sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / dma / mv_xor.c
blob0cb951b743a6037cd6e4d0af05b1c63295e90dcd
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
31 #include "dmaengine.h"
32 #include "mv_xor.h"
34 enum mv_xor_type {
35 XOR_ORION,
36 XOR_ARMADA_38X,
37 XOR_ARMADA_37XX,
40 enum mv_xor_mode {
41 XOR_MODE_IN_REG,
42 XOR_MODE_IN_DESC,
45 static void mv_xor_issue_pending(struct dma_chan *chan);
47 #define to_mv_xor_chan(chan) \
48 container_of(chan, struct mv_xor_chan, dmachan)
50 #define to_mv_xor_slot(tx) \
51 container_of(tx, struct mv_xor_desc_slot, async_tx)
53 #define mv_chan_to_devp(chan) \
54 ((chan)->dmadev.dev)
56 static void mv_desc_init(struct mv_xor_desc_slot *desc,
57 dma_addr_t addr, u32 byte_count,
58 enum dma_ctrl_flags flags)
60 struct mv_xor_desc *hw_desc = desc->hw_desc;
62 hw_desc->status = XOR_DESC_DMA_OWNED;
63 hw_desc->phy_next_desc = 0;
64 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
66 XOR_DESC_EOD_INT_EN : 0;
67 hw_desc->phy_dest_addr = addr;
68 hw_desc->byte_count = byte_count;
71 /* Populate the descriptor */
72 static void mv_xor_config_sg_ll_desc(struct mv_xor_desc_slot *desc,
73 dma_addr_t dma_src, dma_addr_t dma_dst,
74 u32 len, struct mv_xor_desc_slot *prev)
76 struct mv_xor_desc *hw_desc = desc->hw_desc;
78 hw_desc->status = XOR_DESC_DMA_OWNED;
79 hw_desc->phy_next_desc = 0;
80 /* Configure for XOR with only one src address -> MEMCPY */
81 hw_desc->desc_command = XOR_DESC_OPERATION_XOR | (0x1 << 0);
82 hw_desc->phy_dest_addr = dma_dst;
83 hw_desc->phy_src_addr[0] = dma_src;
84 hw_desc->byte_count = len;
86 if (prev) {
87 struct mv_xor_desc *hw_prev = prev->hw_desc;
89 hw_prev->phy_next_desc = desc->async_tx.phys;
93 static void mv_xor_desc_config_eod(struct mv_xor_desc_slot *desc)
95 struct mv_xor_desc *hw_desc = desc->hw_desc;
97 /* Enable end-of-descriptor interrupt */
98 hw_desc->desc_command |= XOR_DESC_EOD_INT_EN;
101 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
103 struct mv_xor_desc *hw_desc = desc->hw_desc;
105 switch (desc->type) {
106 case DMA_XOR:
107 case DMA_INTERRUPT:
108 hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
109 break;
110 case DMA_MEMCPY:
111 hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
112 break;
113 default:
114 BUG();
115 return;
119 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
120 u32 next_desc_addr)
122 struct mv_xor_desc *hw_desc = desc->hw_desc;
123 BUG_ON(hw_desc->phy_next_desc);
124 hw_desc->phy_next_desc = next_desc_addr;
127 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
128 int index, dma_addr_t addr)
130 struct mv_xor_desc *hw_desc = desc->hw_desc;
131 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
132 if (desc->type == DMA_XOR)
133 hw_desc->desc_command |= (1 << index);
136 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
138 return readl_relaxed(XOR_CURR_DESC(chan));
141 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
142 u32 next_desc_addr)
144 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
147 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
149 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
150 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
151 writel_relaxed(val, XOR_INTR_MASK(chan));
154 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
156 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
157 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
158 return intr_cause;
161 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
163 u32 val;
165 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
166 val = ~(val << (chan->idx * 16));
167 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
168 writel_relaxed(val, XOR_INTR_CAUSE(chan));
171 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
173 u32 val = 0xFFFF0000 >> (chan->idx * 16);
174 writel_relaxed(val, XOR_INTR_CAUSE(chan));
177 static void mv_chan_set_mode(struct mv_xor_chan *chan,
178 u32 op_mode)
180 u32 config = readl_relaxed(XOR_CONFIG(chan));
182 config &= ~0x7;
183 config |= op_mode;
185 #if defined(__BIG_ENDIAN)
186 config |= XOR_DESCRIPTOR_SWAP;
187 #else
188 config &= ~XOR_DESCRIPTOR_SWAP;
189 #endif
191 writel_relaxed(config, XOR_CONFIG(chan));
194 static void mv_chan_activate(struct mv_xor_chan *chan)
196 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
198 /* writel ensures all descriptors are flushed before activation */
199 writel(BIT(0), XOR_ACTIVATION(chan));
202 static char mv_chan_is_busy(struct mv_xor_chan *chan)
204 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
206 state = (state >> 4) & 0x3;
208 return (state == 1) ? 1 : 0;
212 * mv_chan_start_new_chain - program the engine to operate on new
213 * chain headed by sw_desc
214 * Caller must hold &mv_chan->lock while calling this function
216 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
217 struct mv_xor_desc_slot *sw_desc)
219 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
220 __func__, __LINE__, sw_desc);
222 /* set the hardware chain */
223 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
225 mv_chan->pending++;
226 mv_xor_issue_pending(&mv_chan->dmachan);
229 static dma_cookie_t
230 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
231 struct mv_xor_chan *mv_chan,
232 dma_cookie_t cookie)
234 BUG_ON(desc->async_tx.cookie < 0);
236 if (desc->async_tx.cookie > 0) {
237 cookie = desc->async_tx.cookie;
239 dma_descriptor_unmap(&desc->async_tx);
240 /* call the callback (must not sleep or submit new
241 * operations to this channel)
243 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
246 /* run dependent operations */
247 dma_run_dependencies(&desc->async_tx);
249 return cookie;
252 static int
253 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
255 struct mv_xor_desc_slot *iter, *_iter;
257 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
258 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
259 node) {
261 if (async_tx_test_ack(&iter->async_tx)) {
262 list_move_tail(&iter->node, &mv_chan->free_slots);
263 if (!list_empty(&iter->sg_tx_list)) {
264 list_splice_tail_init(&iter->sg_tx_list,
265 &mv_chan->free_slots);
269 return 0;
272 static int
273 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
274 struct mv_xor_chan *mv_chan)
276 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
277 __func__, __LINE__, desc, desc->async_tx.flags);
279 /* the client is allowed to attach dependent operations
280 * until 'ack' is set
282 if (!async_tx_test_ack(&desc->async_tx)) {
283 /* move this slot to the completed_slots */
284 list_move_tail(&desc->node, &mv_chan->completed_slots);
285 if (!list_empty(&desc->sg_tx_list)) {
286 list_splice_tail_init(&desc->sg_tx_list,
287 &mv_chan->completed_slots);
289 } else {
290 list_move_tail(&desc->node, &mv_chan->free_slots);
291 if (!list_empty(&desc->sg_tx_list)) {
292 list_splice_tail_init(&desc->sg_tx_list,
293 &mv_chan->free_slots);
297 return 0;
300 /* This function must be called with the mv_xor_chan spinlock held */
301 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
303 struct mv_xor_desc_slot *iter, *_iter;
304 dma_cookie_t cookie = 0;
305 int busy = mv_chan_is_busy(mv_chan);
306 u32 current_desc = mv_chan_get_current_desc(mv_chan);
307 int current_cleaned = 0;
308 struct mv_xor_desc *hw_desc;
310 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
311 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
312 mv_chan_clean_completed_slots(mv_chan);
314 /* free completed slots from the chain starting with
315 * the oldest descriptor
318 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
319 node) {
321 /* clean finished descriptors */
322 hw_desc = iter->hw_desc;
323 if (hw_desc->status & XOR_DESC_SUCCESS) {
324 cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
325 cookie);
327 /* done processing desc, clean slot */
328 mv_desc_clean_slot(iter, mv_chan);
330 /* break if we did cleaned the current */
331 if (iter->async_tx.phys == current_desc) {
332 current_cleaned = 1;
333 break;
335 } else {
336 if (iter->async_tx.phys == current_desc) {
337 current_cleaned = 0;
338 break;
343 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
344 if (current_cleaned) {
346 * current descriptor cleaned and removed, run
347 * from list head
349 iter = list_entry(mv_chan->chain.next,
350 struct mv_xor_desc_slot,
351 node);
352 mv_chan_start_new_chain(mv_chan, iter);
353 } else {
354 if (!list_is_last(&iter->node, &mv_chan->chain)) {
356 * descriptors are still waiting after
357 * current, trigger them
359 iter = list_entry(iter->node.next,
360 struct mv_xor_desc_slot,
361 node);
362 mv_chan_start_new_chain(mv_chan, iter);
363 } else {
365 * some descriptors are still waiting
366 * to be cleaned
368 tasklet_schedule(&mv_chan->irq_tasklet);
373 if (cookie > 0)
374 mv_chan->dmachan.completed_cookie = cookie;
377 static void mv_xor_tasklet(unsigned long data)
379 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
381 spin_lock_bh(&chan->lock);
382 mv_chan_slot_cleanup(chan);
383 spin_unlock_bh(&chan->lock);
386 static struct mv_xor_desc_slot *
387 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
389 struct mv_xor_desc_slot *iter;
391 spin_lock_bh(&mv_chan->lock);
393 if (!list_empty(&mv_chan->free_slots)) {
394 iter = list_first_entry(&mv_chan->free_slots,
395 struct mv_xor_desc_slot,
396 node);
398 list_move_tail(&iter->node, &mv_chan->allocated_slots);
400 spin_unlock_bh(&mv_chan->lock);
402 /* pre-ack descriptor */
403 async_tx_ack(&iter->async_tx);
404 iter->async_tx.cookie = -EBUSY;
406 return iter;
410 spin_unlock_bh(&mv_chan->lock);
412 /* try to free some slots if the allocation fails */
413 tasklet_schedule(&mv_chan->irq_tasklet);
415 return NULL;
418 /************************ DMA engine API functions ****************************/
419 static dma_cookie_t
420 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
422 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
423 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
424 struct mv_xor_desc_slot *old_chain_tail;
425 dma_cookie_t cookie;
426 int new_hw_chain = 1;
428 dev_dbg(mv_chan_to_devp(mv_chan),
429 "%s sw_desc %p: async_tx %p\n",
430 __func__, sw_desc, &sw_desc->async_tx);
432 spin_lock_bh(&mv_chan->lock);
433 cookie = dma_cookie_assign(tx);
435 if (list_empty(&mv_chan->chain))
436 list_move_tail(&sw_desc->node, &mv_chan->chain);
437 else {
438 new_hw_chain = 0;
440 old_chain_tail = list_entry(mv_chan->chain.prev,
441 struct mv_xor_desc_slot,
442 node);
443 list_move_tail(&sw_desc->node, &mv_chan->chain);
445 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
446 &old_chain_tail->async_tx.phys);
448 /* fix up the hardware chain */
449 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
451 /* if the channel is not busy */
452 if (!mv_chan_is_busy(mv_chan)) {
453 u32 current_desc = mv_chan_get_current_desc(mv_chan);
455 * and the curren desc is the end of the chain before
456 * the append, then we need to start the channel
458 if (current_desc == old_chain_tail->async_tx.phys)
459 new_hw_chain = 1;
463 if (new_hw_chain)
464 mv_chan_start_new_chain(mv_chan, sw_desc);
466 spin_unlock_bh(&mv_chan->lock);
468 return cookie;
471 /* returns the number of allocated descriptors */
472 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
474 void *virt_desc;
475 dma_addr_t dma_desc;
476 int idx;
477 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
478 struct mv_xor_desc_slot *slot = NULL;
479 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
481 /* Allocate descriptor slots */
482 idx = mv_chan->slots_allocated;
483 while (idx < num_descs_in_pool) {
484 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
485 if (!slot) {
486 dev_info(mv_chan_to_devp(mv_chan),
487 "channel only initialized %d descriptor slots",
488 idx);
489 break;
491 virt_desc = mv_chan->dma_desc_pool_virt;
492 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
494 dma_async_tx_descriptor_init(&slot->async_tx, chan);
495 slot->async_tx.tx_submit = mv_xor_tx_submit;
496 INIT_LIST_HEAD(&slot->node);
497 INIT_LIST_HEAD(&slot->sg_tx_list);
498 dma_desc = mv_chan->dma_desc_pool;
499 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
500 slot->idx = idx++;
502 spin_lock_bh(&mv_chan->lock);
503 mv_chan->slots_allocated = idx;
504 list_add_tail(&slot->node, &mv_chan->free_slots);
505 spin_unlock_bh(&mv_chan->lock);
508 dev_dbg(mv_chan_to_devp(mv_chan),
509 "allocated %d descriptor slots\n",
510 mv_chan->slots_allocated);
512 return mv_chan->slots_allocated ? : -ENOMEM;
516 * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
517 * a new MBus window if necessary. Use a cache for these check so that
518 * the MMIO mapped registers don't have to be accessed for this check
519 * to speed up this process.
521 static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr)
523 struct mv_xor_device *xordev = mv_chan->xordev;
524 void __iomem *base = mv_chan->mmr_high_base;
525 u32 win_enable;
526 u32 size;
527 u8 target, attr;
528 int ret;
529 int i;
531 /* Nothing needs to get done for the Armada 3700 */
532 if (xordev->xor_type == XOR_ARMADA_37XX)
533 return 0;
536 * Loop over the cached windows to check, if the requested area
537 * is already mapped. If this the case, nothing needs to be done
538 * and we can return.
540 for (i = 0; i < WINDOW_COUNT; i++) {
541 if (addr >= xordev->win_start[i] &&
542 addr <= xordev->win_end[i]) {
543 /* Window is already mapped */
544 return 0;
549 * The window is not mapped, so we need to create the new mapping
552 /* If no IO window is found that addr has to be located in SDRAM */
553 ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr);
554 if (ret < 0)
555 return 0;
558 * Mask the base addr 'addr' according to 'size' read back from the
559 * MBus window. Otherwise we might end up with an address located
560 * somewhere in the middle of this area here.
562 size -= 1;
563 addr &= ~size;
566 * Reading one of both enabled register is enough, as they are always
567 * programmed to the identical values
569 win_enable = readl(base + WINDOW_BAR_ENABLE(0));
571 /* Set 'i' to the first free window to write the new values to */
572 i = ffs(~win_enable) - 1;
573 if (i >= WINDOW_COUNT)
574 return -ENOMEM;
576 writel((addr & 0xffff0000) | (attr << 8) | target,
577 base + WINDOW_BASE(i));
578 writel(size & 0xffff0000, base + WINDOW_SIZE(i));
580 /* Fill the caching variables for later use */
581 xordev->win_start[i] = addr;
582 xordev->win_end[i] = addr + size;
584 win_enable |= (1 << i);
585 win_enable |= 3 << (16 + (2 * i));
586 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
587 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
589 return 0;
592 static struct dma_async_tx_descriptor *
593 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
594 unsigned int src_cnt, size_t len, unsigned long flags)
596 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
597 struct mv_xor_desc_slot *sw_desc;
598 int ret;
600 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
601 return NULL;
603 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
605 dev_dbg(mv_chan_to_devp(mv_chan),
606 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
607 __func__, src_cnt, len, &dest, flags);
609 /* Check if a new window needs to get added for 'dest' */
610 ret = mv_xor_add_io_win(mv_chan, dest);
611 if (ret)
612 return NULL;
614 sw_desc = mv_chan_alloc_slot(mv_chan);
615 if (sw_desc) {
616 sw_desc->type = DMA_XOR;
617 sw_desc->async_tx.flags = flags;
618 mv_desc_init(sw_desc, dest, len, flags);
619 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
620 mv_desc_set_mode(sw_desc);
621 while (src_cnt--) {
622 /* Check if a new window needs to get added for 'src' */
623 ret = mv_xor_add_io_win(mv_chan, src[src_cnt]);
624 if (ret)
625 return NULL;
626 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
630 dev_dbg(mv_chan_to_devp(mv_chan),
631 "%s sw_desc %p async_tx %p \n",
632 __func__, sw_desc, &sw_desc->async_tx);
633 return sw_desc ? &sw_desc->async_tx : NULL;
636 static struct dma_async_tx_descriptor *
637 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
638 size_t len, unsigned long flags)
641 * A MEMCPY operation is identical to an XOR operation with only
642 * a single source address.
644 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
647 static struct dma_async_tx_descriptor *
648 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
650 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
651 dma_addr_t src, dest;
652 size_t len;
654 src = mv_chan->dummy_src_addr;
655 dest = mv_chan->dummy_dst_addr;
656 len = MV_XOR_MIN_BYTE_COUNT;
659 * We implement the DMA_INTERRUPT operation as a minimum sized
660 * XOR operation with a single dummy source address.
662 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
666 * mv_xor_prep_dma_sg - prepare descriptors for a memory sg transaction
667 * @chan: DMA channel
668 * @dst_sg: Destination scatter list
669 * @dst_sg_len: Number of entries in destination scatter list
670 * @src_sg: Source scatter list
671 * @src_sg_len: Number of entries in source scatter list
672 * @flags: transfer ack flags
674 * Return: Async transaction descriptor on success and NULL on failure
676 static struct dma_async_tx_descriptor *
677 mv_xor_prep_dma_sg(struct dma_chan *chan, struct scatterlist *dst_sg,
678 unsigned int dst_sg_len, struct scatterlist *src_sg,
679 unsigned int src_sg_len, unsigned long flags)
681 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
682 struct mv_xor_desc_slot *new;
683 struct mv_xor_desc_slot *first = NULL;
684 struct mv_xor_desc_slot *prev = NULL;
685 size_t len, dst_avail, src_avail;
686 dma_addr_t dma_dst, dma_src;
687 int desc_cnt = 0;
688 int ret;
690 dev_dbg(mv_chan_to_devp(mv_chan),
691 "%s dst_sg_len: %d src_sg_len: %d flags: %ld\n",
692 __func__, dst_sg_len, src_sg_len, flags);
694 dst_avail = sg_dma_len(dst_sg);
695 src_avail = sg_dma_len(src_sg);
697 /* Run until we are out of scatterlist entries */
698 while (true) {
699 /* Allocate and populate the descriptor */
700 desc_cnt++;
701 new = mv_chan_alloc_slot(mv_chan);
702 if (!new) {
703 dev_err(mv_chan_to_devp(mv_chan),
704 "Out of descriptors (desc_cnt=%d)!\n",
705 desc_cnt);
706 goto err;
709 len = min_t(size_t, src_avail, dst_avail);
710 len = min_t(size_t, len, MV_XOR_MAX_BYTE_COUNT);
711 if (len == 0)
712 goto fetch;
714 if (len < MV_XOR_MIN_BYTE_COUNT) {
715 dev_err(mv_chan_to_devp(mv_chan),
716 "Transfer size of %zu too small!\n", len);
717 goto err;
720 dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) -
721 dst_avail;
722 dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) -
723 src_avail;
725 /* Check if a new window needs to get added for 'dst' */
726 ret = mv_xor_add_io_win(mv_chan, dma_dst);
727 if (ret)
728 goto err;
730 /* Check if a new window needs to get added for 'src' */
731 ret = mv_xor_add_io_win(mv_chan, dma_src);
732 if (ret)
733 goto err;
735 /* Populate the descriptor */
736 mv_xor_config_sg_ll_desc(new, dma_src, dma_dst, len, prev);
737 prev = new;
738 dst_avail -= len;
739 src_avail -= len;
741 if (!first)
742 first = new;
743 else
744 list_move_tail(&new->node, &first->sg_tx_list);
746 fetch:
747 /* Fetch the next dst scatterlist entry */
748 if (dst_avail == 0) {
749 if (dst_sg_len == 0)
750 break;
752 /* Fetch the next entry: if there are no more: done */
753 dst_sg = sg_next(dst_sg);
754 if (dst_sg == NULL)
755 break;
757 dst_sg_len--;
758 dst_avail = sg_dma_len(dst_sg);
761 /* Fetch the next src scatterlist entry */
762 if (src_avail == 0) {
763 if (src_sg_len == 0)
764 break;
766 /* Fetch the next entry: if there are no more: done */
767 src_sg = sg_next(src_sg);
768 if (src_sg == NULL)
769 break;
771 src_sg_len--;
772 src_avail = sg_dma_len(src_sg);
776 /* Set the EOD flag in the last descriptor */
777 mv_xor_desc_config_eod(new);
778 first->async_tx.flags = flags;
780 return &first->async_tx;
782 err:
783 /* Cleanup: Move all descriptors back into the free list */
784 spin_lock_bh(&mv_chan->lock);
785 mv_desc_clean_slot(first, mv_chan);
786 spin_unlock_bh(&mv_chan->lock);
788 return NULL;
791 static void mv_xor_free_chan_resources(struct dma_chan *chan)
793 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
794 struct mv_xor_desc_slot *iter, *_iter;
795 int in_use_descs = 0;
797 spin_lock_bh(&mv_chan->lock);
799 mv_chan_slot_cleanup(mv_chan);
801 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
802 node) {
803 in_use_descs++;
804 list_move_tail(&iter->node, &mv_chan->free_slots);
806 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
807 node) {
808 in_use_descs++;
809 list_move_tail(&iter->node, &mv_chan->free_slots);
811 list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
812 node) {
813 in_use_descs++;
814 list_move_tail(&iter->node, &mv_chan->free_slots);
816 list_for_each_entry_safe_reverse(
817 iter, _iter, &mv_chan->free_slots, node) {
818 list_del(&iter->node);
819 kfree(iter);
820 mv_chan->slots_allocated--;
823 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
824 __func__, mv_chan->slots_allocated);
825 spin_unlock_bh(&mv_chan->lock);
827 if (in_use_descs)
828 dev_err(mv_chan_to_devp(mv_chan),
829 "freeing %d in use descriptors!\n", in_use_descs);
833 * mv_xor_status - poll the status of an XOR transaction
834 * @chan: XOR channel handle
835 * @cookie: XOR transaction identifier
836 * @txstate: XOR transactions state holder (or NULL)
838 static enum dma_status mv_xor_status(struct dma_chan *chan,
839 dma_cookie_t cookie,
840 struct dma_tx_state *txstate)
842 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
843 enum dma_status ret;
845 ret = dma_cookie_status(chan, cookie, txstate);
846 if (ret == DMA_COMPLETE)
847 return ret;
849 spin_lock_bh(&mv_chan->lock);
850 mv_chan_slot_cleanup(mv_chan);
851 spin_unlock_bh(&mv_chan->lock);
853 return dma_cookie_status(chan, cookie, txstate);
856 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
858 u32 val;
860 val = readl_relaxed(XOR_CONFIG(chan));
861 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
863 val = readl_relaxed(XOR_ACTIVATION(chan));
864 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
866 val = readl_relaxed(XOR_INTR_CAUSE(chan));
867 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
869 val = readl_relaxed(XOR_INTR_MASK(chan));
870 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
872 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
873 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
875 val = readl_relaxed(XOR_ERROR_ADDR(chan));
876 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
879 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
880 u32 intr_cause)
882 if (intr_cause & XOR_INT_ERR_DECODE) {
883 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
884 return;
887 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
888 chan->idx, intr_cause);
890 mv_chan_dump_regs(chan);
891 WARN_ON(1);
894 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
896 struct mv_xor_chan *chan = data;
897 u32 intr_cause = mv_chan_get_intr_cause(chan);
899 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
901 if (intr_cause & XOR_INTR_ERRORS)
902 mv_chan_err_interrupt_handler(chan, intr_cause);
904 tasklet_schedule(&chan->irq_tasklet);
906 mv_chan_clear_eoc_cause(chan);
908 return IRQ_HANDLED;
911 static void mv_xor_issue_pending(struct dma_chan *chan)
913 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
915 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
916 mv_chan->pending = 0;
917 mv_chan_activate(mv_chan);
922 * Perform a transaction to verify the HW works.
925 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
927 int i, ret;
928 void *src, *dest;
929 dma_addr_t src_dma, dest_dma;
930 struct dma_chan *dma_chan;
931 dma_cookie_t cookie;
932 struct dma_async_tx_descriptor *tx;
933 struct dmaengine_unmap_data *unmap;
934 int err = 0;
936 src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
937 if (!src)
938 return -ENOMEM;
940 dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
941 if (!dest) {
942 kfree(src);
943 return -ENOMEM;
946 /* Fill in src buffer */
947 for (i = 0; i < PAGE_SIZE; i++)
948 ((u8 *) src)[i] = (u8)i;
950 dma_chan = &mv_chan->dmachan;
951 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
952 err = -ENODEV;
953 goto out;
956 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
957 if (!unmap) {
958 err = -ENOMEM;
959 goto free_resources;
962 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
963 (size_t)src & ~PAGE_MASK, PAGE_SIZE,
964 DMA_TO_DEVICE);
965 unmap->addr[0] = src_dma;
967 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
968 if (ret) {
969 err = -ENOMEM;
970 goto free_resources;
972 unmap->to_cnt = 1;
974 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
975 (size_t)dest & ~PAGE_MASK, PAGE_SIZE,
976 DMA_FROM_DEVICE);
977 unmap->addr[1] = dest_dma;
979 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
980 if (ret) {
981 err = -ENOMEM;
982 goto free_resources;
984 unmap->from_cnt = 1;
985 unmap->len = PAGE_SIZE;
987 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
988 PAGE_SIZE, 0);
989 if (!tx) {
990 dev_err(dma_chan->device->dev,
991 "Self-test cannot prepare operation, disabling\n");
992 err = -ENODEV;
993 goto free_resources;
996 cookie = mv_xor_tx_submit(tx);
997 if (dma_submit_error(cookie)) {
998 dev_err(dma_chan->device->dev,
999 "Self-test submit error, disabling\n");
1000 err = -ENODEV;
1001 goto free_resources;
1004 mv_xor_issue_pending(dma_chan);
1005 async_tx_ack(tx);
1006 msleep(1);
1008 if (mv_xor_status(dma_chan, cookie, NULL) !=
1009 DMA_COMPLETE) {
1010 dev_err(dma_chan->device->dev,
1011 "Self-test copy timed out, disabling\n");
1012 err = -ENODEV;
1013 goto free_resources;
1016 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
1017 PAGE_SIZE, DMA_FROM_DEVICE);
1018 if (memcmp(src, dest, PAGE_SIZE)) {
1019 dev_err(dma_chan->device->dev,
1020 "Self-test copy failed compare, disabling\n");
1021 err = -ENODEV;
1022 goto free_resources;
1025 free_resources:
1026 dmaengine_unmap_put(unmap);
1027 mv_xor_free_chan_resources(dma_chan);
1028 out:
1029 kfree(src);
1030 kfree(dest);
1031 return err;
1034 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
1035 static int
1036 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
1038 int i, src_idx, ret;
1039 struct page *dest;
1040 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
1041 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
1042 dma_addr_t dest_dma;
1043 struct dma_async_tx_descriptor *tx;
1044 struct dmaengine_unmap_data *unmap;
1045 struct dma_chan *dma_chan;
1046 dma_cookie_t cookie;
1047 u8 cmp_byte = 0;
1048 u32 cmp_word;
1049 int err = 0;
1050 int src_count = MV_XOR_NUM_SRC_TEST;
1052 for (src_idx = 0; src_idx < src_count; src_idx++) {
1053 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1054 if (!xor_srcs[src_idx]) {
1055 while (src_idx--)
1056 __free_page(xor_srcs[src_idx]);
1057 return -ENOMEM;
1061 dest = alloc_page(GFP_KERNEL);
1062 if (!dest) {
1063 while (src_idx--)
1064 __free_page(xor_srcs[src_idx]);
1065 return -ENOMEM;
1068 /* Fill in src buffers */
1069 for (src_idx = 0; src_idx < src_count; src_idx++) {
1070 u8 *ptr = page_address(xor_srcs[src_idx]);
1071 for (i = 0; i < PAGE_SIZE; i++)
1072 ptr[i] = (1 << src_idx);
1075 for (src_idx = 0; src_idx < src_count; src_idx++)
1076 cmp_byte ^= (u8) (1 << src_idx);
1078 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1079 (cmp_byte << 8) | cmp_byte;
1081 memset(page_address(dest), 0, PAGE_SIZE);
1083 dma_chan = &mv_chan->dmachan;
1084 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1085 err = -ENODEV;
1086 goto out;
1089 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
1090 GFP_KERNEL);
1091 if (!unmap) {
1092 err = -ENOMEM;
1093 goto free_resources;
1096 /* test xor */
1097 for (i = 0; i < src_count; i++) {
1098 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1099 0, PAGE_SIZE, DMA_TO_DEVICE);
1100 dma_srcs[i] = unmap->addr[i];
1101 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
1102 if (ret) {
1103 err = -ENOMEM;
1104 goto free_resources;
1106 unmap->to_cnt++;
1109 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1110 DMA_FROM_DEVICE);
1111 dest_dma = unmap->addr[src_count];
1112 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
1113 if (ret) {
1114 err = -ENOMEM;
1115 goto free_resources;
1117 unmap->from_cnt = 1;
1118 unmap->len = PAGE_SIZE;
1120 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1121 src_count, PAGE_SIZE, 0);
1122 if (!tx) {
1123 dev_err(dma_chan->device->dev,
1124 "Self-test cannot prepare operation, disabling\n");
1125 err = -ENODEV;
1126 goto free_resources;
1129 cookie = mv_xor_tx_submit(tx);
1130 if (dma_submit_error(cookie)) {
1131 dev_err(dma_chan->device->dev,
1132 "Self-test submit error, disabling\n");
1133 err = -ENODEV;
1134 goto free_resources;
1137 mv_xor_issue_pending(dma_chan);
1138 async_tx_ack(tx);
1139 msleep(8);
1141 if (mv_xor_status(dma_chan, cookie, NULL) !=
1142 DMA_COMPLETE) {
1143 dev_err(dma_chan->device->dev,
1144 "Self-test xor timed out, disabling\n");
1145 err = -ENODEV;
1146 goto free_resources;
1149 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
1150 PAGE_SIZE, DMA_FROM_DEVICE);
1151 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1152 u32 *ptr = page_address(dest);
1153 if (ptr[i] != cmp_word) {
1154 dev_err(dma_chan->device->dev,
1155 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
1156 i, ptr[i], cmp_word);
1157 err = -ENODEV;
1158 goto free_resources;
1162 free_resources:
1163 dmaengine_unmap_put(unmap);
1164 mv_xor_free_chan_resources(dma_chan);
1165 out:
1166 src_idx = src_count;
1167 while (src_idx--)
1168 __free_page(xor_srcs[src_idx]);
1169 __free_page(dest);
1170 return err;
1173 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1175 struct dma_chan *chan, *_chan;
1176 struct device *dev = mv_chan->dmadev.dev;
1178 dma_async_device_unregister(&mv_chan->dmadev);
1180 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1181 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1182 dma_unmap_single(dev, mv_chan->dummy_src_addr,
1183 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1184 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
1185 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1187 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1188 device_node) {
1189 list_del(&chan->device_node);
1192 free_irq(mv_chan->irq, mv_chan);
1194 return 0;
1197 static struct mv_xor_chan *
1198 mv_xor_channel_add(struct mv_xor_device *xordev,
1199 struct platform_device *pdev,
1200 int idx, dma_cap_mask_t cap_mask, int irq)
1202 int ret = 0;
1203 struct mv_xor_chan *mv_chan;
1204 struct dma_device *dma_dev;
1206 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1207 if (!mv_chan)
1208 return ERR_PTR(-ENOMEM);
1210 mv_chan->idx = idx;
1211 mv_chan->irq = irq;
1212 if (xordev->xor_type == XOR_ORION)
1213 mv_chan->op_in_desc = XOR_MODE_IN_REG;
1214 else
1215 mv_chan->op_in_desc = XOR_MODE_IN_DESC;
1217 dma_dev = &mv_chan->dmadev;
1218 mv_chan->xordev = xordev;
1221 * These source and destination dummy buffers are used to implement
1222 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1223 * Hence, we only need to map the buffers at initialization-time.
1225 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
1226 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1227 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
1228 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1230 /* allocate coherent memory for hardware descriptors
1231 * note: writecombine gives slightly better performance, but
1232 * requires that we explicitly flush the writes
1234 mv_chan->dma_desc_pool_virt =
1235 dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
1236 GFP_KERNEL);
1237 if (!mv_chan->dma_desc_pool_virt)
1238 return ERR_PTR(-ENOMEM);
1240 /* discover transaction capabilites from the platform data */
1241 dma_dev->cap_mask = cap_mask;
1243 INIT_LIST_HEAD(&dma_dev->channels);
1245 /* set base routines */
1246 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1247 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1248 dma_dev->device_tx_status = mv_xor_status;
1249 dma_dev->device_issue_pending = mv_xor_issue_pending;
1250 dma_dev->dev = &pdev->dev;
1252 /* set prep routines based on capability */
1253 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1254 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1255 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1256 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1257 if (dma_has_cap(DMA_SG, dma_dev->cap_mask))
1258 dma_dev->device_prep_dma_sg = mv_xor_prep_dma_sg;
1259 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1260 dma_dev->max_xor = 8;
1261 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1264 mv_chan->mmr_base = xordev->xor_base;
1265 mv_chan->mmr_high_base = xordev->xor_high_base;
1266 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1267 mv_chan);
1269 /* clear errors before enabling interrupts */
1270 mv_chan_clear_err_status(mv_chan);
1272 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1273 0, dev_name(&pdev->dev), mv_chan);
1274 if (ret)
1275 goto err_free_dma;
1277 mv_chan_unmask_interrupts(mv_chan);
1279 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1280 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1281 else
1282 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1284 spin_lock_init(&mv_chan->lock);
1285 INIT_LIST_HEAD(&mv_chan->chain);
1286 INIT_LIST_HEAD(&mv_chan->completed_slots);
1287 INIT_LIST_HEAD(&mv_chan->free_slots);
1288 INIT_LIST_HEAD(&mv_chan->allocated_slots);
1289 mv_chan->dmachan.device = dma_dev;
1290 dma_cookie_init(&mv_chan->dmachan);
1292 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1294 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1295 ret = mv_chan_memcpy_self_test(mv_chan);
1296 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1297 if (ret)
1298 goto err_free_irq;
1301 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1302 ret = mv_chan_xor_self_test(mv_chan);
1303 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1304 if (ret)
1305 goto err_free_irq;
1308 dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s%s)\n",
1309 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1310 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1311 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1312 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "sg " : "",
1313 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1315 dma_async_device_register(dma_dev);
1316 return mv_chan;
1318 err_free_irq:
1319 free_irq(mv_chan->irq, mv_chan);
1320 err_free_dma:
1321 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1322 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1323 return ERR_PTR(ret);
1326 static void
1327 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1328 const struct mbus_dram_target_info *dram)
1330 void __iomem *base = xordev->xor_high_base;
1331 u32 win_enable = 0;
1332 int i;
1334 for (i = 0; i < 8; i++) {
1335 writel(0, base + WINDOW_BASE(i));
1336 writel(0, base + WINDOW_SIZE(i));
1337 if (i < 4)
1338 writel(0, base + WINDOW_REMAP_HIGH(i));
1341 for (i = 0; i < dram->num_cs; i++) {
1342 const struct mbus_dram_window *cs = dram->cs + i;
1344 writel((cs->base & 0xffff0000) |
1345 (cs->mbus_attr << 8) |
1346 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1347 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1349 /* Fill the caching variables for later use */
1350 xordev->win_start[i] = cs->base;
1351 xordev->win_end[i] = cs->base + cs->size - 1;
1353 win_enable |= (1 << i);
1354 win_enable |= 3 << (16 + (2 * i));
1357 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1358 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1359 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1360 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1363 static void
1364 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev)
1366 void __iomem *base = xordev->xor_high_base;
1367 u32 win_enable = 0;
1368 int i;
1370 for (i = 0; i < 8; i++) {
1371 writel(0, base + WINDOW_BASE(i));
1372 writel(0, base + WINDOW_SIZE(i));
1373 if (i < 4)
1374 writel(0, base + WINDOW_REMAP_HIGH(i));
1377 * For Armada3700 open default 4GB Mbus window. The dram
1378 * related configuration are done at AXIS level.
1380 writel(0xffff0000, base + WINDOW_SIZE(0));
1381 win_enable |= 1;
1382 win_enable |= 3 << 16;
1384 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1385 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1386 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1387 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1391 * Since this XOR driver is basically used only for RAID5, we don't
1392 * need to care about synchronizing ->suspend with DMA activity,
1393 * because the DMA engine will naturally be quiet due to the block
1394 * devices being suspended.
1396 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1398 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1399 int i;
1401 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1402 struct mv_xor_chan *mv_chan = xordev->channels[i];
1404 if (!mv_chan)
1405 continue;
1407 mv_chan->saved_config_reg =
1408 readl_relaxed(XOR_CONFIG(mv_chan));
1409 mv_chan->saved_int_mask_reg =
1410 readl_relaxed(XOR_INTR_MASK(mv_chan));
1413 return 0;
1416 static int mv_xor_resume(struct platform_device *dev)
1418 struct mv_xor_device *xordev = platform_get_drvdata(dev);
1419 const struct mbus_dram_target_info *dram;
1420 int i;
1422 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1423 struct mv_xor_chan *mv_chan = xordev->channels[i];
1425 if (!mv_chan)
1426 continue;
1428 writel_relaxed(mv_chan->saved_config_reg,
1429 XOR_CONFIG(mv_chan));
1430 writel_relaxed(mv_chan->saved_int_mask_reg,
1431 XOR_INTR_MASK(mv_chan));
1434 if (xordev->xor_type == XOR_ARMADA_37XX) {
1435 mv_xor_conf_mbus_windows_a3700(xordev);
1436 return 0;
1439 dram = mv_mbus_dram_info();
1440 if (dram)
1441 mv_xor_conf_mbus_windows(xordev, dram);
1443 return 0;
1446 static const struct of_device_id mv_xor_dt_ids[] = {
1447 { .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION },
1448 { .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X },
1449 { .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX },
1453 static unsigned int mv_xor_engine_count;
1455 static int mv_xor_probe(struct platform_device *pdev)
1457 const struct mbus_dram_target_info *dram;
1458 struct mv_xor_device *xordev;
1459 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1460 struct resource *res;
1461 unsigned int max_engines, max_channels;
1462 int i, ret;
1464 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1466 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1467 if (!xordev)
1468 return -ENOMEM;
1470 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471 if (!res)
1472 return -ENODEV;
1474 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1475 resource_size(res));
1476 if (!xordev->xor_base)
1477 return -EBUSY;
1479 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1480 if (!res)
1481 return -ENODEV;
1483 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1484 resource_size(res));
1485 if (!xordev->xor_high_base)
1486 return -EBUSY;
1488 platform_set_drvdata(pdev, xordev);
1492 * We need to know which type of XOR device we use before
1493 * setting up. In non-dt case it can only be the legacy one.
1495 xordev->xor_type = XOR_ORION;
1496 if (pdev->dev.of_node) {
1497 const struct of_device_id *of_id =
1498 of_match_device(mv_xor_dt_ids,
1499 &pdev->dev);
1501 xordev->xor_type = (uintptr_t)of_id->data;
1505 * (Re-)program MBUS remapping windows if we are asked to.
1507 if (xordev->xor_type == XOR_ARMADA_37XX) {
1508 mv_xor_conf_mbus_windows_a3700(xordev);
1509 } else {
1510 dram = mv_mbus_dram_info();
1511 if (dram)
1512 mv_xor_conf_mbus_windows(xordev, dram);
1515 /* Not all platforms can gate the clock, so it is not
1516 * an error if the clock does not exists.
1518 xordev->clk = clk_get(&pdev->dev, NULL);
1519 if (!IS_ERR(xordev->clk))
1520 clk_prepare_enable(xordev->clk);
1523 * We don't want to have more than one channel per CPU in
1524 * order for async_tx to perform well. So we limit the number
1525 * of engines and channels so that we take into account this
1526 * constraint. Note that we also want to use channels from
1527 * separate engines when possible. For dual-CPU Armada 3700
1528 * SoC with single XOR engine allow using its both channels.
1530 max_engines = num_present_cpus();
1531 if (xordev->xor_type == XOR_ARMADA_37XX)
1532 max_channels = num_present_cpus();
1533 else
1534 max_channels = min_t(unsigned int,
1535 MV_XOR_MAX_CHANNELS,
1536 DIV_ROUND_UP(num_present_cpus(), 2));
1538 if (mv_xor_engine_count >= max_engines)
1539 return 0;
1541 if (pdev->dev.of_node) {
1542 struct device_node *np;
1543 int i = 0;
1545 for_each_child_of_node(pdev->dev.of_node, np) {
1546 struct mv_xor_chan *chan;
1547 dma_cap_mask_t cap_mask;
1548 int irq;
1550 if (i >= max_channels)
1551 continue;
1553 dma_cap_zero(cap_mask);
1554 dma_cap_set(DMA_MEMCPY, cap_mask);
1555 dma_cap_set(DMA_SG, cap_mask);
1556 dma_cap_set(DMA_XOR, cap_mask);
1557 dma_cap_set(DMA_INTERRUPT, cap_mask);
1559 irq = irq_of_parse_and_map(np, 0);
1560 if (!irq) {
1561 ret = -ENODEV;
1562 goto err_channel_add;
1565 chan = mv_xor_channel_add(xordev, pdev, i,
1566 cap_mask, irq);
1567 if (IS_ERR(chan)) {
1568 ret = PTR_ERR(chan);
1569 irq_dispose_mapping(irq);
1570 goto err_channel_add;
1573 xordev->channels[i] = chan;
1574 i++;
1576 } else if (pdata && pdata->channels) {
1577 for (i = 0; i < max_channels; i++) {
1578 struct mv_xor_channel_data *cd;
1579 struct mv_xor_chan *chan;
1580 int irq;
1582 cd = &pdata->channels[i];
1583 if (!cd) {
1584 ret = -ENODEV;
1585 goto err_channel_add;
1588 irq = platform_get_irq(pdev, i);
1589 if (irq < 0) {
1590 ret = irq;
1591 goto err_channel_add;
1594 chan = mv_xor_channel_add(xordev, pdev, i,
1595 cd->cap_mask, irq);
1596 if (IS_ERR(chan)) {
1597 ret = PTR_ERR(chan);
1598 goto err_channel_add;
1601 xordev->channels[i] = chan;
1605 return 0;
1607 err_channel_add:
1608 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1609 if (xordev->channels[i]) {
1610 mv_xor_channel_remove(xordev->channels[i]);
1611 if (pdev->dev.of_node)
1612 irq_dispose_mapping(xordev->channels[i]->irq);
1615 if (!IS_ERR(xordev->clk)) {
1616 clk_disable_unprepare(xordev->clk);
1617 clk_put(xordev->clk);
1620 return ret;
1623 static struct platform_driver mv_xor_driver = {
1624 .probe = mv_xor_probe,
1625 .suspend = mv_xor_suspend,
1626 .resume = mv_xor_resume,
1627 .driver = {
1628 .name = MV_XOR_NAME,
1629 .of_match_table = of_match_ptr(mv_xor_dt_ids),
1633 builtin_platform_driver(mv_xor_driver);
1636 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1637 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1638 MODULE_LICENSE("GPL");