sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / dma / sh / rcar-dmac.c
blob2e441d0ccd79a37a5486d394310839c2cdc47f01
1 /*
2 * Renesas R-Car Gen2 DMA Controller Driver
4 * Copyright (C) 2014 Renesas Electronics Inc.
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 #include "../dmaengine.h"
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
36 struct rcar_dmac_xfer_chunk {
37 struct list_head node;
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
50 struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55 } __attribute__((__packed__));
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
74 struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
83 unsigned int nchunks;
85 struct {
86 bool use;
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
92 unsigned int size;
93 bool cyclic;
96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
104 struct rcar_dmac_desc_page {
105 struct list_head node;
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
113 #define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
121 * struct rcar_dmac_chan_slave - Slave configuration
122 * @slave_addr: slave memory address
123 * @xfer_size: size (in bytes) of hardware transfers
125 struct rcar_dmac_chan_slave {
126 phys_addr_t slave_addr;
127 unsigned int xfer_size;
131 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132 * @addr: slave dma address
133 * @dir: direction of mapping
134 * @slave: slave configuration that is mapped
136 struct rcar_dmac_chan_map {
137 dma_addr_t addr;
138 enum dma_data_direction dir;
139 struct rcar_dmac_chan_slave slave;
143 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144 * @chan: base DMA channel object
145 * @iomem: channel I/O memory base
146 * @index: index of this channel in the controller
147 * @src: slave memory address and size on the source side
148 * @dst: slave memory address and size on the destination side
149 * @mid_rid: hardware MID/RID for the DMA client using this channel
150 * @lock: protects the channel CHCR register and the desc members
151 * @desc.free: list of free descriptors
152 * @desc.pending: list of pending descriptors (submitted with tx_submit)
153 * @desc.active: list of active descriptors (activated with issue_pending)
154 * @desc.done: list of completed descriptors
155 * @desc.wait: list of descriptors waiting for an ack
156 * @desc.running: the descriptor being processed (a member of the active list)
157 * @desc.chunks_free: list of free transfer chunk descriptors
158 * @desc.pages: list of pages used by allocated descriptors
160 struct rcar_dmac_chan {
161 struct dma_chan chan;
162 void __iomem *iomem;
163 unsigned int index;
165 struct rcar_dmac_chan_slave src;
166 struct rcar_dmac_chan_slave dst;
167 struct rcar_dmac_chan_map map;
168 int mid_rid;
170 spinlock_t lock;
172 struct {
173 struct list_head free;
174 struct list_head pending;
175 struct list_head active;
176 struct list_head done;
177 struct list_head wait;
178 struct rcar_dmac_desc *running;
180 struct list_head chunks_free;
182 struct list_head pages;
183 } desc;
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @modules: bitmask of client modules in use
197 struct rcar_dmac {
198 struct dma_device engine;
199 struct device *dev;
200 void __iomem *iomem;
202 unsigned int n_channels;
203 struct rcar_dmac_chan *channels;
205 DECLARE_BITMAP(modules, 256);
208 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
210 /* -----------------------------------------------------------------------------
211 * Registers
214 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
216 #define RCAR_DMAISTA 0x0020
217 #define RCAR_DMASEC 0x0030
218 #define RCAR_DMAOR 0x0060
219 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
220 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
221 #define RCAR_DMAOR_AE (1 << 2)
222 #define RCAR_DMAOR_DME (1 << 0)
223 #define RCAR_DMACHCLR 0x0080
224 #define RCAR_DMADPSEC 0x00a0
226 #define RCAR_DMASAR 0x0000
227 #define RCAR_DMADAR 0x0004
228 #define RCAR_DMATCR 0x0008
229 #define RCAR_DMATCR_MASK 0x00ffffff
230 #define RCAR_DMATSR 0x0028
231 #define RCAR_DMACHCR 0x000c
232 #define RCAR_DMACHCR_CAE (1 << 31)
233 #define RCAR_DMACHCR_CAIE (1 << 30)
234 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
235 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
236 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
237 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
238 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
239 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
240 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
241 #define RCAR_DMACHCR_DPB (1 << 22)
242 #define RCAR_DMACHCR_DSE (1 << 19)
243 #define RCAR_DMACHCR_DSIE (1 << 18)
244 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
245 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
246 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
247 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
248 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
249 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
250 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
252 #define RCAR_DMACHCR_DM_INC (1 << 14)
253 #define RCAR_DMACHCR_DM_DEC (2 << 14)
254 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
255 #define RCAR_DMACHCR_SM_INC (1 << 12)
256 #define RCAR_DMACHCR_SM_DEC (2 << 12)
257 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
258 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
259 #define RCAR_DMACHCR_IE (1 << 2)
260 #define RCAR_DMACHCR_TE (1 << 1)
261 #define RCAR_DMACHCR_DE (1 << 0)
262 #define RCAR_DMATCRB 0x0018
263 #define RCAR_DMATSRB 0x0038
264 #define RCAR_DMACHCRB 0x001c
265 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
266 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
267 #define RCAR_DMACHCRB_DPTR_SHIFT 16
268 #define RCAR_DMACHCRB_DRST (1 << 15)
269 #define RCAR_DMACHCRB_DTS (1 << 8)
270 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
271 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
272 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
273 #define RCAR_DMARS 0x0040
274 #define RCAR_DMABUFCR 0x0048
275 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
276 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
277 #define RCAR_DMADPBASE 0x0050
278 #define RCAR_DMADPBASE_MASK 0xfffffff0
279 #define RCAR_DMADPBASE_SEL (1 << 0)
280 #define RCAR_DMADPCR 0x0054
281 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
282 #define RCAR_DMAFIXSAR 0x0010
283 #define RCAR_DMAFIXDAR 0x0014
284 #define RCAR_DMAFIXDPBASE 0x0060
286 /* Hardcode the MEMCPY transfer size to 4 bytes. */
287 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
289 /* -----------------------------------------------------------------------------
290 * Device access
293 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
295 if (reg == RCAR_DMAOR)
296 writew(data, dmac->iomem + reg);
297 else
298 writel(data, dmac->iomem + reg);
301 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
303 if (reg == RCAR_DMAOR)
304 return readw(dmac->iomem + reg);
305 else
306 return readl(dmac->iomem + reg);
309 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
311 if (reg == RCAR_DMARS)
312 return readw(chan->iomem + reg);
313 else
314 return readl(chan->iomem + reg);
317 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
319 if (reg == RCAR_DMARS)
320 writew(data, chan->iomem + reg);
321 else
322 writel(data, chan->iomem + reg);
325 /* -----------------------------------------------------------------------------
326 * Initialization and configuration
329 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
331 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
333 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
336 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
338 struct rcar_dmac_desc *desc = chan->desc.running;
339 u32 chcr = desc->chcr;
341 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
343 if (chan->mid_rid >= 0)
344 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
346 if (desc->hwdescs.use) {
347 struct rcar_dmac_xfer_chunk *chunk;
349 dev_dbg(chan->chan.device->dev,
350 "chan%u: queue desc %p: %u@%pad\n",
351 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
353 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
354 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
355 desc->hwdescs.dma >> 32);
356 #endif
357 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
358 (desc->hwdescs.dma & 0xfffffff0) |
359 RCAR_DMADPBASE_SEL);
360 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
361 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
362 RCAR_DMACHCRB_DRST);
365 * Errata: When descriptor memory is accessed through an IOMMU
366 * the DMADAR register isn't initialized automatically from the
367 * first descriptor at beginning of transfer by the DMAC like it
368 * should. Initialize it manually with the destination address
369 * of the first chunk.
371 chunk = list_first_entry(&desc->chunks,
372 struct rcar_dmac_xfer_chunk, node);
373 rcar_dmac_chan_write(chan, RCAR_DMADAR,
374 chunk->dst_addr & 0xffffffff);
377 * Program the descriptor stage interrupt to occur after the end
378 * of the first stage.
380 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
382 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
383 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
386 * If the descriptor isn't cyclic enable normal descriptor mode
387 * and the transfer completion interrupt.
389 if (!desc->cyclic)
390 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
392 * If the descriptor is cyclic and has a callback enable the
393 * descriptor stage interrupt in infinite repeat mode.
395 else if (desc->async_tx.callback)
396 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
398 * Otherwise just select infinite repeat mode without any
399 * interrupt.
401 else
402 chcr |= RCAR_DMACHCR_DPM_INFINITE;
403 } else {
404 struct rcar_dmac_xfer_chunk *chunk = desc->running;
406 dev_dbg(chan->chan.device->dev,
407 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
408 chan->index, chunk, chunk->size, &chunk->src_addr,
409 &chunk->dst_addr);
411 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
412 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
413 chunk->src_addr >> 32);
414 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
415 chunk->dst_addr >> 32);
416 #endif
417 rcar_dmac_chan_write(chan, RCAR_DMASAR,
418 chunk->src_addr & 0xffffffff);
419 rcar_dmac_chan_write(chan, RCAR_DMADAR,
420 chunk->dst_addr & 0xffffffff);
421 rcar_dmac_chan_write(chan, RCAR_DMATCR,
422 chunk->size >> desc->xfer_shift);
424 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
427 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
430 static int rcar_dmac_init(struct rcar_dmac *dmac)
432 u16 dmaor;
434 /* Clear all channels and enable the DMAC globally. */
435 rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
436 rcar_dmac_write(dmac, RCAR_DMAOR,
437 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
439 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
440 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
441 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
442 return -EIO;
445 return 0;
448 /* -----------------------------------------------------------------------------
449 * Descriptors submission
452 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
454 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
455 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
456 unsigned long flags;
457 dma_cookie_t cookie;
459 spin_lock_irqsave(&chan->lock, flags);
461 cookie = dma_cookie_assign(tx);
463 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
464 chan->index, tx->cookie, desc);
466 list_add_tail(&desc->node, &chan->desc.pending);
467 desc->running = list_first_entry(&desc->chunks,
468 struct rcar_dmac_xfer_chunk, node);
470 spin_unlock_irqrestore(&chan->lock, flags);
472 return cookie;
475 /* -----------------------------------------------------------------------------
476 * Descriptors allocation and free
480 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
481 * @chan: the DMA channel
482 * @gfp: allocation flags
484 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
486 struct rcar_dmac_desc_page *page;
487 unsigned long flags;
488 LIST_HEAD(list);
489 unsigned int i;
491 page = (void *)get_zeroed_page(gfp);
492 if (!page)
493 return -ENOMEM;
495 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
496 struct rcar_dmac_desc *desc = &page->descs[i];
498 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
499 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
500 INIT_LIST_HEAD(&desc->chunks);
502 list_add_tail(&desc->node, &list);
505 spin_lock_irqsave(&chan->lock, flags);
506 list_splice_tail(&list, &chan->desc.free);
507 list_add_tail(&page->node, &chan->desc.pages);
508 spin_unlock_irqrestore(&chan->lock, flags);
510 return 0;
514 * rcar_dmac_desc_put - Release a DMA transfer descriptor
515 * @chan: the DMA channel
516 * @desc: the descriptor
518 * Put the descriptor and its transfer chunk descriptors back in the channel's
519 * free descriptors lists. The descriptor's chunks list will be reinitialized to
520 * an empty list as a result.
522 * The descriptor must have been removed from the channel's lists before calling
523 * this function.
525 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
526 struct rcar_dmac_desc *desc)
528 unsigned long flags;
530 spin_lock_irqsave(&chan->lock, flags);
531 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
532 list_add(&desc->node, &chan->desc.free);
533 spin_unlock_irqrestore(&chan->lock, flags);
536 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
538 struct rcar_dmac_desc *desc, *_desc;
539 unsigned long flags;
540 LIST_HEAD(list);
543 * We have to temporarily move all descriptors from the wait list to a
544 * local list as iterating over the wait list, even with
545 * list_for_each_entry_safe, isn't safe if we release the channel lock
546 * around the rcar_dmac_desc_put() call.
548 spin_lock_irqsave(&chan->lock, flags);
549 list_splice_init(&chan->desc.wait, &list);
550 spin_unlock_irqrestore(&chan->lock, flags);
552 list_for_each_entry_safe(desc, _desc, &list, node) {
553 if (async_tx_test_ack(&desc->async_tx)) {
554 list_del(&desc->node);
555 rcar_dmac_desc_put(chan, desc);
559 if (list_empty(&list))
560 return;
562 /* Put the remaining descriptors back in the wait list. */
563 spin_lock_irqsave(&chan->lock, flags);
564 list_splice(&list, &chan->desc.wait);
565 spin_unlock_irqrestore(&chan->lock, flags);
569 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
570 * @chan: the DMA channel
572 * Locking: This function must be called in a non-atomic context.
574 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
575 * be allocated.
577 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
579 struct rcar_dmac_desc *desc;
580 unsigned long flags;
581 int ret;
583 /* Recycle acked descriptors before attempting allocation. */
584 rcar_dmac_desc_recycle_acked(chan);
586 spin_lock_irqsave(&chan->lock, flags);
588 while (list_empty(&chan->desc.free)) {
590 * No free descriptors, allocate a page worth of them and try
591 * again, as someone else could race us to get the newly
592 * allocated descriptors. If the allocation fails return an
593 * error.
595 spin_unlock_irqrestore(&chan->lock, flags);
596 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
597 if (ret < 0)
598 return NULL;
599 spin_lock_irqsave(&chan->lock, flags);
602 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
603 list_del(&desc->node);
605 spin_unlock_irqrestore(&chan->lock, flags);
607 return desc;
611 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
612 * @chan: the DMA channel
613 * @gfp: allocation flags
615 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
617 struct rcar_dmac_desc_page *page;
618 unsigned long flags;
619 LIST_HEAD(list);
620 unsigned int i;
622 page = (void *)get_zeroed_page(gfp);
623 if (!page)
624 return -ENOMEM;
626 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
627 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
629 list_add_tail(&chunk->node, &list);
632 spin_lock_irqsave(&chan->lock, flags);
633 list_splice_tail(&list, &chan->desc.chunks_free);
634 list_add_tail(&page->node, &chan->desc.pages);
635 spin_unlock_irqrestore(&chan->lock, flags);
637 return 0;
641 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
642 * @chan: the DMA channel
644 * Locking: This function must be called in a non-atomic context.
646 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
647 * descriptor can be allocated.
649 static struct rcar_dmac_xfer_chunk *
650 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
652 struct rcar_dmac_xfer_chunk *chunk;
653 unsigned long flags;
654 int ret;
656 spin_lock_irqsave(&chan->lock, flags);
658 while (list_empty(&chan->desc.chunks_free)) {
660 * No free descriptors, allocate a page worth of them and try
661 * again, as someone else could race us to get the newly
662 * allocated descriptors. If the allocation fails return an
663 * error.
665 spin_unlock_irqrestore(&chan->lock, flags);
666 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
667 if (ret < 0)
668 return NULL;
669 spin_lock_irqsave(&chan->lock, flags);
672 chunk = list_first_entry(&chan->desc.chunks_free,
673 struct rcar_dmac_xfer_chunk, node);
674 list_del(&chunk->node);
676 spin_unlock_irqrestore(&chan->lock, flags);
678 return chunk;
681 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
682 struct rcar_dmac_desc *desc, size_t size)
685 * dma_alloc_coherent() allocates memory in page size increments. To
686 * avoid reallocating the hardware descriptors when the allocated size
687 * wouldn't change align the requested size to a multiple of the page
688 * size.
690 size = PAGE_ALIGN(size);
692 if (desc->hwdescs.size == size)
693 return;
695 if (desc->hwdescs.mem) {
696 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
697 desc->hwdescs.mem, desc->hwdescs.dma);
698 desc->hwdescs.mem = NULL;
699 desc->hwdescs.size = 0;
702 if (!size)
703 return;
705 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
706 &desc->hwdescs.dma, GFP_NOWAIT);
707 if (!desc->hwdescs.mem)
708 return;
710 desc->hwdescs.size = size;
713 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
714 struct rcar_dmac_desc *desc)
716 struct rcar_dmac_xfer_chunk *chunk;
717 struct rcar_dmac_hw_desc *hwdesc;
719 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
721 hwdesc = desc->hwdescs.mem;
722 if (!hwdesc)
723 return -ENOMEM;
725 list_for_each_entry(chunk, &desc->chunks, node) {
726 hwdesc->sar = chunk->src_addr;
727 hwdesc->dar = chunk->dst_addr;
728 hwdesc->tcr = chunk->size >> desc->xfer_shift;
729 hwdesc++;
732 return 0;
735 /* -----------------------------------------------------------------------------
736 * Stop and reset
739 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
741 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
743 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
744 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
745 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
748 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
750 struct rcar_dmac_desc *desc, *_desc;
751 unsigned long flags;
752 LIST_HEAD(descs);
754 spin_lock_irqsave(&chan->lock, flags);
756 /* Move all non-free descriptors to the local lists. */
757 list_splice_init(&chan->desc.pending, &descs);
758 list_splice_init(&chan->desc.active, &descs);
759 list_splice_init(&chan->desc.done, &descs);
760 list_splice_init(&chan->desc.wait, &descs);
762 chan->desc.running = NULL;
764 spin_unlock_irqrestore(&chan->lock, flags);
766 list_for_each_entry_safe(desc, _desc, &descs, node) {
767 list_del(&desc->node);
768 rcar_dmac_desc_put(chan, desc);
772 static void rcar_dmac_stop(struct rcar_dmac *dmac)
774 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
777 static void rcar_dmac_abort(struct rcar_dmac *dmac)
779 unsigned int i;
781 /* Stop all channels. */
782 for (i = 0; i < dmac->n_channels; ++i) {
783 struct rcar_dmac_chan *chan = &dmac->channels[i];
785 /* Stop and reinitialize the channel. */
786 spin_lock(&chan->lock);
787 rcar_dmac_chan_halt(chan);
788 spin_unlock(&chan->lock);
790 rcar_dmac_chan_reinit(chan);
794 /* -----------------------------------------------------------------------------
795 * Descriptors preparation
798 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
799 struct rcar_dmac_desc *desc)
801 static const u32 chcr_ts[] = {
802 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
803 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
804 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
805 RCAR_DMACHCR_TS_64B,
808 unsigned int xfer_size;
809 u32 chcr;
811 switch (desc->direction) {
812 case DMA_DEV_TO_MEM:
813 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
814 | RCAR_DMACHCR_RS_DMARS;
815 xfer_size = chan->src.xfer_size;
816 break;
818 case DMA_MEM_TO_DEV:
819 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
820 | RCAR_DMACHCR_RS_DMARS;
821 xfer_size = chan->dst.xfer_size;
822 break;
824 case DMA_MEM_TO_MEM:
825 default:
826 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
827 | RCAR_DMACHCR_RS_AUTO;
828 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
829 break;
832 desc->xfer_shift = ilog2(xfer_size);
833 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
837 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
839 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
840 * converted to scatter-gather to guarantee consistent locking and a correct
841 * list manipulation. For slave DMA direction carries the usual meaning, and,
842 * logically, the SG list is RAM and the addr variable contains slave address,
843 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
844 * and the SG list contains only one element and points at the source buffer.
846 static struct dma_async_tx_descriptor *
847 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
848 unsigned int sg_len, dma_addr_t dev_addr,
849 enum dma_transfer_direction dir, unsigned long dma_flags,
850 bool cyclic)
852 struct rcar_dmac_xfer_chunk *chunk;
853 struct rcar_dmac_desc *desc;
854 struct scatterlist *sg;
855 unsigned int nchunks = 0;
856 unsigned int max_chunk_size;
857 unsigned int full_size = 0;
858 bool highmem = false;
859 unsigned int i;
861 desc = rcar_dmac_desc_get(chan);
862 if (!desc)
863 return NULL;
865 desc->async_tx.flags = dma_flags;
866 desc->async_tx.cookie = -EBUSY;
868 desc->cyclic = cyclic;
869 desc->direction = dir;
871 rcar_dmac_chan_configure_desc(chan, desc);
873 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
876 * Allocate and fill the transfer chunk descriptors. We own the only
877 * reference to the DMA descriptor, there's no need for locking.
879 for_each_sg(sgl, sg, sg_len, i) {
880 dma_addr_t mem_addr = sg_dma_address(sg);
881 unsigned int len = sg_dma_len(sg);
883 full_size += len;
885 while (len) {
886 unsigned int size = min(len, max_chunk_size);
888 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
890 * Prevent individual transfers from crossing 4GB
891 * boundaries.
893 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
894 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
895 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
896 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
899 * Check if either of the source or destination address
900 * can't be expressed in 32 bits. If so we can't use
901 * hardware descriptor lists.
903 if (dev_addr >> 32 || mem_addr >> 32)
904 highmem = true;
905 #endif
907 chunk = rcar_dmac_xfer_chunk_get(chan);
908 if (!chunk) {
909 rcar_dmac_desc_put(chan, desc);
910 return NULL;
913 if (dir == DMA_DEV_TO_MEM) {
914 chunk->src_addr = dev_addr;
915 chunk->dst_addr = mem_addr;
916 } else {
917 chunk->src_addr = mem_addr;
918 chunk->dst_addr = dev_addr;
921 chunk->size = size;
923 dev_dbg(chan->chan.device->dev,
924 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
925 chan->index, chunk, desc, i, sg, size, len,
926 &chunk->src_addr, &chunk->dst_addr);
928 mem_addr += size;
929 if (dir == DMA_MEM_TO_MEM)
930 dev_addr += size;
932 len -= size;
934 list_add_tail(&chunk->node, &desc->chunks);
935 nchunks++;
939 desc->nchunks = nchunks;
940 desc->size = full_size;
943 * Use hardware descriptor lists if possible when more than one chunk
944 * needs to be transferred (otherwise they don't make much sense).
946 * The highmem check currently covers the whole transfer. As an
947 * optimization we could use descriptor lists for consecutive lowmem
948 * chunks and direct manual mode for highmem chunks. Whether the
949 * performance improvement would be significant enough compared to the
950 * additional complexity remains to be investigated.
952 desc->hwdescs.use = !highmem && nchunks > 1;
953 if (desc->hwdescs.use) {
954 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
955 desc->hwdescs.use = false;
958 return &desc->async_tx;
961 /* -----------------------------------------------------------------------------
962 * DMA engine operations
965 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
967 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
968 int ret;
970 INIT_LIST_HEAD(&rchan->desc.chunks_free);
971 INIT_LIST_HEAD(&rchan->desc.pages);
973 /* Preallocate descriptors. */
974 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
975 if (ret < 0)
976 return -ENOMEM;
978 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
979 if (ret < 0)
980 return -ENOMEM;
982 return pm_runtime_get_sync(chan->device->dev);
985 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
987 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
988 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
989 struct rcar_dmac_desc_page *page, *_page;
990 struct rcar_dmac_desc *desc;
991 LIST_HEAD(list);
993 /* Protect against ISR */
994 spin_lock_irq(&rchan->lock);
995 rcar_dmac_chan_halt(rchan);
996 spin_unlock_irq(&rchan->lock);
998 /* Now no new interrupts will occur */
1000 if (rchan->mid_rid >= 0) {
1001 /* The caller is holding dma_list_mutex */
1002 clear_bit(rchan->mid_rid, dmac->modules);
1003 rchan->mid_rid = -EINVAL;
1006 list_splice_init(&rchan->desc.free, &list);
1007 list_splice_init(&rchan->desc.pending, &list);
1008 list_splice_init(&rchan->desc.active, &list);
1009 list_splice_init(&rchan->desc.done, &list);
1010 list_splice_init(&rchan->desc.wait, &list);
1012 rchan->desc.running = NULL;
1014 list_for_each_entry(desc, &list, node)
1015 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1017 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1018 list_del(&page->node);
1019 free_page((unsigned long)page);
1022 pm_runtime_put(chan->device->dev);
1025 static struct dma_async_tx_descriptor *
1026 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1027 dma_addr_t dma_src, size_t len, unsigned long flags)
1029 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030 struct scatterlist sgl;
1032 if (!len)
1033 return NULL;
1035 sg_init_table(&sgl, 1);
1036 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1037 offset_in_page(dma_src));
1038 sg_dma_address(&sgl) = dma_src;
1039 sg_dma_len(&sgl) = len;
1041 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1042 DMA_MEM_TO_MEM, flags, false);
1045 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1046 enum dma_transfer_direction dir)
1048 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1049 struct rcar_dmac_chan_map *map = &rchan->map;
1050 phys_addr_t dev_addr;
1051 size_t dev_size;
1052 enum dma_data_direction dev_dir;
1054 if (dir == DMA_DEV_TO_MEM) {
1055 dev_addr = rchan->src.slave_addr;
1056 dev_size = rchan->src.xfer_size;
1057 dev_dir = DMA_TO_DEVICE;
1058 } else {
1059 dev_addr = rchan->dst.slave_addr;
1060 dev_size = rchan->dst.xfer_size;
1061 dev_dir = DMA_FROM_DEVICE;
1064 /* Reuse current map if possible. */
1065 if (dev_addr == map->slave.slave_addr &&
1066 dev_size == map->slave.xfer_size &&
1067 dev_dir == map->dir)
1068 return 0;
1070 /* Remove old mapping if present. */
1071 if (map->slave.xfer_size)
1072 dma_unmap_resource(chan->device->dev, map->addr,
1073 map->slave.xfer_size, map->dir, 0);
1074 map->slave.xfer_size = 0;
1076 /* Create new slave address map. */
1077 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1078 dev_dir, 0);
1080 if (dma_mapping_error(chan->device->dev, map->addr)) {
1081 dev_err(chan->device->dev,
1082 "chan%u: failed to map %zx@%pap", rchan->index,
1083 dev_size, &dev_addr);
1084 return -EIO;
1087 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1088 rchan->index, dev_size, &dev_addr, &map->addr,
1089 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1091 map->slave.slave_addr = dev_addr;
1092 map->slave.xfer_size = dev_size;
1093 map->dir = dev_dir;
1095 return 0;
1098 static struct dma_async_tx_descriptor *
1099 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1100 unsigned int sg_len, enum dma_transfer_direction dir,
1101 unsigned long flags, void *context)
1103 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1105 /* Someone calling slave DMA on a generic channel? */
1106 if (rchan->mid_rid < 0 || !sg_len) {
1107 dev_warn(chan->device->dev,
1108 "%s: bad parameter: len=%d, id=%d\n",
1109 __func__, sg_len, rchan->mid_rid);
1110 return NULL;
1113 if (rcar_dmac_map_slave_addr(chan, dir))
1114 return NULL;
1116 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1117 dir, flags, false);
1120 #define RCAR_DMAC_MAX_SG_LEN 32
1122 static struct dma_async_tx_descriptor *
1123 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1124 size_t buf_len, size_t period_len,
1125 enum dma_transfer_direction dir, unsigned long flags)
1127 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1128 struct dma_async_tx_descriptor *desc;
1129 struct scatterlist *sgl;
1130 unsigned int sg_len;
1131 unsigned int i;
1133 /* Someone calling slave DMA on a generic channel? */
1134 if (rchan->mid_rid < 0 || buf_len < period_len) {
1135 dev_warn(chan->device->dev,
1136 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1137 __func__, buf_len, period_len, rchan->mid_rid);
1138 return NULL;
1141 if (rcar_dmac_map_slave_addr(chan, dir))
1142 return NULL;
1144 sg_len = buf_len / period_len;
1145 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1146 dev_err(chan->device->dev,
1147 "chan%u: sg length %d exceds limit %d",
1148 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1149 return NULL;
1153 * Allocate the sg list dynamically as it would consume too much stack
1154 * space.
1156 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1157 if (!sgl)
1158 return NULL;
1160 sg_init_table(sgl, sg_len);
1162 for (i = 0; i < sg_len; ++i) {
1163 dma_addr_t src = buf_addr + (period_len * i);
1165 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1166 offset_in_page(src));
1167 sg_dma_address(&sgl[i]) = src;
1168 sg_dma_len(&sgl[i]) = period_len;
1171 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1172 dir, flags, true);
1174 kfree(sgl);
1175 return desc;
1178 static int rcar_dmac_device_config(struct dma_chan *chan,
1179 struct dma_slave_config *cfg)
1181 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1184 * We could lock this, but you shouldn't be configuring the
1185 * channel, while using it...
1187 rchan->src.slave_addr = cfg->src_addr;
1188 rchan->dst.slave_addr = cfg->dst_addr;
1189 rchan->src.xfer_size = cfg->src_addr_width;
1190 rchan->dst.xfer_size = cfg->dst_addr_width;
1192 return 0;
1195 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1197 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1198 unsigned long flags;
1200 spin_lock_irqsave(&rchan->lock, flags);
1201 rcar_dmac_chan_halt(rchan);
1202 spin_unlock_irqrestore(&rchan->lock, flags);
1205 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1206 * be running.
1209 rcar_dmac_chan_reinit(rchan);
1211 return 0;
1214 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1215 dma_cookie_t cookie)
1217 struct rcar_dmac_desc *desc = chan->desc.running;
1218 struct rcar_dmac_xfer_chunk *running = NULL;
1219 struct rcar_dmac_xfer_chunk *chunk;
1220 enum dma_status status;
1221 unsigned int residue = 0;
1222 unsigned int dptr = 0;
1224 if (!desc)
1225 return 0;
1228 * If the cookie corresponds to a descriptor that has been completed
1229 * there is no residue. The same check has already been performed by the
1230 * caller but without holding the channel lock, so the descriptor could
1231 * now be complete.
1233 status = dma_cookie_status(&chan->chan, cookie, NULL);
1234 if (status == DMA_COMPLETE)
1235 return 0;
1238 * If the cookie doesn't correspond to the currently running transfer
1239 * then the descriptor hasn't been processed yet, and the residue is
1240 * equal to the full descriptor size.
1242 if (cookie != desc->async_tx.cookie) {
1243 list_for_each_entry(desc, &chan->desc.pending, node) {
1244 if (cookie == desc->async_tx.cookie)
1245 return desc->size;
1247 list_for_each_entry(desc, &chan->desc.active, node) {
1248 if (cookie == desc->async_tx.cookie)
1249 return desc->size;
1253 * No descriptor found for the cookie, there's thus no residue.
1254 * This shouldn't happen if the calling driver passes a correct
1255 * cookie value.
1257 WARN(1, "No descriptor for cookie!");
1258 return 0;
1262 * In descriptor mode the descriptor running pointer is not maintained
1263 * by the interrupt handler, find the running descriptor from the
1264 * descriptor pointer field in the CHCRB register. In non-descriptor
1265 * mode just use the running descriptor pointer.
1267 if (desc->hwdescs.use) {
1268 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1269 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1270 WARN_ON(dptr >= desc->nchunks);
1271 } else {
1272 running = desc->running;
1275 /* Compute the size of all chunks still to be transferred. */
1276 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1277 if (chunk == running || ++dptr == desc->nchunks)
1278 break;
1280 residue += chunk->size;
1283 /* Add the residue for the current chunk. */
1284 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1286 return residue;
1289 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1290 dma_cookie_t cookie,
1291 struct dma_tx_state *txstate)
1293 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1294 enum dma_status status;
1295 unsigned long flags;
1296 unsigned int residue;
1298 status = dma_cookie_status(chan, cookie, txstate);
1299 if (status == DMA_COMPLETE || !txstate)
1300 return status;
1302 spin_lock_irqsave(&rchan->lock, flags);
1303 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1304 spin_unlock_irqrestore(&rchan->lock, flags);
1306 /* if there's no residue, the cookie is complete */
1307 if (!residue)
1308 return DMA_COMPLETE;
1310 dma_set_residue(txstate, residue);
1312 return status;
1315 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1317 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1318 unsigned long flags;
1320 spin_lock_irqsave(&rchan->lock, flags);
1322 if (list_empty(&rchan->desc.pending))
1323 goto done;
1325 /* Append the pending list to the active list. */
1326 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1329 * If no transfer is running pick the first descriptor from the active
1330 * list and start the transfer.
1332 if (!rchan->desc.running) {
1333 struct rcar_dmac_desc *desc;
1335 desc = list_first_entry(&rchan->desc.active,
1336 struct rcar_dmac_desc, node);
1337 rchan->desc.running = desc;
1339 rcar_dmac_chan_start_xfer(rchan);
1342 done:
1343 spin_unlock_irqrestore(&rchan->lock, flags);
1346 /* -----------------------------------------------------------------------------
1347 * IRQ handling
1350 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1352 struct rcar_dmac_desc *desc = chan->desc.running;
1353 unsigned int stage;
1355 if (WARN_ON(!desc || !desc->cyclic)) {
1357 * This should never happen, there should always be a running
1358 * cyclic descriptor when a descriptor stage end interrupt is
1359 * triggered. Warn and return.
1361 return IRQ_NONE;
1364 /* Program the interrupt pointer to the next stage. */
1365 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1366 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1367 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1369 return IRQ_WAKE_THREAD;
1372 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1374 struct rcar_dmac_desc *desc = chan->desc.running;
1375 irqreturn_t ret = IRQ_WAKE_THREAD;
1377 if (WARN_ON_ONCE(!desc)) {
1379 * This should never happen, there should always be a running
1380 * descriptor when a transfer end interrupt is triggered. Warn
1381 * and return.
1383 return IRQ_NONE;
1387 * The transfer end interrupt isn't generated for each chunk when using
1388 * descriptor mode. Only update the running chunk pointer in
1389 * non-descriptor mode.
1391 if (!desc->hwdescs.use) {
1393 * If we haven't completed the last transfer chunk simply move
1394 * to the next one. Only wake the IRQ thread if the transfer is
1395 * cyclic.
1397 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1398 desc->running = list_next_entry(desc->running, node);
1399 if (!desc->cyclic)
1400 ret = IRQ_HANDLED;
1401 goto done;
1405 * We've completed the last transfer chunk. If the transfer is
1406 * cyclic, move back to the first one.
1408 if (desc->cyclic) {
1409 desc->running =
1410 list_first_entry(&desc->chunks,
1411 struct rcar_dmac_xfer_chunk,
1412 node);
1413 goto done;
1417 /* The descriptor is complete, move it to the done list. */
1418 list_move_tail(&desc->node, &chan->desc.done);
1420 /* Queue the next descriptor, if any. */
1421 if (!list_empty(&chan->desc.active))
1422 chan->desc.running = list_first_entry(&chan->desc.active,
1423 struct rcar_dmac_desc,
1424 node);
1425 else
1426 chan->desc.running = NULL;
1428 done:
1429 if (chan->desc.running)
1430 rcar_dmac_chan_start_xfer(chan);
1432 return ret;
1435 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1437 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1438 struct rcar_dmac_chan *chan = dev;
1439 irqreturn_t ret = IRQ_NONE;
1440 u32 chcr;
1442 spin_lock(&chan->lock);
1444 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1445 if (chcr & RCAR_DMACHCR_TE)
1446 mask |= RCAR_DMACHCR_DE;
1447 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1449 if (chcr & RCAR_DMACHCR_DSE)
1450 ret |= rcar_dmac_isr_desc_stage_end(chan);
1452 if (chcr & RCAR_DMACHCR_TE)
1453 ret |= rcar_dmac_isr_transfer_end(chan);
1455 spin_unlock(&chan->lock);
1457 return ret;
1460 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1462 struct rcar_dmac_chan *chan = dev;
1463 struct rcar_dmac_desc *desc;
1464 struct dmaengine_desc_callback cb;
1466 spin_lock_irq(&chan->lock);
1468 /* For cyclic transfers notify the user after every chunk. */
1469 if (chan->desc.running && chan->desc.running->cyclic) {
1470 desc = chan->desc.running;
1471 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1473 if (dmaengine_desc_callback_valid(&cb)) {
1474 spin_unlock_irq(&chan->lock);
1475 dmaengine_desc_callback_invoke(&cb, NULL);
1476 spin_lock_irq(&chan->lock);
1481 * Call the callback function for all descriptors on the done list and
1482 * move them to the ack wait list.
1484 while (!list_empty(&chan->desc.done)) {
1485 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1486 node);
1487 dma_cookie_complete(&desc->async_tx);
1488 list_del(&desc->node);
1490 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1491 if (dmaengine_desc_callback_valid(&cb)) {
1492 spin_unlock_irq(&chan->lock);
1494 * We own the only reference to this descriptor, we can
1495 * safely dereference it without holding the channel
1496 * lock.
1498 dmaengine_desc_callback_invoke(&cb, NULL);
1499 spin_lock_irq(&chan->lock);
1502 list_add_tail(&desc->node, &chan->desc.wait);
1505 spin_unlock_irq(&chan->lock);
1507 /* Recycle all acked descriptors. */
1508 rcar_dmac_desc_recycle_acked(chan);
1510 return IRQ_HANDLED;
1513 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1515 struct rcar_dmac *dmac = data;
1517 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1518 return IRQ_NONE;
1521 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1522 * abort transfers on all channels, and reinitialize the DMAC.
1524 rcar_dmac_stop(dmac);
1525 rcar_dmac_abort(dmac);
1526 rcar_dmac_init(dmac);
1528 return IRQ_HANDLED;
1531 /* -----------------------------------------------------------------------------
1532 * OF xlate and channel filter
1535 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1537 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1538 struct of_phandle_args *dma_spec = arg;
1541 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1542 * function knows from which device it wants to allocate a channel from,
1543 * and would be perfectly capable of selecting the channel it wants.
1544 * Forcing it to call dma_request_channel() and iterate through all
1545 * channels from all controllers is just pointless.
1547 if (chan->device->device_config != rcar_dmac_device_config ||
1548 dma_spec->np != chan->device->dev->of_node)
1549 return false;
1551 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1554 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1555 struct of_dma *ofdma)
1557 struct rcar_dmac_chan *rchan;
1558 struct dma_chan *chan;
1559 dma_cap_mask_t mask;
1561 if (dma_spec->args_count != 1)
1562 return NULL;
1564 /* Only slave DMA channels can be allocated via DT */
1565 dma_cap_zero(mask);
1566 dma_cap_set(DMA_SLAVE, mask);
1568 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1569 if (!chan)
1570 return NULL;
1572 rchan = to_rcar_dmac_chan(chan);
1573 rchan->mid_rid = dma_spec->args[0];
1575 return chan;
1578 /* -----------------------------------------------------------------------------
1579 * Power management
1582 #ifdef CONFIG_PM_SLEEP
1583 static int rcar_dmac_sleep_suspend(struct device *dev)
1586 * TODO: Wait for the current transfer to complete and stop the device.
1588 return 0;
1591 static int rcar_dmac_sleep_resume(struct device *dev)
1593 /* TODO: Resume transfers, if any. */
1594 return 0;
1596 #endif
1598 #ifdef CONFIG_PM
1599 static int rcar_dmac_runtime_suspend(struct device *dev)
1601 return 0;
1604 static int rcar_dmac_runtime_resume(struct device *dev)
1606 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1608 return rcar_dmac_init(dmac);
1610 #endif
1612 static const struct dev_pm_ops rcar_dmac_pm = {
1613 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1614 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1615 NULL)
1618 /* -----------------------------------------------------------------------------
1619 * Probe and remove
1622 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1623 struct rcar_dmac_chan *rchan,
1624 unsigned int index)
1626 struct platform_device *pdev = to_platform_device(dmac->dev);
1627 struct dma_chan *chan = &rchan->chan;
1628 char pdev_irqname[5];
1629 char *irqname;
1630 int irq;
1631 int ret;
1633 rchan->index = index;
1634 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1635 rchan->mid_rid = -EINVAL;
1637 spin_lock_init(&rchan->lock);
1639 INIT_LIST_HEAD(&rchan->desc.free);
1640 INIT_LIST_HEAD(&rchan->desc.pending);
1641 INIT_LIST_HEAD(&rchan->desc.active);
1642 INIT_LIST_HEAD(&rchan->desc.done);
1643 INIT_LIST_HEAD(&rchan->desc.wait);
1645 /* Request the channel interrupt. */
1646 sprintf(pdev_irqname, "ch%u", index);
1647 irq = platform_get_irq_byname(pdev, pdev_irqname);
1648 if (irq < 0) {
1649 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1650 return -ENODEV;
1653 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1654 dev_name(dmac->dev), index);
1655 if (!irqname)
1656 return -ENOMEM;
1658 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1659 rcar_dmac_isr_channel_thread, 0,
1660 irqname, rchan);
1661 if (ret) {
1662 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1663 return ret;
1667 * Initialize the DMA engine channel and add it to the DMA engine
1668 * channels list.
1670 chan->device = &dmac->engine;
1671 dma_cookie_init(chan);
1673 list_add_tail(&chan->device_node, &dmac->engine.channels);
1675 return 0;
1678 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1680 struct device_node *np = dev->of_node;
1681 int ret;
1683 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1684 if (ret < 0) {
1685 dev_err(dev, "unable to read dma-channels property\n");
1686 return ret;
1689 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1690 dev_err(dev, "invalid number of channels %u\n",
1691 dmac->n_channels);
1692 return -EINVAL;
1695 return 0;
1698 static int rcar_dmac_probe(struct platform_device *pdev)
1700 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1701 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1702 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1703 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1704 unsigned int channels_offset = 0;
1705 struct dma_device *engine;
1706 struct rcar_dmac *dmac;
1707 struct resource *mem;
1708 unsigned int i;
1709 char *irqname;
1710 int irq;
1711 int ret;
1713 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1714 if (!dmac)
1715 return -ENOMEM;
1717 dmac->dev = &pdev->dev;
1718 platform_set_drvdata(pdev, dmac);
1720 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1721 if (ret < 0)
1722 return ret;
1725 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1726 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1727 * is connected to microTLB 0 on currently supported platforms, so we
1728 * can't use it with the IPMMU. As the IOMMU API operates at the device
1729 * level we can't disable it selectively, so ignore channel 0 for now if
1730 * the device is part of an IOMMU group.
1732 if (pdev->dev.iommu_group) {
1733 dmac->n_channels--;
1734 channels_offset = 1;
1737 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1738 sizeof(*dmac->channels), GFP_KERNEL);
1739 if (!dmac->channels)
1740 return -ENOMEM;
1742 /* Request resources. */
1743 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1745 if (IS_ERR(dmac->iomem))
1746 return PTR_ERR(dmac->iomem);
1748 irq = platform_get_irq_byname(pdev, "error");
1749 if (irq < 0) {
1750 dev_err(&pdev->dev, "no error IRQ specified\n");
1751 return -ENODEV;
1754 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1755 dev_name(dmac->dev));
1756 if (!irqname)
1757 return -ENOMEM;
1759 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1760 irqname, dmac);
1761 if (ret) {
1762 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1763 irq, ret);
1764 return ret;
1767 /* Enable runtime PM and initialize the device. */
1768 pm_runtime_enable(&pdev->dev);
1769 ret = pm_runtime_get_sync(&pdev->dev);
1770 if (ret < 0) {
1771 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1772 return ret;
1775 ret = rcar_dmac_init(dmac);
1776 pm_runtime_put(&pdev->dev);
1778 if (ret) {
1779 dev_err(&pdev->dev, "failed to reset device\n");
1780 goto error;
1783 /* Initialize the channels. */
1784 INIT_LIST_HEAD(&dmac->engine.channels);
1786 for (i = 0; i < dmac->n_channels; ++i) {
1787 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1788 i + channels_offset);
1789 if (ret < 0)
1790 goto error;
1793 /* Register the DMAC as a DMA provider for DT. */
1794 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1795 NULL);
1796 if (ret < 0)
1797 goto error;
1800 * Register the DMA engine device.
1802 * Default transfer size of 32 bytes requires 32-byte alignment.
1804 engine = &dmac->engine;
1805 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1806 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1808 engine->dev = &pdev->dev;
1809 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1811 engine->src_addr_widths = widths;
1812 engine->dst_addr_widths = widths;
1813 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1814 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1816 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1817 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1818 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1819 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1820 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1821 engine->device_config = rcar_dmac_device_config;
1822 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1823 engine->device_tx_status = rcar_dmac_tx_status;
1824 engine->device_issue_pending = rcar_dmac_issue_pending;
1826 ret = dma_async_device_register(engine);
1827 if (ret < 0)
1828 goto error;
1830 return 0;
1832 error:
1833 of_dma_controller_free(pdev->dev.of_node);
1834 pm_runtime_disable(&pdev->dev);
1835 return ret;
1838 static int rcar_dmac_remove(struct platform_device *pdev)
1840 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1842 of_dma_controller_free(pdev->dev.of_node);
1843 dma_async_device_unregister(&dmac->engine);
1845 pm_runtime_disable(&pdev->dev);
1847 return 0;
1850 static void rcar_dmac_shutdown(struct platform_device *pdev)
1852 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1854 rcar_dmac_stop(dmac);
1857 static const struct of_device_id rcar_dmac_of_ids[] = {
1858 { .compatible = "renesas,rcar-dmac", },
1859 { /* Sentinel */ }
1861 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1863 static struct platform_driver rcar_dmac_driver = {
1864 .driver = {
1865 .pm = &rcar_dmac_pm,
1866 .name = "rcar-dmac",
1867 .of_match_table = rcar_dmac_of_ids,
1869 .probe = rcar_dmac_probe,
1870 .remove = rcar_dmac_remove,
1871 .shutdown = rcar_dmac_shutdown,
1874 module_platform_driver(rcar_dmac_driver);
1876 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1877 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1878 MODULE_LICENSE("GPL v2");