_get_stat(intf
, events
));
2105 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2106 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2107 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2108 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2112 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2114 return single_open(file
, smi_stats_proc_show
, PDE_DATA(inode
));
2117 static const struct file_operations smi_stats_proc_ops
= {
2118 .open
= smi_stats_proc_open
,
2120 .llseek
= seq_lseek
,
2121 .release
= single_release
,
2123 #endif /* CONFIG_PROC_FS */
2125 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2126 const struct file_operations
*proc_ops
,
2130 #ifdef CONFIG_PROC_FS
2131 struct proc_dir_entry
*file
;
2132 struct ipmi_proc_entry
*entry
;
2134 /* Create a list element. */
2135 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2138 entry
->name
= kstrdup(name
, GFP_KERNEL
);
2144 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2150 mutex_lock(&smi
->proc_entry_lock
);
2151 /* Stick it on the list. */
2152 entry
->next
= smi
->proc_entries
;
2153 smi
->proc_entries
= entry
;
2154 mutex_unlock(&smi
->proc_entry_lock
);
2156 #endif /* CONFIG_PROC_FS */
2160 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2162 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2166 #ifdef CONFIG_PROC_FS
2167 sprintf(smi
->proc_dir_name
, "%d", num
);
2168 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2173 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2174 &smi_stats_proc_ops
,
2178 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2183 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2184 &smi_version_proc_ops
,
2186 #endif /* CONFIG_PROC_FS */
2191 static void remove_proc_entries(ipmi_smi_t smi
)
2193 #ifdef CONFIG_PROC_FS
2194 struct ipmi_proc_entry
*entry
;
2196 mutex_lock(&smi
->proc_entry_lock
);
2197 while (smi
->proc_entries
) {
2198 entry
= smi
->proc_entries
;
2199 smi
->proc_entries
= entry
->next
;
2201 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2205 mutex_unlock(&smi
->proc_entry_lock
);
2206 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2207 #endif /* CONFIG_PROC_FS */
2210 static int __find_bmc_guid(struct device
*dev
, void *data
)
2212 unsigned char *id
= data
;
2213 struct bmc_device
*bmc
= to_bmc_device(dev
);
2214 return memcmp(bmc
->guid
, id
, 16) == 0;
2217 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2218 unsigned char *guid
)
2222 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2224 return to_bmc_device(dev
);
2229 struct prod_dev_id
{
2230 unsigned int product_id
;
2231 unsigned char device_id
;
2234 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2236 struct prod_dev_id
*id
= data
;
2237 struct bmc_device
*bmc
= to_bmc_device(dev
);
2239 return (bmc
->id
.product_id
== id
->product_id
2240 && bmc
->id
.device_id
== id
->device_id
);
2243 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2244 struct device_driver
*drv
,
2245 unsigned int product_id
, unsigned char device_id
)
2247 struct prod_dev_id id
= {
2248 .product_id
= product_id
,
2249 .device_id
= device_id
,
2253 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2255 return to_bmc_device(dev
);
2260 static ssize_t
device_id_show(struct device
*dev
,
2261 struct device_attribute
*attr
,
2264 struct bmc_device
*bmc
= to_bmc_device(dev
);
2266 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2268 static DEVICE_ATTR(device_id
, S_IRUGO
, device_id_show
, NULL
);
2270 static ssize_t
provides_device_sdrs_show(struct device
*dev
,
2271 struct device_attribute
*attr
,
2274 struct bmc_device
*bmc
= to_bmc_device(dev
);
2276 return snprintf(buf
, 10, "%u\n",
2277 (bmc
->id
.device_revision
& 0x80) >> 7);
2279 static DEVICE_ATTR(provides_device_sdrs
, S_IRUGO
, provides_device_sdrs_show
,
2282 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2285 struct bmc_device
*bmc
= to_bmc_device(dev
);
2287 return snprintf(buf
, 20, "%u\n",
2288 bmc
->id
.device_revision
& 0x0F);
2290 static DEVICE_ATTR(revision
, S_IRUGO
, revision_show
, NULL
);
2292 static ssize_t
firmware_revision_show(struct device
*dev
,
2293 struct device_attribute
*attr
,
2296 struct bmc_device
*bmc
= to_bmc_device(dev
);
2298 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2299 bmc
->id
.firmware_revision_2
);
2301 static DEVICE_ATTR(firmware_revision
, S_IRUGO
, firmware_revision_show
, NULL
);
2303 static ssize_t
ipmi_version_show(struct device
*dev
,
2304 struct device_attribute
*attr
,
2307 struct bmc_device
*bmc
= to_bmc_device(dev
);
2309 return snprintf(buf
, 20, "%u.%u\n",
2310 ipmi_version_major(&bmc
->id
),
2311 ipmi_version_minor(&bmc
->id
));
2313 static DEVICE_ATTR(ipmi_version
, S_IRUGO
, ipmi_version_show
, NULL
);
2315 static ssize_t
add_dev_support_show(struct device
*dev
,
2316 struct device_attribute
*attr
,
2319 struct bmc_device
*bmc
= to_bmc_device(dev
);
2321 return snprintf(buf
, 10, "0x%02x\n",
2322 bmc
->id
.additional_device_support
);
2324 static DEVICE_ATTR(additional_device_support
, S_IRUGO
, add_dev_support_show
,
2327 static ssize_t
manufacturer_id_show(struct device
*dev
,
2328 struct device_attribute
*attr
,
2331 struct bmc_device
*bmc
= to_bmc_device(dev
);
2333 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2335 static DEVICE_ATTR(manufacturer_id
, S_IRUGO
, manufacturer_id_show
, NULL
);
2337 static ssize_t
product_id_show(struct device
*dev
,
2338 struct device_attribute
*attr
,
2341 struct bmc_device
*bmc
= to_bmc_device(dev
);
2343 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2345 static DEVICE_ATTR(product_id
, S_IRUGO
, product_id_show
, NULL
);
2347 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2348 struct device_attribute
*attr
,
2351 struct bmc_device
*bmc
= to_bmc_device(dev
);
2353 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2354 bmc
->id
.aux_firmware_revision
[3],
2355 bmc
->id
.aux_firmware_revision
[2],
2356 bmc
->id
.aux_firmware_revision
[1],
2357 bmc
->id
.aux_firmware_revision
[0]);
2359 static DEVICE_ATTR(aux_firmware_revision
, S_IRUGO
, aux_firmware_rev_show
, NULL
);
2361 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2364 struct bmc_device
*bmc
= to_bmc_device(dev
);
2366 return snprintf(buf
, 100, "%Lx%Lx\n",
2367 (long long) bmc
->guid
[0],
2368 (long long) bmc
->guid
[8]);
2370 static DEVICE_ATTR(guid
, S_IRUGO
, guid_show
, NULL
);
2372 static struct attribute
*bmc_dev_attrs
[] = {
2373 &dev_attr_device_id
.attr
,
2374 &dev_attr_provides_device_sdrs
.attr
,
2375 &dev_attr_revision
.attr
,
2376 &dev_attr_firmware_revision
.attr
,
2377 &dev_attr_ipmi_version
.attr
,
2378 &dev_attr_additional_device_support
.attr
,
2379 &dev_attr_manufacturer_id
.attr
,
2380 &dev_attr_product_id
.attr
,
2381 &dev_attr_aux_firmware_revision
.attr
,
2382 &dev_attr_guid
.attr
,
2386 static umode_t
bmc_dev_attr_is_visible(struct kobject
*kobj
,
2387 struct attribute
*attr
, int idx
)
2389 struct device
*dev
= kobj_to_dev(kobj
);
2390 struct bmc_device
*bmc
= to_bmc_device(dev
);
2391 umode_t mode
= attr
->mode
;
2393 if (attr
== &dev_attr_aux_firmware_revision
.attr
)
2394 return bmc
->id
.aux_firmware_revision_set
? mode
: 0;
2395 if (attr
== &dev_attr_guid
.attr
)
2396 return bmc
->guid_set
? mode
: 0;
2400 static struct attribute_group bmc_dev_attr_group
= {
2401 .attrs
= bmc_dev_attrs
,
2402 .is_visible
= bmc_dev_attr_is_visible
,
2405 static const struct attribute_group
*bmc_dev_attr_groups
[] = {
2406 &bmc_dev_attr_group
,
2410 static struct device_type bmc_device_type
= {
2411 .groups
= bmc_dev_attr_groups
,
2415 release_bmc_device(struct device
*dev
)
2417 kfree(to_bmc_device(dev
));
2421 cleanup_bmc_device(struct kref
*ref
)
2423 struct bmc_device
*bmc
= container_of(ref
, struct bmc_device
, usecount
);
2425 platform_device_unregister(&bmc
->pdev
);
2428 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2430 struct bmc_device
*bmc
= intf
->bmc
;
2432 sysfs_remove_link(&intf
->si_dev
->kobj
, "bmc");
2433 if (intf
->my_dev_name
) {
2434 sysfs_remove_link(&bmc
->pdev
.dev
.kobj
, intf
->my_dev_name
);
2435 kfree(intf
->my_dev_name
);
2436 intf
->my_dev_name
= NULL
;
2439 mutex_lock(&ipmidriver_mutex
);
2440 kref_put(&bmc
->usecount
, cleanup_bmc_device
);
2442 mutex_unlock(&ipmidriver_mutex
);
2445 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
)
2448 struct bmc_device
*bmc
= intf
->bmc
;
2449 struct bmc_device
*old_bmc
;
2451 mutex_lock(&ipmidriver_mutex
);
2454 * Try to find if there is an bmc_device struct
2455 * representing the interfaced BMC already
2458 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2460 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2465 * If there is already an bmc_device, free the new one,
2466 * otherwise register the new BMC device
2470 intf
->bmc
= old_bmc
;
2473 kref_get(&bmc
->usecount
);
2474 mutex_unlock(&ipmidriver_mutex
);
2477 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2478 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2479 bmc
->id
.manufacturer_id
,
2483 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2484 int warn_printed
= 0;
2486 snprintf(bmc
->name
, sizeof(bmc
->name
),
2487 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2488 bmc
->pdev
.name
= bmc
->name
;
2490 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2492 bmc
->id
.device_id
)) {
2493 if (!warn_printed
) {
2494 printk(KERN_WARNING PFX
2495 "This machine has two different BMCs"
2496 " with the same product id and device"
2497 " id. This is an error in the"
2498 " firmware, but incrementing the"
2499 " device id to work around the problem."
2500 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2501 bmc
->id
.product_id
, bmc
->id
.device_id
);
2504 bmc
->id
.device_id
++; /* Wraps at 255 */
2505 if (bmc
->id
.device_id
== orig_dev_id
) {
2507 "Out of device ids!\n");
2512 bmc
->pdev
.dev
.driver
= &ipmidriver
.driver
;
2513 bmc
->pdev
.id
= bmc
->id
.device_id
;
2514 bmc
->pdev
.dev
.release
= release_bmc_device
;
2515 bmc
->pdev
.dev
.type
= &bmc_device_type
;
2516 kref_init(&bmc
->usecount
);
2518 rv
= platform_device_register(&bmc
->pdev
);
2519 mutex_unlock(&ipmidriver_mutex
);
2521 put_device(&bmc
->pdev
.dev
);
2524 " Unable to register bmc device: %d\n",
2527 * Don't go to out_err, you can only do that if
2528 * the device is registered already.
2533 dev_info(intf
->si_dev
, "Found new BMC (man_id: 0x%6.6x, "
2534 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2535 bmc
->id
.manufacturer_id
,
2541 * create symlink from system interface device to bmc device
2544 rv
= sysfs_create_link(&intf
->si_dev
->kobj
, &bmc
->pdev
.dev
.kobj
, "bmc");
2547 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2552 intf
->my_dev_name
= kasprintf(GFP_KERNEL
, "ipmi%d", ifnum
);
2553 if (!intf
->my_dev_name
) {
2556 "ipmi_msghandler: allocate link from BMC: %d\n",
2561 rv
= sysfs_create_link(&bmc
->pdev
.dev
.kobj
, &intf
->si_dev
->kobj
,
2564 kfree(intf
->my_dev_name
);
2565 intf
->my_dev_name
= NULL
;
2568 " Unable to create symlink to bmc: %d\n",
2576 ipmi_bmc_unregister(intf
);
2581 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2583 struct kernel_ipmi_msg msg
;
2584 struct ipmi_system_interface_addr si
;
2586 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2587 si
.channel
= IPMI_BMC_CHANNEL
;
2590 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2591 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2594 return i_ipmi_request(NULL
,
2596 (struct ipmi_addr
*) &si
,
2603 intf
->channels
[0].address
,
2604 intf
->channels
[0].lun
,
2609 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2611 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2612 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2613 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2617 if (msg
->msg
.data
[0] != 0) {
2618 /* Error from getting the GUID, the BMC doesn't have one. */
2619 intf
->bmc
->guid_set
= 0;
2623 if (msg
->msg
.data_len
< 17) {
2624 intf
->bmc
->guid_set
= 0;
2625 printk(KERN_WARNING PFX
2626 "guid_handler: The GUID response from the BMC was too"
2627 " short, it was %d but should have been 17. Assuming"
2628 " GUID is not available.\n",
2633 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2634 intf
->bmc
->guid_set
= 1;
2636 wake_up(&intf
->waitq
);
2640 get_guid(ipmi_smi_t intf
)
2644 intf
->bmc
->guid_set
= 0x2;
2645 intf
->null_user_handler
= guid_handler
;
2646 rv
= send_guid_cmd(intf
, 0);
2648 /* Send failed, no GUID available. */
2649 intf
->bmc
->guid_set
= 0;
2650 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2651 intf
->null_user_handler
= NULL
;
2655 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2657 struct kernel_ipmi_msg msg
;
2658 unsigned char data
[1];
2659 struct ipmi_system_interface_addr si
;
2661 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2662 si
.channel
= IPMI_BMC_CHANNEL
;
2665 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2666 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2670 return i_ipmi_request(NULL
,
2672 (struct ipmi_addr
*) &si
,
2679 intf
->channels
[0].address
,
2680 intf
->channels
[0].lun
,
2685 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2690 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2691 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2692 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2693 /* It's the one we want */
2694 if (msg
->msg
.data
[0] != 0) {
2695 /* Got an error from the channel, just go on. */
2697 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2699 * If the MC does not support this
2700 * command, that is legal. We just
2701 * assume it has one IPMB at channel
2704 intf
->channels
[0].medium
2705 = IPMI_CHANNEL_MEDIUM_IPMB
;
2706 intf
->channels
[0].protocol
2707 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2709 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2710 wake_up(&intf
->waitq
);
2715 if (msg
->msg
.data_len
< 4) {
2716 /* Message not big enough, just go on. */
2719 chan
= intf
->curr_channel
;
2720 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2721 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2724 intf
->curr_channel
++;
2725 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2726 wake_up(&intf
->waitq
);
2728 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2731 /* Got an error somehow, just give up. */
2732 printk(KERN_WARNING PFX
2733 "Error sending channel information for channel"
2734 " %d: %d\n", intf
->curr_channel
, rv
);
2736 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2737 wake_up(&intf
->waitq
);
2744 static void ipmi_poll(ipmi_smi_t intf
)
2746 if (intf
->handlers
->poll
)
2747 intf
->handlers
->poll(intf
->send_info
);
2748 /* In case something came in */
2749 handle_new_recv_msgs(intf
);
2752 void ipmi_poll_interface(ipmi_user_t user
)
2754 ipmi_poll(user
->intf
);
2756 EXPORT_SYMBOL(ipmi_poll_interface
);
2758 int ipmi_register_smi(const struct ipmi_smi_handlers
*handlers
,
2760 struct ipmi_device_id
*device_id
,
2761 struct device
*si_dev
,
2762 unsigned char slave_addr
)
2768 struct list_head
*link
;
2771 * Make sure the driver is actually initialized, this handles
2772 * problems with initialization order.
2775 rv
= ipmi_init_msghandler();
2779 * The init code doesn't return an error if it was turned
2780 * off, but it won't initialize. Check that.
2786 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2790 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2791 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2793 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2798 intf
->intf_num
= -1; /* Mark it invalid for now. */
2799 kref_init(&intf
->refcount
);
2800 intf
->bmc
->id
= *device_id
;
2801 intf
->si_dev
= si_dev
;
2802 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2803 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2804 intf
->channels
[j
].lun
= 2;
2806 if (slave_addr
!= 0)
2807 intf
->channels
[0].address
= slave_addr
;
2808 INIT_LIST_HEAD(&intf
->users
);
2809 intf
->handlers
= handlers
;
2810 intf
->send_info
= send_info
;
2811 spin_lock_init(&intf
->seq_lock
);
2812 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2813 intf
->seq_table
[j
].inuse
= 0;
2814 intf
->seq_table
[j
].seqid
= 0;
2817 #ifdef CONFIG_PROC_FS
2818 mutex_init(&intf
->proc_entry_lock
);
2820 spin_lock_init(&intf
->waiting_rcv_msgs_lock
);
2821 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
2822 tasklet_init(&intf
->recv_tasklet
,
2824 (unsigned long) intf
);
2825 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 0);
2826 spin_lock_init(&intf
->xmit_msgs_lock
);
2827 INIT_LIST_HEAD(&intf
->xmit_msgs
);
2828 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
2829 spin_lock_init(&intf
->events_lock
);
2830 atomic_set(&intf
->event_waiters
, 0);
2831 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
2832 INIT_LIST_HEAD(&intf
->waiting_events
);
2833 intf
->waiting_events_count
= 0;
2834 mutex_init(&intf
->cmd_rcvrs_mutex
);
2835 spin_lock_init(&intf
->maintenance_mode_lock
);
2836 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2837 init_waitqueue_head(&intf
->waitq
);
2838 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2839 atomic_set(&intf
->stats
[i
], 0);
2841 intf
->proc_dir
= NULL
;
2843 mutex_lock(&smi_watchers_mutex
);
2844 mutex_lock(&ipmi_interfaces_mutex
);
2845 /* Look for a hole in the numbers. */
2847 link
= &ipmi_interfaces
;
2848 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2849 if (tintf
->intf_num
!= i
) {
2850 link
= &tintf
->link
;
2855 /* Add the new interface in numeric order. */
2857 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2859 list_add_tail_rcu(&intf
->link
, link
);
2861 rv
= handlers
->start_processing(send_info
, intf
);
2867 if ((intf
->ipmi_version_major
> 1)
2868 || ((intf
->ipmi_version_major
== 1)
2869 && (intf
->ipmi_version_minor
>= 5))) {
2871 * Start scanning the channels to see what is
2874 intf
->null_user_handler
= channel_handler
;
2875 intf
->curr_channel
= 0;
2876 rv
= send_channel_info_cmd(intf
, 0);
2878 printk(KERN_WARNING PFX
2879 "Error sending channel information for channel"
2884 /* Wait for the channel info to be read. */
2885 wait_event(intf
->waitq
,
2886 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2887 intf
->null_user_handler
= NULL
;
2889 /* Assume a single IPMB channel at zero. */
2890 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2891 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2892 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2895 rv
= ipmi_bmc_register(intf
, i
);
2898 rv
= add_proc_entries(intf
, i
);
2903 remove_proc_entries(intf
);
2904 intf
->handlers
= NULL
;
2905 list_del_rcu(&intf
->link
);
2906 mutex_unlock(&ipmi_interfaces_mutex
);
2907 mutex_unlock(&smi_watchers_mutex
);
2909 kref_put(&intf
->refcount
, intf_free
);
2912 * Keep memory order straight for RCU readers. Make
2913 * sure everything else is committed to memory before
2914 * setting intf_num to mark the interface valid.
2918 mutex_unlock(&ipmi_interfaces_mutex
);
2919 /* After this point the interface is legal to use. */
2920 call_smi_watchers(i
, intf
->si_dev
);
2921 mutex_unlock(&smi_watchers_mutex
);
2926 EXPORT_SYMBOL(ipmi_register_smi
);
2928 static void deliver_smi_err_response(ipmi_smi_t intf
,
2929 struct ipmi_smi_msg
*msg
,
2932 msg
->rsp
[0] = msg
->data
[0] | 4;
2933 msg
->rsp
[1] = msg
->data
[1];
2936 /* It's an error, so it will never requeue, no need to check return. */
2937 handle_one_recv_msg(intf
, msg
);
2940 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2943 struct seq_table
*ent
;
2944 struct ipmi_smi_msg
*msg
;
2945 struct list_head
*entry
;
2946 struct list_head tmplist
;
2948 /* Clear out our transmit queues and hold the messages. */
2949 INIT_LIST_HEAD(&tmplist
);
2950 list_splice_tail(&intf
->hp_xmit_msgs
, &tmplist
);
2951 list_splice_tail(&intf
->xmit_msgs
, &tmplist
);
2953 /* Current message first, to preserve order */
2954 while (intf
->curr_msg
&& !list_empty(&intf
->waiting_rcv_msgs
)) {
2955 /* Wait for the message to clear out. */
2956 schedule_timeout(1);
2959 /* No need for locks, the interface is down. */
2962 * Return errors for all pending messages in queue and in the
2963 * tables waiting for remote responses.
2965 while (!list_empty(&tmplist
)) {
2966 entry
= tmplist
.next
;
2968 msg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
2969 deliver_smi_err_response(intf
, msg
, IPMI_ERR_UNSPECIFIED
);
2972 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2973 ent
= &(intf
->seq_table
[i
]);
2976 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2980 int ipmi_unregister_smi(ipmi_smi_t intf
)
2982 struct ipmi_smi_watcher
*w
;
2983 int intf_num
= intf
->intf_num
;
2986 mutex_lock(&smi_watchers_mutex
);
2987 mutex_lock(&ipmi_interfaces_mutex
);
2988 intf
->intf_num
= -1;
2989 intf
->in_shutdown
= true;
2990 list_del_rcu(&intf
->link
);
2991 mutex_unlock(&ipmi_interfaces_mutex
);
2994 cleanup_smi_msgs(intf
);
2996 /* Clean up the effects of users on the lower-level software. */
2997 mutex_lock(&ipmi_interfaces_mutex
);
2999 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3000 module_put(intf
->handlers
->owner
);
3001 if (intf
->handlers
->dec_usecount
)
3002 intf
->handlers
->dec_usecount(intf
->send_info
);
3005 intf
->handlers
= NULL
;
3006 mutex_unlock(&ipmi_interfaces_mutex
);
3008 remove_proc_entries(intf
);
3009 ipmi_bmc_unregister(intf
);
3012 * Call all the watcher interfaces to tell them that
3013 * an interface is gone.
3015 list_for_each_entry(w
, &smi_watchers
, link
)
3016 w
->smi_gone(intf_num
);
3017 mutex_unlock(&smi_watchers_mutex
);
3019 kref_put(&intf
->refcount
, intf_free
);
3022 EXPORT_SYMBOL(ipmi_unregister_smi
);
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3025 struct ipmi_smi_msg
*msg
)
3027 struct ipmi_ipmb_addr ipmb_addr
;
3028 struct ipmi_recv_msg
*recv_msg
;
3031 * This is 11, not 10, because the response must contain a
3034 if (msg
->rsp_size
< 11) {
3035 /* Message not big enough, just ignore it. */
3036 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3040 if (msg
->rsp
[2] != 0) {
3041 /* An error getting the response, just ignore it. */
3045 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3046 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3047 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3048 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3051 * It's a response from a remote entity. Look up the sequence
3052 * number and handle the response.
3054 if (intf_find_seq(intf
,
3058 (msg
->rsp
[4] >> 2) & (~1),
3059 (struct ipmi_addr
*) &(ipmb_addr
),
3062 * We were unable to find the sequence number,
3063 * so just nuke the message.
3065 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3069 memcpy(recv_msg
->msg_data
,
3073 * The other fields matched, so no need to set them, except
3074 * for netfn, which needs to be the response that was
3075 * returned, not the request value.
3077 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3078 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3079 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3080 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3081 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3082 deliver_response(recv_msg
);
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3088 struct ipmi_smi_msg
*msg
)
3090 struct cmd_rcvr
*rcvr
;
3092 unsigned char netfn
;
3095 ipmi_user_t user
= NULL
;
3096 struct ipmi_ipmb_addr
*ipmb_addr
;
3097 struct ipmi_recv_msg
*recv_msg
;
3099 if (msg
->rsp_size
< 10) {
3100 /* Message not big enough, just ignore it. */
3101 ipmi_inc_stat(intf
, invalid_commands
);
3105 if (msg
->rsp
[2] != 0) {
3106 /* An error getting the response, just ignore it. */
3110 netfn
= msg
->rsp
[4] >> 2;
3112 chan
= msg
->rsp
[3] & 0xf;
3115 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3118 kref_get(&user
->refcount
);
3124 /* We didn't find a user, deliver an error response. */
3125 ipmi_inc_stat(intf
, unhandled_commands
);
3127 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3128 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3129 msg
->data
[2] = msg
->rsp
[3];
3130 msg
->data
[3] = msg
->rsp
[6];
3131 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3132 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3133 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3135 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3136 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3137 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3138 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3139 msg
->data_size
= 11;
3144 printk("Invalid command:");
3145 for (m
= 0; m
< msg
->data_size
; m
++)
3146 printk(" %2.2x", msg
->data
[m
]);
3151 if (!intf
->in_shutdown
) {
3152 smi_send(intf
, intf
->handlers
, msg
, 0);
3154 * We used the message, so return the value
3155 * that causes it to not be freed or
3162 /* Deliver the message to the user. */
3163 ipmi_inc_stat(intf
, handled_commands
);
3165 recv_msg
= ipmi_alloc_recv_msg();
3168 * We couldn't allocate memory for the
3169 * message, so requeue it for handling
3173 kref_put(&user
->refcount
, free_user
);
3175 /* Extract the source address from the data. */
3176 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3177 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3178 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3179 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3180 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3183 * Extract the rest of the message information
3184 * from the IPMB header.
3186 recv_msg
->user
= user
;
3187 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3188 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3189 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3190 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3191 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3194 * We chop off 10, not 9 bytes because the checksum
3195 * at the end also needs to be removed.
3197 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3198 memcpy(recv_msg
->msg_data
,
3200 msg
->rsp_size
- 10);
3201 deliver_response(recv_msg
);
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3209 struct ipmi_smi_msg
*msg
)
3211 struct ipmi_lan_addr lan_addr
;
3212 struct ipmi_recv_msg
*recv_msg
;
3216 * This is 13, not 12, because the response must contain a
3219 if (msg
->rsp_size
< 13) {
3220 /* Message not big enough, just ignore it. */
3221 ipmi_inc_stat(intf
, invalid_lan_responses
);
3225 if (msg
->rsp
[2] != 0) {
3226 /* An error getting the response, just ignore it. */
3230 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3231 lan_addr
.session_handle
= msg
->rsp
[4];
3232 lan_addr
.remote_SWID
= msg
->rsp
[8];
3233 lan_addr
.local_SWID
= msg
->rsp
[5];
3234 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3235 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3236 lan_addr
.lun
= msg
->rsp
[9] & 3;
3239 * It's a response from a remote entity. Look up the sequence
3240 * number and handle the response.
3242 if (intf_find_seq(intf
,
3246 (msg
->rsp
[6] >> 2) & (~1),
3247 (struct ipmi_addr
*) &(lan_addr
),
3250 * We were unable to find the sequence number,
3251 * so just nuke the message.
3253 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3257 memcpy(recv_msg
->msg_data
,
3259 msg
->rsp_size
- 11);
3261 * The other fields matched, so no need to set them, except
3262 * for netfn, which needs to be the response that was
3263 * returned, not the request value.
3265 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3266 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3267 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3268 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3269 ipmi_inc_stat(intf
, handled_lan_responses
);
3270 deliver_response(recv_msg
);
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3276 struct ipmi_smi_msg
*msg
)
3278 struct cmd_rcvr
*rcvr
;
3280 unsigned char netfn
;
3283 ipmi_user_t user
= NULL
;
3284 struct ipmi_lan_addr
*lan_addr
;
3285 struct ipmi_recv_msg
*recv_msg
;
3287 if (msg
->rsp_size
< 12) {
3288 /* Message not big enough, just ignore it. */
3289 ipmi_inc_stat(intf
, invalid_commands
);
3293 if (msg
->rsp
[2] != 0) {
3294 /* An error getting the response, just ignore it. */
3298 netfn
= msg
->rsp
[6] >> 2;
3300 chan
= msg
->rsp
[3] & 0xf;
3303 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3306 kref_get(&user
->refcount
);
3312 /* We didn't find a user, just give up. */
3313 ipmi_inc_stat(intf
, unhandled_commands
);
3316 * Don't do anything with these messages, just allow
3321 /* Deliver the message to the user. */
3322 ipmi_inc_stat(intf
, handled_commands
);
3324 recv_msg
= ipmi_alloc_recv_msg();
3327 * We couldn't allocate memory for the
3328 * message, so requeue it for handling later.
3331 kref_put(&user
->refcount
, free_user
);
3333 /* Extract the source address from the data. */
3334 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3335 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3336 lan_addr
->session_handle
= msg
->rsp
[4];
3337 lan_addr
->remote_SWID
= msg
->rsp
[8];
3338 lan_addr
->local_SWID
= msg
->rsp
[5];
3339 lan_addr
->lun
= msg
->rsp
[9] & 3;
3340 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3341 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3344 * Extract the rest of the message information
3345 * from the IPMB header.
3347 recv_msg
->user
= user
;
3348 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3349 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3350 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3351 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3352 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3355 * We chop off 12, not 11 bytes because the checksum
3356 * at the end also needs to be removed.
3358 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3359 memcpy(recv_msg
->msg_data
,
3361 msg
->rsp_size
- 12);
3362 deliver_response(recv_msg
);
3370 * This routine will handle "Get Message" command responses with
3371 * channels that use an OEM Medium. The message format belongs to
3372 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3373 * Chapter 22, sections 22.6 and 22.24 for more details.
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3376 struct ipmi_smi_msg
*msg
)
3378 struct cmd_rcvr
*rcvr
;
3380 unsigned char netfn
;
3383 ipmi_user_t user
= NULL
;
3384 struct ipmi_system_interface_addr
*smi_addr
;
3385 struct ipmi_recv_msg
*recv_msg
;
3388 * We expect the OEM SW to perform error checking
3389 * so we just do some basic sanity checks
3391 if (msg
->rsp_size
< 4) {
3392 /* Message not big enough, just ignore it. */
3393 ipmi_inc_stat(intf
, invalid_commands
);
3397 if (msg
->rsp
[2] != 0) {
3398 /* An error getting the response, just ignore it. */
3403 * This is an OEM Message so the OEM needs to know how
3404 * handle the message. We do no interpretation.
3406 netfn
= msg
->rsp
[0] >> 2;
3408 chan
= msg
->rsp
[3] & 0xf;
3411 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3414 kref_get(&user
->refcount
);
3420 /* We didn't find a user, just give up. */
3421 ipmi_inc_stat(intf
, unhandled_commands
);
3424 * Don't do anything with these messages, just allow
3430 /* Deliver the message to the user. */
3431 ipmi_inc_stat(intf
, handled_commands
);
3433 recv_msg
= ipmi_alloc_recv_msg();
3436 * We couldn't allocate memory for the
3437 * message, so requeue it for handling
3441 kref_put(&user
->refcount
, free_user
);
3444 * OEM Messages are expected to be delivered via
3445 * the system interface to SMS software. We might
3446 * need to visit this again depending on OEM
3449 smi_addr
= ((struct ipmi_system_interface_addr
*)
3451 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3452 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3453 smi_addr
->lun
= msg
->rsp
[0] & 3;
3455 recv_msg
->user
= user
;
3456 recv_msg
->user_msg_data
= NULL
;
3457 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3458 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3459 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3460 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3463 * The message starts at byte 4 which follows the
3464 * the Channel Byte in the "GET MESSAGE" command
3466 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3467 memcpy(recv_msg
->msg_data
,
3470 deliver_response(recv_msg
);
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3478 struct ipmi_smi_msg
*msg
)
3480 struct ipmi_system_interface_addr
*smi_addr
;
3482 recv_msg
->msgid
= 0;
3483 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3484 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3485 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3486 smi_addr
->lun
= msg
->rsp
[0] & 3;
3487 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3488 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3489 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3490 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3491 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3492 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3495 static int handle_read_event_rsp(ipmi_smi_t intf
,
3496 struct ipmi_smi_msg
*msg
)
3498 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3499 struct list_head msgs
;
3502 int deliver_count
= 0;
3503 unsigned long flags
;
3505 if (msg
->rsp_size
< 19) {
3506 /* Message is too small to be an IPMB event. */
3507 ipmi_inc_stat(intf
, invalid_events
);
3511 if (msg
->rsp
[2] != 0) {
3512 /* An error getting the event, just ignore it. */
3516 INIT_LIST_HEAD(&msgs
);
3518 spin_lock_irqsave(&intf
->events_lock
, flags
);
3520 ipmi_inc_stat(intf
, events
);
3523 * Allocate and fill in one message for every user that is
3527 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3528 if (!user
->gets_events
)
3531 recv_msg
= ipmi_alloc_recv_msg();
3534 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3536 list_del(&recv_msg
->link
);
3537 ipmi_free_recv_msg(recv_msg
);
3540 * We couldn't allocate memory for the
3541 * message, so requeue it for handling
3550 copy_event_into_recv_msg(recv_msg
, msg
);
3551 recv_msg
->user
= user
;
3552 kref_get(&user
->refcount
);
3553 list_add_tail(&(recv_msg
->link
), &msgs
);
3557 if (deliver_count
) {
3558 /* Now deliver all the messages. */
3559 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3560 list_del(&recv_msg
->link
);
3561 deliver_response(recv_msg
);
3563 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3565 * No one to receive the message, put it in queue if there's
3566 * not already too many things in the queue.
3568 recv_msg
= ipmi_alloc_recv_msg();
3571 * We couldn't allocate memory for the
3572 * message, so requeue it for handling
3579 copy_event_into_recv_msg(recv_msg
, msg
);
3580 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3581 intf
->waiting_events_count
++;
3582 } else if (!intf
->event_msg_printed
) {
3584 * There's too many things in the queue, discard this
3587 printk(KERN_WARNING PFX
"Event queue full, discarding"
3588 " incoming events\n");
3589 intf
->event_msg_printed
= 1;
3593 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3598 static int handle_bmc_rsp(ipmi_smi_t intf
,
3599 struct ipmi_smi_msg
*msg
)
3601 struct ipmi_recv_msg
*recv_msg
;
3602 struct ipmi_user
*user
;
3604 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3605 if (recv_msg
== NULL
) {
3607 "IPMI message received with no owner. This\n"
3608 "could be because of a malformed message, or\n"
3609 "because of a hardware error. Contact your\n"
3610 "hardware vender for assistance\n");
3614 user
= recv_msg
->user
;
3615 /* Make sure the user still exists. */
3616 if (user
&& !user
->valid
) {
3617 /* The user for the message went away, so give up. */
3618 ipmi_inc_stat(intf
, unhandled_local_responses
);
3619 ipmi_free_recv_msg(recv_msg
);
3621 struct ipmi_system_interface_addr
*smi_addr
;
3623 ipmi_inc_stat(intf
, handled_local_responses
);
3624 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3625 recv_msg
->msgid
= msg
->msgid
;
3626 smi_addr
= ((struct ipmi_system_interface_addr
*)
3628 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3629 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3630 smi_addr
->lun
= msg
->rsp
[0] & 3;
3631 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3632 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3633 memcpy(recv_msg
->msg_data
,
3636 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3637 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3638 deliver_response(recv_msg
);
3645 * Handle a received message. Return 1 if the message should be requeued,
3646 * 0 if the message should be freed, or -1 if the message should not
3647 * be freed or requeued.
3649 static int handle_one_recv_msg(ipmi_smi_t intf
,
3650 struct ipmi_smi_msg
*msg
)
3658 for (m
= 0; m
< msg
->rsp_size
; m
++)
3659 printk(" %2.2x", msg
->rsp
[m
]);
3662 if (msg
->rsp_size
< 2) {
3663 /* Message is too small to be correct. */
3664 printk(KERN_WARNING PFX
"BMC returned to small a message"
3665 " for netfn %x cmd %x, got %d bytes\n",
3666 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3668 /* Generate an error response for the message. */
3669 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3670 msg
->rsp
[1] = msg
->data
[1];
3671 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3673 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3674 || (msg
->rsp
[1] != msg
->data
[1])) {
3676 * The NetFN and Command in the response is not even
3677 * marginally correct.
3679 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3680 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3682 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3684 /* Generate an error response for the message. */
3685 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3686 msg
->rsp
[1] = msg
->data
[1];
3687 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3691 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3692 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3693 && (msg
->user_data
!= NULL
)) {
3695 * It's a response to a response we sent. For this we
3696 * deliver a send message response to the user.
3698 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3701 if (msg
->rsp_size
< 2)
3702 /* Message is too small to be correct. */
3705 chan
= msg
->data
[2] & 0x0f;
3706 if (chan
>= IPMI_MAX_CHANNELS
)
3707 /* Invalid channel number */
3713 /* Make sure the user still exists. */
3714 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3717 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3718 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3719 recv_msg
->msg
.data_len
= 1;
3720 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3721 deliver_response(recv_msg
);
3722 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3723 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3724 /* It's from the receive queue. */
3725 chan
= msg
->rsp
[3] & 0xf;
3726 if (chan
>= IPMI_MAX_CHANNELS
) {
3727 /* Invalid channel number */
3733 * We need to make sure the channels have been initialized.
3734 * The channel_handler routine will set the "curr_channel"
3735 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 * channels for this interface have been initialized.
3738 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3739 requeue
= 0; /* Throw the message away */
3743 switch (intf
->channels
[chan
].medium
) {
3744 case IPMI_CHANNEL_MEDIUM_IPMB
:
3745 if (msg
->rsp
[4] & 0x04) {
3747 * It's a response, so find the
3748 * requesting message and send it up.
3750 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3753 * It's a command to the SMS from some other
3754 * entity. Handle that.
3756 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3760 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3761 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3762 if (msg
->rsp
[6] & 0x04) {
3764 * It's a response, so find the
3765 * requesting message and send it up.
3767 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3770 * It's a command to the SMS from some other
3771 * entity. Handle that.
3773 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3778 /* Check for OEM Channels. Clients had better
3779 register for these commands. */
3780 if ((intf
->channels
[chan
].medium
3781 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3782 && (intf
->channels
[chan
].medium
3783 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3784 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3787 * We don't handle the channel type, so just
3794 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3795 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3796 /* It's an asynchronous event. */
3797 requeue
= handle_read_event_rsp(intf
, msg
);
3799 /* It's a response from the local BMC. */
3800 requeue
= handle_bmc_rsp(intf
, msg
);
3808 * If there are messages in the queue or pretimeouts, handle them.
3810 static void handle_new_recv_msgs(ipmi_smi_t intf
)
3812 struct ipmi_smi_msg
*smi_msg
;
3813 unsigned long flags
= 0;
3815 int run_to_completion
= intf
->run_to_completion
;
3817 /* See if any waiting messages need to be processed. */
3818 if (!run_to_completion
)
3819 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3820 while (!list_empty(&intf
->waiting_rcv_msgs
)) {
3821 smi_msg
= list_entry(intf
->waiting_rcv_msgs
.next
,
3822 struct ipmi_smi_msg
, link
);
3823 list_del(&smi_msg
->link
);
3824 if (!run_to_completion
)
3825 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3827 rv
= handle_one_recv_msg(intf
, smi_msg
);
3828 if (!run_to_completion
)
3829 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3832 * To preserve message order, quit if we
3833 * can't handle a message. Add the message
3834 * back at the head, this is safe because this
3835 * tasklet is the only thing that pulls the
3838 list_add(&smi_msg
->link
, &intf
->waiting_rcv_msgs
);
3842 /* Message handled */
3843 ipmi_free_smi_msg(smi_msg
);
3844 /* If rv < 0, fatal error, del but don't free. */
3847 if (!run_to_completion
)
3848 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
, flags
);
3851 * If the pretimout count is non-zero, decrement one from it and
3852 * deliver pretimeouts to all the users.
3854 if (atomic_add_unless(&intf
->watchdog_pretimeouts_to_deliver
, -1, 0)) {
3858 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3859 if (user
->handler
->ipmi_watchdog_pretimeout
)
3860 user
->handler
->ipmi_watchdog_pretimeout(
3861 user
->handler_data
);
3867 static void smi_recv_tasklet(unsigned long val
)
3869 unsigned long flags
= 0; /* keep us warning-free. */
3870 ipmi_smi_t intf
= (ipmi_smi_t
) val
;
3871 int run_to_completion
= intf
->run_to_completion
;
3872 struct ipmi_smi_msg
*newmsg
= NULL
;
3875 * Start the next message if available.
3877 * Do this here, not in the actual receiver, because we may deadlock
3878 * because the lower layer is allowed to hold locks while calling
3881 if (!run_to_completion
)
3882 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3883 if (intf
->curr_msg
== NULL
&& !intf
->in_shutdown
) {
3884 struct list_head
*entry
= NULL
;
3886 /* Pick the high priority queue first. */
3887 if (!list_empty(&intf
->hp_xmit_msgs
))
3888 entry
= intf
->hp_xmit_msgs
.next
;
3889 else if (!list_empty(&intf
->xmit_msgs
))
3890 entry
= intf
->xmit_msgs
.next
;
3894 newmsg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
3895 intf
->curr_msg
= newmsg
;
3898 if (!run_to_completion
)
3899 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3901 intf
->handlers
->sender(intf
->send_info
, newmsg
);
3903 handle_new_recv_msgs(intf
);
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3908 struct ipmi_smi_msg
*msg
)
3910 unsigned long flags
= 0; /* keep us warning-free. */
3911 int run_to_completion
= intf
->run_to_completion
;
3913 if ((msg
->data_size
>= 2)
3914 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3915 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3916 && (msg
->user_data
== NULL
)) {
3918 if (intf
->in_shutdown
)
3922 * This is the local response to a command send, start
3923 * the timer for these. The user_data will not be
3924 * NULL if this is a response send, and we will let
3925 * response sends just go through.
3929 * Check for errors, if we get certain errors (ones
3930 * that mean basically we can try again later), we
3931 * ignore them and start the timer. Otherwise we
3932 * report the error immediately.
3934 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3935 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3936 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3937 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3938 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3939 int chan
= msg
->rsp
[3] & 0xf;
3941 /* Got an error sending the message, handle it. */
3942 if (chan
>= IPMI_MAX_CHANNELS
)
3943 ; /* This shouldn't happen */
3944 else if ((intf
->channels
[chan
].medium
3945 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3946 || (intf
->channels
[chan
].medium
3947 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3948 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3950 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3951 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3953 /* The message was sent, start the timer. */
3954 intf_start_seq_timer(intf
, msg
->msgid
);
3957 ipmi_free_smi_msg(msg
);
3960 * To preserve message order, we keep a queue and deliver from
3963 if (!run_to_completion
)
3964 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3965 list_add_tail(&msg
->link
, &intf
->waiting_rcv_msgs
);
3966 if (!run_to_completion
)
3967 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3971 if (!run_to_completion
)
3972 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3974 * We can get an asynchronous event or receive message in addition
3975 * to commands we send.
3977 if (msg
== intf
->curr_msg
)
3978 intf
->curr_msg
= NULL
;
3979 if (!run_to_completion
)
3980 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3982 if (run_to_completion
)
3983 smi_recv_tasklet((unsigned long) intf
);
3985 tasklet_schedule(&intf
->recv_tasklet
);
3987 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3991 if (intf
->in_shutdown
)
3994 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 1);
3995 tasklet_schedule(&intf
->recv_tasklet
);
3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3999 static struct ipmi_smi_msg
*
4000 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
4001 unsigned char seq
, long seqid
)
4003 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
4006 * If we can't allocate the message, then just return, we
4007 * get 4 retries, so this should be ok.
4011 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
4012 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
4013 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
4019 for (m
= 0; m
< smi_msg
->data_size
; m
++)
4020 printk(" %2.2x", smi_msg
->data
[m
]);
4027 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
4028 struct list_head
*timeouts
, long timeout_period
,
4029 int slot
, unsigned long *flags
,
4030 unsigned int *waiting_msgs
)
4032 struct ipmi_recv_msg
*msg
;
4033 const struct ipmi_smi_handlers
*handlers
;
4035 if (intf
->in_shutdown
)
4041 ent
->timeout
-= timeout_period
;
4042 if (ent
->timeout
> 0) {
4047 if (ent
->retries_left
== 0) {
4048 /* The message has used all its retries. */
4050 msg
= ent
->recv_msg
;
4051 list_add_tail(&msg
->link
, timeouts
);
4053 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
4054 else if (is_lan_addr(&ent
->recv_msg
->addr
))
4055 ipmi_inc_stat(intf
, timed_out_lan_commands
);
4057 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
4059 struct ipmi_smi_msg
*smi_msg
;
4060 /* More retries, send again. */
4065 * Start with the max timer, set to normal timer after
4066 * the message is sent.
4068 ent
->timeout
= MAX_MSG_TIMEOUT
;
4069 ent
->retries_left
--;
4070 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
4073 if (is_lan_addr(&ent
->recv_msg
->addr
))
4075 dropped_rexmit_lan_commands
);
4078 dropped_rexmit_ipmb_commands
);
4082 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
4085 * Send the new message. We send with a zero
4086 * priority. It timed out, I doubt time is that
4087 * critical now, and high priority messages are really
4088 * only for messages to the local MC, which don't get
4091 handlers
= intf
->handlers
;
4093 if (is_lan_addr(&ent
->recv_msg
->addr
))
4095 retransmitted_lan_commands
);
4098 retransmitted_ipmb_commands
);
4100 smi_send(intf
, handlers
, smi_msg
, 0);
4102 ipmi_free_smi_msg(smi_msg
);
4104 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf
, long timeout_period
)
4110 struct list_head timeouts
;
4111 struct ipmi_recv_msg
*msg
, *msg2
;
4112 unsigned long flags
;
4114 unsigned int waiting_msgs
= 0;
4117 * Go through the seq table and find any messages that
4118 * have timed out, putting them in the timeouts
4121 INIT_LIST_HEAD(&timeouts
);
4122 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4123 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4124 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4125 &timeouts
, timeout_period
, i
,
4126 &flags
, &waiting_msgs
);
4127 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4129 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4130 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4133 * Maintenance mode handling. Check the timeout
4134 * optimistically before we claim the lock. It may
4135 * mean a timeout gets missed occasionally, but that
4136 * only means the timeout gets extended by one period
4137 * in that case. No big deal, and it avoids the lock
4140 if (intf
->auto_maintenance_timeout
> 0) {
4141 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4142 if (intf
->auto_maintenance_timeout
> 0) {
4143 intf
->auto_maintenance_timeout
4145 if (!intf
->maintenance_mode
4146 && (intf
->auto_maintenance_timeout
<= 0)) {
4147 intf
->maintenance_mode_enable
= false;
4148 maintenance_mode_update(intf
);
4151 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4155 tasklet_schedule(&intf
->recv_tasklet
);
4157 return waiting_msgs
;
4160 static void ipmi_request_event(ipmi_smi_t intf
)
4162 /* No event requests when in maintenance mode. */
4163 if (intf
->maintenance_mode_enable
)
4166 if (!intf
->in_shutdown
)
4167 intf
->handlers
->request_events(intf
->send_info
);
4170 static struct timer_list ipmi_timer
;
4172 static atomic_t stop_operation
;
4174 static void ipmi_timeout(unsigned long data
)
4179 if (atomic_read(&stop_operation
))
4183 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4186 if (atomic_read(&intf
->event_waiters
)) {
4187 intf
->ticks_to_req_ev
--;
4188 if (intf
->ticks_to_req_ev
== 0) {
4189 ipmi_request_event(intf
);
4190 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4195 lnt
+= ipmi_timeout_handler(intf
, IPMI_TIMEOUT_TIME
);
4198 if (lnt
!= intf
->last_needs_timer
&&
4199 intf
->handlers
->set_need_watch
)
4200 intf
->handlers
->set_need_watch(intf
->send_info
, lnt
);
4201 intf
->last_needs_timer
= lnt
;
4208 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4211 static void need_waiter(ipmi_smi_t intf
)
4213 /* Racy, but worst case we start the timer twice. */
4214 if (!timer_pending(&ipmi_timer
))
4215 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4218 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4219 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4221 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4223 atomic_dec(&smi_msg_inuse_count
);
4227 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4229 struct ipmi_smi_msg
*rv
;
4230 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4232 rv
->done
= free_smi_msg
;
4233 rv
->user_data
= NULL
;
4234 atomic_inc(&smi_msg_inuse_count
);
4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4240 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4242 atomic_dec(&recv_msg_inuse_count
);
4246 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4248 struct ipmi_recv_msg
*rv
;
4250 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4253 rv
->done
= free_recv_msg
;
4254 atomic_inc(&recv_msg_inuse_count
);
4259 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4262 kref_put(&msg
->user
->refcount
, free_user
);
4265 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4267 #ifdef CONFIG_IPMI_PANIC_EVENT
4269 static atomic_t panic_done_count
= ATOMIC_INIT(0);
4271 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4273 atomic_dec(&panic_done_count
);
4276 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4278 atomic_dec(&panic_done_count
);
4282 * Inside a panic, send a message and wait for a response.
4284 static void ipmi_panic_request_and_wait(ipmi_smi_t intf
,
4285 struct ipmi_addr
*addr
,
4286 struct kernel_ipmi_msg
*msg
)
4288 struct ipmi_smi_msg smi_msg
;
4289 struct ipmi_recv_msg recv_msg
;
4292 smi_msg
.done
= dummy_smi_done_handler
;
4293 recv_msg
.done
= dummy_recv_done_handler
;
4294 atomic_add(2, &panic_done_count
);
4295 rv
= i_ipmi_request(NULL
,
4304 intf
->channels
[0].address
,
4305 intf
->channels
[0].lun
,
4306 0, 1); /* Don't retry, and don't wait. */
4308 atomic_sub(2, &panic_done_count
);
4309 else if (intf
->handlers
->flush_messages
)
4310 intf
->handlers
->flush_messages(intf
->send_info
);
4312 while (atomic_read(&panic_done_count
) != 0)
4316 #ifdef CONFIG_IPMI_PANIC_STRING
4317 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4319 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4320 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4321 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4322 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4323 /* A get event receiver command, save it. */
4324 intf
->event_receiver
= msg
->msg
.data
[1];
4325 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4329 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4331 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4332 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4333 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4334 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4336 * A get device id command, save if we are an event
4337 * receiver or generator.
4339 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4340 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4345 static void send_panic_events(char *str
)
4347 struct kernel_ipmi_msg msg
;
4349 unsigned char data
[16];
4350 struct ipmi_system_interface_addr
*si
;
4351 struct ipmi_addr addr
;
4353 si
= (struct ipmi_system_interface_addr
*) &addr
;
4354 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4355 si
->channel
= IPMI_BMC_CHANNEL
;
4358 /* Fill in an event telling that we have failed. */
4359 msg
.netfn
= 0x04; /* Sensor or Event. */
4360 msg
.cmd
= 2; /* Platform event command. */
4363 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4364 data
[1] = 0x03; /* This is for IPMI 1.0. */
4365 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4366 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4367 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4370 * Put a few breadcrumbs in. Hopefully later we can add more things
4371 * to make the panic events more useful.
4379 /* For every registered interface, send the event. */
4380 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4381 if (!intf
->handlers
)
4382 /* Interface is not ready. */
4385 /* Send the event announcing the panic. */
4386 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4389 #ifdef CONFIG_IPMI_PANIC_STRING
4391 * On every interface, dump a bunch of OEM event holding the
4397 /* For every registered interface, send the event. */
4398 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4400 struct ipmi_ipmb_addr
*ipmb
;
4403 if (intf
->intf_num
== -1)
4404 /* Interface was not ready yet. */
4408 * intf_num is used as an marker to tell if the
4409 * interface is valid. Thus we need a read barrier to
4410 * make sure data fetched before checking intf_num
4416 * First job here is to figure out where to send the
4417 * OEM events. There's no way in IPMI to send OEM
4418 * events using an event send command, so we have to
4419 * find the SEL to put them in and stick them in
4423 /* Get capabilities from the get device id. */
4424 intf
->local_sel_device
= 0;
4425 intf
->local_event_generator
= 0;
4426 intf
->event_receiver
= 0;
4428 /* Request the device info from the local MC. */
4429 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4430 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4433 intf
->null_user_handler
= device_id_fetcher
;
4434 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4436 if (intf
->local_event_generator
) {
4437 /* Request the event receiver from the local MC. */
4438 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4439 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4442 intf
->null_user_handler
= event_receiver_fetcher
;
4443 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4445 intf
->null_user_handler
= NULL
;
4448 * Validate the event receiver. The low bit must not
4449 * be 1 (it must be a valid IPMB address), it cannot
4450 * be zero, and it must not be my address.
4452 if (((intf
->event_receiver
& 1) == 0)
4453 && (intf
->event_receiver
!= 0)
4454 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4456 * The event receiver is valid, send an IPMB
4459 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4460 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4461 ipmb
->channel
= 0; /* FIXME - is this right? */
4462 ipmb
->lun
= intf
->event_receiver_lun
;
4463 ipmb
->slave_addr
= intf
->event_receiver
;
4464 } else if (intf
->local_sel_device
) {
4466 * The event receiver was not valid (or was
4467 * me), but I am an SEL device, just dump it
4470 si
= (struct ipmi_system_interface_addr
*) &addr
;
4471 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4472 si
->channel
= IPMI_BMC_CHANNEL
;
4475 continue; /* No where to send the event. */
4477 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4478 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4484 int size
= strlen(p
);
4490 data
[2] = 0xf0; /* OEM event without timestamp. */
4491 data
[3] = intf
->channels
[0].address
;
4492 data
[4] = j
++; /* sequence # */
4494 * Always give 11 bytes, so strncpy will fill
4495 * it with zeroes for me.
4497 strncpy(data
+5, p
, 11);
4500 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4503 #endif /* CONFIG_IPMI_PANIC_STRING */
4505 #endif /* CONFIG_IPMI_PANIC_EVENT */
4507 static int has_panicked
;
4509 static int panic_event(struct notifier_block
*this,
4510 unsigned long event
,
4519 /* For every registered interface, set it to run to completion. */
4520 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4521 if (!intf
->handlers
)
4522 /* Interface is not ready. */
4526 * If we were interrupted while locking xmit_msgs_lock or
4527 * waiting_rcv_msgs_lock, the corresponding list may be
4528 * corrupted. In this case, drop items on the list for
4531 if (!spin_trylock(&intf
->xmit_msgs_lock
)) {
4532 INIT_LIST_HEAD(&intf
->xmit_msgs
);
4533 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
4535 spin_unlock(&intf
->xmit_msgs_lock
);
4537 if (!spin_trylock(&intf
->waiting_rcv_msgs_lock
))
4538 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
4540 spin_unlock(&intf
->waiting_rcv_msgs_lock
);
4542 intf
->run_to_completion
= 1;
4543 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4546 #ifdef CONFIG_IPMI_PANIC_EVENT
4547 send_panic_events(ptr
);
4553 static struct notifier_block panic_block
= {
4554 .notifier_call
= panic_event
,
4556 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4559 static int ipmi_init_msghandler(void)
4566 rv
= driver_register(&ipmidriver
.driver
);
4568 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4572 printk(KERN_INFO
"ipmi message handler version "
4573 IPMI_DRIVER_VERSION
"\n");
4575 #ifdef CONFIG_PROC_FS
4576 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4577 if (!proc_ipmi_root
) {
4578 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4579 driver_unregister(&ipmidriver
.driver
);
4583 #endif /* CONFIG_PROC_FS */
4585 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4586 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4588 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4595 static int __init
ipmi_init_msghandler_mod(void)
4597 ipmi_init_msghandler();
4601 static void __exit
cleanup_ipmi(void)
4608 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4611 * This can't be called if any interfaces exist, so no worry
4612 * about shutting down the interfaces.
4616 * Tell the timer to stop, then wait for it to stop. This
4617 * avoids problems with race conditions removing the timer
4620 atomic_inc(&stop_operation
);
4621 del_timer_sync(&ipmi_timer
);
4623 #ifdef CONFIG_PROC_FS
4624 proc_remove(proc_ipmi_root
);
4625 #endif /* CONFIG_PROC_FS */
4627 driver_unregister(&ipmidriver
.driver
);
4631 /* Check for buffer leaks. */
4632 count
= atomic_read(&smi_msg_inuse_count
);
4634 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4636 count
= atomic_read(&recv_msg_inuse_count
);
4638 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4641 module_exit(cleanup_ipmi
);
4643 module_init(ipmi_init_msghandler_mod
);
4644 MODULE_LICENSE("GPL");
4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4648 MODULE_VERSION(IPMI_DRIVER_VERSION
);
4649 MODULE_SOFTDEP("post: ipmi_devintf");