sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / clk / clk-stm32f4.c
blob5eb05dbf59b84d27d79106adeb7405d15de1433a
1 /*
2 * Author: Daniel Thompson <daniel.thompson@linaro.org>
4 * Inspired by clk-asm9260.c .
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
31 #define STM32F4_RCC_PLLCFGR 0x04
32 #define STM32F4_RCC_CFGR 0x08
33 #define STM32F4_RCC_AHB1ENR 0x30
34 #define STM32F4_RCC_AHB2ENR 0x34
35 #define STM32F4_RCC_AHB3ENR 0x38
36 #define STM32F4_RCC_APB1ENR 0x40
37 #define STM32F4_RCC_APB2ENR 0x44
38 #define STM32F4_RCC_BDCR 0x70
39 #define STM32F4_RCC_CSR 0x74
41 struct stm32f4_gate_data {
42 u8 offset;
43 u8 bit_idx;
44 const char *name;
45 const char *parent_name;
46 unsigned long flags;
49 static const struct stm32f4_gate_data stm32f429_gates[] __initconst = {
50 { STM32F4_RCC_AHB1ENR, 0, "gpioa", "ahb_div" },
51 { STM32F4_RCC_AHB1ENR, 1, "gpiob", "ahb_div" },
52 { STM32F4_RCC_AHB1ENR, 2, "gpioc", "ahb_div" },
53 { STM32F4_RCC_AHB1ENR, 3, "gpiod", "ahb_div" },
54 { STM32F4_RCC_AHB1ENR, 4, "gpioe", "ahb_div" },
55 { STM32F4_RCC_AHB1ENR, 5, "gpiof", "ahb_div" },
56 { STM32F4_RCC_AHB1ENR, 6, "gpiog", "ahb_div" },
57 { STM32F4_RCC_AHB1ENR, 7, "gpioh", "ahb_div" },
58 { STM32F4_RCC_AHB1ENR, 8, "gpioi", "ahb_div" },
59 { STM32F4_RCC_AHB1ENR, 9, "gpioj", "ahb_div" },
60 { STM32F4_RCC_AHB1ENR, 10, "gpiok", "ahb_div" },
61 { STM32F4_RCC_AHB1ENR, 12, "crc", "ahb_div" },
62 { STM32F4_RCC_AHB1ENR, 18, "bkpsra", "ahb_div" },
63 { STM32F4_RCC_AHB1ENR, 20, "ccmdatam", "ahb_div" },
64 { STM32F4_RCC_AHB1ENR, 21, "dma1", "ahb_div" },
65 { STM32F4_RCC_AHB1ENR, 22, "dma2", "ahb_div" },
66 { STM32F4_RCC_AHB1ENR, 23, "dma2d", "ahb_div" },
67 { STM32F4_RCC_AHB1ENR, 25, "ethmac", "ahb_div" },
68 { STM32F4_RCC_AHB1ENR, 26, "ethmactx", "ahb_div" },
69 { STM32F4_RCC_AHB1ENR, 27, "ethmacrx", "ahb_div" },
70 { STM32F4_RCC_AHB1ENR, 28, "ethmacptp", "ahb_div" },
71 { STM32F4_RCC_AHB1ENR, 29, "otghs", "ahb_div" },
72 { STM32F4_RCC_AHB1ENR, 30, "otghsulpi", "ahb_div" },
74 { STM32F4_RCC_AHB2ENR, 0, "dcmi", "ahb_div" },
75 { STM32F4_RCC_AHB2ENR, 4, "cryp", "ahb_div" },
76 { STM32F4_RCC_AHB2ENR, 5, "hash", "ahb_div" },
77 { STM32F4_RCC_AHB2ENR, 6, "rng", "pll48" },
78 { STM32F4_RCC_AHB2ENR, 7, "otgfs", "pll48" },
80 { STM32F4_RCC_AHB3ENR, 0, "fmc", "ahb_div",
81 CLK_IGNORE_UNUSED },
83 { STM32F4_RCC_APB1ENR, 0, "tim2", "apb1_mul" },
84 { STM32F4_RCC_APB1ENR, 1, "tim3", "apb1_mul" },
85 { STM32F4_RCC_APB1ENR, 2, "tim4", "apb1_mul" },
86 { STM32F4_RCC_APB1ENR, 3, "tim5", "apb1_mul" },
87 { STM32F4_RCC_APB1ENR, 4, "tim6", "apb1_mul" },
88 { STM32F4_RCC_APB1ENR, 5, "tim7", "apb1_mul" },
89 { STM32F4_RCC_APB1ENR, 6, "tim12", "apb1_mul" },
90 { STM32F4_RCC_APB1ENR, 7, "tim13", "apb1_mul" },
91 { STM32F4_RCC_APB1ENR, 8, "tim14", "apb1_mul" },
92 { STM32F4_RCC_APB1ENR, 11, "wwdg", "apb1_div" },
93 { STM32F4_RCC_APB1ENR, 14, "spi2", "apb1_div" },
94 { STM32F4_RCC_APB1ENR, 15, "spi3", "apb1_div" },
95 { STM32F4_RCC_APB1ENR, 17, "uart2", "apb1_div" },
96 { STM32F4_RCC_APB1ENR, 18, "uart3", "apb1_div" },
97 { STM32F4_RCC_APB1ENR, 19, "uart4", "apb1_div" },
98 { STM32F4_RCC_APB1ENR, 20, "uart5", "apb1_div" },
99 { STM32F4_RCC_APB1ENR, 21, "i2c1", "apb1_div" },
100 { STM32F4_RCC_APB1ENR, 22, "i2c2", "apb1_div" },
101 { STM32F4_RCC_APB1ENR, 23, "i2c3", "apb1_div" },
102 { STM32F4_RCC_APB1ENR, 25, "can1", "apb1_div" },
103 { STM32F4_RCC_APB1ENR, 26, "can2", "apb1_div" },
104 { STM32F4_RCC_APB1ENR, 28, "pwr", "apb1_div" },
105 { STM32F4_RCC_APB1ENR, 29, "dac", "apb1_div" },
106 { STM32F4_RCC_APB1ENR, 30, "uart7", "apb1_div" },
107 { STM32F4_RCC_APB1ENR, 31, "uart8", "apb1_div" },
109 { STM32F4_RCC_APB2ENR, 0, "tim1", "apb2_mul" },
110 { STM32F4_RCC_APB2ENR, 1, "tim8", "apb2_mul" },
111 { STM32F4_RCC_APB2ENR, 4, "usart1", "apb2_div" },
112 { STM32F4_RCC_APB2ENR, 5, "usart6", "apb2_div" },
113 { STM32F4_RCC_APB2ENR, 8, "adc1", "apb2_div" },
114 { STM32F4_RCC_APB2ENR, 9, "adc2", "apb2_div" },
115 { STM32F4_RCC_APB2ENR, 10, "adc3", "apb2_div" },
116 { STM32F4_RCC_APB2ENR, 11, "sdio", "pll48" },
117 { STM32F4_RCC_APB2ENR, 12, "spi1", "apb2_div" },
118 { STM32F4_RCC_APB2ENR, 13, "spi4", "apb2_div" },
119 { STM32F4_RCC_APB2ENR, 14, "syscfg", "apb2_div" },
120 { STM32F4_RCC_APB2ENR, 16, "tim9", "apb2_mul" },
121 { STM32F4_RCC_APB2ENR, 17, "tim10", "apb2_mul" },
122 { STM32F4_RCC_APB2ENR, 18, "tim11", "apb2_mul" },
123 { STM32F4_RCC_APB2ENR, 20, "spi5", "apb2_div" },
124 { STM32F4_RCC_APB2ENR, 21, "spi6", "apb2_div" },
125 { STM32F4_RCC_APB2ENR, 22, "sai1", "apb2_div" },
126 { STM32F4_RCC_APB2ENR, 26, "ltdc", "apb2_div" },
129 static const struct stm32f4_gate_data stm32f469_gates[] __initconst = {
130 { STM32F4_RCC_AHB1ENR, 0, "gpioa", "ahb_div" },
131 { STM32F4_RCC_AHB1ENR, 1, "gpiob", "ahb_div" },
132 { STM32F4_RCC_AHB1ENR, 2, "gpioc", "ahb_div" },
133 { STM32F4_RCC_AHB1ENR, 3, "gpiod", "ahb_div" },
134 { STM32F4_RCC_AHB1ENR, 4, "gpioe", "ahb_div" },
135 { STM32F4_RCC_AHB1ENR, 5, "gpiof", "ahb_div" },
136 { STM32F4_RCC_AHB1ENR, 6, "gpiog", "ahb_div" },
137 { STM32F4_RCC_AHB1ENR, 7, "gpioh", "ahb_div" },
138 { STM32F4_RCC_AHB1ENR, 8, "gpioi", "ahb_div" },
139 { STM32F4_RCC_AHB1ENR, 9, "gpioj", "ahb_div" },
140 { STM32F4_RCC_AHB1ENR, 10, "gpiok", "ahb_div" },
141 { STM32F4_RCC_AHB1ENR, 12, "crc", "ahb_div" },
142 { STM32F4_RCC_AHB1ENR, 18, "bkpsra", "ahb_div" },
143 { STM32F4_RCC_AHB1ENR, 20, "ccmdatam", "ahb_div" },
144 { STM32F4_RCC_AHB1ENR, 21, "dma1", "ahb_div" },
145 { STM32F4_RCC_AHB1ENR, 22, "dma2", "ahb_div" },
146 { STM32F4_RCC_AHB1ENR, 23, "dma2d", "ahb_div" },
147 { STM32F4_RCC_AHB1ENR, 25, "ethmac", "ahb_div" },
148 { STM32F4_RCC_AHB1ENR, 26, "ethmactx", "ahb_div" },
149 { STM32F4_RCC_AHB1ENR, 27, "ethmacrx", "ahb_div" },
150 { STM32F4_RCC_AHB1ENR, 28, "ethmacptp", "ahb_div" },
151 { STM32F4_RCC_AHB1ENR, 29, "otghs", "ahb_div" },
152 { STM32F4_RCC_AHB1ENR, 30, "otghsulpi", "ahb_div" },
154 { STM32F4_RCC_AHB2ENR, 0, "dcmi", "ahb_div" },
155 { STM32F4_RCC_AHB2ENR, 4, "cryp", "ahb_div" },
156 { STM32F4_RCC_AHB2ENR, 5, "hash", "ahb_div" },
157 { STM32F4_RCC_AHB2ENR, 6, "rng", "pll48" },
158 { STM32F4_RCC_AHB2ENR, 7, "otgfs", "pll48" },
160 { STM32F4_RCC_AHB3ENR, 0, "fmc", "ahb_div",
161 CLK_IGNORE_UNUSED },
162 { STM32F4_RCC_AHB3ENR, 1, "qspi", "ahb_div",
163 CLK_IGNORE_UNUSED },
165 { STM32F4_RCC_APB1ENR, 0, "tim2", "apb1_mul" },
166 { STM32F4_RCC_APB1ENR, 1, "tim3", "apb1_mul" },
167 { STM32F4_RCC_APB1ENR, 2, "tim4", "apb1_mul" },
168 { STM32F4_RCC_APB1ENR, 3, "tim5", "apb1_mul" },
169 { STM32F4_RCC_APB1ENR, 4, "tim6", "apb1_mul" },
170 { STM32F4_RCC_APB1ENR, 5, "tim7", "apb1_mul" },
171 { STM32F4_RCC_APB1ENR, 6, "tim12", "apb1_mul" },
172 { STM32F4_RCC_APB1ENR, 7, "tim13", "apb1_mul" },
173 { STM32F4_RCC_APB1ENR, 8, "tim14", "apb1_mul" },
174 { STM32F4_RCC_APB1ENR, 11, "wwdg", "apb1_div" },
175 { STM32F4_RCC_APB1ENR, 14, "spi2", "apb1_div" },
176 { STM32F4_RCC_APB1ENR, 15, "spi3", "apb1_div" },
177 { STM32F4_RCC_APB1ENR, 17, "uart2", "apb1_div" },
178 { STM32F4_RCC_APB1ENR, 18, "uart3", "apb1_div" },
179 { STM32F4_RCC_APB1ENR, 19, "uart4", "apb1_div" },
180 { STM32F4_RCC_APB1ENR, 20, "uart5", "apb1_div" },
181 { STM32F4_RCC_APB1ENR, 21, "i2c1", "apb1_div" },
182 { STM32F4_RCC_APB1ENR, 22, "i2c2", "apb1_div" },
183 { STM32F4_RCC_APB1ENR, 23, "i2c3", "apb1_div" },
184 { STM32F4_RCC_APB1ENR, 25, "can1", "apb1_div" },
185 { STM32F4_RCC_APB1ENR, 26, "can2", "apb1_div" },
186 { STM32F4_RCC_APB1ENR, 28, "pwr", "apb1_div" },
187 { STM32F4_RCC_APB1ENR, 29, "dac", "apb1_div" },
188 { STM32F4_RCC_APB1ENR, 30, "uart7", "apb1_div" },
189 { STM32F4_RCC_APB1ENR, 31, "uart8", "apb1_div" },
191 { STM32F4_RCC_APB2ENR, 0, "tim1", "apb2_mul" },
192 { STM32F4_RCC_APB2ENR, 1, "tim8", "apb2_mul" },
193 { STM32F4_RCC_APB2ENR, 4, "usart1", "apb2_div" },
194 { STM32F4_RCC_APB2ENR, 5, "usart6", "apb2_div" },
195 { STM32F4_RCC_APB2ENR, 8, "adc1", "apb2_div" },
196 { STM32F4_RCC_APB2ENR, 9, "adc2", "apb2_div" },
197 { STM32F4_RCC_APB2ENR, 10, "adc3", "apb2_div" },
198 { STM32F4_RCC_APB2ENR, 11, "sdio", "pll48" },
199 { STM32F4_RCC_APB2ENR, 12, "spi1", "apb2_div" },
200 { STM32F4_RCC_APB2ENR, 13, "spi4", "apb2_div" },
201 { STM32F4_RCC_APB2ENR, 14, "syscfg", "apb2_div" },
202 { STM32F4_RCC_APB2ENR, 16, "tim9", "apb2_mul" },
203 { STM32F4_RCC_APB2ENR, 17, "tim10", "apb2_mul" },
204 { STM32F4_RCC_APB2ENR, 18, "tim11", "apb2_mul" },
205 { STM32F4_RCC_APB2ENR, 20, "spi5", "apb2_div" },
206 { STM32F4_RCC_APB2ENR, 21, "spi6", "apb2_div" },
207 { STM32F4_RCC_APB2ENR, 22, "sai1", "apb2_div" },
208 { STM32F4_RCC_APB2ENR, 26, "ltdc", "apb2_div" },
211 enum { SYSTICK, FCLK, CLK_LSI, CLK_LSE, CLK_HSE_RTC, CLK_RTC, END_PRIMARY_CLK };
214 * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
215 * have gate bits associated with them. Its combined hweight is 71.
217 #define MAX_GATE_MAP 3
219 static const u64 stm32f42xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
220 0x0000000000000001ull,
221 0x04777f33f6fec9ffull };
223 static const u64 stm32f46xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
224 0x0000000000000003ull,
225 0x0c777f33f6fec9ffull };
227 static const u64 *stm32f4_gate_map;
229 static struct clk_hw **clks;
231 static DEFINE_SPINLOCK(stm32f4_clk_lock);
232 static void __iomem *base;
234 static struct regmap *pdrm;
237 * "Multiplier" device for APBx clocks.
239 * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
240 * mode, they also tap out the one of the low order state bits to run the
241 * timers. ST datasheets represent this feature as a (conditional) clock
242 * multiplier.
244 struct clk_apb_mul {
245 struct clk_hw hw;
246 u8 bit_idx;
249 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
251 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
252 unsigned long parent_rate)
254 struct clk_apb_mul *am = to_clk_apb_mul(hw);
256 if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
257 return parent_rate * 2;
259 return parent_rate;
262 static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
263 unsigned long *prate)
265 struct clk_apb_mul *am = to_clk_apb_mul(hw);
266 unsigned long mult = 1;
268 if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
269 mult = 2;
271 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
272 unsigned long best_parent = rate / mult;
274 *prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
277 return *prate * mult;
280 static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
281 unsigned long parent_rate)
284 * We must report success but we can do so unconditionally because
285 * clk_apb_mul_round_rate returns values that ensure this call is a
286 * nop.
289 return 0;
292 static const struct clk_ops clk_apb_mul_factor_ops = {
293 .round_rate = clk_apb_mul_round_rate,
294 .set_rate = clk_apb_mul_set_rate,
295 .recalc_rate = clk_apb_mul_recalc_rate,
298 static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
299 const char *parent_name,
300 unsigned long flags, u8 bit_idx)
302 struct clk_apb_mul *am;
303 struct clk_init_data init;
304 struct clk *clk;
306 am = kzalloc(sizeof(*am), GFP_KERNEL);
307 if (!am)
308 return ERR_PTR(-ENOMEM);
310 am->bit_idx = bit_idx;
311 am->hw.init = &init;
313 init.name = name;
314 init.ops = &clk_apb_mul_factor_ops;
315 init.flags = flags;
316 init.parent_names = &parent_name;
317 init.num_parents = 1;
319 clk = clk_register(dev, &am->hw);
321 if (IS_ERR(clk))
322 kfree(am);
324 return clk;
328 * Decode current PLL state and (statically) model the state we inherit from
329 * the bootloader.
331 static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
333 unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
335 unsigned long pllm = pllcfgr & 0x3f;
336 unsigned long plln = (pllcfgr >> 6) & 0x1ff;
337 unsigned long pllp = BIT(((pllcfgr >> 16) & 3) + 1);
338 const char *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
339 unsigned long pllq = (pllcfgr >> 24) & 0xf;
341 clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
342 clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
343 clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
347 * Converts the primary and secondary indices (as they appear in DT) to an
348 * offset into our struct clock array.
350 static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
352 u64 table[MAX_GATE_MAP];
354 if (primary == 1) {
355 if (WARN_ON(secondary >= END_PRIMARY_CLK))
356 return -EINVAL;
357 return secondary;
360 memcpy(table, stm32f4_gate_map, sizeof(table));
362 /* only bits set in table can be used as indices */
363 if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
364 0 == (table[BIT_ULL_WORD(secondary)] &
365 BIT_ULL_MASK(secondary))))
366 return -EINVAL;
368 /* mask out bits above our current index */
369 table[BIT_ULL_WORD(secondary)] &=
370 GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
372 return END_PRIMARY_CLK - 1 + hweight64(table[0]) +
373 (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
374 (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
377 static struct clk_hw *
378 stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
380 int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
382 if (i < 0)
383 return ERR_PTR(-EINVAL);
385 return clks[i];
388 #define to_rgclk(_rgate) container_of(_rgate, struct stm32_rgate, gate)
390 static inline void disable_power_domain_write_protection(void)
392 if (pdrm)
393 regmap_update_bits(pdrm, 0x00, (1 << 8), (1 << 8));
396 static inline void enable_power_domain_write_protection(void)
398 if (pdrm)
399 regmap_update_bits(pdrm, 0x00, (1 << 8), (0 << 8));
402 static inline void sofware_reset_backup_domain(void)
404 unsigned long val;
406 val = readl(base + STM32F4_RCC_BDCR);
407 writel(val | BIT(16), base + STM32F4_RCC_BDCR);
408 writel(val & ~BIT(16), base + STM32F4_RCC_BDCR);
411 struct stm32_rgate {
412 struct clk_gate gate;
413 u8 bit_rdy_idx;
416 #define RTC_TIMEOUT 1000000
418 static int rgclk_enable(struct clk_hw *hw)
420 struct clk_gate *gate = to_clk_gate(hw);
421 struct stm32_rgate *rgate = to_rgclk(gate);
422 u32 reg;
423 int ret;
425 disable_power_domain_write_protection();
427 clk_gate_ops.enable(hw);
429 ret = readl_relaxed_poll_timeout_atomic(gate->reg, reg,
430 reg & rgate->bit_rdy_idx, 1000, RTC_TIMEOUT);
432 enable_power_domain_write_protection();
433 return ret;
436 static void rgclk_disable(struct clk_hw *hw)
438 clk_gate_ops.disable(hw);
441 static int rgclk_is_enabled(struct clk_hw *hw)
443 return clk_gate_ops.is_enabled(hw);
446 static const struct clk_ops rgclk_ops = {
447 .enable = rgclk_enable,
448 .disable = rgclk_disable,
449 .is_enabled = rgclk_is_enabled,
452 static struct clk_hw *clk_register_rgate(struct device *dev, const char *name,
453 const char *parent_name, unsigned long flags,
454 void __iomem *reg, u8 bit_idx, u8 bit_rdy_idx,
455 u8 clk_gate_flags, spinlock_t *lock)
457 struct stm32_rgate *rgate;
458 struct clk_init_data init = { NULL };
459 struct clk_hw *hw;
460 int ret;
462 rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
463 if (!rgate)
464 return ERR_PTR(-ENOMEM);
466 init.name = name;
467 init.ops = &rgclk_ops;
468 init.flags = flags;
469 init.parent_names = &parent_name;
470 init.num_parents = 1;
472 rgate->bit_rdy_idx = bit_rdy_idx;
474 rgate->gate.lock = lock;
475 rgate->gate.reg = reg;
476 rgate->gate.bit_idx = bit_idx;
477 rgate->gate.hw.init = &init;
479 hw = &rgate->gate.hw;
480 ret = clk_hw_register(dev, hw);
481 if (ret) {
482 kfree(rgate);
483 hw = ERR_PTR(ret);
486 return hw;
489 static int cclk_gate_enable(struct clk_hw *hw)
491 int ret;
493 disable_power_domain_write_protection();
495 ret = clk_gate_ops.enable(hw);
497 enable_power_domain_write_protection();
499 return ret;
502 static void cclk_gate_disable(struct clk_hw *hw)
504 disable_power_domain_write_protection();
506 clk_gate_ops.disable(hw);
508 enable_power_domain_write_protection();
511 static int cclk_gate_is_enabled(struct clk_hw *hw)
513 return clk_gate_ops.is_enabled(hw);
516 static const struct clk_ops cclk_gate_ops = {
517 .enable = cclk_gate_enable,
518 .disable = cclk_gate_disable,
519 .is_enabled = cclk_gate_is_enabled,
522 static u8 cclk_mux_get_parent(struct clk_hw *hw)
524 return clk_mux_ops.get_parent(hw);
527 static int cclk_mux_set_parent(struct clk_hw *hw, u8 index)
529 int ret;
531 disable_power_domain_write_protection();
533 sofware_reset_backup_domain();
535 ret = clk_mux_ops.set_parent(hw, index);
537 enable_power_domain_write_protection();
539 return ret;
542 static const struct clk_ops cclk_mux_ops = {
543 .get_parent = cclk_mux_get_parent,
544 .set_parent = cclk_mux_set_parent,
547 static struct clk_hw *stm32_register_cclk(struct device *dev, const char *name,
548 const char * const *parent_names, int num_parents,
549 void __iomem *reg, u8 bit_idx, u8 shift, unsigned long flags,
550 spinlock_t *lock)
552 struct clk_hw *hw;
553 struct clk_gate *gate;
554 struct clk_mux *mux;
556 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
557 if (!gate) {
558 hw = ERR_PTR(-EINVAL);
559 goto fail;
562 mux = kzalloc(sizeof(*mux), GFP_KERNEL);
563 if (!mux) {
564 kfree(gate);
565 hw = ERR_PTR(-EINVAL);
566 goto fail;
569 gate->reg = reg;
570 gate->bit_idx = bit_idx;
571 gate->flags = 0;
572 gate->lock = lock;
574 mux->reg = reg;
575 mux->shift = shift;
576 mux->mask = 3;
577 mux->flags = 0;
579 hw = clk_hw_register_composite(dev, name, parent_names, num_parents,
580 &mux->hw, &cclk_mux_ops,
581 NULL, NULL,
582 &gate->hw, &cclk_gate_ops,
583 flags);
585 if (IS_ERR(hw)) {
586 kfree(gate);
587 kfree(mux);
590 fail:
591 return hw;
594 static const char *sys_parents[] __initdata = { "hsi", NULL, "pll" };
596 static const struct clk_div_table ahb_div_table[] = {
597 { 0x0, 1 }, { 0x1, 1 }, { 0x2, 1 }, { 0x3, 1 },
598 { 0x4, 1 }, { 0x5, 1 }, { 0x6, 1 }, { 0x7, 1 },
599 { 0x8, 2 }, { 0x9, 4 }, { 0xa, 8 }, { 0xb, 16 },
600 { 0xc, 64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
601 { 0 },
604 static const struct clk_div_table apb_div_table[] = {
605 { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 },
606 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
607 { 0 },
610 static const char *rtc_parents[4] = {
611 "no-clock", "lse", "lsi", "hse-rtc"
614 struct stm32f4_clk_data {
615 const struct stm32f4_gate_data *gates_data;
616 const u64 *gates_map;
617 int gates_num;
620 static const struct stm32f4_clk_data stm32f429_clk_data = {
621 .gates_data = stm32f429_gates,
622 .gates_map = stm32f42xx_gate_map,
623 .gates_num = ARRAY_SIZE(stm32f429_gates),
626 static const struct stm32f4_clk_data stm32f469_clk_data = {
627 .gates_data = stm32f469_gates,
628 .gates_map = stm32f46xx_gate_map,
629 .gates_num = ARRAY_SIZE(stm32f469_gates),
632 static const struct of_device_id stm32f4_of_match[] = {
634 .compatible = "st,stm32f42xx-rcc",
635 .data = &stm32f429_clk_data
638 .compatible = "st,stm32f469-rcc",
639 .data = &stm32f469_clk_data
644 static void __init stm32f4_rcc_init(struct device_node *np)
646 const char *hse_clk;
647 int n;
648 const struct of_device_id *match;
649 const struct stm32f4_clk_data *data;
651 base = of_iomap(np, 0);
652 if (!base) {
653 pr_err("%s: unable to map resource", np->name);
654 return;
657 pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
658 if (IS_ERR(pdrm)) {
659 pdrm = NULL;
660 pr_warn("%s: Unable to get syscfg\n", __func__);
663 match = of_match_node(stm32f4_of_match, np);
664 if (WARN_ON(!match))
665 return;
667 data = match->data;
669 clks = kmalloc_array(data->gates_num + END_PRIMARY_CLK,
670 sizeof(*clks), GFP_KERNEL);
671 if (!clks)
672 goto fail;
674 stm32f4_gate_map = data->gates_map;
676 hse_clk = of_clk_get_parent_name(np, 0);
678 clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
679 16000000, 160000);
680 stm32f4_rcc_register_pll(hse_clk, "hsi");
682 sys_parents[1] = hse_clk;
683 clk_register_mux_table(
684 NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
685 base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
687 clk_register_divider_table(NULL, "ahb_div", "sys",
688 CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
689 4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
691 clk_register_divider_table(NULL, "apb1_div", "ahb_div",
692 CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
693 10, 3, 0, apb_div_table, &stm32f4_clk_lock);
694 clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
695 CLK_SET_RATE_PARENT, 12);
697 clk_register_divider_table(NULL, "apb2_div", "ahb_div",
698 CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
699 13, 3, 0, apb_div_table, &stm32f4_clk_lock);
700 clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
701 CLK_SET_RATE_PARENT, 15);
703 clks[SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", "ahb_div",
704 0, 1, 8);
705 clks[FCLK] = clk_hw_register_fixed_factor(NULL, "fclk", "ahb_div",
706 0, 1, 1);
708 for (n = 0; n < data->gates_num; n++) {
709 const struct stm32f4_gate_data *gd;
710 unsigned int secondary;
711 int idx;
713 gd = &data->gates_data[n];
714 secondary = 8 * (gd->offset - STM32F4_RCC_AHB1ENR) +
715 gd->bit_idx;
716 idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
718 if (idx < 0)
719 goto fail;
721 clks[idx] = clk_hw_register_gate(
722 NULL, gd->name, gd->parent_name, gd->flags,
723 base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
725 if (IS_ERR(clks[idx])) {
726 pr_err("%s: Unable to register leaf clock %s\n",
727 np->full_name, gd->name);
728 goto fail;
732 clks[CLK_LSI] = clk_register_rgate(NULL, "lsi", "clk-lsi", 0,
733 base + STM32F4_RCC_CSR, 0, 2, 0, &stm32f4_clk_lock);
735 if (IS_ERR(clks[CLK_LSI])) {
736 pr_err("Unable to register lsi clock\n");
737 goto fail;
740 clks[CLK_LSE] = clk_register_rgate(NULL, "lse", "clk-lse", 0,
741 base + STM32F4_RCC_BDCR, 0, 2, 0, &stm32f4_clk_lock);
743 if (IS_ERR(clks[CLK_LSE])) {
744 pr_err("Unable to register lse clock\n");
745 goto fail;
748 clks[CLK_HSE_RTC] = clk_hw_register_divider(NULL, "hse-rtc", "clk-hse",
749 0, base + STM32F4_RCC_CFGR, 16, 5, 0,
750 &stm32f4_clk_lock);
752 if (IS_ERR(clks[CLK_HSE_RTC])) {
753 pr_err("Unable to register hse-rtc clock\n");
754 goto fail;
757 clks[CLK_RTC] = stm32_register_cclk(NULL, "rtc", rtc_parents, 4,
758 base + STM32F4_RCC_BDCR, 15, 8, 0, &stm32f4_clk_lock);
760 if (IS_ERR(clks[CLK_RTC])) {
761 pr_err("Unable to register rtc clock\n");
762 goto fail;
765 of_clk_add_hw_provider(np, stm32f4_rcc_lookup_clk, NULL);
766 return;
767 fail:
768 kfree(clks);
769 iounmap(base);
771 CLK_OF_DECLARE(stm32f42xx_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);
772 CLK_OF_DECLARE(stm32f46xx_rcc, "st,stm32f469-rcc", stm32f4_rcc_init);