sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-ops.c
blob50fae4442801ca76f0411d7023c915895661fe5a
1 /*
2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <linux/ccp.h>
21 #include "ccp-dev.h"
23 /* SHA initial context values */
24 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
25 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
26 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
27 cpu_to_be32(SHA1_H4),
30 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
31 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
32 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
33 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
34 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
37 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
38 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
39 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
40 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
41 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
44 #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
45 ccp_gen_jobid(ccp) : 0)
47 static u32 ccp_gen_jobid(struct ccp_device *ccp)
49 return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
52 static void ccp_sg_free(struct ccp_sg_workarea *wa)
54 if (wa->dma_count)
55 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
57 wa->dma_count = 0;
60 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
61 struct scatterlist *sg, u64 len,
62 enum dma_data_direction dma_dir)
64 memset(wa, 0, sizeof(*wa));
66 wa->sg = sg;
67 if (!sg)
68 return 0;
70 wa->nents = sg_nents_for_len(sg, len);
71 if (wa->nents < 0)
72 return wa->nents;
74 wa->bytes_left = len;
75 wa->sg_used = 0;
77 if (len == 0)
78 return 0;
80 if (dma_dir == DMA_NONE)
81 return 0;
83 wa->dma_sg = sg;
84 wa->dma_dev = dev;
85 wa->dma_dir = dma_dir;
86 wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
87 if (!wa->dma_count)
88 return -ENOMEM;
90 return 0;
93 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
95 unsigned int nbytes = min_t(u64, len, wa->bytes_left);
97 if (!wa->sg)
98 return;
100 wa->sg_used += nbytes;
101 wa->bytes_left -= nbytes;
102 if (wa->sg_used == wa->sg->length) {
103 wa->sg = sg_next(wa->sg);
104 wa->sg_used = 0;
108 static void ccp_dm_free(struct ccp_dm_workarea *wa)
110 if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
111 if (wa->address)
112 dma_pool_free(wa->dma_pool, wa->address,
113 wa->dma.address);
114 } else {
115 if (wa->dma.address)
116 dma_unmap_single(wa->dev, wa->dma.address, wa->length,
117 wa->dma.dir);
118 kfree(wa->address);
121 wa->address = NULL;
122 wa->dma.address = 0;
125 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
126 struct ccp_cmd_queue *cmd_q,
127 unsigned int len,
128 enum dma_data_direction dir)
130 memset(wa, 0, sizeof(*wa));
132 if (!len)
133 return 0;
135 wa->dev = cmd_q->ccp->dev;
136 wa->length = len;
138 if (len <= CCP_DMAPOOL_MAX_SIZE) {
139 wa->dma_pool = cmd_q->dma_pool;
141 wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
142 &wa->dma.address);
143 if (!wa->address)
144 return -ENOMEM;
146 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
148 memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
149 } else {
150 wa->address = kzalloc(len, GFP_KERNEL);
151 if (!wa->address)
152 return -ENOMEM;
154 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
155 dir);
156 if (!wa->dma.address)
157 return -ENOMEM;
159 wa->dma.length = len;
161 wa->dma.dir = dir;
163 return 0;
166 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
167 struct scatterlist *sg, unsigned int sg_offset,
168 unsigned int len)
170 WARN_ON(!wa->address);
172 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
176 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
177 struct scatterlist *sg, unsigned int sg_offset,
178 unsigned int len)
180 WARN_ON(!wa->address);
182 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
186 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
187 struct scatterlist *sg,
188 unsigned int len, unsigned int se_len,
189 bool sign_extend)
191 unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
192 u8 buffer[CCP_REVERSE_BUF_SIZE];
194 if (WARN_ON(se_len > sizeof(buffer)))
195 return -EINVAL;
197 sg_offset = len;
198 dm_offset = 0;
199 nbytes = len;
200 while (nbytes) {
201 sb_len = min_t(unsigned int, nbytes, se_len);
202 sg_offset -= sb_len;
204 scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 0);
205 for (i = 0; i < sb_len; i++)
206 wa->address[dm_offset + i] = buffer[sb_len - i - 1];
208 dm_offset += sb_len;
209 nbytes -= sb_len;
211 if ((sb_len != se_len) && sign_extend) {
212 /* Must sign-extend to nearest sign-extend length */
213 if (wa->address[dm_offset - 1] & 0x80)
214 memset(wa->address + dm_offset, 0xff,
215 se_len - sb_len);
219 return 0;
222 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
223 struct scatterlist *sg,
224 unsigned int len)
226 unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
227 u8 buffer[CCP_REVERSE_BUF_SIZE];
229 sg_offset = 0;
230 dm_offset = len;
231 nbytes = len;
232 while (nbytes) {
233 sb_len = min_t(unsigned int, nbytes, sizeof(buffer));
234 dm_offset -= sb_len;
236 for (i = 0; i < sb_len; i++)
237 buffer[sb_len - i - 1] = wa->address[dm_offset + i];
238 scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 1);
240 sg_offset += sb_len;
241 nbytes -= sb_len;
245 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
247 ccp_dm_free(&data->dm_wa);
248 ccp_sg_free(&data->sg_wa);
251 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
252 struct scatterlist *sg, u64 sg_len,
253 unsigned int dm_len,
254 enum dma_data_direction dir)
256 int ret;
258 memset(data, 0, sizeof(*data));
260 ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
261 dir);
262 if (ret)
263 goto e_err;
265 ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
266 if (ret)
267 goto e_err;
269 return 0;
271 e_err:
272 ccp_free_data(data, cmd_q);
274 return ret;
277 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
279 struct ccp_sg_workarea *sg_wa = &data->sg_wa;
280 struct ccp_dm_workarea *dm_wa = &data->dm_wa;
281 unsigned int buf_count, nbytes;
283 /* Clear the buffer if setting it */
284 if (!from)
285 memset(dm_wa->address, 0, dm_wa->length);
287 if (!sg_wa->sg)
288 return 0;
290 /* Perform the copy operation
291 * nbytes will always be <= UINT_MAX because dm_wa->length is
292 * an unsigned int
294 nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
295 scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
296 nbytes, from);
298 /* Update the structures and generate the count */
299 buf_count = 0;
300 while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
301 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
302 dm_wa->length - buf_count);
303 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
305 buf_count += nbytes;
306 ccp_update_sg_workarea(sg_wa, nbytes);
309 return buf_count;
312 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
314 return ccp_queue_buf(data, 0);
317 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
319 return ccp_queue_buf(data, 1);
322 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
323 struct ccp_op *op, unsigned int block_size,
324 bool blocksize_op)
326 unsigned int sg_src_len, sg_dst_len, op_len;
328 /* The CCP can only DMA from/to one address each per operation. This
329 * requires that we find the smallest DMA area between the source
330 * and destination. The resulting len values will always be <= UINT_MAX
331 * because the dma length is an unsigned int.
333 sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
334 sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
336 if (dst) {
337 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
338 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
339 op_len = min(sg_src_len, sg_dst_len);
340 } else {
341 op_len = sg_src_len;
344 /* The data operation length will be at least block_size in length
345 * or the smaller of available sg room remaining for the source or
346 * the destination
348 op_len = max(op_len, block_size);
350 /* Unless we have to buffer data, there's no reason to wait */
351 op->soc = 0;
353 if (sg_src_len < block_size) {
354 /* Not enough data in the sg element, so it
355 * needs to be buffered into a blocksize chunk
357 int cp_len = ccp_fill_queue_buf(src);
359 op->soc = 1;
360 op->src.u.dma.address = src->dm_wa.dma.address;
361 op->src.u.dma.offset = 0;
362 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
363 } else {
364 /* Enough data in the sg element, but we need to
365 * adjust for any previously copied data
367 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
368 op->src.u.dma.offset = src->sg_wa.sg_used;
369 op->src.u.dma.length = op_len & ~(block_size - 1);
371 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
374 if (dst) {
375 if (sg_dst_len < block_size) {
376 /* Not enough room in the sg element or we're on the
377 * last piece of data (when using padding), so the
378 * output needs to be buffered into a blocksize chunk
380 op->soc = 1;
381 op->dst.u.dma.address = dst->dm_wa.dma.address;
382 op->dst.u.dma.offset = 0;
383 op->dst.u.dma.length = op->src.u.dma.length;
384 } else {
385 /* Enough room in the sg element, but we need to
386 * adjust for any previously used area
388 op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
389 op->dst.u.dma.offset = dst->sg_wa.sg_used;
390 op->dst.u.dma.length = op->src.u.dma.length;
395 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
396 struct ccp_op *op)
398 op->init = 0;
400 if (dst) {
401 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
402 ccp_empty_queue_buf(dst);
403 else
404 ccp_update_sg_workarea(&dst->sg_wa,
405 op->dst.u.dma.length);
409 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
410 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
411 u32 byte_swap, bool from)
413 struct ccp_op op;
415 memset(&op, 0, sizeof(op));
417 op.cmd_q = cmd_q;
418 op.jobid = jobid;
419 op.eom = 1;
421 if (from) {
422 op.soc = 1;
423 op.src.type = CCP_MEMTYPE_SB;
424 op.src.u.sb = sb;
425 op.dst.type = CCP_MEMTYPE_SYSTEM;
426 op.dst.u.dma.address = wa->dma.address;
427 op.dst.u.dma.length = wa->length;
428 } else {
429 op.src.type = CCP_MEMTYPE_SYSTEM;
430 op.src.u.dma.address = wa->dma.address;
431 op.src.u.dma.length = wa->length;
432 op.dst.type = CCP_MEMTYPE_SB;
433 op.dst.u.sb = sb;
436 op.u.passthru.byte_swap = byte_swap;
438 return cmd_q->ccp->vdata->perform->passthru(&op);
441 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
442 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
443 u32 byte_swap)
445 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
448 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
449 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
450 u32 byte_swap)
452 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
455 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
456 struct ccp_cmd *cmd)
458 struct ccp_aes_engine *aes = &cmd->u.aes;
459 struct ccp_dm_workarea key, ctx;
460 struct ccp_data src;
461 struct ccp_op op;
462 unsigned int dm_offset;
463 int ret;
465 if (!((aes->key_len == AES_KEYSIZE_128) ||
466 (aes->key_len == AES_KEYSIZE_192) ||
467 (aes->key_len == AES_KEYSIZE_256)))
468 return -EINVAL;
470 if (aes->src_len & (AES_BLOCK_SIZE - 1))
471 return -EINVAL;
473 if (aes->iv_len != AES_BLOCK_SIZE)
474 return -EINVAL;
476 if (!aes->key || !aes->iv || !aes->src)
477 return -EINVAL;
479 if (aes->cmac_final) {
480 if (aes->cmac_key_len != AES_BLOCK_SIZE)
481 return -EINVAL;
483 if (!aes->cmac_key)
484 return -EINVAL;
487 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
488 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
490 ret = -EIO;
491 memset(&op, 0, sizeof(op));
492 op.cmd_q = cmd_q;
493 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
494 op.sb_key = cmd_q->sb_key;
495 op.sb_ctx = cmd_q->sb_ctx;
496 op.init = 1;
497 op.u.aes.type = aes->type;
498 op.u.aes.mode = aes->mode;
499 op.u.aes.action = aes->action;
501 /* All supported key sizes fit in a single (32-byte) SB entry
502 * and must be in little endian format. Use the 256-bit byte
503 * swap passthru option to convert from big endian to little
504 * endian.
506 ret = ccp_init_dm_workarea(&key, cmd_q,
507 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
508 DMA_TO_DEVICE);
509 if (ret)
510 return ret;
512 dm_offset = CCP_SB_BYTES - aes->key_len;
513 ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
514 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
515 CCP_PASSTHRU_BYTESWAP_256BIT);
516 if (ret) {
517 cmd->engine_error = cmd_q->cmd_error;
518 goto e_key;
521 /* The AES context fits in a single (32-byte) SB entry and
522 * must be in little endian format. Use the 256-bit byte swap
523 * passthru option to convert from big endian to little endian.
525 ret = ccp_init_dm_workarea(&ctx, cmd_q,
526 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
527 DMA_BIDIRECTIONAL);
528 if (ret)
529 goto e_key;
531 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
532 ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
533 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
534 CCP_PASSTHRU_BYTESWAP_256BIT);
535 if (ret) {
536 cmd->engine_error = cmd_q->cmd_error;
537 goto e_ctx;
540 /* Send data to the CCP AES engine */
541 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
542 AES_BLOCK_SIZE, DMA_TO_DEVICE);
543 if (ret)
544 goto e_ctx;
546 while (src.sg_wa.bytes_left) {
547 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
548 if (aes->cmac_final && !src.sg_wa.bytes_left) {
549 op.eom = 1;
551 /* Push the K1/K2 key to the CCP now */
552 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
553 op.sb_ctx,
554 CCP_PASSTHRU_BYTESWAP_256BIT);
555 if (ret) {
556 cmd->engine_error = cmd_q->cmd_error;
557 goto e_src;
560 ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
561 aes->cmac_key_len);
562 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
563 CCP_PASSTHRU_BYTESWAP_256BIT);
564 if (ret) {
565 cmd->engine_error = cmd_q->cmd_error;
566 goto e_src;
570 ret = cmd_q->ccp->vdata->perform->aes(&op);
571 if (ret) {
572 cmd->engine_error = cmd_q->cmd_error;
573 goto e_src;
576 ccp_process_data(&src, NULL, &op);
579 /* Retrieve the AES context - convert from LE to BE using
580 * 32-byte (256-bit) byteswapping
582 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
583 CCP_PASSTHRU_BYTESWAP_256BIT);
584 if (ret) {
585 cmd->engine_error = cmd_q->cmd_error;
586 goto e_src;
589 /* ...but we only need AES_BLOCK_SIZE bytes */
590 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
591 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
593 e_src:
594 ccp_free_data(&src, cmd_q);
596 e_ctx:
597 ccp_dm_free(&ctx);
599 e_key:
600 ccp_dm_free(&key);
602 return ret;
605 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
607 struct ccp_aes_engine *aes = &cmd->u.aes;
608 struct ccp_dm_workarea key, ctx;
609 struct ccp_data src, dst;
610 struct ccp_op op;
611 unsigned int dm_offset;
612 bool in_place = false;
613 int ret;
615 if (aes->mode == CCP_AES_MODE_CMAC)
616 return ccp_run_aes_cmac_cmd(cmd_q, cmd);
618 if (!((aes->key_len == AES_KEYSIZE_128) ||
619 (aes->key_len == AES_KEYSIZE_192) ||
620 (aes->key_len == AES_KEYSIZE_256)))
621 return -EINVAL;
623 if (((aes->mode == CCP_AES_MODE_ECB) ||
624 (aes->mode == CCP_AES_MODE_CBC) ||
625 (aes->mode == CCP_AES_MODE_CFB)) &&
626 (aes->src_len & (AES_BLOCK_SIZE - 1)))
627 return -EINVAL;
629 if (!aes->key || !aes->src || !aes->dst)
630 return -EINVAL;
632 if (aes->mode != CCP_AES_MODE_ECB) {
633 if (aes->iv_len != AES_BLOCK_SIZE)
634 return -EINVAL;
636 if (!aes->iv)
637 return -EINVAL;
640 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
641 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
643 ret = -EIO;
644 memset(&op, 0, sizeof(op));
645 op.cmd_q = cmd_q;
646 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
647 op.sb_key = cmd_q->sb_key;
648 op.sb_ctx = cmd_q->sb_ctx;
649 op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
650 op.u.aes.type = aes->type;
651 op.u.aes.mode = aes->mode;
652 op.u.aes.action = aes->action;
654 /* All supported key sizes fit in a single (32-byte) SB entry
655 * and must be in little endian format. Use the 256-bit byte
656 * swap passthru option to convert from big endian to little
657 * endian.
659 ret = ccp_init_dm_workarea(&key, cmd_q,
660 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
661 DMA_TO_DEVICE);
662 if (ret)
663 return ret;
665 dm_offset = CCP_SB_BYTES - aes->key_len;
666 ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
667 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
668 CCP_PASSTHRU_BYTESWAP_256BIT);
669 if (ret) {
670 cmd->engine_error = cmd_q->cmd_error;
671 goto e_key;
674 /* The AES context fits in a single (32-byte) SB entry and
675 * must be in little endian format. Use the 256-bit byte swap
676 * passthru option to convert from big endian to little endian.
678 ret = ccp_init_dm_workarea(&ctx, cmd_q,
679 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
680 DMA_BIDIRECTIONAL);
681 if (ret)
682 goto e_key;
684 if (aes->mode != CCP_AES_MODE_ECB) {
685 /* Load the AES context - convert to LE */
686 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
687 ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
688 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
689 CCP_PASSTHRU_BYTESWAP_256BIT);
690 if (ret) {
691 cmd->engine_error = cmd_q->cmd_error;
692 goto e_ctx;
696 /* Prepare the input and output data workareas. For in-place
697 * operations we need to set the dma direction to BIDIRECTIONAL
698 * and copy the src workarea to the dst workarea.
700 if (sg_virt(aes->src) == sg_virt(aes->dst))
701 in_place = true;
703 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
704 AES_BLOCK_SIZE,
705 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
706 if (ret)
707 goto e_ctx;
709 if (in_place) {
710 dst = src;
711 } else {
712 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
713 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
714 if (ret)
715 goto e_src;
718 /* Send data to the CCP AES engine */
719 while (src.sg_wa.bytes_left) {
720 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
721 if (!src.sg_wa.bytes_left) {
722 op.eom = 1;
724 /* Since we don't retrieve the AES context in ECB
725 * mode we have to wait for the operation to complete
726 * on the last piece of data
728 if (aes->mode == CCP_AES_MODE_ECB)
729 op.soc = 1;
732 ret = cmd_q->ccp->vdata->perform->aes(&op);
733 if (ret) {
734 cmd->engine_error = cmd_q->cmd_error;
735 goto e_dst;
738 ccp_process_data(&src, &dst, &op);
741 if (aes->mode != CCP_AES_MODE_ECB) {
742 /* Retrieve the AES context - convert from LE to BE using
743 * 32-byte (256-bit) byteswapping
745 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
746 CCP_PASSTHRU_BYTESWAP_256BIT);
747 if (ret) {
748 cmd->engine_error = cmd_q->cmd_error;
749 goto e_dst;
752 /* ...but we only need AES_BLOCK_SIZE bytes */
753 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
754 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
757 e_dst:
758 if (!in_place)
759 ccp_free_data(&dst, cmd_q);
761 e_src:
762 ccp_free_data(&src, cmd_q);
764 e_ctx:
765 ccp_dm_free(&ctx);
767 e_key:
768 ccp_dm_free(&key);
770 return ret;
773 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
774 struct ccp_cmd *cmd)
776 struct ccp_xts_aes_engine *xts = &cmd->u.xts;
777 struct ccp_dm_workarea key, ctx;
778 struct ccp_data src, dst;
779 struct ccp_op op;
780 unsigned int unit_size, dm_offset;
781 bool in_place = false;
782 int ret;
784 switch (xts->unit_size) {
785 case CCP_XTS_AES_UNIT_SIZE_16:
786 unit_size = 16;
787 break;
788 case CCP_XTS_AES_UNIT_SIZE_512:
789 unit_size = 512;
790 break;
791 case CCP_XTS_AES_UNIT_SIZE_1024:
792 unit_size = 1024;
793 break;
794 case CCP_XTS_AES_UNIT_SIZE_2048:
795 unit_size = 2048;
796 break;
797 case CCP_XTS_AES_UNIT_SIZE_4096:
798 unit_size = 4096;
799 break;
801 default:
802 return -EINVAL;
805 if (xts->key_len != AES_KEYSIZE_128)
806 return -EINVAL;
808 if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
809 return -EINVAL;
811 if (xts->iv_len != AES_BLOCK_SIZE)
812 return -EINVAL;
814 if (!xts->key || !xts->iv || !xts->src || !xts->dst)
815 return -EINVAL;
817 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
818 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
820 ret = -EIO;
821 memset(&op, 0, sizeof(op));
822 op.cmd_q = cmd_q;
823 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
824 op.sb_key = cmd_q->sb_key;
825 op.sb_ctx = cmd_q->sb_ctx;
826 op.init = 1;
827 op.u.xts.action = xts->action;
828 op.u.xts.unit_size = xts->unit_size;
830 /* All supported key sizes fit in a single (32-byte) SB entry
831 * and must be in little endian format. Use the 256-bit byte
832 * swap passthru option to convert from big endian to little
833 * endian.
835 ret = ccp_init_dm_workarea(&key, cmd_q,
836 CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
837 DMA_TO_DEVICE);
838 if (ret)
839 return ret;
841 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
842 ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
843 ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
844 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
845 CCP_PASSTHRU_BYTESWAP_256BIT);
846 if (ret) {
847 cmd->engine_error = cmd_q->cmd_error;
848 goto e_key;
851 /* The AES context fits in a single (32-byte) SB entry and
852 * for XTS is already in little endian format so no byte swapping
853 * is needed.
855 ret = ccp_init_dm_workarea(&ctx, cmd_q,
856 CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
857 DMA_BIDIRECTIONAL);
858 if (ret)
859 goto e_key;
861 ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
862 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
863 CCP_PASSTHRU_BYTESWAP_NOOP);
864 if (ret) {
865 cmd->engine_error = cmd_q->cmd_error;
866 goto e_ctx;
869 /* Prepare the input and output data workareas. For in-place
870 * operations we need to set the dma direction to BIDIRECTIONAL
871 * and copy the src workarea to the dst workarea.
873 if (sg_virt(xts->src) == sg_virt(xts->dst))
874 in_place = true;
876 ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
877 unit_size,
878 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
879 if (ret)
880 goto e_ctx;
882 if (in_place) {
883 dst = src;
884 } else {
885 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
886 unit_size, DMA_FROM_DEVICE);
887 if (ret)
888 goto e_src;
891 /* Send data to the CCP AES engine */
892 while (src.sg_wa.bytes_left) {
893 ccp_prepare_data(&src, &dst, &op, unit_size, true);
894 if (!src.sg_wa.bytes_left)
895 op.eom = 1;
897 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
898 if (ret) {
899 cmd->engine_error = cmd_q->cmd_error;
900 goto e_dst;
903 ccp_process_data(&src, &dst, &op);
906 /* Retrieve the AES context - convert from LE to BE using
907 * 32-byte (256-bit) byteswapping
909 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
910 CCP_PASSTHRU_BYTESWAP_256BIT);
911 if (ret) {
912 cmd->engine_error = cmd_q->cmd_error;
913 goto e_dst;
916 /* ...but we only need AES_BLOCK_SIZE bytes */
917 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
918 ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
920 e_dst:
921 if (!in_place)
922 ccp_free_data(&dst, cmd_q);
924 e_src:
925 ccp_free_data(&src, cmd_q);
927 e_ctx:
928 ccp_dm_free(&ctx);
930 e_key:
931 ccp_dm_free(&key);
933 return ret;
936 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
938 struct ccp_sha_engine *sha = &cmd->u.sha;
939 struct ccp_dm_workarea ctx;
940 struct ccp_data src;
941 struct ccp_op op;
942 unsigned int ioffset, ooffset;
943 unsigned int digest_size;
944 int sb_count;
945 const void *init;
946 u64 block_size;
947 int ctx_size;
948 int ret;
950 switch (sha->type) {
951 case CCP_SHA_TYPE_1:
952 if (sha->ctx_len < SHA1_DIGEST_SIZE)
953 return -EINVAL;
954 block_size = SHA1_BLOCK_SIZE;
955 break;
956 case CCP_SHA_TYPE_224:
957 if (sha->ctx_len < SHA224_DIGEST_SIZE)
958 return -EINVAL;
959 block_size = SHA224_BLOCK_SIZE;
960 break;
961 case CCP_SHA_TYPE_256:
962 if (sha->ctx_len < SHA256_DIGEST_SIZE)
963 return -EINVAL;
964 block_size = SHA256_BLOCK_SIZE;
965 break;
966 default:
967 return -EINVAL;
970 if (!sha->ctx)
971 return -EINVAL;
973 if (!sha->final && (sha->src_len & (block_size - 1)))
974 return -EINVAL;
976 /* The version 3 device can't handle zero-length input */
977 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
979 if (!sha->src_len) {
980 unsigned int digest_len;
981 const u8 *sha_zero;
983 /* Not final, just return */
984 if (!sha->final)
985 return 0;
987 /* CCP can't do a zero length sha operation so the
988 * caller must buffer the data.
990 if (sha->msg_bits)
991 return -EINVAL;
993 /* The CCP cannot perform zero-length sha operations
994 * so the caller is required to buffer data for the
995 * final operation. However, a sha operation for a
996 * message with a total length of zero is valid so
997 * known values are required to supply the result.
999 switch (sha->type) {
1000 case CCP_SHA_TYPE_1:
1001 sha_zero = sha1_zero_message_hash;
1002 digest_len = SHA1_DIGEST_SIZE;
1003 break;
1004 case CCP_SHA_TYPE_224:
1005 sha_zero = sha224_zero_message_hash;
1006 digest_len = SHA224_DIGEST_SIZE;
1007 break;
1008 case CCP_SHA_TYPE_256:
1009 sha_zero = sha256_zero_message_hash;
1010 digest_len = SHA256_DIGEST_SIZE;
1011 break;
1012 default:
1013 return -EINVAL;
1016 scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1017 digest_len, 1);
1019 return 0;
1023 /* Set variables used throughout */
1024 switch (sha->type) {
1025 case CCP_SHA_TYPE_1:
1026 digest_size = SHA1_DIGEST_SIZE;
1027 init = (void *) ccp_sha1_init;
1028 ctx_size = SHA1_DIGEST_SIZE;
1029 sb_count = 1;
1030 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1031 ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1032 else
1033 ooffset = ioffset = 0;
1034 break;
1035 case CCP_SHA_TYPE_224:
1036 digest_size = SHA224_DIGEST_SIZE;
1037 init = (void *) ccp_sha224_init;
1038 ctx_size = SHA256_DIGEST_SIZE;
1039 sb_count = 1;
1040 ioffset = 0;
1041 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1042 ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1043 else
1044 ooffset = 0;
1045 break;
1046 case CCP_SHA_TYPE_256:
1047 digest_size = SHA256_DIGEST_SIZE;
1048 init = (void *) ccp_sha256_init;
1049 ctx_size = SHA256_DIGEST_SIZE;
1050 sb_count = 1;
1051 ooffset = ioffset = 0;
1052 break;
1053 default:
1054 ret = -EINVAL;
1055 goto e_data;
1058 /* For zero-length plaintext the src pointer is ignored;
1059 * otherwise both parts must be valid
1061 if (sha->src_len && !sha->src)
1062 return -EINVAL;
1064 memset(&op, 0, sizeof(op));
1065 op.cmd_q = cmd_q;
1066 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1067 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1068 op.u.sha.type = sha->type;
1069 op.u.sha.msg_bits = sha->msg_bits;
1071 ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1072 DMA_BIDIRECTIONAL);
1073 if (ret)
1074 return ret;
1075 if (sha->first) {
1076 switch (sha->type) {
1077 case CCP_SHA_TYPE_1:
1078 case CCP_SHA_TYPE_224:
1079 case CCP_SHA_TYPE_256:
1080 memcpy(ctx.address + ioffset, init, ctx_size);
1081 break;
1082 default:
1083 ret = -EINVAL;
1084 goto e_ctx;
1086 } else {
1087 /* Restore the context */
1088 ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1089 sb_count * CCP_SB_BYTES);
1092 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1093 CCP_PASSTHRU_BYTESWAP_256BIT);
1094 if (ret) {
1095 cmd->engine_error = cmd_q->cmd_error;
1096 goto e_ctx;
1099 if (sha->src) {
1100 /* Send data to the CCP SHA engine; block_size is set above */
1101 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1102 block_size, DMA_TO_DEVICE);
1103 if (ret)
1104 goto e_ctx;
1106 while (src.sg_wa.bytes_left) {
1107 ccp_prepare_data(&src, NULL, &op, block_size, false);
1108 if (sha->final && !src.sg_wa.bytes_left)
1109 op.eom = 1;
1111 ret = cmd_q->ccp->vdata->perform->sha(&op);
1112 if (ret) {
1113 cmd->engine_error = cmd_q->cmd_error;
1114 goto e_data;
1117 ccp_process_data(&src, NULL, &op);
1119 } else {
1120 op.eom = 1;
1121 ret = cmd_q->ccp->vdata->perform->sha(&op);
1122 if (ret) {
1123 cmd->engine_error = cmd_q->cmd_error;
1124 goto e_data;
1128 /* Retrieve the SHA context - convert from LE to BE using
1129 * 32-byte (256-bit) byteswapping to BE
1131 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1132 CCP_PASSTHRU_BYTESWAP_256BIT);
1133 if (ret) {
1134 cmd->engine_error = cmd_q->cmd_error;
1135 goto e_data;
1138 if (sha->final) {
1139 /* Finishing up, so get the digest */
1140 switch (sha->type) {
1141 case CCP_SHA_TYPE_1:
1142 case CCP_SHA_TYPE_224:
1143 case CCP_SHA_TYPE_256:
1144 ccp_get_dm_area(&ctx, ooffset,
1145 sha->ctx, 0,
1146 digest_size);
1147 break;
1148 default:
1149 ret = -EINVAL;
1150 goto e_ctx;
1152 } else {
1153 /* Stash the context */
1154 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1155 sb_count * CCP_SB_BYTES);
1158 if (sha->final && sha->opad) {
1159 /* HMAC operation, recursively perform final SHA */
1160 struct ccp_cmd hmac_cmd;
1161 struct scatterlist sg;
1162 u8 *hmac_buf;
1164 if (sha->opad_len != block_size) {
1165 ret = -EINVAL;
1166 goto e_data;
1169 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1170 if (!hmac_buf) {
1171 ret = -ENOMEM;
1172 goto e_data;
1174 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1176 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1177 switch (sha->type) {
1178 case CCP_SHA_TYPE_1:
1179 case CCP_SHA_TYPE_224:
1180 case CCP_SHA_TYPE_256:
1181 memcpy(hmac_buf + block_size,
1182 ctx.address + ooffset,
1183 digest_size);
1184 break;
1185 default:
1186 ret = -EINVAL;
1187 goto e_ctx;
1190 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1191 hmac_cmd.engine = CCP_ENGINE_SHA;
1192 hmac_cmd.u.sha.type = sha->type;
1193 hmac_cmd.u.sha.ctx = sha->ctx;
1194 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1195 hmac_cmd.u.sha.src = &sg;
1196 hmac_cmd.u.sha.src_len = block_size + digest_size;
1197 hmac_cmd.u.sha.opad = NULL;
1198 hmac_cmd.u.sha.opad_len = 0;
1199 hmac_cmd.u.sha.first = 1;
1200 hmac_cmd.u.sha.final = 1;
1201 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1203 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1204 if (ret)
1205 cmd->engine_error = hmac_cmd.engine_error;
1207 kfree(hmac_buf);
1210 e_data:
1211 if (sha->src)
1212 ccp_free_data(&src, cmd_q);
1214 e_ctx:
1215 ccp_dm_free(&ctx);
1217 return ret;
1220 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1222 struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1223 struct ccp_dm_workarea exp, src;
1224 struct ccp_data dst;
1225 struct ccp_op op;
1226 unsigned int sb_count, i_len, o_len;
1227 int ret;
1229 if (rsa->key_size > CCP_RSA_MAX_WIDTH)
1230 return -EINVAL;
1232 if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1233 return -EINVAL;
1235 /* The RSA modulus must precede the message being acted upon, so
1236 * it must be copied to a DMA area where the message and the
1237 * modulus can be concatenated. Therefore the input buffer
1238 * length required is twice the output buffer length (which
1239 * must be a multiple of 256-bits).
1241 o_len = ((rsa->key_size + 255) / 256) * 32;
1242 i_len = o_len * 2;
1244 sb_count = o_len / CCP_SB_BYTES;
1246 memset(&op, 0, sizeof(op));
1247 op.cmd_q = cmd_q;
1248 op.jobid = ccp_gen_jobid(cmd_q->ccp);
1249 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
1251 if (!op.sb_key)
1252 return -EIO;
1254 /* The RSA exponent may span multiple (32-byte) SB entries and must
1255 * be in little endian format. Reverse copy each 32-byte chunk
1256 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1257 * and each byte within that chunk and do not perform any byte swap
1258 * operations on the passthru operation.
1260 ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1261 if (ret)
1262 goto e_sb;
1264 ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1265 CCP_SB_BYTES, false);
1266 if (ret)
1267 goto e_exp;
1268 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1269 CCP_PASSTHRU_BYTESWAP_NOOP);
1270 if (ret) {
1271 cmd->engine_error = cmd_q->cmd_error;
1272 goto e_exp;
1275 /* Concatenate the modulus and the message. Both the modulus and
1276 * the operands must be in little endian format. Since the input
1277 * is in big endian format it must be converted.
1279 ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1280 if (ret)
1281 goto e_exp;
1283 ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1284 CCP_SB_BYTES, false);
1285 if (ret)
1286 goto e_src;
1287 src.address += o_len; /* Adjust the address for the copy operation */
1288 ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1289 CCP_SB_BYTES, false);
1290 if (ret)
1291 goto e_src;
1292 src.address -= o_len; /* Reset the address to original value */
1294 /* Prepare the output area for the operation */
1295 ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1296 o_len, DMA_FROM_DEVICE);
1297 if (ret)
1298 goto e_src;
1300 op.soc = 1;
1301 op.src.u.dma.address = src.dma.address;
1302 op.src.u.dma.offset = 0;
1303 op.src.u.dma.length = i_len;
1304 op.dst.u.dma.address = dst.dm_wa.dma.address;
1305 op.dst.u.dma.offset = 0;
1306 op.dst.u.dma.length = o_len;
1308 op.u.rsa.mod_size = rsa->key_size;
1309 op.u.rsa.input_len = i_len;
1311 ret = cmd_q->ccp->vdata->perform->rsa(&op);
1312 if (ret) {
1313 cmd->engine_error = cmd_q->cmd_error;
1314 goto e_dst;
1317 ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
1319 e_dst:
1320 ccp_free_data(&dst, cmd_q);
1322 e_src:
1323 ccp_dm_free(&src);
1325 e_exp:
1326 ccp_dm_free(&exp);
1328 e_sb:
1329 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1331 return ret;
1334 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1335 struct ccp_cmd *cmd)
1337 struct ccp_passthru_engine *pt = &cmd->u.passthru;
1338 struct ccp_dm_workarea mask;
1339 struct ccp_data src, dst;
1340 struct ccp_op op;
1341 bool in_place = false;
1342 unsigned int i;
1343 int ret = 0;
1345 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1346 return -EINVAL;
1348 if (!pt->src || !pt->dst)
1349 return -EINVAL;
1351 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1352 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1353 return -EINVAL;
1354 if (!pt->mask)
1355 return -EINVAL;
1358 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1360 memset(&op, 0, sizeof(op));
1361 op.cmd_q = cmd_q;
1362 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1364 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1365 /* Load the mask */
1366 op.sb_key = cmd_q->sb_key;
1368 ret = ccp_init_dm_workarea(&mask, cmd_q,
1369 CCP_PASSTHRU_SB_COUNT *
1370 CCP_SB_BYTES,
1371 DMA_TO_DEVICE);
1372 if (ret)
1373 return ret;
1375 ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1376 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1377 CCP_PASSTHRU_BYTESWAP_NOOP);
1378 if (ret) {
1379 cmd->engine_error = cmd_q->cmd_error;
1380 goto e_mask;
1384 /* Prepare the input and output data workareas. For in-place
1385 * operations we need to set the dma direction to BIDIRECTIONAL
1386 * and copy the src workarea to the dst workarea.
1388 if (sg_virt(pt->src) == sg_virt(pt->dst))
1389 in_place = true;
1391 ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1392 CCP_PASSTHRU_MASKSIZE,
1393 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1394 if (ret)
1395 goto e_mask;
1397 if (in_place) {
1398 dst = src;
1399 } else {
1400 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1401 CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1402 if (ret)
1403 goto e_src;
1406 /* Send data to the CCP Passthru engine
1407 * Because the CCP engine works on a single source and destination
1408 * dma address at a time, each entry in the source scatterlist
1409 * (after the dma_map_sg call) must be less than or equal to the
1410 * (remaining) length in the destination scatterlist entry and the
1411 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1413 dst.sg_wa.sg_used = 0;
1414 for (i = 1; i <= src.sg_wa.dma_count; i++) {
1415 if (!dst.sg_wa.sg ||
1416 (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1417 ret = -EINVAL;
1418 goto e_dst;
1421 if (i == src.sg_wa.dma_count) {
1422 op.eom = 1;
1423 op.soc = 1;
1426 op.src.type = CCP_MEMTYPE_SYSTEM;
1427 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1428 op.src.u.dma.offset = 0;
1429 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1431 op.dst.type = CCP_MEMTYPE_SYSTEM;
1432 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1433 op.dst.u.dma.offset = dst.sg_wa.sg_used;
1434 op.dst.u.dma.length = op.src.u.dma.length;
1436 ret = cmd_q->ccp->vdata->perform->passthru(&op);
1437 if (ret) {
1438 cmd->engine_error = cmd_q->cmd_error;
1439 goto e_dst;
1442 dst.sg_wa.sg_used += src.sg_wa.sg->length;
1443 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1444 dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1445 dst.sg_wa.sg_used = 0;
1447 src.sg_wa.sg = sg_next(src.sg_wa.sg);
1450 e_dst:
1451 if (!in_place)
1452 ccp_free_data(&dst, cmd_q);
1454 e_src:
1455 ccp_free_data(&src, cmd_q);
1457 e_mask:
1458 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1459 ccp_dm_free(&mask);
1461 return ret;
1464 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
1465 struct ccp_cmd *cmd)
1467 struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
1468 struct ccp_dm_workarea mask;
1469 struct ccp_op op;
1470 int ret;
1472 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1473 return -EINVAL;
1475 if (!pt->src_dma || !pt->dst_dma)
1476 return -EINVAL;
1478 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1479 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1480 return -EINVAL;
1481 if (!pt->mask)
1482 return -EINVAL;
1485 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1487 memset(&op, 0, sizeof(op));
1488 op.cmd_q = cmd_q;
1489 op.jobid = ccp_gen_jobid(cmd_q->ccp);
1491 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1492 /* Load the mask */
1493 op.sb_key = cmd_q->sb_key;
1495 mask.length = pt->mask_len;
1496 mask.dma.address = pt->mask;
1497 mask.dma.length = pt->mask_len;
1499 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1500 CCP_PASSTHRU_BYTESWAP_NOOP);
1501 if (ret) {
1502 cmd->engine_error = cmd_q->cmd_error;
1503 return ret;
1507 /* Send data to the CCP Passthru engine */
1508 op.eom = 1;
1509 op.soc = 1;
1511 op.src.type = CCP_MEMTYPE_SYSTEM;
1512 op.src.u.dma.address = pt->src_dma;
1513 op.src.u.dma.offset = 0;
1514 op.src.u.dma.length = pt->src_len;
1516 op.dst.type = CCP_MEMTYPE_SYSTEM;
1517 op.dst.u.dma.address = pt->dst_dma;
1518 op.dst.u.dma.offset = 0;
1519 op.dst.u.dma.length = pt->src_len;
1521 ret = cmd_q->ccp->vdata->perform->passthru(&op);
1522 if (ret)
1523 cmd->engine_error = cmd_q->cmd_error;
1525 return ret;
1528 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1530 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1531 struct ccp_dm_workarea src, dst;
1532 struct ccp_op op;
1533 int ret;
1534 u8 *save;
1536 if (!ecc->u.mm.operand_1 ||
1537 (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1538 return -EINVAL;
1540 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1541 if (!ecc->u.mm.operand_2 ||
1542 (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1543 return -EINVAL;
1545 if (!ecc->u.mm.result ||
1546 (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1547 return -EINVAL;
1549 memset(&op, 0, sizeof(op));
1550 op.cmd_q = cmd_q;
1551 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1553 /* Concatenate the modulus and the operands. Both the modulus and
1554 * the operands must be in little endian format. Since the input
1555 * is in big endian format it must be converted and placed in a
1556 * fixed length buffer.
1558 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1559 DMA_TO_DEVICE);
1560 if (ret)
1561 return ret;
1563 /* Save the workarea address since it is updated in order to perform
1564 * the concatenation
1566 save = src.address;
1568 /* Copy the ECC modulus */
1569 ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1570 CCP_ECC_OPERAND_SIZE, false);
1571 if (ret)
1572 goto e_src;
1573 src.address += CCP_ECC_OPERAND_SIZE;
1575 /* Copy the first operand */
1576 ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
1577 ecc->u.mm.operand_1_len,
1578 CCP_ECC_OPERAND_SIZE, false);
1579 if (ret)
1580 goto e_src;
1581 src.address += CCP_ECC_OPERAND_SIZE;
1583 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1584 /* Copy the second operand */
1585 ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
1586 ecc->u.mm.operand_2_len,
1587 CCP_ECC_OPERAND_SIZE, false);
1588 if (ret)
1589 goto e_src;
1590 src.address += CCP_ECC_OPERAND_SIZE;
1593 /* Restore the workarea address */
1594 src.address = save;
1596 /* Prepare the output area for the operation */
1597 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1598 DMA_FROM_DEVICE);
1599 if (ret)
1600 goto e_src;
1602 op.soc = 1;
1603 op.src.u.dma.address = src.dma.address;
1604 op.src.u.dma.offset = 0;
1605 op.src.u.dma.length = src.length;
1606 op.dst.u.dma.address = dst.dma.address;
1607 op.dst.u.dma.offset = 0;
1608 op.dst.u.dma.length = dst.length;
1610 op.u.ecc.function = cmd->u.ecc.function;
1612 ret = cmd_q->ccp->vdata->perform->ecc(&op);
1613 if (ret) {
1614 cmd->engine_error = cmd_q->cmd_error;
1615 goto e_dst;
1618 ecc->ecc_result = le16_to_cpup(
1619 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1620 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1621 ret = -EIO;
1622 goto e_dst;
1625 /* Save the ECC result */
1626 ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
1628 e_dst:
1629 ccp_dm_free(&dst);
1631 e_src:
1632 ccp_dm_free(&src);
1634 return ret;
1637 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1639 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1640 struct ccp_dm_workarea src, dst;
1641 struct ccp_op op;
1642 int ret;
1643 u8 *save;
1645 if (!ecc->u.pm.point_1.x ||
1646 (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1647 !ecc->u.pm.point_1.y ||
1648 (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1649 return -EINVAL;
1651 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1652 if (!ecc->u.pm.point_2.x ||
1653 (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1654 !ecc->u.pm.point_2.y ||
1655 (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1656 return -EINVAL;
1657 } else {
1658 if (!ecc->u.pm.domain_a ||
1659 (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1660 return -EINVAL;
1662 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1663 if (!ecc->u.pm.scalar ||
1664 (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1665 return -EINVAL;
1668 if (!ecc->u.pm.result.x ||
1669 (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1670 !ecc->u.pm.result.y ||
1671 (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1672 return -EINVAL;
1674 memset(&op, 0, sizeof(op));
1675 op.cmd_q = cmd_q;
1676 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1678 /* Concatenate the modulus and the operands. Both the modulus and
1679 * the operands must be in little endian format. Since the input
1680 * is in big endian format it must be converted and placed in a
1681 * fixed length buffer.
1683 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1684 DMA_TO_DEVICE);
1685 if (ret)
1686 return ret;
1688 /* Save the workarea address since it is updated in order to perform
1689 * the concatenation
1691 save = src.address;
1693 /* Copy the ECC modulus */
1694 ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1695 CCP_ECC_OPERAND_SIZE, false);
1696 if (ret)
1697 goto e_src;
1698 src.address += CCP_ECC_OPERAND_SIZE;
1700 /* Copy the first point X and Y coordinate */
1701 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
1702 ecc->u.pm.point_1.x_len,
1703 CCP_ECC_OPERAND_SIZE, false);
1704 if (ret)
1705 goto e_src;
1706 src.address += CCP_ECC_OPERAND_SIZE;
1707 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
1708 ecc->u.pm.point_1.y_len,
1709 CCP_ECC_OPERAND_SIZE, false);
1710 if (ret)
1711 goto e_src;
1712 src.address += CCP_ECC_OPERAND_SIZE;
1714 /* Set the first point Z coordinate to 1 */
1715 *src.address = 0x01;
1716 src.address += CCP_ECC_OPERAND_SIZE;
1718 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1719 /* Copy the second point X and Y coordinate */
1720 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
1721 ecc->u.pm.point_2.x_len,
1722 CCP_ECC_OPERAND_SIZE, false);
1723 if (ret)
1724 goto e_src;
1725 src.address += CCP_ECC_OPERAND_SIZE;
1726 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
1727 ecc->u.pm.point_2.y_len,
1728 CCP_ECC_OPERAND_SIZE, false);
1729 if (ret)
1730 goto e_src;
1731 src.address += CCP_ECC_OPERAND_SIZE;
1733 /* Set the second point Z coordinate to 1 */
1734 *src.address = 0x01;
1735 src.address += CCP_ECC_OPERAND_SIZE;
1736 } else {
1737 /* Copy the Domain "a" parameter */
1738 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
1739 ecc->u.pm.domain_a_len,
1740 CCP_ECC_OPERAND_SIZE, false);
1741 if (ret)
1742 goto e_src;
1743 src.address += CCP_ECC_OPERAND_SIZE;
1745 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1746 /* Copy the scalar value */
1747 ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
1748 ecc->u.pm.scalar_len,
1749 CCP_ECC_OPERAND_SIZE,
1750 false);
1751 if (ret)
1752 goto e_src;
1753 src.address += CCP_ECC_OPERAND_SIZE;
1757 /* Restore the workarea address */
1758 src.address = save;
1760 /* Prepare the output area for the operation */
1761 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1762 DMA_FROM_DEVICE);
1763 if (ret)
1764 goto e_src;
1766 op.soc = 1;
1767 op.src.u.dma.address = src.dma.address;
1768 op.src.u.dma.offset = 0;
1769 op.src.u.dma.length = src.length;
1770 op.dst.u.dma.address = dst.dma.address;
1771 op.dst.u.dma.offset = 0;
1772 op.dst.u.dma.length = dst.length;
1774 op.u.ecc.function = cmd->u.ecc.function;
1776 ret = cmd_q->ccp->vdata->perform->ecc(&op);
1777 if (ret) {
1778 cmd->engine_error = cmd_q->cmd_error;
1779 goto e_dst;
1782 ecc->ecc_result = le16_to_cpup(
1783 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1784 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1785 ret = -EIO;
1786 goto e_dst;
1789 /* Save the workarea address since it is updated as we walk through
1790 * to copy the point math result
1792 save = dst.address;
1794 /* Save the ECC result X and Y coordinates */
1795 ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
1796 CCP_ECC_MODULUS_BYTES);
1797 dst.address += CCP_ECC_OUTPUT_SIZE;
1798 ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
1799 CCP_ECC_MODULUS_BYTES);
1800 dst.address += CCP_ECC_OUTPUT_SIZE;
1802 /* Restore the workarea address */
1803 dst.address = save;
1805 e_dst:
1806 ccp_dm_free(&dst);
1808 e_src:
1809 ccp_dm_free(&src);
1811 return ret;
1814 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1816 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1818 ecc->ecc_result = 0;
1820 if (!ecc->mod ||
1821 (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
1822 return -EINVAL;
1824 switch (ecc->function) {
1825 case CCP_ECC_FUNCTION_MMUL_384BIT:
1826 case CCP_ECC_FUNCTION_MADD_384BIT:
1827 case CCP_ECC_FUNCTION_MINV_384BIT:
1828 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
1830 case CCP_ECC_FUNCTION_PADD_384BIT:
1831 case CCP_ECC_FUNCTION_PMUL_384BIT:
1832 case CCP_ECC_FUNCTION_PDBL_384BIT:
1833 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
1835 default:
1836 return -EINVAL;
1840 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1842 int ret;
1844 cmd->engine_error = 0;
1845 cmd_q->cmd_error = 0;
1846 cmd_q->int_rcvd = 0;
1847 cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
1849 switch (cmd->engine) {
1850 case CCP_ENGINE_AES:
1851 ret = ccp_run_aes_cmd(cmd_q, cmd);
1852 break;
1853 case CCP_ENGINE_XTS_AES_128:
1854 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
1855 break;
1856 case CCP_ENGINE_SHA:
1857 ret = ccp_run_sha_cmd(cmd_q, cmd);
1858 break;
1859 case CCP_ENGINE_RSA:
1860 ret = ccp_run_rsa_cmd(cmd_q, cmd);
1861 break;
1862 case CCP_ENGINE_PASSTHRU:
1863 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
1864 ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
1865 else
1866 ret = ccp_run_passthru_cmd(cmd_q, cmd);
1867 break;
1868 case CCP_ENGINE_ECC:
1869 ret = ccp_run_ecc_cmd(cmd_q, cmd);
1870 break;
1871 default:
1872 ret = -EINVAL;
1875 return ret;