2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
48 #define CM_PASSWORD 0x5a000000
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 #define CM_TCNTDIV 0x0c4
102 #define CM_TECCTL 0x0c8
103 #define CM_TECDIV 0x0cc
104 #define CM_TD0CTL 0x0d0
105 #define CM_TD0DIV 0x0d4
106 #define CM_TD1CTL 0x0d8
107 #define CM_TD1DIV 0x0dc
108 #define CM_TSENSCTL 0x0e0
109 #define CM_TSENSDIV 0x0e4
110 #define CM_TIMERCTL 0x0e8
111 #define CM_TIMERDIV 0x0ec
112 #define CM_UARTCTL 0x0f0
113 #define CM_UARTDIV 0x0f4
114 #define CM_VECCTL 0x0f8
115 #define CM_VECDIV 0x0fc
116 #define CM_PULSECTL 0x190
117 #define CM_PULSEDIV 0x194
118 #define CM_SDCCTL 0x1a8
119 #define CM_SDCDIV 0x1ac
120 #define CM_ARMCTL 0x1b0
121 #define CM_AVEOCTL 0x1b8
122 #define CM_AVEODIV 0x1bc
123 #define CM_EMMCCTL 0x1c0
124 #define CM_EMMCDIV 0x1c4
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE BIT(4)
128 # define CM_KILL BIT(5)
129 # define CM_GATE_BIT 6
130 # define CM_GATE BIT(CM_GATE_BIT)
131 # define CM_BUSY BIT(7)
132 # define CM_BUSYD BIT(8)
133 # define CM_FRAC BIT(9)
134 # define CM_SRC_SHIFT 0
135 # define CM_SRC_BITS 4
136 # define CM_SRC_MASK 0xf
137 # define CM_SRC_GND 0
138 # define CM_SRC_OSC 1
139 # define CM_SRC_TESTDEBUG0 2
140 # define CM_SRC_TESTDEBUG1 3
141 # define CM_SRC_PLLA_CORE 4
142 # define CM_SRC_PLLA_PER 4
143 # define CM_SRC_PLLC_CORE0 5
144 # define CM_SRC_PLLC_PER 5
145 # define CM_SRC_PLLC_CORE1 8
146 # define CM_SRC_PLLD_CORE 6
147 # define CM_SRC_PLLD_PER 6
148 # define CM_SRC_PLLH_AUX 7
149 # define CM_SRC_PLLC_CORE1 8
150 # define CM_SRC_PLLC_CORE2 9
152 #define CM_OSCCOUNT 0x100
154 #define CM_PLLA 0x104
155 # define CM_PLL_ANARST BIT(8)
156 # define CM_PLLA_HOLDPER BIT(7)
157 # define CM_PLLA_LOADPER BIT(6)
158 # define CM_PLLA_HOLDCORE BIT(5)
159 # define CM_PLLA_LOADCORE BIT(4)
160 # define CM_PLLA_HOLDCCP2 BIT(3)
161 # define CM_PLLA_LOADCCP2 BIT(2)
162 # define CM_PLLA_HOLDDSI0 BIT(1)
163 # define CM_PLLA_LOADDSI0 BIT(0)
165 #define CM_PLLC 0x108
166 # define CM_PLLC_HOLDPER BIT(7)
167 # define CM_PLLC_LOADPER BIT(6)
168 # define CM_PLLC_HOLDCORE2 BIT(5)
169 # define CM_PLLC_LOADCORE2 BIT(4)
170 # define CM_PLLC_HOLDCORE1 BIT(3)
171 # define CM_PLLC_LOADCORE1 BIT(2)
172 # define CM_PLLC_HOLDCORE0 BIT(1)
173 # define CM_PLLC_LOADCORE0 BIT(0)
175 #define CM_PLLD 0x10c
176 # define CM_PLLD_HOLDPER BIT(7)
177 # define CM_PLLD_LOADPER BIT(6)
178 # define CM_PLLD_HOLDCORE BIT(5)
179 # define CM_PLLD_LOADCORE BIT(4)
180 # define CM_PLLD_HOLDDSI1 BIT(3)
181 # define CM_PLLD_LOADDSI1 BIT(2)
182 # define CM_PLLD_HOLDDSI0 BIT(1)
183 # define CM_PLLD_LOADDSI0 BIT(0)
185 #define CM_PLLH 0x110
186 # define CM_PLLH_LOADRCAL BIT(2)
187 # define CM_PLLH_LOADAUX BIT(1)
188 # define CM_PLLH_LOADPIX BIT(0)
190 #define CM_LOCK 0x114
191 # define CM_LOCK_FLOCKH BIT(12)
192 # define CM_LOCK_FLOCKD BIT(11)
193 # define CM_LOCK_FLOCKC BIT(10)
194 # define CM_LOCK_FLOCKB BIT(9)
195 # define CM_LOCK_FLOCKA BIT(8)
197 #define CM_EVENT 0x118
198 #define CM_DSI1ECTL 0x158
199 #define CM_DSI1EDIV 0x15c
200 #define CM_DSI1PCTL 0x160
201 #define CM_DSI1PDIV 0x164
202 #define CM_DFTCTL 0x168
203 #define CM_DFTDIV 0x16c
205 #define CM_PLLB 0x170
206 # define CM_PLLB_HOLDARM BIT(1)
207 # define CM_PLLB_LOADARM BIT(0)
209 #define A2W_PLLA_CTRL 0x1100
210 #define A2W_PLLC_CTRL 0x1120
211 #define A2W_PLLD_CTRL 0x1140
212 #define A2W_PLLH_CTRL 0x1160
213 #define A2W_PLLB_CTRL 0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
215 # define A2W_PLL_CTRL_PWRDN BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT 12
218 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT 0
221 #define A2W_PLLA_ANA0 0x1010
222 #define A2W_PLLC_ANA0 0x1030
223 #define A2W_PLLD_ANA0 0x1050
224 #define A2W_PLLH_ANA0 0x1070
225 #define A2W_PLLB_ANA0 0x10f0
227 #define A2W_PLL_KA_SHIFT 7
228 #define A2W_PLL_KA_MASK GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT 19
230 #define A2W_PLL_KI_MASK GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT 15
232 #define A2W_PLL_KP_MASK GENMASK(18, 15)
234 #define A2W_PLLH_KA_SHIFT 19
235 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT 22
237 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT 0
239 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT 1
241 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
243 #define A2W_XOSC_CTRL 0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253 #define A2W_PLLA_FRAC 0x1200
254 #define A2W_PLLC_FRAC 0x1220
255 #define A2W_PLLD_FRAC 0x1240
256 #define A2W_PLLH_FRAC 0x1260
257 #define A2W_PLLB_FRAC 0x12e0
258 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS 20
261 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
262 #define A2W_PLL_DIV_BITS 8
263 #define A2W_PLL_DIV_SHIFT 0
265 #define A2W_PLLA_DSI0 0x1300
266 #define A2W_PLLA_CORE 0x1400
267 #define A2W_PLLA_PER 0x1500
268 #define A2W_PLLA_CCP2 0x1600
270 #define A2W_PLLC_CORE2 0x1320
271 #define A2W_PLLC_CORE1 0x1420
272 #define A2W_PLLC_PER 0x1520
273 #define A2W_PLLC_CORE0 0x1620
275 #define A2W_PLLD_DSI0 0x1340
276 #define A2W_PLLD_CORE 0x1440
277 #define A2W_PLLD_PER 0x1540
278 #define A2W_PLLD_DSI1 0x1640
280 #define A2W_PLLH_AUX 0x1360
281 #define A2W_PLLH_RCAL 0x1460
282 #define A2W_PLLH_PIX 0x1560
283 #define A2W_PLLH_STS 0x1660
285 #define A2W_PLLH_CTRLR 0x1960
286 #define A2W_PLLH_FRACR 0x1a60
287 #define A2W_PLLH_AUXR 0x1b60
288 #define A2W_PLLH_RCALR 0x1c60
289 #define A2W_PLLH_PIXR 0x1d60
290 #define A2W_PLLH_STSR 0x1e60
292 #define A2W_PLLB_ARM 0x13e0
293 #define A2W_PLLB_SP0 0x14e0
294 #define A2W_PLLB_SP1 0x15e0
295 #define A2W_PLLB_SP2 0x16e0
297 #define LOCK_TIMEOUT_NS 100000000
298 #define BCM2835_MAX_FB_RATE 1750000000u
300 struct bcm2835_cprman
{
303 spinlock_t regs_lock
; /* spinlock for all clocks */
304 const char *osc_name
;
307 struct clk_hw_onecell_data onecell
;
310 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
312 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
315 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
317 return readl(cprman
->regs
+ reg
);
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
321 struct debugfs_reg32
*regs
, size_t nregs
,
322 struct dentry
*dentry
)
324 struct dentry
*regdump
;
325 struct debugfs_regset32
*regset
;
327 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
332 regset
->nregs
= nregs
;
333 regset
->base
= cprman
->regs
+ base
;
335 regdump
= debugfs_create_regset32("regdump", S_IRUGO
, dentry
,
338 return regdump
? 0 : -ENOMEM
;
342 * These are fixed clocks. They're probably not all root clocks and it may
343 * be possible to turn them on and off but until this is mapped out better
344 * it's the only way they can be used.
346 void __init
bcm2835_init_clocks(void)
351 hw
= clk_hw_register_fixed_rate(NULL
, "apb_pclk", NULL
, 0, 126000000);
353 pr_err("apb_pclk not registered\n");
355 hw
= clk_hw_register_fixed_rate(NULL
, "uart0_pclk", NULL
, 0, 3000000);
357 pr_err("uart0_pclk not registered\n");
358 ret
= clk_hw_register_clkdev(hw
, NULL
, "20201000.uart");
360 pr_err("uart0_pclk alias not registered\n");
362 hw
= clk_hw_register_fixed_rate(NULL
, "uart1_pclk", NULL
, 0, 125000000);
364 pr_err("uart1_pclk not registered\n");
365 ret
= clk_hw_register_clkdev(hw
, NULL
, "20215000.uart");
367 pr_err("uart1_pclk alias not registered\n");
370 struct bcm2835_pll_data
{
376 u32 reference_enable_mask
;
377 /* Bit in CM_LOCK to indicate when the PLL has locked. */
380 const struct bcm2835_pll_ana_bits
*ana
;
382 unsigned long min_rate
;
383 unsigned long max_rate
;
385 * Highest rate for the VCO before we have to use the
388 unsigned long max_fb_rate
;
391 struct bcm2835_pll_ana_bits
{
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
404 .mask1
= (u32
)~(A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
),
405 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
406 .mask3
= (u32
)~A2W_PLL_KA_MASK
,
407 .set3
= (2 << A2W_PLL_KA_SHIFT
),
408 .fb_prediv_mask
= BIT(14),
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
412 .mask0
= (u32
)~(A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
),
413 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
414 .mask1
= (u32
)~(A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
),
415 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
418 .fb_prediv_mask
= BIT(11),
421 struct bcm2835_pll_divider_data
{
423 const char *source_pll
;
433 struct bcm2835_clock_data
{
436 const char *const *parents
;
439 /* Bitmap encoding which parents accept rate change propagation. */
440 unsigned int set_rate_parent
;
445 /* Number of integer bits in the divider */
447 /* Number of fractional bits in the divider */
456 struct bcm2835_gate_data
{
465 struct bcm2835_cprman
*cprman
;
466 const struct bcm2835_pll_data
*data
;
469 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
471 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
472 struct bcm2835_cprman
*cprman
= pll
->cprman
;
473 const struct bcm2835_pll_data
*data
= pll
->data
;
475 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
476 A2W_PLL_CTRL_PRST_DISABLE
;
479 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
480 unsigned long parent_rate
,
481 u32
*ndiv
, u32
*fdiv
)
485 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
486 do_div(div
, parent_rate
);
488 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
489 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
492 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
493 u32 ndiv
, u32 fdiv
, u32 pdiv
)
500 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
502 return rate
>> A2W_PLL_FRAC_BITS
;
505 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
506 unsigned long *parent_rate
)
508 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
509 const struct bcm2835_pll_data
*data
= pll
->data
;
512 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
514 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
516 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
519 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
520 unsigned long parent_rate
)
522 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
523 struct bcm2835_cprman
*cprman
= pll
->cprman
;
524 const struct bcm2835_pll_data
*data
= pll
->data
;
525 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
526 u32 ndiv
, pdiv
, fdiv
;
529 if (parent_rate
== 0)
532 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
533 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
534 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
535 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
536 data
->ana
->fb_prediv_mask
;
541 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
544 static void bcm2835_pll_off(struct clk_hw
*hw
)
546 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
547 struct bcm2835_cprman
*cprman
= pll
->cprman
;
548 const struct bcm2835_pll_data
*data
= pll
->data
;
550 spin_lock(&cprman
->regs_lock
);
551 cprman_write(cprman
, data
->cm_ctrl_reg
,
552 cprman_read(cprman
, data
->cm_ctrl_reg
) |
554 cprman_write(cprman
, data
->a2w_ctrl_reg
,
555 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
557 spin_unlock(&cprman
->regs_lock
);
560 static int bcm2835_pll_on(struct clk_hw
*hw
)
562 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
563 struct bcm2835_cprman
*cprman
= pll
->cprman
;
564 const struct bcm2835_pll_data
*data
= pll
->data
;
567 cprman_write(cprman
, data
->a2w_ctrl_reg
,
568 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
569 ~A2W_PLL_CTRL_PWRDN
);
571 /* Take the PLL out of reset. */
572 cprman_write(cprman
, data
->cm_ctrl_reg
,
573 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
575 /* Wait for the PLL to lock. */
576 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
577 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
578 if (ktime_after(ktime_get(), timeout
)) {
579 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
580 clk_hw_get_name(hw
));
591 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
596 * ANA register setup is done as a series of writes to
597 * ANA3-ANA0, in that order. This lets us write all 4
598 * registers as a single cycle of the serdes interface (taking
599 * 100 xosc clocks), whereas if we were to update ana0, 1, and
600 * 3 individually through their partial-write registers, each
601 * would be their own serdes cycle.
603 for (i
= 3; i
>= 0; i
--)
604 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
607 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
608 unsigned long rate
, unsigned long parent_rate
)
610 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
611 struct bcm2835_cprman
*cprman
= pll
->cprman
;
612 const struct bcm2835_pll_data
*data
= pll
->data
;
613 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
614 u32 ndiv
, fdiv
, a2w_ctl
;
618 if (rate
> data
->max_fb_rate
) {
619 use_fb_prediv
= true;
622 use_fb_prediv
= false;
625 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
627 for (i
= 3; i
>= 0; i
--)
628 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
630 was_using_prediv
= ana
[1] & data
->ana
->fb_prediv_mask
;
632 ana
[0] &= ~data
->ana
->mask0
;
633 ana
[0] |= data
->ana
->set0
;
634 ana
[1] &= ~data
->ana
->mask1
;
635 ana
[1] |= data
->ana
->set1
;
636 ana
[3] &= ~data
->ana
->mask3
;
637 ana
[3] |= data
->ana
->set3
;
639 if (was_using_prediv
&& !use_fb_prediv
) {
640 ana
[1] &= ~data
->ana
->fb_prediv_mask
;
641 do_ana_setup_first
= true;
642 } else if (!was_using_prediv
&& use_fb_prediv
) {
643 ana
[1] |= data
->ana
->fb_prediv_mask
;
644 do_ana_setup_first
= false;
646 do_ana_setup_first
= true;
649 /* Unmask the reference clock from the oscillator. */
650 cprman_write(cprman
, A2W_XOSC_CTRL
,
651 cprman_read(cprman
, A2W_XOSC_CTRL
) |
652 data
->reference_enable_mask
);
654 if (do_ana_setup_first
)
655 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
657 /* Set the PLL multiplier from the oscillator. */
658 cprman_write(cprman
, data
->frac_reg
, fdiv
);
660 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
661 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
662 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
663 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
664 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
665 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
667 if (!do_ana_setup_first
)
668 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
673 static int bcm2835_pll_debug_init(struct clk_hw
*hw
,
674 struct dentry
*dentry
)
676 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
677 struct bcm2835_cprman
*cprman
= pll
->cprman
;
678 const struct bcm2835_pll_data
*data
= pll
->data
;
679 struct debugfs_reg32
*regs
;
681 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
685 regs
[0].name
= "cm_ctrl";
686 regs
[0].offset
= data
->cm_ctrl_reg
;
687 regs
[1].name
= "a2w_ctrl";
688 regs
[1].offset
= data
->a2w_ctrl_reg
;
689 regs
[2].name
= "frac";
690 regs
[2].offset
= data
->frac_reg
;
691 regs
[3].name
= "ana0";
692 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
693 regs
[4].name
= "ana1";
694 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
695 regs
[5].name
= "ana2";
696 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
697 regs
[6].name
= "ana3";
698 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
700 return bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
703 static const struct clk_ops bcm2835_pll_clk_ops
= {
704 .is_prepared
= bcm2835_pll_is_on
,
705 .prepare
= bcm2835_pll_on
,
706 .unprepare
= bcm2835_pll_off
,
707 .recalc_rate
= bcm2835_pll_get_rate
,
708 .set_rate
= bcm2835_pll_set_rate
,
709 .round_rate
= bcm2835_pll_round_rate
,
710 .debug_init
= bcm2835_pll_debug_init
,
713 struct bcm2835_pll_divider
{
714 struct clk_divider div
;
715 struct bcm2835_cprman
*cprman
;
716 const struct bcm2835_pll_divider_data
*data
;
719 static struct bcm2835_pll_divider
*
720 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
722 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
725 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
727 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
728 struct bcm2835_cprman
*cprman
= divider
->cprman
;
729 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
731 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
734 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
736 unsigned long *parent_rate
)
738 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
741 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
742 unsigned long parent_rate
)
744 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
747 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
749 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
750 struct bcm2835_cprman
*cprman
= divider
->cprman
;
751 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
753 spin_lock(&cprman
->regs_lock
);
754 cprman_write(cprman
, data
->cm_reg
,
755 (cprman_read(cprman
, data
->cm_reg
) &
756 ~data
->load_mask
) | data
->hold_mask
);
757 cprman_write(cprman
, data
->a2w_reg
,
758 cprman_read(cprman
, data
->a2w_reg
) |
759 A2W_PLL_CHANNEL_DISABLE
);
760 spin_unlock(&cprman
->regs_lock
);
763 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
765 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
766 struct bcm2835_cprman
*cprman
= divider
->cprman
;
767 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
769 spin_lock(&cprman
->regs_lock
);
770 cprman_write(cprman
, data
->a2w_reg
,
771 cprman_read(cprman
, data
->a2w_reg
) &
772 ~A2W_PLL_CHANNEL_DISABLE
);
774 cprman_write(cprman
, data
->cm_reg
,
775 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
776 spin_unlock(&cprman
->regs_lock
);
781 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
783 unsigned long parent_rate
)
785 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
786 struct bcm2835_cprman
*cprman
= divider
->cprman
;
787 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
788 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
790 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
792 div
= min(div
, max_div
);
796 cprman_write(cprman
, data
->a2w_reg
, div
);
797 cm
= cprman_read(cprman
, data
->cm_reg
);
798 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
799 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
804 static int bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
805 struct dentry
*dentry
)
807 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
808 struct bcm2835_cprman
*cprman
= divider
->cprman
;
809 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
810 struct debugfs_reg32
*regs
;
812 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
817 regs
[0].offset
= data
->cm_reg
;
818 regs
[1].name
= "a2w";
819 regs
[1].offset
= data
->a2w_reg
;
821 return bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
824 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
825 .is_prepared
= bcm2835_pll_divider_is_on
,
826 .prepare
= bcm2835_pll_divider_on
,
827 .unprepare
= bcm2835_pll_divider_off
,
828 .recalc_rate
= bcm2835_pll_divider_get_rate
,
829 .set_rate
= bcm2835_pll_divider_set_rate
,
830 .round_rate
= bcm2835_pll_divider_round_rate
,
831 .debug_init
= bcm2835_pll_divider_debug_init
,
835 * The CM dividers do fixed-point division, so we can't use the
836 * generic integer divider code like the PLL dividers do (and we can't
837 * fake it by having some fixed shifts preceding it in the clock tree,
838 * because we'd run out of bits in a 32-bit unsigned long).
840 struct bcm2835_clock
{
842 struct bcm2835_cprman
*cprman
;
843 const struct bcm2835_clock_data
*data
;
846 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
848 return container_of(hw
, struct bcm2835_clock
, hw
);
851 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
853 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
854 struct bcm2835_cprman
*cprman
= clock
->cprman
;
855 const struct bcm2835_clock_data
*data
= clock
->data
;
857 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
860 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
862 unsigned long parent_rate
,
865 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
866 const struct bcm2835_clock_data
*data
= clock
->data
;
867 u32 unused_frac_mask
=
868 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
869 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
871 u32 div
, mindiv
, maxdiv
;
873 rem
= do_div(temp
, rate
);
876 /* Round up and mask off the unused bits */
877 if (round_up
&& ((div
& unused_frac_mask
) != 0 || rem
!= 0))
878 div
+= unused_frac_mask
+ 1;
879 div
&= ~unused_frac_mask
;
881 /* different clamping limits apply for a mash clock */
882 if (data
->is_mash_clock
) {
883 /* clamp to min divider of 2 */
884 mindiv
= 2 << CM_DIV_FRAC_BITS
;
885 /* clamp to the highest possible integer divider */
886 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
888 /* clamp to min divider of 1 */
889 mindiv
= 1 << CM_DIV_FRAC_BITS
;
890 /* clamp to the highest possible fractional divider */
891 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
892 CM_DIV_FRAC_BITS
- data
->frac_bits
);
895 /* apply the clamping limits */
896 div
= max_t(u32
, div
, mindiv
);
897 div
= min_t(u32
, div
, maxdiv
);
902 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
903 unsigned long parent_rate
,
906 const struct bcm2835_clock_data
*data
= clock
->data
;
910 * The divisor is a 12.12 fixed point field, but only some of
911 * the bits are populated in any given clock.
913 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
914 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
919 temp
= (u64
)parent_rate
<< data
->frac_bits
;
926 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
927 unsigned long parent_rate
)
929 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
930 struct bcm2835_cprman
*cprman
= clock
->cprman
;
931 const struct bcm2835_clock_data
*data
= clock
->data
;
932 u32 div
= cprman_read(cprman
, data
->div_reg
);
934 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
937 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
939 struct bcm2835_cprman
*cprman
= clock
->cprman
;
940 const struct bcm2835_clock_data
*data
= clock
->data
;
941 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
943 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
944 if (ktime_after(ktime_get(), timeout
)) {
945 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
946 clk_hw_get_name(&clock
->hw
));
953 static void bcm2835_clock_off(struct clk_hw
*hw
)
955 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
956 struct bcm2835_cprman
*cprman
= clock
->cprman
;
957 const struct bcm2835_clock_data
*data
= clock
->data
;
959 spin_lock(&cprman
->regs_lock
);
960 cprman_write(cprman
, data
->ctl_reg
,
961 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
962 spin_unlock(&cprman
->regs_lock
);
964 /* BUSY will remain high until the divider completes its cycle. */
965 bcm2835_clock_wait_busy(clock
);
968 static int bcm2835_clock_on(struct clk_hw
*hw
)
970 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
971 struct bcm2835_cprman
*cprman
= clock
->cprman
;
972 const struct bcm2835_clock_data
*data
= clock
->data
;
974 spin_lock(&cprman
->regs_lock
);
975 cprman_write(cprman
, data
->ctl_reg
,
976 cprman_read(cprman
, data
->ctl_reg
) |
979 spin_unlock(&cprman
->regs_lock
);
984 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
985 unsigned long rate
, unsigned long parent_rate
)
987 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
988 struct bcm2835_cprman
*cprman
= clock
->cprman
;
989 const struct bcm2835_clock_data
*data
= clock
->data
;
990 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
, false);
993 spin_lock(&cprman
->regs_lock
);
996 * Setting up frac support
998 * In principle it is recommended to stop/start the clock first,
999 * but as we set CLK_SET_RATE_GATE during registration of the
1000 * clock this requirement should be take care of by the
1003 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1004 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1005 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1007 cprman_write(cprman
, data
->div_reg
, div
);
1009 spin_unlock(&cprman
->regs_lock
);
1015 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1020 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1023 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw
*hw
,
1027 unsigned long *prate
)
1029 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1030 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1031 const struct bcm2835_clock_data
*data
= clock
->data
;
1032 unsigned long best_rate
= 0;
1033 u32 curdiv
, mindiv
, maxdiv
;
1034 struct clk_hw
*parent
;
1036 parent
= clk_hw_get_parent_by_index(hw
, parent_idx
);
1038 if (!(BIT(parent_idx
) & data
->set_rate_parent
)) {
1039 *prate
= clk_hw_get_rate(parent
);
1040 *div
= bcm2835_clock_choose_div(hw
, rate
, *prate
, true);
1042 return bcm2835_clock_rate_from_divisor(clock
, *prate
,
1046 if (data
->frac_bits
)
1047 dev_warn(cprman
->dev
,
1048 "frac bits are not used when propagating rate change");
1050 /* clamp to min divider of 2 if we're dealing with a mash clock */
1051 mindiv
= data
->is_mash_clock
? 2 : 1;
1052 maxdiv
= BIT(data
->int_bits
) - 1;
1054 /* TODO: Be smart, and only test a subset of the available divisors. */
1055 for (curdiv
= mindiv
; curdiv
<= maxdiv
; curdiv
++) {
1056 unsigned long tmp_rate
;
1058 tmp_rate
= clk_hw_round_rate(parent
, rate
* curdiv
);
1060 if (curdiv
== mindiv
||
1061 (tmp_rate
> best_rate
&& tmp_rate
<= rate
))
1062 best_rate
= tmp_rate
;
1064 if (best_rate
== rate
)
1068 *div
= curdiv
<< CM_DIV_FRAC_BITS
;
1069 *prate
= curdiv
* best_rate
;
1074 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1075 struct clk_rate_request
*req
)
1077 struct clk_hw
*parent
, *best_parent
= NULL
;
1078 bool current_parent_is_pllc
;
1079 unsigned long rate
, best_rate
= 0;
1080 unsigned long prate
, best_prate
= 0;
1084 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1087 * Select parent clock that results in the closest but lower rate
1089 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1090 parent
= clk_hw_get_parent_by_index(hw
, i
);
1095 * Don't choose a PLLC-derived clock as our parent
1096 * unless it had been manually set that way. PLLC's
1097 * frequency gets adjusted by the firmware due to
1098 * over-temp or under-voltage conditions, without
1099 * prior notification to our clock consumer.
1101 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1104 rate
= bcm2835_clock_choose_div_and_prate(hw
, i
, req
->rate
,
1106 if (rate
> best_rate
&& rate
<= req
->rate
) {
1107 best_parent
= parent
;
1116 req
->best_parent_hw
= best_parent
;
1117 req
->best_parent_rate
= best_prate
;
1119 req
->rate
= best_rate
;
1124 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1126 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1127 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1128 const struct bcm2835_clock_data
*data
= clock
->data
;
1129 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1131 cprman_write(cprman
, data
->ctl_reg
, src
);
1135 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1137 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1138 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1139 const struct bcm2835_clock_data
*data
= clock
->data
;
1140 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1142 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1145 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1156 static int bcm2835_clock_debug_init(struct clk_hw
*hw
,
1157 struct dentry
*dentry
)
1159 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1160 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1161 const struct bcm2835_clock_data
*data
= clock
->data
;
1163 return bcm2835_debugfs_regset(
1164 cprman
, data
->ctl_reg
,
1165 bcm2835_debugfs_clock_reg32
,
1166 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1170 static const struct clk_ops bcm2835_clock_clk_ops
= {
1171 .is_prepared
= bcm2835_clock_is_on
,
1172 .prepare
= bcm2835_clock_on
,
1173 .unprepare
= bcm2835_clock_off
,
1174 .recalc_rate
= bcm2835_clock_get_rate
,
1175 .set_rate
= bcm2835_clock_set_rate
,
1176 .determine_rate
= bcm2835_clock_determine_rate
,
1177 .set_parent
= bcm2835_clock_set_parent
,
1178 .get_parent
= bcm2835_clock_get_parent
,
1179 .debug_init
= bcm2835_clock_debug_init
,
1182 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1188 * The VPU clock can never be disabled (it doesn't have an ENABLE
1189 * bit), so it gets its own set of clock ops.
1191 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1192 .is_prepared
= bcm2835_vpu_clock_is_on
,
1193 .recalc_rate
= bcm2835_clock_get_rate
,
1194 .set_rate
= bcm2835_clock_set_rate
,
1195 .determine_rate
= bcm2835_clock_determine_rate
,
1196 .set_parent
= bcm2835_clock_set_parent
,
1197 .get_parent
= bcm2835_clock_get_parent
,
1198 .debug_init
= bcm2835_clock_debug_init
,
1201 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1202 const struct bcm2835_pll_data
*data
)
1204 struct bcm2835_pll
*pll
;
1205 struct clk_init_data init
;
1208 memset(&init
, 0, sizeof(init
));
1210 /* All of the PLLs derive from the external oscillator. */
1211 init
.parent_names
= &cprman
->osc_name
;
1212 init
.num_parents
= 1;
1213 init
.name
= data
->name
;
1214 init
.ops
= &bcm2835_pll_clk_ops
;
1215 init
.flags
= CLK_IGNORE_UNUSED
;
1217 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1221 pll
->cprman
= cprman
;
1223 pll
->hw
.init
= &init
;
1225 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1231 static struct clk_hw
*
1232 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1233 const struct bcm2835_pll_divider_data
*data
)
1235 struct bcm2835_pll_divider
*divider
;
1236 struct clk_init_data init
;
1237 const char *divider_name
;
1240 if (data
->fixed_divider
!= 1) {
1241 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1242 "%s_prediv", data
->name
);
1246 divider_name
= data
->name
;
1249 memset(&init
, 0, sizeof(init
));
1251 init
.parent_names
= &data
->source_pll
;
1252 init
.num_parents
= 1;
1253 init
.name
= divider_name
;
1254 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1255 init
.flags
= CLK_SET_RATE_PARENT
| CLK_IGNORE_UNUSED
;
1257 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1261 divider
->div
.reg
= cprman
->regs
+ data
->a2w_reg
;
1262 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1263 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1264 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1265 divider
->div
.lock
= &cprman
->regs_lock
;
1266 divider
->div
.hw
.init
= &init
;
1267 divider
->div
.table
= NULL
;
1269 divider
->cprman
= cprman
;
1270 divider
->data
= data
;
1272 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1274 return ERR_PTR(ret
);
1277 * PLLH's channels have a fixed divide by 10 afterwards, which
1278 * is what our consumers are actually using.
1280 if (data
->fixed_divider
!= 1) {
1281 return clk_hw_register_fixed_factor(cprman
->dev
, data
->name
,
1283 CLK_SET_RATE_PARENT
,
1285 data
->fixed_divider
);
1288 return ÷r
->div
.hw
;
1291 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1292 const struct bcm2835_clock_data
*data
)
1294 struct bcm2835_clock
*clock
;
1295 struct clk_init_data init
;
1296 const char *parents
[1 << CM_SRC_BITS
];
1301 * Replace our "xosc" references with the oscillator's
1304 for (i
= 0; i
< data
->num_mux_parents
; i
++) {
1305 if (strcmp(data
->parents
[i
], "xosc") == 0)
1306 parents
[i
] = cprman
->osc_name
;
1308 parents
[i
] = data
->parents
[i
];
1311 memset(&init
, 0, sizeof(init
));
1312 init
.parent_names
= parents
;
1313 init
.num_parents
= data
->num_mux_parents
;
1314 init
.name
= data
->name
;
1315 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1318 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1319 * rate changes on at least of the parents.
1321 if (data
->set_rate_parent
)
1322 init
.flags
|= CLK_SET_RATE_PARENT
;
1324 if (data
->is_vpu_clock
) {
1325 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1327 init
.ops
= &bcm2835_clock_clk_ops
;
1328 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1330 /* If the clock wasn't actually enabled at boot, it's not
1333 if (!(cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
))
1334 init
.flags
&= ~CLK_IS_CRITICAL
;
1337 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1341 clock
->cprman
= cprman
;
1343 clock
->hw
.init
= &init
;
1345 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1347 return ERR_PTR(ret
);
1351 static struct clk
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1352 const struct bcm2835_gate_data
*data
)
1354 return clk_register_gate(cprman
->dev
, data
->name
, data
->parent
,
1355 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1356 cprman
->regs
+ data
->ctl_reg
,
1357 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1360 typedef struct clk_hw
*(*bcm2835_clk_register
)(struct bcm2835_cprman
*cprman
,
1362 struct bcm2835_clk_desc
{
1363 bcm2835_clk_register clk_register
;
1367 /* assignment helper macros for different clock types */
1368 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1369 .data = __VA_ARGS__ }
1370 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1371 &(struct bcm2835_pll_data) \
1373 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1374 &(struct bcm2835_pll_divider_data) \
1376 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1377 &(struct bcm2835_clock_data) \
1379 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1380 &(struct bcm2835_gate_data) \
1383 /* parent mux arrays plus helper macros */
1385 /* main oscillator parent mux */
1386 static const char *const bcm2835_clock_osc_parents
[] = {
1393 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1394 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1395 .parents = bcm2835_clock_osc_parents, \
1398 /* main peripherial parent mux */
1399 static const char *const bcm2835_clock_per_parents
[] = {
1410 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1411 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1412 .parents = bcm2835_clock_per_parents, \
1415 /* main vpu parent mux */
1416 static const char *const bcm2835_clock_vpu_parents
[] = {
1429 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1430 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1431 .parents = bcm2835_clock_vpu_parents, \
1435 * the real definition of all the pll, pll_dividers and clocks
1436 * these make use of the above REGISTER_* macros
1438 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1439 /* the PLL + PLL dividers */
1442 * PLLA is the auxiliary PLL, used to drive the CCP2
1443 * (Compact Camera Port 2) transmitter clock.
1445 * It is in the PX LDO power domain, which is on when the
1446 * AUDIO domain is on.
1448 [BCM2835_PLLA
] = REGISTER_PLL(
1450 .cm_ctrl_reg
= CM_PLLA
,
1451 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1452 .frac_reg
= A2W_PLLA_FRAC
,
1453 .ana_reg_base
= A2W_PLLA_ANA0
,
1454 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1455 .lock_mask
= CM_LOCK_FLOCKA
,
1457 .ana
= &bcm2835_ana_default
,
1459 .min_rate
= 600000000u,
1460 .max_rate
= 2400000000u,
1461 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1462 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1463 .name
= "plla_core",
1464 .source_pll
= "plla",
1466 .a2w_reg
= A2W_PLLA_CORE
,
1467 .load_mask
= CM_PLLA_LOADCORE
,
1468 .hold_mask
= CM_PLLA_HOLDCORE
,
1469 .fixed_divider
= 1),
1470 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1472 .source_pll
= "plla",
1474 .a2w_reg
= A2W_PLLA_PER
,
1475 .load_mask
= CM_PLLA_LOADPER
,
1476 .hold_mask
= CM_PLLA_HOLDPER
,
1477 .fixed_divider
= 1),
1478 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1479 .name
= "plla_dsi0",
1480 .source_pll
= "plla",
1482 .a2w_reg
= A2W_PLLA_DSI0
,
1483 .load_mask
= CM_PLLA_LOADDSI0
,
1484 .hold_mask
= CM_PLLA_HOLDDSI0
,
1485 .fixed_divider
= 1),
1486 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1487 .name
= "plla_ccp2",
1488 .source_pll
= "plla",
1490 .a2w_reg
= A2W_PLLA_CCP2
,
1491 .load_mask
= CM_PLLA_LOADCCP2
,
1492 .hold_mask
= CM_PLLA_HOLDCCP2
,
1493 .fixed_divider
= 1),
1495 /* PLLB is used for the ARM's clock. */
1496 [BCM2835_PLLB
] = REGISTER_PLL(
1498 .cm_ctrl_reg
= CM_PLLB
,
1499 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
1500 .frac_reg
= A2W_PLLB_FRAC
,
1501 .ana_reg_base
= A2W_PLLB_ANA0
,
1502 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
1503 .lock_mask
= CM_LOCK_FLOCKB
,
1505 .ana
= &bcm2835_ana_default
,
1507 .min_rate
= 600000000u,
1508 .max_rate
= 3000000000u,
1509 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1510 [BCM2835_PLLB_ARM
] = REGISTER_PLL_DIV(
1512 .source_pll
= "pllb",
1514 .a2w_reg
= A2W_PLLB_ARM
,
1515 .load_mask
= CM_PLLB_LOADARM
,
1516 .hold_mask
= CM_PLLB_HOLDARM
,
1517 .fixed_divider
= 1),
1520 * PLLC is the core PLL, used to drive the core VPU clock.
1522 * It is in the PX LDO power domain, which is on when the
1523 * AUDIO domain is on.
1525 [BCM2835_PLLC
] = REGISTER_PLL(
1527 .cm_ctrl_reg
= CM_PLLC
,
1528 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1529 .frac_reg
= A2W_PLLC_FRAC
,
1530 .ana_reg_base
= A2W_PLLC_ANA0
,
1531 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1532 .lock_mask
= CM_LOCK_FLOCKC
,
1534 .ana
= &bcm2835_ana_default
,
1536 .min_rate
= 600000000u,
1537 .max_rate
= 3000000000u,
1538 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1539 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1540 .name
= "pllc_core0",
1541 .source_pll
= "pllc",
1543 .a2w_reg
= A2W_PLLC_CORE0
,
1544 .load_mask
= CM_PLLC_LOADCORE0
,
1545 .hold_mask
= CM_PLLC_HOLDCORE0
,
1546 .fixed_divider
= 1),
1547 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1548 .name
= "pllc_core1",
1549 .source_pll
= "pllc",
1551 .a2w_reg
= A2W_PLLC_CORE1
,
1552 .load_mask
= CM_PLLC_LOADCORE1
,
1553 .hold_mask
= CM_PLLC_HOLDCORE1
,
1554 .fixed_divider
= 1),
1555 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1556 .name
= "pllc_core2",
1557 .source_pll
= "pllc",
1559 .a2w_reg
= A2W_PLLC_CORE2
,
1560 .load_mask
= CM_PLLC_LOADCORE2
,
1561 .hold_mask
= CM_PLLC_HOLDCORE2
,
1562 .fixed_divider
= 1),
1563 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1565 .source_pll
= "pllc",
1567 .a2w_reg
= A2W_PLLC_PER
,
1568 .load_mask
= CM_PLLC_LOADPER
,
1569 .hold_mask
= CM_PLLC_HOLDPER
,
1570 .fixed_divider
= 1),
1573 * PLLD is the display PLL, used to drive DSI display panels.
1575 * It is in the PX LDO power domain, which is on when the
1576 * AUDIO domain is on.
1578 [BCM2835_PLLD
] = REGISTER_PLL(
1580 .cm_ctrl_reg
= CM_PLLD
,
1581 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1582 .frac_reg
= A2W_PLLD_FRAC
,
1583 .ana_reg_base
= A2W_PLLD_ANA0
,
1584 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1585 .lock_mask
= CM_LOCK_FLOCKD
,
1587 .ana
= &bcm2835_ana_default
,
1589 .min_rate
= 600000000u,
1590 .max_rate
= 2400000000u,
1591 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1592 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1593 .name
= "plld_core",
1594 .source_pll
= "plld",
1596 .a2w_reg
= A2W_PLLD_CORE
,
1597 .load_mask
= CM_PLLD_LOADCORE
,
1598 .hold_mask
= CM_PLLD_HOLDCORE
,
1599 .fixed_divider
= 1),
1600 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1602 .source_pll
= "plld",
1604 .a2w_reg
= A2W_PLLD_PER
,
1605 .load_mask
= CM_PLLD_LOADPER
,
1606 .hold_mask
= CM_PLLD_HOLDPER
,
1607 .fixed_divider
= 1),
1608 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1609 .name
= "plld_dsi0",
1610 .source_pll
= "plld",
1612 .a2w_reg
= A2W_PLLD_DSI0
,
1613 .load_mask
= CM_PLLD_LOADDSI0
,
1614 .hold_mask
= CM_PLLD_HOLDDSI0
,
1615 .fixed_divider
= 1),
1616 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1617 .name
= "plld_dsi1",
1618 .source_pll
= "plld",
1620 .a2w_reg
= A2W_PLLD_DSI1
,
1621 .load_mask
= CM_PLLD_LOADDSI1
,
1622 .hold_mask
= CM_PLLD_HOLDDSI1
,
1623 .fixed_divider
= 1),
1626 * PLLH is used to supply the pixel clock or the AUX clock for the
1629 * It is in the HDMI power domain.
1631 [BCM2835_PLLH
] = REGISTER_PLL(
1633 .cm_ctrl_reg
= CM_PLLH
,
1634 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1635 .frac_reg
= A2W_PLLH_FRAC
,
1636 .ana_reg_base
= A2W_PLLH_ANA0
,
1637 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1638 .lock_mask
= CM_LOCK_FLOCKH
,
1640 .ana
= &bcm2835_ana_pllh
,
1642 .min_rate
= 600000000u,
1643 .max_rate
= 3000000000u,
1644 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1645 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1646 .name
= "pllh_rcal",
1647 .source_pll
= "pllh",
1649 .a2w_reg
= A2W_PLLH_RCAL
,
1650 .load_mask
= CM_PLLH_LOADRCAL
,
1652 .fixed_divider
= 10),
1653 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1655 .source_pll
= "pllh",
1657 .a2w_reg
= A2W_PLLH_AUX
,
1658 .load_mask
= CM_PLLH_LOADAUX
,
1660 .fixed_divider
= 1),
1661 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1663 .source_pll
= "pllh",
1665 .a2w_reg
= A2W_PLLH_PIX
,
1666 .load_mask
= CM_PLLH_LOADPIX
,
1668 .fixed_divider
= 10),
1672 /* clocks with oscillator parent mux */
1674 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1675 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1677 .ctl_reg
= CM_OTPCTL
,
1678 .div_reg
= CM_OTPDIV
,
1682 * Used for a 1Mhz clock for the system clocksource, and also used
1683 * bythe watchdog timer and the camera pulse generator.
1685 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1687 .ctl_reg
= CM_TIMERCTL
,
1688 .div_reg
= CM_TIMERDIV
,
1692 * Clock for the temperature sensor.
1693 * Generally run at 2Mhz, max 5Mhz.
1695 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1697 .ctl_reg
= CM_TSENSCTL
,
1698 .div_reg
= CM_TSENSDIV
,
1701 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1703 .ctl_reg
= CM_TECCTL
,
1704 .div_reg
= CM_TECDIV
,
1708 /* clocks with vpu parent mux */
1709 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1711 .ctl_reg
= CM_H264CTL
,
1712 .div_reg
= CM_H264DIV
,
1715 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1717 .ctl_reg
= CM_ISPCTL
,
1718 .div_reg
= CM_ISPDIV
,
1723 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1724 * in the SDRAM controller can't be used.
1726 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
1728 .ctl_reg
= CM_SDCCTL
,
1729 .div_reg
= CM_SDCDIV
,
1732 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
1734 .ctl_reg
= CM_V3DCTL
,
1735 .div_reg
= CM_V3DDIV
,
1739 * VPU clock. This doesn't have an enable bit, since it drives
1740 * the bus for everything else, and is special so it doesn't need
1741 * to be gated for rate changes. It is also known as "clk_audio"
1742 * in various hardware documentation.
1744 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
1746 .ctl_reg
= CM_VPUCTL
,
1747 .div_reg
= CM_VPUDIV
,
1750 .flags
= CLK_IS_CRITICAL
,
1751 .is_vpu_clock
= true),
1753 /* clocks with per parent mux */
1754 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
1756 .ctl_reg
= CM_AVEOCTL
,
1757 .div_reg
= CM_AVEODIV
,
1760 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
1762 .ctl_reg
= CM_CAM0CTL
,
1763 .div_reg
= CM_CAM0DIV
,
1766 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
1768 .ctl_reg
= CM_CAM1CTL
,
1769 .div_reg
= CM_CAM1DIV
,
1772 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
1774 .ctl_reg
= CM_DFTCTL
,
1775 .div_reg
= CM_DFTDIV
,
1778 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
1780 .ctl_reg
= CM_DPICTL
,
1781 .div_reg
= CM_DPIDIV
,
1785 /* Arasan EMMC clock */
1786 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
1788 .ctl_reg
= CM_EMMCCTL
,
1789 .div_reg
= CM_EMMCDIV
,
1793 /* General purpose (GPIO) clocks */
1794 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
1796 .ctl_reg
= CM_GP0CTL
,
1797 .div_reg
= CM_GP0DIV
,
1800 .is_mash_clock
= true),
1801 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
1803 .ctl_reg
= CM_GP1CTL
,
1804 .div_reg
= CM_GP1DIV
,
1807 .flags
= CLK_IS_CRITICAL
,
1808 .is_mash_clock
= true),
1809 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
1811 .ctl_reg
= CM_GP2CTL
,
1812 .div_reg
= CM_GP2DIV
,
1815 .flags
= CLK_IS_CRITICAL
),
1817 /* HDMI state machine */
1818 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
1820 .ctl_reg
= CM_HSMCTL
,
1821 .div_reg
= CM_HSMDIV
,
1824 [BCM2835_CLOCK_PCM
] = REGISTER_PER_CLK(
1826 .ctl_reg
= CM_PCMCTL
,
1827 .div_reg
= CM_PCMDIV
,
1830 .is_mash_clock
= true),
1831 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
1833 .ctl_reg
= CM_PWMCTL
,
1834 .div_reg
= CM_PWMDIV
,
1837 .is_mash_clock
= true),
1838 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
1840 .ctl_reg
= CM_SLIMCTL
,
1841 .div_reg
= CM_SLIMDIV
,
1844 .is_mash_clock
= true),
1845 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
1847 .ctl_reg
= CM_SMICTL
,
1848 .div_reg
= CM_SMIDIV
,
1851 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
1853 .ctl_reg
= CM_UARTCTL
,
1854 .div_reg
= CM_UARTDIV
,
1858 /* TV encoder clock. Only operating frequency is 108Mhz. */
1859 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
1861 .ctl_reg
= CM_VECCTL
,
1862 .div_reg
= CM_VECDIV
,
1866 * Allow rate change propagation only on PLLH_AUX which is
1867 * assigned index 7 in the parent array.
1869 .set_rate_parent
= BIT(7)),
1872 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
1874 .ctl_reg
= CM_DSI0ECTL
,
1875 .div_reg
= CM_DSI0EDIV
,
1878 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
1880 .ctl_reg
= CM_DSI1ECTL
,
1881 .div_reg
= CM_DSI1EDIV
,
1888 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1889 * you have the debug bit set in the power manager, which we
1890 * don't bother exposing) are individual gates off of the
1891 * non-stop vpu clock.
1893 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
1894 .name
= "peri_image",
1896 .ctl_reg
= CM_PERIICTL
),
1900 * Permanently take a reference on the parent of the SDRAM clock.
1902 * While the SDRAM is being driven by its dedicated PLL most of the
1903 * time, there is a little loop running in the firmware that
1904 * periodically switches the SDRAM to using our CM clock to do PVT
1905 * recalibration, with the assumption that the previously configured
1906 * SDRAM parent is still enabled and running.
1908 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
1910 struct clk
*parent
= clk_get_parent(sdc
);
1913 return PTR_ERR(parent
);
1915 return clk_prepare_enable(parent
);
1918 static int bcm2835_clk_probe(struct platform_device
*pdev
)
1920 struct device
*dev
= &pdev
->dev
;
1921 struct clk_hw
**hws
;
1922 struct bcm2835_cprman
*cprman
;
1923 struct resource
*res
;
1924 const struct bcm2835_clk_desc
*desc
;
1925 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
1929 cprman
= devm_kzalloc(dev
, sizeof(*cprman
) +
1930 sizeof(*cprman
->onecell
.hws
) * asize
,
1935 spin_lock_init(&cprman
->regs_lock
);
1937 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1938 cprman
->regs
= devm_ioremap_resource(dev
, res
);
1939 if (IS_ERR(cprman
->regs
))
1940 return PTR_ERR(cprman
->regs
);
1942 cprman
->osc_name
= of_clk_get_parent_name(dev
->of_node
, 0);
1943 if (!cprman
->osc_name
)
1946 platform_set_drvdata(pdev
, cprman
);
1948 cprman
->onecell
.num
= asize
;
1949 hws
= cprman
->onecell
.hws
;
1951 for (i
= 0; i
< asize
; i
++) {
1952 desc
= &clk_desc_array
[i
];
1953 if (desc
->clk_register
&& desc
->data
)
1954 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
1957 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
1961 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
1965 static const struct of_device_id bcm2835_clk_of_match
[] = {
1966 { .compatible
= "brcm,bcm2835-cprman", },
1969 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
1971 static struct platform_driver bcm2835_clk_driver
= {
1973 .name
= "bcm2835-clk",
1974 .of_match_table
= bcm2835_clk_of_match
,
1976 .probe
= bcm2835_clk_probe
,
1979 builtin_platform_driver(bcm2835_clk_driver
);
1981 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1982 MODULE_DESCRIPTION("BCM2835 clock driver");
1983 MODULE_LICENSE("GPL v2");