2 * Copyright 2013 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
27 #include "clk-factors.h"
29 static DEFINE_SPINLOCK(clk_lock
);
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS 5
35 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36 * PLL1 rate is calculated as follows
37 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38 * parent_rate is always 24Mhz
41 static void sun4i_get_pll1_factors(struct factors_request
*req
)
45 /* Normalize value to a 6M multiple */
46 div
= req
->rate
/ 6000000;
47 req
->rate
= 6000000 * div
;
49 /* m is always zero for pll1 */
52 /* k is 1 only on these cases */
53 if (req
->rate
>= 768000000 || req
->rate
== 42000000 ||
54 req
->rate
== 54000000)
59 /* p will be 3 for divs under 10 */
63 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 else if (div
< 20 || (div
< 32 && (div
& 1)))
67 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 * of divs between 40-62 */
69 else if (div
< 40 || (div
< 64 && (div
& 2)))
72 /* any other entries have p = 0 */
76 /* calculate a suitable n based on k and p */
83 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84 * PLL1 rate is calculated as follows
85 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86 * parent_rate should always be 24MHz
88 static void sun6i_a31_get_pll1_factors(struct factors_request
*req
)
91 * We can operate only on MHz, this will make our life easier
94 u32 freq_mhz
= req
->rate
/ 1000000;
95 u32 parent_freq_mhz
= req
->parent_rate
/ 1000000;
98 * Round down the frequency to the closest multiple of either
101 u32 round_freq_6
= round_down(freq_mhz
, 6);
102 u32 round_freq_16
= round_down(freq_mhz
, 16);
104 if (round_freq_6
> round_freq_16
)
105 freq_mhz
= round_freq_6
;
107 freq_mhz
= round_freq_16
;
109 req
->rate
= freq_mhz
* 1000000;
111 /* If the frequency is a multiple of 32 MHz, k is always 3 */
112 if (!(freq_mhz
% 32))
114 /* If the frequency is a multiple of 9 MHz, k is always 2 */
115 else if (!(freq_mhz
% 9))
117 /* If the frequency is a multiple of 8 MHz, k is always 1 */
118 else if (!(freq_mhz
% 8))
120 /* Otherwise, we don't use the k factor */
125 * If the frequency is a multiple of 2 but not a multiple of
126 * 3, m is 3. This is the first time we use 6 here, yet we
127 * will use it on several other places.
128 * We use this number because it's the lowest frequency we can
129 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 * somehow relates to this frequency.
132 if ((freq_mhz
% 6) == 2 || (freq_mhz
% 6) == 4)
135 * If the frequency is a multiple of 6MHz, but the factor is
138 else if ((freq_mhz
/ 6) & 1)
140 /* Otherwise, we end up with m = 1 */
144 /* Calculate n thanks to the above factors we already got */
145 req
->n
= freq_mhz
* (req
->m
+ 1) / ((req
->k
+ 1) * parent_freq_mhz
)
149 * If n end up being outbound, and that we can still decrease
152 if ((req
->n
+ 1) > 31 && (req
->m
+ 1) > 1) {
153 req
->n
= (req
->n
+ 1) / 2 - 1;
154 req
->m
= (req
->m
+ 1) / 2 - 1;
159 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160 * PLL1 rate is calculated as follows
161 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162 * parent_rate is always 24Mhz
165 static void sun8i_a23_get_pll1_factors(struct factors_request
*req
)
169 /* Normalize value to a 6M multiple */
170 div
= req
->rate
/ 6000000;
171 req
->rate
= 6000000 * div
;
173 /* m is always zero for pll1 */
176 /* k is 1 only on these cases */
177 if (req
->rate
>= 768000000 || req
->rate
== 42000000 ||
178 req
->rate
== 54000000)
183 /* p will be 2 for divs under 20 and odd divs under 32 */
184 if (div
< 20 || (div
< 32 && (div
& 1)))
187 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 * of divs between 40-62 */
189 else if (div
< 40 || (div
< 64 && (div
& 2)))
192 /* any other entries have p = 0 */
196 /* calculate a suitable n based on k and p */
199 req
->n
= div
/ 4 - 1;
203 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204 * PLL5 rate is calculated as follows
205 * rate = parent_rate * n * (k + 1)
206 * parent_rate is always 24Mhz
209 static void sun4i_get_pll5_factors(struct factors_request
*req
)
213 /* Normalize value to a parent_rate multiple (24M) */
214 div
= req
->rate
/ req
->parent_rate
;
215 req
->rate
= req
->parent_rate
* div
;
219 else if (div
/ 2 < 31)
221 else if (div
/ 3 < 31)
226 req
->n
= DIV_ROUND_UP(div
, (req
->k
+ 1));
230 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231 * PLL6x2 rate is calculated as follows
232 * rate = parent_rate * (n + 1) * (k + 1)
233 * parent_rate is always 24Mhz
236 static void sun6i_a31_get_pll6_factors(struct factors_request
*req
)
240 /* Normalize value to a parent_rate multiple (24M) */
241 div
= req
->rate
/ req
->parent_rate
;
242 req
->rate
= req
->parent_rate
* div
;
248 req
->n
= DIV_ROUND_UP(div
, (req
->k
+ 1)) - 1;
252 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253 * AHB rate is calculated as follows
254 * rate = parent_rate >> p
257 static void sun5i_a13_get_ahb_factors(struct factors_request
*req
)
262 if (req
->parent_rate
< req
->rate
)
263 req
->rate
= req
->parent_rate
;
266 * user manual says valid speed is 8k ~ 276M, but tests show it
267 * can work at speeds up to 300M, just after reparenting to pll6
269 if (req
->rate
< 8000)
271 if (req
->rate
> 300000000)
272 req
->rate
= 300000000;
274 div
= order_base_2(DIV_ROUND_UP(req
->parent_rate
, req
->rate
));
280 req
->rate
= req
->parent_rate
>> div
;
285 #define SUN6I_AHB1_PARENT_PLL6 3
288 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289 * AHB rate is calculated as follows
290 * rate = parent_rate >> p
292 * if parent is pll6, then
293 * parent_rate = pll6 rate / (m + 1)
296 static void sun6i_get_ahb1_factors(struct factors_request
*req
)
298 u8 div
, calcp
, calcm
= 1;
301 * clock can only divide, so we will never be able to achieve
302 * frequencies higher than the parent frequency
304 if (req
->parent_rate
&& req
->rate
> req
->parent_rate
)
305 req
->rate
= req
->parent_rate
;
307 div
= DIV_ROUND_UP(req
->parent_rate
, req
->rate
);
309 /* calculate pre-divider if parent is pll6 */
310 if (req
->parent_index
== SUN6I_AHB1_PARENT_PLL6
) {
313 else if (div
/ 2 < 4)
315 else if (div
/ 4 < 4)
320 calcm
= DIV_ROUND_UP(div
, 1 << calcp
);
322 calcp
= __roundup_pow_of_two(div
);
323 calcp
= calcp
> 3 ? 3 : calcp
;
326 req
->rate
= (req
->parent_rate
/ calcm
) >> calcp
;
332 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
335 static void sun6i_ahb1_recalc(struct factors_request
*req
)
337 req
->rate
= req
->parent_rate
;
339 /* apply pre-divider first if parent is pll6 */
340 if (req
->parent_index
== SUN6I_AHB1_PARENT_PLL6
)
341 req
->rate
/= req
->m
+ 1;
344 req
->rate
>>= req
->p
;
348 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349 * APB1 rate is calculated as follows
350 * rate = (parent_rate >> p) / (m + 1);
353 static void sun4i_get_apb1_factors(struct factors_request
*req
)
358 if (req
->parent_rate
< req
->rate
)
359 req
->rate
= req
->parent_rate
;
361 div
= DIV_ROUND_UP(req
->parent_rate
, req
->rate
);
376 calcm
= (div
>> calcp
) - 1;
378 req
->rate
= (req
->parent_rate
>> calcp
) / (calcm
+ 1);
387 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388 * CLK_OUT rate is calculated as follows
389 * rate = (parent_rate >> p) / (m + 1);
392 static void sun7i_a20_get_out_factors(struct factors_request
*req
)
394 u8 div
, calcm
, calcp
;
396 /* These clocks can only divide, so we will never be able to achieve
397 * frequencies higher than the parent frequency */
398 if (req
->rate
> req
->parent_rate
)
399 req
->rate
= req
->parent_rate
;
401 div
= DIV_ROUND_UP(req
->parent_rate
, req
->rate
);
405 else if (div
/ 2 < 32)
407 else if (div
/ 4 < 32)
412 calcm
= DIV_ROUND_UP(div
, 1 << calcp
);
414 req
->rate
= (req
->parent_rate
>> calcp
) / calcm
;
420 * sunxi_factors_clk_setup() - Setup function for factor clocks
423 static const struct clk_factors_config sun4i_pll1_config
= {
434 static const struct clk_factors_config sun6i_a31_pll1_config
= {
444 static const struct clk_factors_config sun8i_a23_pll1_config
= {
456 static const struct clk_factors_config sun4i_pll5_config
= {
463 static const struct clk_factors_config sun6i_a31_pll6_config
= {
471 static const struct clk_factors_config sun5i_a13_ahb_config
= {
476 static const struct clk_factors_config sun6i_ahb1_config
= {
483 static const struct clk_factors_config sun4i_apb1_config
= {
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config
= {
498 static const struct factors_data sun4i_pll1_data __initconst
= {
500 .table
= &sun4i_pll1_config
,
501 .getter
= sun4i_get_pll1_factors
,
504 static const struct factors_data sun6i_a31_pll1_data __initconst
= {
506 .table
= &sun6i_a31_pll1_config
,
507 .getter
= sun6i_a31_get_pll1_factors
,
510 static const struct factors_data sun8i_a23_pll1_data __initconst
= {
512 .table
= &sun8i_a23_pll1_config
,
513 .getter
= sun8i_a23_get_pll1_factors
,
516 static const struct factors_data sun7i_a20_pll4_data __initconst
= {
518 .table
= &sun4i_pll5_config
,
519 .getter
= sun4i_get_pll5_factors
,
522 static const struct factors_data sun4i_pll5_data __initconst
= {
524 .table
= &sun4i_pll5_config
,
525 .getter
= sun4i_get_pll5_factors
,
528 static const struct factors_data sun6i_a31_pll6_data __initconst
= {
530 .table
= &sun6i_a31_pll6_config
,
531 .getter
= sun6i_a31_get_pll6_factors
,
534 static const struct factors_data sun5i_a13_ahb_data __initconst
= {
536 .muxmask
= BIT(1) | BIT(0),
537 .table
= &sun5i_a13_ahb_config
,
538 .getter
= sun5i_a13_get_ahb_factors
,
541 static const struct factors_data sun6i_ahb1_data __initconst
= {
543 .muxmask
= BIT(1) | BIT(0),
544 .table
= &sun6i_ahb1_config
,
545 .getter
= sun6i_get_ahb1_factors
,
546 .recalc
= sun6i_ahb1_recalc
,
549 static const struct factors_data sun4i_apb1_data __initconst
= {
551 .muxmask
= BIT(1) | BIT(0),
552 .table
= &sun4i_apb1_config
,
553 .getter
= sun4i_get_apb1_factors
,
556 static const struct factors_data sun7i_a20_out_data __initconst
= {
559 .muxmask
= BIT(1) | BIT(0),
560 .table
= &sun7i_a20_out_config
,
561 .getter
= sun7i_a20_get_out_factors
,
564 static struct clk
* __init
sunxi_factors_clk_setup(struct device_node
*node
,
565 const struct factors_data
*data
)
569 reg
= of_iomap(node
, 0);
571 pr_err("Could not get registers for factors-clk: %s\n",
576 return sunxi_factors_register(node
, data
, &clk_lock
, reg
);
579 static void __init
sun4i_pll1_clk_setup(struct device_node
*node
)
581 sunxi_factors_clk_setup(node
, &sun4i_pll1_data
);
583 CLK_OF_DECLARE(sun4i_pll1
, "allwinner,sun4i-a10-pll1-clk",
584 sun4i_pll1_clk_setup
);
586 static void __init
sun6i_pll1_clk_setup(struct device_node
*node
)
588 sunxi_factors_clk_setup(node
, &sun6i_a31_pll1_data
);
590 CLK_OF_DECLARE(sun6i_pll1
, "allwinner,sun6i-a31-pll1-clk",
591 sun6i_pll1_clk_setup
);
593 static void __init
sun8i_pll1_clk_setup(struct device_node
*node
)
595 sunxi_factors_clk_setup(node
, &sun8i_a23_pll1_data
);
597 CLK_OF_DECLARE(sun8i_pll1
, "allwinner,sun8i-a23-pll1-clk",
598 sun8i_pll1_clk_setup
);
600 static void __init
sun7i_pll4_clk_setup(struct device_node
*node
)
602 sunxi_factors_clk_setup(node
, &sun7i_a20_pll4_data
);
604 CLK_OF_DECLARE(sun7i_pll4
, "allwinner,sun7i-a20-pll4-clk",
605 sun7i_pll4_clk_setup
);
607 static void __init
sun5i_ahb_clk_setup(struct device_node
*node
)
609 sunxi_factors_clk_setup(node
, &sun5i_a13_ahb_data
);
611 CLK_OF_DECLARE(sun5i_ahb
, "allwinner,sun5i-a13-ahb-clk",
612 sun5i_ahb_clk_setup
);
614 static void __init
sun6i_ahb1_clk_setup(struct device_node
*node
)
616 sunxi_factors_clk_setup(node
, &sun6i_ahb1_data
);
618 CLK_OF_DECLARE(sun6i_a31_ahb1
, "allwinner,sun6i-a31-ahb1-clk",
619 sun6i_ahb1_clk_setup
);
621 static void __init
sun4i_apb1_clk_setup(struct device_node
*node
)
623 sunxi_factors_clk_setup(node
, &sun4i_apb1_data
);
625 CLK_OF_DECLARE(sun4i_apb1
, "allwinner,sun4i-a10-apb1-clk",
626 sun4i_apb1_clk_setup
);
628 static void __init
sun7i_out_clk_setup(struct device_node
*node
)
630 sunxi_factors_clk_setup(node
, &sun7i_a20_out_data
);
632 CLK_OF_DECLARE(sun7i_out
, "allwinner,sun7i-a20-out-clk",
633 sun7i_out_clk_setup
);
637 * sunxi_mux_clk_setup() - Setup function for muxes
640 #define SUNXI_MUX_GATE_WIDTH 2
646 static const struct mux_data sun4i_cpu_mux_data __initconst
= {
650 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst
= {
654 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst
= {
658 static struct clk
* __init
sunxi_mux_clk_setup(struct device_node
*node
,
659 const struct mux_data
*data
)
662 const char *clk_name
= node
->name
;
663 const char *parents
[SUNXI_MAX_PARENTS
];
667 reg
= of_iomap(node
, 0);
669 pr_err("Could not map registers for mux-clk: %s\n",
670 of_node_full_name(node
));
674 i
= of_clk_parent_fill(node
, parents
, SUNXI_MAX_PARENTS
);
675 if (of_property_read_string(node
, "clock-output-names", &clk_name
)) {
676 pr_err("%s: could not read clock-output-names from \"%s\"\n",
677 __func__
, of_node_full_name(node
));
681 clk
= clk_register_mux(NULL
, clk_name
, parents
, i
,
682 CLK_SET_RATE_PARENT
, reg
,
683 data
->shift
, SUNXI_MUX_GATE_WIDTH
,
687 pr_err("%s: failed to register mux clock %s: %ld\n", __func__
,
688 clk_name
, PTR_ERR(clk
));
692 if (of_clk_add_provider(node
, of_clk_src_simple_get
, clk
)) {
693 pr_err("%s: failed to add clock provider for %s\n",
695 clk_unregister_divider(clk
);
705 static void __init
sun4i_cpu_clk_setup(struct device_node
*node
)
709 clk
= sunxi_mux_clk_setup(node
, &sun4i_cpu_mux_data
);
713 /* Protect CPU clock */
715 clk_prepare_enable(clk
);
717 CLK_OF_DECLARE(sun4i_cpu
, "allwinner,sun4i-a10-cpu-clk",
718 sun4i_cpu_clk_setup
);
720 static void __init
sun6i_ahb1_mux_clk_setup(struct device_node
*node
)
722 sunxi_mux_clk_setup(node
, &sun6i_a31_ahb1_mux_data
);
724 CLK_OF_DECLARE(sun6i_ahb1_mux
, "allwinner,sun6i-a31-ahb1-mux-clk",
725 sun6i_ahb1_mux_clk_setup
);
727 static void __init
sun8i_ahb2_clk_setup(struct device_node
*node
)
729 sunxi_mux_clk_setup(node
, &sun8i_h3_ahb2_mux_data
);
731 CLK_OF_DECLARE(sun8i_ahb2
, "allwinner,sun8i-h3-ahb2-clk",
732 sun8i_ahb2_clk_setup
);
736 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
743 const struct clk_div_table
*table
;
746 static const struct div_data sun4i_axi_data __initconst
= {
752 static const struct clk_div_table sun8i_a23_axi_table
[] __initconst
= {
753 { .val
= 0, .div
= 1 },
754 { .val
= 1, .div
= 2 },
755 { .val
= 2, .div
= 3 },
756 { .val
= 3, .div
= 4 },
757 { .val
= 4, .div
= 4 },
758 { .val
= 5, .div
= 4 },
759 { .val
= 6, .div
= 4 },
760 { .val
= 7, .div
= 4 },
764 static const struct div_data sun8i_a23_axi_data __initconst
= {
766 .table
= sun8i_a23_axi_table
,
769 static const struct div_data sun4i_ahb_data __initconst
= {
775 static const struct clk_div_table sun4i_apb0_table
[] __initconst
= {
776 { .val
= 0, .div
= 2 },
777 { .val
= 1, .div
= 2 },
778 { .val
= 2, .div
= 4 },
779 { .val
= 3, .div
= 8 },
783 static const struct div_data sun4i_apb0_data __initconst
= {
787 .table
= sun4i_apb0_table
,
790 static void __init
sunxi_divider_clk_setup(struct device_node
*node
,
791 const struct div_data
*data
)
794 const char *clk_name
= node
->name
;
795 const char *clk_parent
;
798 reg
= of_iomap(node
, 0);
800 pr_err("Could not map registers for mux-clk: %s\n",
801 of_node_full_name(node
));
805 clk_parent
= of_clk_get_parent_name(node
, 0);
807 if (of_property_read_string(node
, "clock-output-names", &clk_name
)) {
808 pr_err("%s: could not read clock-output-names from \"%s\"\n",
809 __func__
, of_node_full_name(node
));
813 clk
= clk_register_divider_table(NULL
, clk_name
, clk_parent
, 0,
814 reg
, data
->shift
, data
->width
,
815 data
->pow
? CLK_DIVIDER_POWER_OF_TWO
: 0,
816 data
->table
, &clk_lock
);
818 pr_err("%s: failed to register divider clock %s: %ld\n",
819 __func__
, clk_name
, PTR_ERR(clk
));
823 if (of_clk_add_provider(node
, of_clk_src_simple_get
, clk
)) {
824 pr_err("%s: failed to add clock provider for %s\n",
829 if (clk_register_clkdev(clk
, clk_name
, NULL
)) {
830 of_clk_del_provider(node
);
836 clk_unregister_divider(clk
);
842 static void __init
sun4i_ahb_clk_setup(struct device_node
*node
)
844 sunxi_divider_clk_setup(node
, &sun4i_ahb_data
);
846 CLK_OF_DECLARE(sun4i_ahb
, "allwinner,sun4i-a10-ahb-clk",
847 sun4i_ahb_clk_setup
);
849 static void __init
sun4i_apb0_clk_setup(struct device_node
*node
)
851 sunxi_divider_clk_setup(node
, &sun4i_apb0_data
);
853 CLK_OF_DECLARE(sun4i_apb0
, "allwinner,sun4i-a10-apb0-clk",
854 sun4i_apb0_clk_setup
);
856 static void __init
sun4i_axi_clk_setup(struct device_node
*node
)
858 sunxi_divider_clk_setup(node
, &sun4i_axi_data
);
860 CLK_OF_DECLARE(sun4i_axi
, "allwinner,sun4i-a10-axi-clk",
861 sun4i_axi_clk_setup
);
863 static void __init
sun8i_axi_clk_setup(struct device_node
*node
)
865 sunxi_divider_clk_setup(node
, &sun8i_a23_axi_data
);
867 CLK_OF_DECLARE(sun8i_axi
, "allwinner,sun8i-a23-axi-clk",
868 sun8i_axi_clk_setup
);
873 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
876 #define SUNXI_GATES_MAX_SIZE 64
879 DECLARE_BITMAP(mask
, SUNXI_GATES_MAX_SIZE
);
883 * sunxi_divs_clk_setup() helper data
886 #define SUNXI_DIVS_MAX_QTY 4
887 #define SUNXI_DIVISOR_WIDTH 2
890 const struct factors_data
*factors
; /* data for the factor clock */
891 int ndivs
; /* number of outputs */
893 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
894 * self or base factor clock refers to the output from the pll
895 * itself. The remaining refer to fixed or configurable divider
899 u8 self
; /* is it the base factor clock? (only one) */
900 u8 fixed
; /* is it a fixed divisor? if not... */
901 struct clk_div_table
*table
; /* is it a table based divisor? */
902 u8 shift
; /* otherwise it's a normal divisor with this shift */
903 u8 pow
; /* is it power-of-two based? */
904 u8 gate
; /* is it independently gateable? */
905 } div
[SUNXI_DIVS_MAX_QTY
];
908 static struct clk_div_table pll6_sata_tbl
[] = {
909 { .val
= 0, .div
= 6, },
910 { .val
= 1, .div
= 12, },
911 { .val
= 2, .div
= 18, },
912 { .val
= 3, .div
= 24, },
916 static const struct divs_data pll5_divs_data __initconst
= {
917 .factors
= &sun4i_pll5_data
,
920 { .shift
= 0, .pow
= 0, }, /* M, DDR */
921 { .shift
= 16, .pow
= 1, }, /* P, other */
922 /* No output for the base factor clock */
926 static const struct divs_data pll6_divs_data __initconst
= {
927 .factors
= &sun4i_pll5_data
,
930 { .shift
= 0, .table
= pll6_sata_tbl
, .gate
= 14 }, /* M, SATA */
931 { .fixed
= 2 }, /* P, other */
932 { .self
= 1 }, /* base factor clock, 2x */
933 { .fixed
= 4 }, /* pll6 / 4, used as ahb input */
937 static const struct divs_data sun6i_a31_pll6_divs_data __initconst
= {
938 .factors
= &sun6i_a31_pll6_data
,
941 { .fixed
= 2 }, /* normal output */
942 { .self
= 1 }, /* base factor clock, 2x */
947 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
949 * These clocks look something like this
950 * ________________________
951 * | ___divisor 1---|----> to consumer
952 * parent >--| pll___/___divisor 2---|----> to consumer
953 * | \_______________|____> to consumer
954 * |________________________|
957 static struct clk
** __init
sunxi_divs_clk_setup(struct device_node
*node
,
958 const struct divs_data
*data
)
960 struct clk_onecell_data
*clk_data
;
962 const char *clk_name
;
963 struct clk
**clks
, *pclk
;
964 struct clk_hw
*gate_hw
, *rate_hw
;
965 const struct clk_ops
*rate_ops
;
966 struct clk_gate
*gate
= NULL
;
967 struct clk_fixed_factor
*fix_factor
;
968 struct clk_divider
*divider
;
969 struct factors_data factors
= *data
->factors
;
970 char *derived_name
= NULL
;
972 int ndivs
= SUNXI_DIVS_MAX_QTY
, i
= 0;
975 /* if number of children known, use it */
979 /* Try to find a name for base factor clock */
980 for (i
= 0; i
< ndivs
; i
++) {
981 if (data
->div
[i
].self
) {
982 of_property_read_string_index(node
, "clock-output-names",
987 /* If we don't have a .self clk use the first output-name up to '_' */
988 if (factors
.name
== NULL
) {
991 of_property_read_string_index(node
, "clock-output-names",
993 endp
= strchr(clk_name
, '_');
995 derived_name
= kstrndup(clk_name
, endp
- clk_name
,
997 factors
.name
= derived_name
;
999 factors
.name
= clk_name
;
1003 /* Set up factor clock that we will be dividing */
1004 pclk
= sunxi_factors_clk_setup(node
, &factors
);
1008 parent
= __clk_get_name(pclk
);
1009 kfree(derived_name
);
1011 reg
= of_iomap(node
, 0);
1013 pr_err("Could not map registers for divs-clk: %s\n",
1014 of_node_full_name(node
));
1018 clk_data
= kmalloc(sizeof(struct clk_onecell_data
), GFP_KERNEL
);
1022 clks
= kcalloc(ndivs
, sizeof(*clks
), GFP_KERNEL
);
1026 clk_data
->clks
= clks
;
1028 /* It's not a good idea to have automatic reparenting changing
1030 clkflags
= !strcmp("pll5", parent
) ? 0 : CLK_SET_RATE_PARENT
;
1032 for (i
= 0; i
< ndivs
; i
++) {
1033 if (of_property_read_string_index(node
, "clock-output-names",
1037 /* If this is the base factor clock, only update clks */
1038 if (data
->div
[i
].self
) {
1039 clk_data
->clks
[i
] = pclk
;
1047 /* If this leaf clock can be gated, create a gate */
1048 if (data
->div
[i
].gate
) {
1049 gate
= kzalloc(sizeof(*gate
), GFP_KERNEL
);
1054 gate
->bit_idx
= data
->div
[i
].gate
;
1055 gate
->lock
= &clk_lock
;
1057 gate_hw
= &gate
->hw
;
1060 /* Leaves can be fixed or configurable divisors */
1061 if (data
->div
[i
].fixed
) {
1062 fix_factor
= kzalloc(sizeof(*fix_factor
), GFP_KERNEL
);
1066 fix_factor
->mult
= 1;
1067 fix_factor
->div
= data
->div
[i
].fixed
;
1069 rate_hw
= &fix_factor
->hw
;
1070 rate_ops
= &clk_fixed_factor_ops
;
1072 divider
= kzalloc(sizeof(*divider
), GFP_KERNEL
);
1076 flags
= data
->div
[i
].pow
? CLK_DIVIDER_POWER_OF_TWO
: 0;
1079 divider
->shift
= data
->div
[i
].shift
;
1080 divider
->width
= SUNXI_DIVISOR_WIDTH
;
1081 divider
->flags
= flags
;
1082 divider
->lock
= &clk_lock
;
1083 divider
->table
= data
->div
[i
].table
;
1085 rate_hw
= ÷r
->hw
;
1086 rate_ops
= &clk_divider_ops
;
1089 /* Wrap the (potential) gate and the divisor on a composite
1090 * clock to unify them */
1091 clks
[i
] = clk_register_composite(NULL
, clk_name
, &parent
, 1,
1094 gate_hw
, &clk_gate_ops
,
1097 WARN_ON(IS_ERR(clk_data
->clks
[i
]));
1100 /* Adjust to the real max */
1101 clk_data
->clk_num
= i
;
1103 if (of_clk_add_provider(node
, of_clk_src_onecell_get
, clk_data
)) {
1104 pr_err("%s: failed to add clock provider for %s\n",
1105 __func__
, clk_name
);
1121 static void __init
sun4i_pll5_clk_setup(struct device_node
*node
)
1125 clks
= sunxi_divs_clk_setup(node
, &pll5_divs_data
);
1129 /* Protect PLL5_DDR */
1131 clk_prepare_enable(clks
[0]);
1133 CLK_OF_DECLARE(sun4i_pll5
, "allwinner,sun4i-a10-pll5-clk",
1134 sun4i_pll5_clk_setup
);
1136 static void __init
sun4i_pll6_clk_setup(struct device_node
*node
)
1138 sunxi_divs_clk_setup(node
, &pll6_divs_data
);
1140 CLK_OF_DECLARE(sun4i_pll6
, "allwinner,sun4i-a10-pll6-clk",
1141 sun4i_pll6_clk_setup
);
1143 static void __init
sun6i_pll6_clk_setup(struct device_node
*node
)
1145 sunxi_divs_clk_setup(node
, &sun6i_a31_pll6_divs_data
);
1147 CLK_OF_DECLARE(sun6i_pll6
, "allwinner,sun6i-a31-pll6-clk",
1148 sun6i_pll6_clk_setup
);
1153 * rate = parent_rate / (m + 1);
1155 static void sun6i_display_factors(struct factors_request
*req
)
1159 if (req
->rate
> req
->parent_rate
)
1160 req
->rate
= req
->parent_rate
;
1162 m
= DIV_ROUND_UP(req
->parent_rate
, req
->rate
);
1164 req
->rate
= req
->parent_rate
/ m
;
1168 static const struct clk_factors_config sun6i_display_config
= {
1173 static const struct factors_data sun6i_display_data __initconst
= {
1176 .muxmask
= BIT(2) | BIT(1) | BIT(0),
1177 .table
= &sun6i_display_config
,
1178 .getter
= sun6i_display_factors
,
1181 static void __init
sun6i_display_setup(struct device_node
*node
)
1183 sunxi_factors_clk_setup(node
, &sun6i_display_data
);
1185 CLK_OF_DECLARE(sun6i_display
, "allwinner,sun6i-a31-display-clk",
1186 sun6i_display_setup
);