2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
20 struct mv_cesa_ahash_dma_iter
{
21 struct mv_cesa_dma_iter base
;
22 struct mv_cesa_sg_dma_iter src
;
26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter
*iter
,
27 struct ahash_request
*req
)
29 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
30 unsigned int len
= req
->nbytes
+ creq
->cache_ptr
;
33 len
&= ~CESA_HASH_BLOCK_SIZE_MSK
;
35 mv_cesa_req_dma_iter_init(&iter
->base
, len
);
36 mv_cesa_sg_dma_iter_init(&iter
->src
, req
->src
, DMA_TO_DEVICE
);
37 iter
->src
.op_offset
= creq
->cache_ptr
;
41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter
*iter
)
43 iter
->src
.op_offset
= 0;
45 return mv_cesa_req_dma_iter_next_op(&iter
->base
);
49 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req
*req
, gfp_t flags
)
51 req
->cache
= dma_pool_alloc(cesa_dev
->dma
->cache_pool
, flags
,
60 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req
*req
)
65 dma_pool_free(cesa_dev
->dma
->cache_pool
, req
->cache
,
69 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req
*req
,
75 req
->padding
= dma_pool_alloc(cesa_dev
->dma
->padding_pool
, flags
,
83 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req
*req
)
88 dma_pool_free(cesa_dev
->dma
->padding_pool
, req
->padding
,
93 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request
*req
)
95 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
97 mv_cesa_ahash_dma_free_padding(&creq
->req
.dma
);
100 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request
*req
)
102 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
104 dma_unmap_sg(cesa_dev
->dev
, req
->src
, creq
->src_nents
, DMA_TO_DEVICE
);
105 mv_cesa_ahash_dma_free_cache(&creq
->req
.dma
);
106 mv_cesa_dma_cleanup(&creq
->base
);
109 static inline void mv_cesa_ahash_cleanup(struct ahash_request
*req
)
111 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
113 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
)
114 mv_cesa_ahash_dma_cleanup(req
);
117 static void mv_cesa_ahash_last_cleanup(struct ahash_request
*req
)
119 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
121 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
)
122 mv_cesa_ahash_dma_last_cleanup(req
);
125 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req
*creq
)
127 unsigned int index
, padlen
;
129 index
= creq
->len
& CESA_HASH_BLOCK_SIZE_MSK
;
130 padlen
= (index
< 56) ? (56 - index
) : (64 + 56 - index
);
135 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req
*creq
, u8
*buf
)
137 unsigned int index
, padlen
;
140 /* Pad out to 56 mod 64 */
141 index
= creq
->len
& CESA_HASH_BLOCK_SIZE_MSK
;
142 padlen
= mv_cesa_ahash_pad_len(creq
);
143 memset(buf
+ 1, 0, padlen
- 1);
146 __le64 bits
= cpu_to_le64(creq
->len
<< 3);
147 memcpy(buf
+ padlen
, &bits
, sizeof(bits
));
149 __be64 bits
= cpu_to_be64(creq
->len
<< 3);
150 memcpy(buf
+ padlen
, &bits
, sizeof(bits
));
156 static void mv_cesa_ahash_std_step(struct ahash_request
*req
)
158 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
159 struct mv_cesa_ahash_std_req
*sreq
= &creq
->req
.std
;
160 struct mv_cesa_engine
*engine
= creq
->base
.engine
;
161 struct mv_cesa_op_ctx
*op
;
162 unsigned int new_cache_ptr
= 0;
165 unsigned int digsize
;
168 mv_cesa_adjust_op(engine
, &creq
->op_tmpl
);
169 memcpy_toio(engine
->sram
, &creq
->op_tmpl
, sizeof(creq
->op_tmpl
));
172 digsize
= crypto_ahash_digestsize(crypto_ahash_reqtfm(req
));
173 for (i
= 0; i
< digsize
/ 4; i
++)
174 writel_relaxed(creq
->state
[i
], engine
->regs
+ CESA_IVDIG(i
));
178 memcpy_toio(engine
->sram
+ CESA_SA_DATA_SRAM_OFFSET
,
179 creq
->cache
, creq
->cache_ptr
);
181 len
= min_t(size_t, req
->nbytes
+ creq
->cache_ptr
- sreq
->offset
,
182 CESA_SA_SRAM_PAYLOAD_SIZE
);
184 if (!creq
->last_req
) {
185 new_cache_ptr
= len
& CESA_HASH_BLOCK_SIZE_MSK
;
186 len
&= ~CESA_HASH_BLOCK_SIZE_MSK
;
189 if (len
- creq
->cache_ptr
)
190 sreq
->offset
+= sg_pcopy_to_buffer(req
->src
, creq
->src_nents
,
192 CESA_SA_DATA_SRAM_OFFSET
+
194 len
- creq
->cache_ptr
,
199 frag_mode
= mv_cesa_get_op_cfg(op
) & CESA_SA_DESC_CFG_FRAG_MSK
;
201 if (creq
->last_req
&& sreq
->offset
== req
->nbytes
&&
202 creq
->len
<= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX
) {
203 if (frag_mode
== CESA_SA_DESC_CFG_FIRST_FRAG
)
204 frag_mode
= CESA_SA_DESC_CFG_NOT_FRAG
;
205 else if (frag_mode
== CESA_SA_DESC_CFG_MID_FRAG
)
206 frag_mode
= CESA_SA_DESC_CFG_LAST_FRAG
;
209 if (frag_mode
== CESA_SA_DESC_CFG_NOT_FRAG
||
210 frag_mode
== CESA_SA_DESC_CFG_LAST_FRAG
) {
212 creq
->len
<= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX
) {
213 mv_cesa_set_mac_op_total_len(op
, creq
->len
);
215 int trailerlen
= mv_cesa_ahash_pad_len(creq
) + 8;
217 if (len
+ trailerlen
> CESA_SA_SRAM_PAYLOAD_SIZE
) {
218 len
&= CESA_HASH_BLOCK_SIZE_MSK
;
219 new_cache_ptr
= 64 - trailerlen
;
220 memcpy_fromio(creq
->cache
,
222 CESA_SA_DATA_SRAM_OFFSET
+ len
,
225 len
+= mv_cesa_ahash_pad_req(creq
,
227 CESA_SA_DATA_SRAM_OFFSET
);
230 if (frag_mode
== CESA_SA_DESC_CFG_LAST_FRAG
)
231 frag_mode
= CESA_SA_DESC_CFG_MID_FRAG
;
233 frag_mode
= CESA_SA_DESC_CFG_FIRST_FRAG
;
237 mv_cesa_set_mac_op_frag_len(op
, len
);
238 mv_cesa_update_op_cfg(op
, frag_mode
, CESA_SA_DESC_CFG_FRAG_MSK
);
240 /* FIXME: only update enc_len field */
241 memcpy_toio(engine
->sram
, op
, sizeof(*op
));
243 if (frag_mode
== CESA_SA_DESC_CFG_FIRST_FRAG
)
244 mv_cesa_update_op_cfg(op
, CESA_SA_DESC_CFG_MID_FRAG
,
245 CESA_SA_DESC_CFG_FRAG_MSK
);
247 creq
->cache_ptr
= new_cache_ptr
;
249 mv_cesa_set_int_mask(engine
, CESA_SA_INT_ACCEL0_DONE
);
250 writel_relaxed(CESA_SA_CFG_PARA_DIS
, engine
->regs
+ CESA_SA_CFG
);
251 BUG_ON(readl(engine
->regs
+ CESA_SA_CMD
) &
252 CESA_SA_CMD_EN_CESA_SA_ACCL0
);
253 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0
, engine
->regs
+ CESA_SA_CMD
);
256 static int mv_cesa_ahash_std_process(struct ahash_request
*req
, u32 status
)
258 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
259 struct mv_cesa_ahash_std_req
*sreq
= &creq
->req
.std
;
261 if (sreq
->offset
< (req
->nbytes
- creq
->cache_ptr
))
267 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request
*req
)
269 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
270 struct mv_cesa_req
*basereq
= &creq
->base
;
272 mv_cesa_dma_prepare(basereq
, basereq
->engine
);
275 static void mv_cesa_ahash_std_prepare(struct ahash_request
*req
)
277 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
278 struct mv_cesa_ahash_std_req
*sreq
= &creq
->req
.std
;
283 static void mv_cesa_ahash_dma_step(struct ahash_request
*req
)
285 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
286 struct mv_cesa_req
*base
= &creq
->base
;
288 /* We must explicitly set the digest state. */
289 if (base
->chain
.first
->flags
& CESA_TDMA_SET_STATE
) {
290 struct mv_cesa_engine
*engine
= base
->engine
;
293 /* Set the hash state in the IVDIG regs. */
294 for (i
= 0; i
< ARRAY_SIZE(creq
->state
); i
++)
295 writel_relaxed(creq
->state
[i
], engine
->regs
+
299 mv_cesa_dma_step(base
);
302 static void mv_cesa_ahash_step(struct crypto_async_request
*req
)
304 struct ahash_request
*ahashreq
= ahash_request_cast(req
);
305 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(ahashreq
);
307 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
)
308 mv_cesa_ahash_dma_step(ahashreq
);
310 mv_cesa_ahash_std_step(ahashreq
);
313 static int mv_cesa_ahash_process(struct crypto_async_request
*req
, u32 status
)
315 struct ahash_request
*ahashreq
= ahash_request_cast(req
);
316 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(ahashreq
);
318 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
)
319 return mv_cesa_dma_process(&creq
->base
, status
);
321 return mv_cesa_ahash_std_process(ahashreq
, status
);
324 static void mv_cesa_ahash_complete(struct crypto_async_request
*req
)
326 struct ahash_request
*ahashreq
= ahash_request_cast(req
);
327 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(ahashreq
);
328 struct mv_cesa_engine
*engine
= creq
->base
.engine
;
329 unsigned int digsize
;
332 digsize
= crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq
));
334 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
&&
335 (creq
->base
.chain
.last
->flags
& CESA_TDMA_TYPE_MSK
) == CESA_TDMA_RESULT
) {
339 * Result is already in the correct endianess when the SA is
342 data
= creq
->base
.chain
.last
->op
->ctx
.hash
.hash
;
343 for (i
= 0; i
< digsize
/ 4; i
++)
344 creq
->state
[i
] = cpu_to_le32(data
[i
]);
346 memcpy(ahashreq
->result
, data
, digsize
);
348 for (i
= 0; i
< digsize
/ 4; i
++)
349 creq
->state
[i
] = readl_relaxed(engine
->regs
+
351 if (creq
->last_req
) {
353 * Hardware's MD5 digest is in little endian format, but
354 * SHA in big endian format
357 __le32
*result
= (void *)ahashreq
->result
;
359 for (i
= 0; i
< digsize
/ 4; i
++)
360 result
[i
] = cpu_to_le32(creq
->state
[i
]);
362 __be32
*result
= (void *)ahashreq
->result
;
364 for (i
= 0; i
< digsize
/ 4; i
++)
365 result
[i
] = cpu_to_be32(creq
->state
[i
]);
370 atomic_sub(ahashreq
->nbytes
, &engine
->load
);
373 static void mv_cesa_ahash_prepare(struct crypto_async_request
*req
,
374 struct mv_cesa_engine
*engine
)
376 struct ahash_request
*ahashreq
= ahash_request_cast(req
);
377 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(ahashreq
);
379 creq
->base
.engine
= engine
;
381 if (mv_cesa_req_get_type(&creq
->base
) == CESA_DMA_REQ
)
382 mv_cesa_ahash_dma_prepare(ahashreq
);
384 mv_cesa_ahash_std_prepare(ahashreq
);
387 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request
*req
)
389 struct ahash_request
*ahashreq
= ahash_request_cast(req
);
390 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(ahashreq
);
393 mv_cesa_ahash_last_cleanup(ahashreq
);
395 mv_cesa_ahash_cleanup(ahashreq
);
398 sg_pcopy_to_buffer(ahashreq
->src
, creq
->src_nents
,
401 ahashreq
->nbytes
- creq
->cache_ptr
);
404 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops
= {
405 .step
= mv_cesa_ahash_step
,
406 .process
= mv_cesa_ahash_process
,
407 .cleanup
= mv_cesa_ahash_req_cleanup
,
408 .complete
= mv_cesa_ahash_complete
,
411 static void mv_cesa_ahash_init(struct ahash_request
*req
,
412 struct mv_cesa_op_ctx
*tmpl
, bool algo_le
)
414 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
416 memset(creq
, 0, sizeof(*creq
));
417 mv_cesa_update_op_cfg(tmpl
,
418 CESA_SA_DESC_CFG_OP_MAC_ONLY
|
419 CESA_SA_DESC_CFG_FIRST_FRAG
,
420 CESA_SA_DESC_CFG_OP_MSK
|
421 CESA_SA_DESC_CFG_FRAG_MSK
);
422 mv_cesa_set_mac_op_total_len(tmpl
, 0);
423 mv_cesa_set_mac_op_frag_len(tmpl
, 0);
424 creq
->op_tmpl
= *tmpl
;
426 creq
->algo_le
= algo_le
;
429 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm
*tfm
)
431 struct mv_cesa_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
433 ctx
->base
.ops
= &mv_cesa_ahash_req_ops
;
435 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
436 sizeof(struct mv_cesa_ahash_req
));
440 static bool mv_cesa_ahash_cache_req(struct ahash_request
*req
)
442 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
445 if (creq
->cache_ptr
+ req
->nbytes
< CESA_MAX_HASH_BLOCK_SIZE
&& !creq
->last_req
) {
451 sg_pcopy_to_buffer(req
->src
, creq
->src_nents
,
452 creq
->cache
+ creq
->cache_ptr
,
455 creq
->cache_ptr
+= req
->nbytes
;
461 static struct mv_cesa_op_ctx
*
462 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain
*chain
,
463 struct mv_cesa_op_ctx
*tmpl
, unsigned int frag_len
,
466 struct mv_cesa_op_ctx
*op
;
469 op
= mv_cesa_dma_add_op(chain
, tmpl
, false, flags
);
473 /* Set the operation block fragment length. */
474 mv_cesa_set_mac_op_frag_len(op
, frag_len
);
476 /* Append dummy desc to launch operation */
477 ret
= mv_cesa_dma_add_dummy_launch(chain
, flags
);
481 if (mv_cesa_mac_op_is_first_frag(tmpl
))
482 mv_cesa_update_op_cfg(tmpl
,
483 CESA_SA_DESC_CFG_MID_FRAG
,
484 CESA_SA_DESC_CFG_FRAG_MSK
);
490 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain
*chain
,
491 struct mv_cesa_ahash_req
*creq
,
494 struct mv_cesa_ahash_dma_req
*ahashdreq
= &creq
->req
.dma
;
497 if (!creq
->cache_ptr
)
500 ret
= mv_cesa_ahash_dma_alloc_cache(ahashdreq
, flags
);
504 memcpy(ahashdreq
->cache
, creq
->cache
, creq
->cache_ptr
);
506 return mv_cesa_dma_add_data_transfer(chain
,
507 CESA_SA_DATA_SRAM_OFFSET
,
508 ahashdreq
->cache_dma
,
510 CESA_TDMA_DST_IN_SRAM
,
514 static struct mv_cesa_op_ctx
*
515 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain
*chain
,
516 struct mv_cesa_ahash_dma_iter
*dma_iter
,
517 struct mv_cesa_ahash_req
*creq
,
518 unsigned int frag_len
, gfp_t flags
)
520 struct mv_cesa_ahash_dma_req
*ahashdreq
= &creq
->req
.dma
;
521 unsigned int len
, trailerlen
, padoff
= 0;
522 struct mv_cesa_op_ctx
*op
;
526 * If the transfer is smaller than our maximum length, and we have
527 * some data outstanding, we can ask the engine to finish the hash.
529 if (creq
->len
<= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX
&& frag_len
) {
530 op
= mv_cesa_dma_add_frag(chain
, &creq
->op_tmpl
, frag_len
,
535 mv_cesa_set_mac_op_total_len(op
, creq
->len
);
536 mv_cesa_update_op_cfg(op
, mv_cesa_mac_op_is_first_frag(op
) ?
537 CESA_SA_DESC_CFG_NOT_FRAG
:
538 CESA_SA_DESC_CFG_LAST_FRAG
,
539 CESA_SA_DESC_CFG_FRAG_MSK
);
541 ret
= mv_cesa_dma_add_result_op(chain
,
542 CESA_SA_CFG_SRAM_OFFSET
,
543 CESA_SA_DATA_SRAM_OFFSET
,
544 CESA_TDMA_SRC_IN_SRAM
, flags
);
546 return ERR_PTR(-ENOMEM
);
551 * The request is longer than the engine can handle, or we have
552 * no data outstanding. Manually generate the padding, adding it
553 * as a "mid" fragment.
555 ret
= mv_cesa_ahash_dma_alloc_padding(ahashdreq
, flags
);
559 trailerlen
= mv_cesa_ahash_pad_req(creq
, ahashdreq
->padding
);
561 len
= min(CESA_SA_SRAM_PAYLOAD_SIZE
- frag_len
, trailerlen
);
563 ret
= mv_cesa_dma_add_data_transfer(chain
,
564 CESA_SA_DATA_SRAM_OFFSET
+
566 ahashdreq
->padding_dma
,
567 len
, CESA_TDMA_DST_IN_SRAM
,
572 op
= mv_cesa_dma_add_frag(chain
, &creq
->op_tmpl
, frag_len
+ len
,
577 if (len
== trailerlen
)
583 ret
= mv_cesa_dma_add_data_transfer(chain
,
584 CESA_SA_DATA_SRAM_OFFSET
,
585 ahashdreq
->padding_dma
+
588 CESA_TDMA_DST_IN_SRAM
,
593 return mv_cesa_dma_add_frag(chain
, &creq
->op_tmpl
, trailerlen
- padoff
,
597 static int mv_cesa_ahash_dma_req_init(struct ahash_request
*req
)
599 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
600 gfp_t flags
= (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
601 GFP_KERNEL
: GFP_ATOMIC
;
602 struct mv_cesa_req
*basereq
= &creq
->base
;
603 struct mv_cesa_ahash_dma_iter iter
;
604 struct mv_cesa_op_ctx
*op
= NULL
;
605 unsigned int frag_len
;
606 bool set_state
= false;
610 basereq
->chain
.first
= NULL
;
611 basereq
->chain
.last
= NULL
;
613 if (!mv_cesa_mac_op_is_first_frag(&creq
->op_tmpl
))
616 if (creq
->src_nents
) {
617 ret
= dma_map_sg(cesa_dev
->dev
, req
->src
, creq
->src_nents
,
625 mv_cesa_tdma_desc_iter_init(&basereq
->chain
);
626 mv_cesa_ahash_req_iter_init(&iter
, req
);
629 * Add the cache (left-over data from a previous block) first.
630 * This will never overflow the SRAM size.
632 ret
= mv_cesa_ahash_dma_add_cache(&basereq
->chain
, creq
, flags
);
638 * Add all the new data, inserting an operation block and
639 * launch command between each full SRAM block-worth of
640 * data. We intentionally do not add the final op block.
643 ret
= mv_cesa_dma_add_op_transfers(&basereq
->chain
,
649 frag_len
= iter
.base
.op_len
;
651 if (!mv_cesa_ahash_req_iter_next_op(&iter
))
654 op
= mv_cesa_dma_add_frag(&basereq
->chain
, &creq
->op_tmpl
,
662 /* Account for the data that was in the cache. */
663 frag_len
= iter
.base
.op_len
;
667 * At this point, frag_len indicates whether we have any data
668 * outstanding which needs an operation. Queue up the final
669 * operation, which depends whether this is the final request.
672 op
= mv_cesa_ahash_dma_last_req(&basereq
->chain
, &iter
, creq
,
675 op
= mv_cesa_dma_add_frag(&basereq
->chain
, &creq
->op_tmpl
,
684 * If results are copied via DMA, this means that this
685 * request can be directly processed by the engine,
686 * without partial updates. So we can chain it at the
687 * DMA level with other requests.
689 type
= basereq
->chain
.last
->flags
& CESA_TDMA_TYPE_MSK
;
691 if (op
&& type
!= CESA_TDMA_RESULT
) {
692 /* Add dummy desc to wait for crypto operation end */
693 ret
= mv_cesa_dma_add_dummy_end(&basereq
->chain
, flags
);
699 creq
->cache_ptr
= req
->nbytes
+ creq
->cache_ptr
-
704 basereq
->chain
.last
->flags
|= CESA_TDMA_END_OF_REQ
;
706 if (type
!= CESA_TDMA_RESULT
)
707 basereq
->chain
.last
->flags
|= CESA_TDMA_BREAK_CHAIN
;
711 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
712 * let the step logic know that the IVDIG registers should be
713 * explicitly set before launching a TDMA chain.
715 basereq
->chain
.first
->flags
|= CESA_TDMA_SET_STATE
;
721 mv_cesa_dma_cleanup(basereq
);
722 dma_unmap_sg(cesa_dev
->dev
, req
->src
, creq
->src_nents
, DMA_TO_DEVICE
);
725 mv_cesa_ahash_last_cleanup(req
);
730 static int mv_cesa_ahash_req_init(struct ahash_request
*req
, bool *cached
)
732 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
734 creq
->src_nents
= sg_nents_for_len(req
->src
, req
->nbytes
);
735 if (creq
->src_nents
< 0) {
736 dev_err(cesa_dev
->dev
, "Invalid number of src SG");
737 return creq
->src_nents
;
740 *cached
= mv_cesa_ahash_cache_req(req
);
745 if (cesa_dev
->caps
->has_tdma
)
746 return mv_cesa_ahash_dma_req_init(req
);
751 static int mv_cesa_ahash_queue_req(struct ahash_request
*req
)
753 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
754 struct mv_cesa_engine
*engine
;
758 ret
= mv_cesa_ahash_req_init(req
, &cached
);
765 engine
= mv_cesa_select_engine(req
->nbytes
);
766 mv_cesa_ahash_prepare(&req
->base
, engine
);
768 ret
= mv_cesa_queue_req(&req
->base
, &creq
->base
);
770 if (mv_cesa_req_needs_cleanup(&req
->base
, ret
))
771 mv_cesa_ahash_cleanup(req
);
776 static int mv_cesa_ahash_update(struct ahash_request
*req
)
778 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
780 creq
->len
+= req
->nbytes
;
782 return mv_cesa_ahash_queue_req(req
);
785 static int mv_cesa_ahash_final(struct ahash_request
*req
)
787 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
788 struct mv_cesa_op_ctx
*tmpl
= &creq
->op_tmpl
;
790 mv_cesa_set_mac_op_total_len(tmpl
, creq
->len
);
791 creq
->last_req
= true;
794 return mv_cesa_ahash_queue_req(req
);
797 static int mv_cesa_ahash_finup(struct ahash_request
*req
)
799 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
800 struct mv_cesa_op_ctx
*tmpl
= &creq
->op_tmpl
;
802 creq
->len
+= req
->nbytes
;
803 mv_cesa_set_mac_op_total_len(tmpl
, creq
->len
);
804 creq
->last_req
= true;
806 return mv_cesa_ahash_queue_req(req
);
809 static int mv_cesa_ahash_export(struct ahash_request
*req
, void *hash
,
810 u64
*len
, void *cache
)
812 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
813 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
814 unsigned int digsize
= crypto_ahash_digestsize(ahash
);
815 unsigned int blocksize
;
817 blocksize
= crypto_ahash_blocksize(ahash
);
820 memcpy(hash
, creq
->state
, digsize
);
821 memset(cache
, 0, blocksize
);
822 memcpy(cache
, creq
->cache
, creq
->cache_ptr
);
827 static int mv_cesa_ahash_import(struct ahash_request
*req
, const void *hash
,
828 u64 len
, const void *cache
)
830 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
831 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
832 unsigned int digsize
= crypto_ahash_digestsize(ahash
);
833 unsigned int blocksize
;
834 unsigned int cache_ptr
;
837 ret
= crypto_ahash_init(req
);
841 blocksize
= crypto_ahash_blocksize(ahash
);
842 if (len
>= blocksize
)
843 mv_cesa_update_op_cfg(&creq
->op_tmpl
,
844 CESA_SA_DESC_CFG_MID_FRAG
,
845 CESA_SA_DESC_CFG_FRAG_MSK
);
848 memcpy(creq
->state
, hash
, digsize
);
851 cache_ptr
= do_div(len
, blocksize
);
855 memcpy(creq
->cache
, cache
, cache_ptr
);
856 creq
->cache_ptr
= cache_ptr
;
861 static int mv_cesa_md5_init(struct ahash_request
*req
)
863 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
864 struct mv_cesa_op_ctx tmpl
= { };
866 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_MD5
);
868 mv_cesa_ahash_init(req
, &tmpl
, true);
870 creq
->state
[0] = MD5_H0
;
871 creq
->state
[1] = MD5_H1
;
872 creq
->state
[2] = MD5_H2
;
873 creq
->state
[3] = MD5_H3
;
878 static int mv_cesa_md5_export(struct ahash_request
*req
, void *out
)
880 struct md5_state
*out_state
= out
;
882 return mv_cesa_ahash_export(req
, out_state
->hash
,
883 &out_state
->byte_count
, out_state
->block
);
886 static int mv_cesa_md5_import(struct ahash_request
*req
, const void *in
)
888 const struct md5_state
*in_state
= in
;
890 return mv_cesa_ahash_import(req
, in_state
->hash
, in_state
->byte_count
,
894 static int mv_cesa_md5_digest(struct ahash_request
*req
)
898 ret
= mv_cesa_md5_init(req
);
902 return mv_cesa_ahash_finup(req
);
905 struct ahash_alg mv_md5_alg
= {
906 .init
= mv_cesa_md5_init
,
907 .update
= mv_cesa_ahash_update
,
908 .final
= mv_cesa_ahash_final
,
909 .finup
= mv_cesa_ahash_finup
,
910 .digest
= mv_cesa_md5_digest
,
911 .export
= mv_cesa_md5_export
,
912 .import
= mv_cesa_md5_import
,
914 .digestsize
= MD5_DIGEST_SIZE
,
915 .statesize
= sizeof(struct md5_state
),
918 .cra_driver_name
= "mv-md5",
920 .cra_flags
= CRYPTO_ALG_ASYNC
|
921 CRYPTO_ALG_KERN_DRIVER_ONLY
,
922 .cra_blocksize
= MD5_HMAC_BLOCK_SIZE
,
923 .cra_ctxsize
= sizeof(struct mv_cesa_hash_ctx
),
924 .cra_init
= mv_cesa_ahash_cra_init
,
925 .cra_module
= THIS_MODULE
,
930 static int mv_cesa_sha1_init(struct ahash_request
*req
)
932 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
933 struct mv_cesa_op_ctx tmpl
= { };
935 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_SHA1
);
937 mv_cesa_ahash_init(req
, &tmpl
, false);
939 creq
->state
[0] = SHA1_H0
;
940 creq
->state
[1] = SHA1_H1
;
941 creq
->state
[2] = SHA1_H2
;
942 creq
->state
[3] = SHA1_H3
;
943 creq
->state
[4] = SHA1_H4
;
948 static int mv_cesa_sha1_export(struct ahash_request
*req
, void *out
)
950 struct sha1_state
*out_state
= out
;
952 return mv_cesa_ahash_export(req
, out_state
->state
, &out_state
->count
,
956 static int mv_cesa_sha1_import(struct ahash_request
*req
, const void *in
)
958 const struct sha1_state
*in_state
= in
;
960 return mv_cesa_ahash_import(req
, in_state
->state
, in_state
->count
,
964 static int mv_cesa_sha1_digest(struct ahash_request
*req
)
968 ret
= mv_cesa_sha1_init(req
);
972 return mv_cesa_ahash_finup(req
);
975 struct ahash_alg mv_sha1_alg
= {
976 .init
= mv_cesa_sha1_init
,
977 .update
= mv_cesa_ahash_update
,
978 .final
= mv_cesa_ahash_final
,
979 .finup
= mv_cesa_ahash_finup
,
980 .digest
= mv_cesa_sha1_digest
,
981 .export
= mv_cesa_sha1_export
,
982 .import
= mv_cesa_sha1_import
,
984 .digestsize
= SHA1_DIGEST_SIZE
,
985 .statesize
= sizeof(struct sha1_state
),
988 .cra_driver_name
= "mv-sha1",
990 .cra_flags
= CRYPTO_ALG_ASYNC
|
991 CRYPTO_ALG_KERN_DRIVER_ONLY
,
992 .cra_blocksize
= SHA1_BLOCK_SIZE
,
993 .cra_ctxsize
= sizeof(struct mv_cesa_hash_ctx
),
994 .cra_init
= mv_cesa_ahash_cra_init
,
995 .cra_module
= THIS_MODULE
,
1000 static int mv_cesa_sha256_init(struct ahash_request
*req
)
1002 struct mv_cesa_ahash_req
*creq
= ahash_request_ctx(req
);
1003 struct mv_cesa_op_ctx tmpl
= { };
1005 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_SHA256
);
1007 mv_cesa_ahash_init(req
, &tmpl
, false);
1009 creq
->state
[0] = SHA256_H0
;
1010 creq
->state
[1] = SHA256_H1
;
1011 creq
->state
[2] = SHA256_H2
;
1012 creq
->state
[3] = SHA256_H3
;
1013 creq
->state
[4] = SHA256_H4
;
1014 creq
->state
[5] = SHA256_H5
;
1015 creq
->state
[6] = SHA256_H6
;
1016 creq
->state
[7] = SHA256_H7
;
1021 static int mv_cesa_sha256_digest(struct ahash_request
*req
)
1025 ret
= mv_cesa_sha256_init(req
);
1029 return mv_cesa_ahash_finup(req
);
1032 static int mv_cesa_sha256_export(struct ahash_request
*req
, void *out
)
1034 struct sha256_state
*out_state
= out
;
1036 return mv_cesa_ahash_export(req
, out_state
->state
, &out_state
->count
,
1040 static int mv_cesa_sha256_import(struct ahash_request
*req
, const void *in
)
1042 const struct sha256_state
*in_state
= in
;
1044 return mv_cesa_ahash_import(req
, in_state
->state
, in_state
->count
,
1048 struct ahash_alg mv_sha256_alg
= {
1049 .init
= mv_cesa_sha256_init
,
1050 .update
= mv_cesa_ahash_update
,
1051 .final
= mv_cesa_ahash_final
,
1052 .finup
= mv_cesa_ahash_finup
,
1053 .digest
= mv_cesa_sha256_digest
,
1054 .export
= mv_cesa_sha256_export
,
1055 .import
= mv_cesa_sha256_import
,
1057 .digestsize
= SHA256_DIGEST_SIZE
,
1058 .statesize
= sizeof(struct sha256_state
),
1060 .cra_name
= "sha256",
1061 .cra_driver_name
= "mv-sha256",
1062 .cra_priority
= 300,
1063 .cra_flags
= CRYPTO_ALG_ASYNC
|
1064 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1065 .cra_blocksize
= SHA256_BLOCK_SIZE
,
1066 .cra_ctxsize
= sizeof(struct mv_cesa_hash_ctx
),
1067 .cra_init
= mv_cesa_ahash_cra_init
,
1068 .cra_module
= THIS_MODULE
,
1073 struct mv_cesa_ahash_result
{
1074 struct completion completion
;
1078 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request
*req
,
1081 struct mv_cesa_ahash_result
*result
= req
->data
;
1083 if (error
== -EINPROGRESS
)
1086 result
->error
= error
;
1087 complete(&result
->completion
);
1090 static int mv_cesa_ahmac_iv_state_init(struct ahash_request
*req
, u8
*pad
,
1091 void *state
, unsigned int blocksize
)
1093 struct mv_cesa_ahash_result result
;
1094 struct scatterlist sg
;
1097 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
1098 mv_cesa_hmac_ahash_complete
, &result
);
1099 sg_init_one(&sg
, pad
, blocksize
);
1100 ahash_request_set_crypt(req
, &sg
, pad
, blocksize
);
1101 init_completion(&result
.completion
);
1103 ret
= crypto_ahash_init(req
);
1107 ret
= crypto_ahash_update(req
);
1108 if (ret
&& ret
!= -EINPROGRESS
)
1111 wait_for_completion_interruptible(&result
.completion
);
1113 return result
.error
;
1115 ret
= crypto_ahash_export(req
, state
);
1122 static int mv_cesa_ahmac_pad_init(struct ahash_request
*req
,
1123 const u8
*key
, unsigned int keylen
,
1125 unsigned int blocksize
)
1127 struct mv_cesa_ahash_result result
;
1128 struct scatterlist sg
;
1132 if (keylen
<= blocksize
) {
1133 memcpy(ipad
, key
, keylen
);
1135 u8
*keydup
= kmemdup(key
, keylen
, GFP_KERNEL
);
1140 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
1141 mv_cesa_hmac_ahash_complete
,
1143 sg_init_one(&sg
, keydup
, keylen
);
1144 ahash_request_set_crypt(req
, &sg
, ipad
, keylen
);
1145 init_completion(&result
.completion
);
1147 ret
= crypto_ahash_digest(req
);
1148 if (ret
== -EINPROGRESS
) {
1149 wait_for_completion_interruptible(&result
.completion
);
1153 /* Set the memory region to 0 to avoid any leak. */
1154 memset(keydup
, 0, keylen
);
1160 keylen
= crypto_ahash_digestsize(crypto_ahash_reqtfm(req
));
1163 memset(ipad
+ keylen
, 0, blocksize
- keylen
);
1164 memcpy(opad
, ipad
, blocksize
);
1166 for (i
= 0; i
< blocksize
; i
++) {
1174 static int mv_cesa_ahmac_setkey(const char *hash_alg_name
,
1175 const u8
*key
, unsigned int keylen
,
1176 void *istate
, void *ostate
)
1178 struct ahash_request
*req
;
1179 struct crypto_ahash
*tfm
;
1180 unsigned int blocksize
;
1185 tfm
= crypto_alloc_ahash(hash_alg_name
, CRYPTO_ALG_TYPE_AHASH
,
1186 CRYPTO_ALG_TYPE_AHASH_MASK
);
1188 return PTR_ERR(tfm
);
1190 req
= ahash_request_alloc(tfm
, GFP_KERNEL
);
1196 crypto_ahash_clear_flags(tfm
, ~0);
1198 blocksize
= crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
1200 ipad
= kzalloc(2 * blocksize
, GFP_KERNEL
);
1206 opad
= ipad
+ blocksize
;
1208 ret
= mv_cesa_ahmac_pad_init(req
, key
, keylen
, ipad
, opad
, blocksize
);
1212 ret
= mv_cesa_ahmac_iv_state_init(req
, ipad
, istate
, blocksize
);
1216 ret
= mv_cesa_ahmac_iv_state_init(req
, opad
, ostate
, blocksize
);
1221 ahash_request_free(req
);
1223 crypto_free_ahash(tfm
);
1228 static int mv_cesa_ahmac_cra_init(struct crypto_tfm
*tfm
)
1230 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1232 ctx
->base
.ops
= &mv_cesa_ahash_req_ops
;
1234 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1235 sizeof(struct mv_cesa_ahash_req
));
1239 static int mv_cesa_ahmac_md5_init(struct ahash_request
*req
)
1241 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
1242 struct mv_cesa_op_ctx tmpl
= { };
1244 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_HMAC_MD5
);
1245 memcpy(tmpl
.ctx
.hash
.iv
, ctx
->iv
, sizeof(ctx
->iv
));
1247 mv_cesa_ahash_init(req
, &tmpl
, true);
1252 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
1253 unsigned int keylen
)
1255 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(crypto_ahash_tfm(tfm
));
1256 struct md5_state istate
, ostate
;
1259 ret
= mv_cesa_ahmac_setkey("mv-md5", key
, keylen
, &istate
, &ostate
);
1263 for (i
= 0; i
< ARRAY_SIZE(istate
.hash
); i
++)
1264 ctx
->iv
[i
] = be32_to_cpu(istate
.hash
[i
]);
1266 for (i
= 0; i
< ARRAY_SIZE(ostate
.hash
); i
++)
1267 ctx
->iv
[i
+ 8] = be32_to_cpu(ostate
.hash
[i
]);
1272 static int mv_cesa_ahmac_md5_digest(struct ahash_request
*req
)
1276 ret
= mv_cesa_ahmac_md5_init(req
);
1280 return mv_cesa_ahash_finup(req
);
1283 struct ahash_alg mv_ahmac_md5_alg
= {
1284 .init
= mv_cesa_ahmac_md5_init
,
1285 .update
= mv_cesa_ahash_update
,
1286 .final
= mv_cesa_ahash_final
,
1287 .finup
= mv_cesa_ahash_finup
,
1288 .digest
= mv_cesa_ahmac_md5_digest
,
1289 .setkey
= mv_cesa_ahmac_md5_setkey
,
1290 .export
= mv_cesa_md5_export
,
1291 .import
= mv_cesa_md5_import
,
1293 .digestsize
= MD5_DIGEST_SIZE
,
1294 .statesize
= sizeof(struct md5_state
),
1296 .cra_name
= "hmac(md5)",
1297 .cra_driver_name
= "mv-hmac-md5",
1298 .cra_priority
= 300,
1299 .cra_flags
= CRYPTO_ALG_ASYNC
|
1300 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1301 .cra_blocksize
= MD5_HMAC_BLOCK_SIZE
,
1302 .cra_ctxsize
= sizeof(struct mv_cesa_hmac_ctx
),
1303 .cra_init
= mv_cesa_ahmac_cra_init
,
1304 .cra_module
= THIS_MODULE
,
1309 static int mv_cesa_ahmac_sha1_init(struct ahash_request
*req
)
1311 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
1312 struct mv_cesa_op_ctx tmpl
= { };
1314 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_HMAC_SHA1
);
1315 memcpy(tmpl
.ctx
.hash
.iv
, ctx
->iv
, sizeof(ctx
->iv
));
1317 mv_cesa_ahash_init(req
, &tmpl
, false);
1322 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
1323 unsigned int keylen
)
1325 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(crypto_ahash_tfm(tfm
));
1326 struct sha1_state istate
, ostate
;
1329 ret
= mv_cesa_ahmac_setkey("mv-sha1", key
, keylen
, &istate
, &ostate
);
1333 for (i
= 0; i
< ARRAY_SIZE(istate
.state
); i
++)
1334 ctx
->iv
[i
] = be32_to_cpu(istate
.state
[i
]);
1336 for (i
= 0; i
< ARRAY_SIZE(ostate
.state
); i
++)
1337 ctx
->iv
[i
+ 8] = be32_to_cpu(ostate
.state
[i
]);
1342 static int mv_cesa_ahmac_sha1_digest(struct ahash_request
*req
)
1346 ret
= mv_cesa_ahmac_sha1_init(req
);
1350 return mv_cesa_ahash_finup(req
);
1353 struct ahash_alg mv_ahmac_sha1_alg
= {
1354 .init
= mv_cesa_ahmac_sha1_init
,
1355 .update
= mv_cesa_ahash_update
,
1356 .final
= mv_cesa_ahash_final
,
1357 .finup
= mv_cesa_ahash_finup
,
1358 .digest
= mv_cesa_ahmac_sha1_digest
,
1359 .setkey
= mv_cesa_ahmac_sha1_setkey
,
1360 .export
= mv_cesa_sha1_export
,
1361 .import
= mv_cesa_sha1_import
,
1363 .digestsize
= SHA1_DIGEST_SIZE
,
1364 .statesize
= sizeof(struct sha1_state
),
1366 .cra_name
= "hmac(sha1)",
1367 .cra_driver_name
= "mv-hmac-sha1",
1368 .cra_priority
= 300,
1369 .cra_flags
= CRYPTO_ALG_ASYNC
|
1370 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1371 .cra_blocksize
= SHA1_BLOCK_SIZE
,
1372 .cra_ctxsize
= sizeof(struct mv_cesa_hmac_ctx
),
1373 .cra_init
= mv_cesa_ahmac_cra_init
,
1374 .cra_module
= THIS_MODULE
,
1379 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
1380 unsigned int keylen
)
1382 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(crypto_ahash_tfm(tfm
));
1383 struct sha256_state istate
, ostate
;
1386 ret
= mv_cesa_ahmac_setkey("mv-sha256", key
, keylen
, &istate
, &ostate
);
1390 for (i
= 0; i
< ARRAY_SIZE(istate
.state
); i
++)
1391 ctx
->iv
[i
] = be32_to_cpu(istate
.state
[i
]);
1393 for (i
= 0; i
< ARRAY_SIZE(ostate
.state
); i
++)
1394 ctx
->iv
[i
+ 8] = be32_to_cpu(ostate
.state
[i
]);
1399 static int mv_cesa_ahmac_sha256_init(struct ahash_request
*req
)
1401 struct mv_cesa_hmac_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
1402 struct mv_cesa_op_ctx tmpl
= { };
1404 mv_cesa_set_op_cfg(&tmpl
, CESA_SA_DESC_CFG_MACM_HMAC_SHA256
);
1405 memcpy(tmpl
.ctx
.hash
.iv
, ctx
->iv
, sizeof(ctx
->iv
));
1407 mv_cesa_ahash_init(req
, &tmpl
, false);
1412 static int mv_cesa_ahmac_sha256_digest(struct ahash_request
*req
)
1416 ret
= mv_cesa_ahmac_sha256_init(req
);
1420 return mv_cesa_ahash_finup(req
);
1423 struct ahash_alg mv_ahmac_sha256_alg
= {
1424 .init
= mv_cesa_ahmac_sha256_init
,
1425 .update
= mv_cesa_ahash_update
,
1426 .final
= mv_cesa_ahash_final
,
1427 .finup
= mv_cesa_ahash_finup
,
1428 .digest
= mv_cesa_ahmac_sha256_digest
,
1429 .setkey
= mv_cesa_ahmac_sha256_setkey
,
1430 .export
= mv_cesa_sha256_export
,
1431 .import
= mv_cesa_sha256_import
,
1433 .digestsize
= SHA256_DIGEST_SIZE
,
1434 .statesize
= sizeof(struct sha256_state
),
1436 .cra_name
= "hmac(sha256)",
1437 .cra_driver_name
= "mv-hmac-sha256",
1438 .cra_priority
= 300,
1439 .cra_flags
= CRYPTO_ALG_ASYNC
|
1440 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1441 .cra_blocksize
= SHA256_BLOCK_SIZE
,
1442 .cra_ctxsize
= sizeof(struct mv_cesa_hmac_ctx
),
1443 .cra_init
= mv_cesa_ahmac_cra_init
,
1444 .cra_module
= THIS_MODULE
,