sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / clocksource / tcb_clksrc.c
blobd4ca9962a7595a0206710a0dd4a95656f426ae8e
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
42 static void __iomem *tcaddr;
44 static u64 tc_get_cycles(struct clocksource *cs)
46 unsigned long flags;
47 u32 lower, upper;
49 raw_local_irq_save(flags);
50 do {
51 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
55 raw_local_irq_restore(flags);
56 return (upper << 16) | lower;
59 static u64 tc_get_cycles32(struct clocksource *cs)
61 return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
64 static struct clocksource clksrc = {
65 .name = "tcb_clksrc",
66 .rating = 200,
67 .read = tc_get_cycles,
68 .mask = CLOCKSOURCE_MASK(32),
69 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
74 struct tc_clkevt_device {
75 struct clock_event_device clkevt;
76 struct clk *clk;
77 void __iomem *regs;
80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
82 return container_of(clkevt, struct tc_clkevt_device, clkevt);
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
92 static u32 timer_clock;
94 static int tc_shutdown(struct clock_event_device *d)
96 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 void __iomem *regs = tcd->regs;
99 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
100 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
101 if (!clockevent_state_detached(d))
102 clk_disable(tcd->clk);
104 return 0;
107 static int tc_set_oneshot(struct clock_event_device *d)
109 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
110 void __iomem *regs = tcd->regs;
112 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
113 tc_shutdown(d);
115 clk_enable(tcd->clk);
117 /* slow clock, count up to RC, then irq and stop */
118 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
119 ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
120 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122 /* set_next_event() configures and starts the timer */
123 return 0;
126 static int tc_set_periodic(struct clock_event_device *d)
128 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
129 void __iomem *regs = tcd->regs;
131 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
132 tc_shutdown(d);
134 /* By not making the gentime core emulate periodic mode on top
135 * of oneshot, we get lower overhead and improved accuracy.
137 clk_enable(tcd->clk);
139 /* slow clock, count up to RC, then irq and restart */
140 __raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
141 regs + ATMEL_TC_REG(2, CMR));
142 __raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
144 /* Enable clock and interrupts on RC compare */
145 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
147 /* go go gadget! */
148 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
149 ATMEL_TC_REG(2, CCR));
150 return 0;
153 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
155 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
157 /* go go gadget! */
158 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
159 tcaddr + ATMEL_TC_REG(2, CCR));
160 return 0;
163 static struct tc_clkevt_device clkevt = {
164 .clkevt = {
165 .name = "tc_clkevt",
166 .features = CLOCK_EVT_FEAT_PERIODIC |
167 CLOCK_EVT_FEAT_ONESHOT,
168 /* Should be lower than at91rm9200's system timer */
169 .rating = 125,
170 .set_next_event = tc_next_event,
171 .set_state_shutdown = tc_shutdown,
172 .set_state_periodic = tc_set_periodic,
173 .set_state_oneshot = tc_set_oneshot,
177 static irqreturn_t ch2_irq(int irq, void *handle)
179 struct tc_clkevt_device *dev = handle;
180 unsigned int sr;
182 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
183 if (sr & ATMEL_TC_CPCS) {
184 dev->clkevt.event_handler(&dev->clkevt);
185 return IRQ_HANDLED;
188 return IRQ_NONE;
191 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
193 int ret;
194 struct clk *t2_clk = tc->clk[2];
195 int irq = tc->irq[2];
197 ret = clk_prepare_enable(tc->slow_clk);
198 if (ret)
199 return ret;
201 /* try to enable t2 clk to avoid future errors in mode change */
202 ret = clk_prepare_enable(t2_clk);
203 if (ret) {
204 clk_disable_unprepare(tc->slow_clk);
205 return ret;
208 clk_disable(t2_clk);
210 clkevt.regs = tc->regs;
211 clkevt.clk = t2_clk;
213 timer_clock = clk32k_divisor_idx;
215 clkevt.clkevt.cpumask = cpumask_of(0);
217 ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
218 if (ret) {
219 clk_unprepare(t2_clk);
220 clk_disable_unprepare(tc->slow_clk);
221 return ret;
224 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
226 return ret;
229 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
231 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
233 /* NOTHING */
234 return 0;
237 #endif
239 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
241 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
242 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
243 | ATMEL_TC_WAVE
244 | ATMEL_TC_WAVESEL_UP /* free-run */
245 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
246 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
247 tcaddr + ATMEL_TC_REG(0, CMR));
248 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
249 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
250 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
251 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
253 /* channel 1: waveform mode, input TIOA0 */
254 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
255 | ATMEL_TC_WAVE
256 | ATMEL_TC_WAVESEL_UP, /* free-run */
257 tcaddr + ATMEL_TC_REG(1, CMR));
258 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
259 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
261 /* chain channel 0 to channel 1*/
262 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
263 /* then reset all the timers */
264 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
267 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
269 /* channel 0: waveform mode, input mclk/8 */
270 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
271 | ATMEL_TC_WAVE
272 | ATMEL_TC_WAVESEL_UP, /* free-run */
273 tcaddr + ATMEL_TC_REG(0, CMR));
274 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
275 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
277 /* then reset all the timers */
278 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
281 static int __init tcb_clksrc_init(void)
283 static char bootinfo[] __initdata
284 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
286 struct platform_device *pdev;
287 struct atmel_tc *tc;
288 struct clk *t0_clk;
289 u32 rate, divided_rate = 0;
290 int best_divisor_idx = -1;
291 int clk32k_divisor_idx = -1;
292 int i;
293 int ret;
295 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
296 if (!tc) {
297 pr_debug("can't alloc TC for clocksource\n");
298 return -ENODEV;
300 tcaddr = tc->regs;
301 pdev = tc->pdev;
303 t0_clk = tc->clk[0];
304 ret = clk_prepare_enable(t0_clk);
305 if (ret) {
306 pr_debug("can't enable T0 clk\n");
307 goto err_free_tc;
310 /* How fast will we be counting? Pick something over 5 MHz. */
311 rate = (u32) clk_get_rate(t0_clk);
312 for (i = 0; i < 5; i++) {
313 unsigned divisor = atmel_tc_divisors[i];
314 unsigned tmp;
316 /* remember 32 KiHz clock for later */
317 if (!divisor) {
318 clk32k_divisor_idx = i;
319 continue;
322 tmp = rate / divisor;
323 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
324 if (best_divisor_idx > 0) {
325 if (tmp < 5 * 1000 * 1000)
326 continue;
328 divided_rate = tmp;
329 best_divisor_idx = i;
333 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
334 divided_rate / 1000000,
335 ((divided_rate + 500000) % 1000000) / 1000);
337 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
338 /* use apropriate function to read 32 bit counter */
339 clksrc.read = tc_get_cycles32;
340 /* setup ony channel 0 */
341 tcb_setup_single_chan(tc, best_divisor_idx);
342 } else {
343 /* tclib will give us three clocks no matter what the
344 * underlying platform supports.
346 ret = clk_prepare_enable(tc->clk[1]);
347 if (ret) {
348 pr_debug("can't enable T1 clk\n");
349 goto err_disable_t0;
351 /* setup both channel 0 & 1 */
352 tcb_setup_dual_chan(tc, best_divisor_idx);
355 /* and away we go! */
356 ret = clocksource_register_hz(&clksrc, divided_rate);
357 if (ret)
358 goto err_disable_t1;
360 /* channel 2: periodic and oneshot timer support */
361 ret = setup_clkevents(tc, clk32k_divisor_idx);
362 if (ret)
363 goto err_unregister_clksrc;
365 return 0;
367 err_unregister_clksrc:
368 clocksource_unregister(&clksrc);
370 err_disable_t1:
371 if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
372 clk_disable_unprepare(tc->clk[1]);
374 err_disable_t0:
375 clk_disable_unprepare(t0_clk);
377 err_free_tc:
378 atmel_tc_free(tc);
379 return ret;
381 arch_initcall(tcb_clksrc_init);