sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob750891ea07de1573aba2d05a31bf8775b7d5ddf7
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
51 static void const *edac_mc_owner;
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
73 return count;
76 #ifdef CONFIG_EDAC_DEBUG
78 static void edac_mc_dump_channel(struct rank_info *chan)
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
88 char location[80];
90 edac_dimm_info_location(dimm, location, sizeof(location));
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 dimm->mci->csbased ? "rank" : "dimm",
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
131 #endif /* CONFIG_EDAC_DEBUG */
133 const char * const edac_mem_types[] = {
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
155 EXPORT_SYMBOL_GPL(edac_mem_types);
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
164 * If 'size' is a constant, the compiler will optimize this whole function
165 * down to either a no-op or the addition of a constant to the value of '*p'.
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
177 unsigned align, r;
178 void *ptr = *p;
180 *p += size * n_elems;
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
200 return (char *)ptr;
202 r = (unsigned long)p % align;
204 if (r == 0)
205 return (char *)ptr;
207 *p += align - r;
209 return (void *)(((unsigned long)ptr) + align - r);
212 static void _edac_mc_free(struct mem_ctl_info *mci)
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
234 kfree(csr);
237 kfree(mci->csrows);
239 kfree(mci);
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 unsigned n_layers,
244 struct edac_mc_layer *layers,
245 unsigned sz_pvt)
247 struct mem_ctl_info *mci;
248 struct edac_mc_layer *layer;
249 struct csrow_info *csr;
250 struct rank_info *chan;
251 struct dimm_info *dimm;
252 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 unsigned pos[EDAC_MAX_LAYERS];
254 unsigned size, tot_dimms = 1, count = 1;
255 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256 void *pvt, *p, *ptr = NULL;
257 int i, j, row, chn, n, len, off;
258 bool per_rank = false;
260 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
265 for (i = 0; i < n_layers; i++) {
266 tot_dimms *= layers[i].size;
267 if (layers[i].is_virt_csrow)
268 tot_csrows *= layers[i].size;
269 else
270 tot_channels *= layers[i].size;
272 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 per_rank = true;
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
281 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283 for (i = 0; i < n_layers; i++) {
284 count *= layers[i].size;
285 edac_dbg(4, "errcount layer %d size %d\n", i, count);
286 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 tot_errcount += 2 * count;
291 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293 size = ((unsigned long)pvt) + sz_pvt;
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 size,
297 tot_dimms,
298 per_rank ? "ranks" : "dimms",
299 tot_csrows * tot_channels);
301 mci = kzalloc(size, GFP_KERNEL);
302 if (mci == NULL)
303 return NULL;
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
308 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309 for (i = 0; i < n_layers; i++) {
310 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
313 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
315 /* setup index and various internal pointers */
316 mci->mc_idx = mc_num;
317 mci->tot_dimms = tot_dimms;
318 mci->pvt_info = pvt;
319 mci->n_layers = n_layers;
320 mci->layers = layer;
321 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 mci->nr_csrows = tot_csrows;
323 mci->num_cschannel = tot_channels;
324 mci->csbased = per_rank;
327 * Alocate and fill the csrow/channels structs
329 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330 if (!mci->csrows)
331 goto error;
332 for (row = 0; row < tot_csrows; row++) {
333 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 if (!csr)
335 goto error;
336 mci->csrows[row] = csr;
337 csr->csrow_idx = row;
338 csr->mci = mci;
339 csr->nr_channels = tot_channels;
340 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341 GFP_KERNEL);
342 if (!csr->channels)
343 goto error;
345 for (chn = 0; chn < tot_channels; chn++) {
346 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 if (!chan)
348 goto error;
349 csr->channels[chn] = chan;
350 chan->chan_idx = chn;
351 chan->csrow = csr;
356 * Allocate and fill the dimm structs
358 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359 if (!mci->dimms)
360 goto error;
362 memset(&pos, 0, sizeof(pos));
363 row = 0;
364 chn = 0;
365 for (i = 0; i < tot_dimms; i++) {
366 chan = mci->csrows[row]->channels[chn];
367 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 if (off < 0 || off >= tot_dimms) {
369 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 goto error;
373 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374 if (!dimm)
375 goto error;
376 mci->dimms[off] = dimm;
377 dimm->mci = mci;
380 * Copy DIMM location and initialize it.
382 len = sizeof(dimm->label);
383 p = dimm->label;
384 n = snprintf(p, len, "mc#%u", mc_num);
385 p += n;
386 len -= n;
387 for (j = 0; j < n_layers; j++) {
388 n = snprintf(p, len, "%s#%u",
389 edac_layer_name[layers[j].type],
390 pos[j]);
391 p += n;
392 len -= n;
393 dimm->location[j] = pos[j];
395 if (len <= 0)
396 break;
399 /* Link it to the csrows old API data */
400 chan->dimm = dimm;
401 dimm->csrow = row;
402 dimm->cschannel = chn;
404 /* Increment csrow location */
405 if (layers[0].is_virt_csrow) {
406 chn++;
407 if (chn == tot_channels) {
408 chn = 0;
409 row++;
411 } else {
412 row++;
413 if (row == tot_csrows) {
414 row = 0;
415 chn++;
419 /* Increment dimm location */
420 for (j = n_layers - 1; j >= 0; j--) {
421 pos[j]++;
422 if (pos[j] < layers[j].size)
423 break;
424 pos[j] = 0;
428 mci->op_state = OP_ALLOC;
430 return mci;
432 error:
433 _edac_mc_free(mci);
435 return NULL;
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
439 void edac_mc_free(struct mem_ctl_info *mci)
441 edac_dbg(1, "\n");
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
446 if (!device_is_registered(&mci->dev)) {
447 _edac_mc_free(mci);
448 return;
451 /* the mci instance is freed here, when the sysfs object is dropped */
452 edac_unregister_sysfs(mci);
454 EXPORT_SYMBOL_GPL(edac_mc_free);
456 /* Caller must hold mem_ctls_mutex */
457 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
459 struct mem_ctl_info *mci;
460 struct list_head *item;
462 edac_dbg(3, "\n");
464 list_for_each(item, &mc_devices) {
465 mci = list_entry(item, struct mem_ctl_info, link);
467 if (mci->pdev == dev)
468 return mci;
471 return NULL;
475 * find_mci_by_dev
477 * scan list of controllers looking for the one that manages
478 * the 'dev' device
479 * @dev: pointer to a struct device related with the MCI
481 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
483 struct mem_ctl_info *ret;
485 mutex_lock(&mem_ctls_mutex);
486 ret = __find_mci_by_dev(dev);
487 mutex_unlock(&mem_ctls_mutex);
489 return ret;
491 EXPORT_SYMBOL_GPL(find_mci_by_dev);
494 * handler for EDAC to check if NMI type handler has asserted interrupt
496 static int edac_mc_assert_error_check_and_clear(void)
498 int old_state;
500 if (edac_op_state == EDAC_OPSTATE_POLL)
501 return 1;
503 old_state = edac_err_assert;
504 edac_err_assert = 0;
506 return old_state;
510 * edac_mc_workq_function
511 * performs the operation scheduled by a workq request
513 static void edac_mc_workq_function(struct work_struct *work_req)
515 struct delayed_work *d_work = to_delayed_work(work_req);
516 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
518 mutex_lock(&mem_ctls_mutex);
520 if (mci->op_state != OP_RUNNING_POLL) {
521 mutex_unlock(&mem_ctls_mutex);
522 return;
525 if (edac_mc_assert_error_check_and_clear())
526 mci->edac_check(mci);
528 mutex_unlock(&mem_ctls_mutex);
530 /* Queue ourselves again. */
531 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
535 * edac_mc_reset_delay_period(unsigned long value)
537 * user space has updated our poll period value, need to
538 * reset our workq delays
540 void edac_mc_reset_delay_period(unsigned long value)
542 struct mem_ctl_info *mci;
543 struct list_head *item;
545 mutex_lock(&mem_ctls_mutex);
547 list_for_each(item, &mc_devices) {
548 mci = list_entry(item, struct mem_ctl_info, link);
550 if (mci->op_state == OP_RUNNING_POLL)
551 edac_mod_work(&mci->work, value);
553 mutex_unlock(&mem_ctls_mutex);
558 /* Return 0 on success, 1 on failure.
559 * Before calling this function, caller must
560 * assign a unique value to mci->mc_idx.
562 * locking model:
564 * called with the mem_ctls_mutex lock held
566 static int add_mc_to_global_list(struct mem_ctl_info *mci)
568 struct list_head *item, *insert_before;
569 struct mem_ctl_info *p;
571 insert_before = &mc_devices;
573 p = __find_mci_by_dev(mci->pdev);
574 if (unlikely(p != NULL))
575 goto fail0;
577 list_for_each(item, &mc_devices) {
578 p = list_entry(item, struct mem_ctl_info, link);
580 if (p->mc_idx >= mci->mc_idx) {
581 if (unlikely(p->mc_idx == mci->mc_idx))
582 goto fail1;
584 insert_before = item;
585 break;
589 list_add_tail_rcu(&mci->link, insert_before);
590 atomic_inc(&edac_handlers);
591 return 0;
593 fail0:
594 edac_printk(KERN_WARNING, EDAC_MC,
595 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
596 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
597 return 1;
599 fail1:
600 edac_printk(KERN_WARNING, EDAC_MC,
601 "bug in low-level driver: attempt to assign\n"
602 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
603 return 1;
606 static int del_mc_from_global_list(struct mem_ctl_info *mci)
608 int handlers = atomic_dec_return(&edac_handlers);
609 list_del_rcu(&mci->link);
611 /* these are for safe removal of devices from global list while
612 * NMI handlers may be traversing list
614 synchronize_rcu();
615 INIT_LIST_HEAD(&mci->link);
617 return handlers;
620 struct mem_ctl_info *edac_mc_find(int idx)
622 struct mem_ctl_info *mci = NULL;
623 struct list_head *item;
625 mutex_lock(&mem_ctls_mutex);
627 list_for_each(item, &mc_devices) {
628 mci = list_entry(item, struct mem_ctl_info, link);
630 if (mci->mc_idx >= idx) {
631 if (mci->mc_idx == idx) {
632 goto unlock;
634 break;
638 unlock:
639 mutex_unlock(&mem_ctls_mutex);
640 return mci;
642 EXPORT_SYMBOL(edac_mc_find);
645 /* FIXME - should a warning be printed if no error detection? correction? */
646 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
647 const struct attribute_group **groups)
649 int ret = -EINVAL;
650 edac_dbg(0, "\n");
652 if (mci->mc_idx >= EDAC_MAX_MCS) {
653 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
654 return -ENODEV;
657 #ifdef CONFIG_EDAC_DEBUG
658 if (edac_debug_level >= 3)
659 edac_mc_dump_mci(mci);
661 if (edac_debug_level >= 4) {
662 int i;
664 for (i = 0; i < mci->nr_csrows; i++) {
665 struct csrow_info *csrow = mci->csrows[i];
666 u32 nr_pages = 0;
667 int j;
669 for (j = 0; j < csrow->nr_channels; j++)
670 nr_pages += csrow->channels[j]->dimm->nr_pages;
671 if (!nr_pages)
672 continue;
673 edac_mc_dump_csrow(csrow);
674 for (j = 0; j < csrow->nr_channels; j++)
675 if (csrow->channels[j]->dimm->nr_pages)
676 edac_mc_dump_channel(csrow->channels[j]);
678 for (i = 0; i < mci->tot_dimms; i++)
679 if (mci->dimms[i]->nr_pages)
680 edac_mc_dump_dimm(mci->dimms[i], i);
682 #endif
683 mutex_lock(&mem_ctls_mutex);
685 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
686 ret = -EPERM;
687 goto fail0;
690 if (add_mc_to_global_list(mci))
691 goto fail0;
693 /* set load time so that error rate can be tracked */
694 mci->start_time = jiffies;
696 mci->bus = &mc_bus[mci->mc_idx];
698 if (edac_create_sysfs_mci_device(mci, groups)) {
699 edac_mc_printk(mci, KERN_WARNING,
700 "failed to create sysfs device\n");
701 goto fail1;
704 if (mci->edac_check) {
705 mci->op_state = OP_RUNNING_POLL;
707 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
708 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
710 } else {
711 mci->op_state = OP_RUNNING_INTERRUPT;
714 /* Report action taken */
715 edac_mc_printk(mci, KERN_INFO,
716 "Giving out device to module %s controller %s: DEV %s (%s)\n",
717 mci->mod_name, mci->ctl_name, mci->dev_name,
718 edac_op_state_to_string(mci->op_state));
720 edac_mc_owner = mci->mod_name;
722 mutex_unlock(&mem_ctls_mutex);
723 return 0;
725 fail1:
726 del_mc_from_global_list(mci);
728 fail0:
729 mutex_unlock(&mem_ctls_mutex);
730 return ret;
732 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
734 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
736 struct mem_ctl_info *mci;
738 edac_dbg(0, "\n");
740 mutex_lock(&mem_ctls_mutex);
742 /* find the requested mci struct in the global list */
743 mci = __find_mci_by_dev(dev);
744 if (mci == NULL) {
745 mutex_unlock(&mem_ctls_mutex);
746 return NULL;
749 /* mark MCI offline: */
750 mci->op_state = OP_OFFLINE;
752 if (!del_mc_from_global_list(mci))
753 edac_mc_owner = NULL;
755 mutex_unlock(&mem_ctls_mutex);
757 if (mci->edac_check)
758 edac_stop_work(&mci->work);
760 /* remove from sysfs */
761 edac_remove_sysfs_mci_device(mci);
763 edac_printk(KERN_INFO, EDAC_MC,
764 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
765 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
767 return mci;
769 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
771 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
772 u32 size)
774 struct page *pg;
775 void *virt_addr;
776 unsigned long flags = 0;
778 edac_dbg(3, "\n");
780 /* ECC error page was not in our memory. Ignore it. */
781 if (!pfn_valid(page))
782 return;
784 /* Find the actual page structure then map it and fix */
785 pg = pfn_to_page(page);
787 if (PageHighMem(pg))
788 local_irq_save(flags);
790 virt_addr = kmap_atomic(pg);
792 /* Perform architecture specific atomic scrub operation */
793 edac_atomic_scrub(virt_addr + offset, size);
795 /* Unmap and complete */
796 kunmap_atomic(virt_addr);
798 if (PageHighMem(pg))
799 local_irq_restore(flags);
802 /* FIXME - should return -1 */
803 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
805 struct csrow_info **csrows = mci->csrows;
806 int row, i, j, n;
808 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
809 row = -1;
811 for (i = 0; i < mci->nr_csrows; i++) {
812 struct csrow_info *csrow = csrows[i];
813 n = 0;
814 for (j = 0; j < csrow->nr_channels; j++) {
815 struct dimm_info *dimm = csrow->channels[j]->dimm;
816 n += dimm->nr_pages;
818 if (n == 0)
819 continue;
821 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
822 mci->mc_idx,
823 csrow->first_page, page, csrow->last_page,
824 csrow->page_mask);
826 if ((page >= csrow->first_page) &&
827 (page <= csrow->last_page) &&
828 ((page & csrow->page_mask) ==
829 (csrow->first_page & csrow->page_mask))) {
830 row = i;
831 break;
835 if (row == -1)
836 edac_mc_printk(mci, KERN_ERR,
837 "could not look up page error address %lx\n",
838 (unsigned long)page);
840 return row;
842 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
844 const char *edac_layer_name[] = {
845 [EDAC_MC_LAYER_BRANCH] = "branch",
846 [EDAC_MC_LAYER_CHANNEL] = "channel",
847 [EDAC_MC_LAYER_SLOT] = "slot",
848 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
849 [EDAC_MC_LAYER_ALL_MEM] = "memory",
851 EXPORT_SYMBOL_GPL(edac_layer_name);
853 static void edac_inc_ce_error(struct mem_ctl_info *mci,
854 bool enable_per_layer_report,
855 const int pos[EDAC_MAX_LAYERS],
856 const u16 count)
858 int i, index = 0;
860 mci->ce_mc += count;
862 if (!enable_per_layer_report) {
863 mci->ce_noinfo_count += count;
864 return;
867 for (i = 0; i < mci->n_layers; i++) {
868 if (pos[i] < 0)
869 break;
870 index += pos[i];
871 mci->ce_per_layer[i][index] += count;
873 if (i < mci->n_layers - 1)
874 index *= mci->layers[i + 1].size;
878 static void edac_inc_ue_error(struct mem_ctl_info *mci,
879 bool enable_per_layer_report,
880 const int pos[EDAC_MAX_LAYERS],
881 const u16 count)
883 int i, index = 0;
885 mci->ue_mc += count;
887 if (!enable_per_layer_report) {
888 mci->ue_noinfo_count += count;
889 return;
892 for (i = 0; i < mci->n_layers; i++) {
893 if (pos[i] < 0)
894 break;
895 index += pos[i];
896 mci->ue_per_layer[i][index] += count;
898 if (i < mci->n_layers - 1)
899 index *= mci->layers[i + 1].size;
903 static void edac_ce_error(struct mem_ctl_info *mci,
904 const u16 error_count,
905 const int pos[EDAC_MAX_LAYERS],
906 const char *msg,
907 const char *location,
908 const char *label,
909 const char *detail,
910 const char *other_detail,
911 const bool enable_per_layer_report,
912 const unsigned long page_frame_number,
913 const unsigned long offset_in_page,
914 long grain)
916 unsigned long remapped_page;
917 char *msg_aux = "";
919 if (*msg)
920 msg_aux = " ";
922 if (edac_mc_get_log_ce()) {
923 if (other_detail && *other_detail)
924 edac_mc_printk(mci, KERN_WARNING,
925 "%d CE %s%son %s (%s %s - %s)\n",
926 error_count, msg, msg_aux, label,
927 location, detail, other_detail);
928 else
929 edac_mc_printk(mci, KERN_WARNING,
930 "%d CE %s%son %s (%s %s)\n",
931 error_count, msg, msg_aux, label,
932 location, detail);
934 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
936 if (mci->scrub_mode == SCRUB_SW_SRC) {
938 * Some memory controllers (called MCs below) can remap
939 * memory so that it is still available at a different
940 * address when PCI devices map into memory.
941 * MC's that can't do this, lose the memory where PCI
942 * devices are mapped. This mapping is MC-dependent
943 * and so we call back into the MC driver for it to
944 * map the MC page to a physical (CPU) page which can
945 * then be mapped to a virtual page - which can then
946 * be scrubbed.
948 remapped_page = mci->ctl_page_to_phys ?
949 mci->ctl_page_to_phys(mci, page_frame_number) :
950 page_frame_number;
952 edac_mc_scrub_block(remapped_page,
953 offset_in_page, grain);
957 static void edac_ue_error(struct mem_ctl_info *mci,
958 const u16 error_count,
959 const int pos[EDAC_MAX_LAYERS],
960 const char *msg,
961 const char *location,
962 const char *label,
963 const char *detail,
964 const char *other_detail,
965 const bool enable_per_layer_report)
967 char *msg_aux = "";
969 if (*msg)
970 msg_aux = " ";
972 if (edac_mc_get_log_ue()) {
973 if (other_detail && *other_detail)
974 edac_mc_printk(mci, KERN_WARNING,
975 "%d UE %s%son %s (%s %s - %s)\n",
976 error_count, msg, msg_aux, label,
977 location, detail, other_detail);
978 else
979 edac_mc_printk(mci, KERN_WARNING,
980 "%d UE %s%son %s (%s %s)\n",
981 error_count, msg, msg_aux, label,
982 location, detail);
985 if (edac_mc_get_panic_on_ue()) {
986 if (other_detail && *other_detail)
987 panic("UE %s%son %s (%s%s - %s)\n",
988 msg, msg_aux, label, location, detail, other_detail);
989 else
990 panic("UE %s%son %s (%s%s)\n",
991 msg, msg_aux, label, location, detail);
994 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
997 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
998 struct mem_ctl_info *mci,
999 struct edac_raw_error_desc *e)
1001 char detail[80];
1002 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1004 /* Memory type dependent details about the error */
1005 if (type == HW_EVENT_ERR_CORRECTED) {
1006 snprintf(detail, sizeof(detail),
1007 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1008 e->page_frame_number, e->offset_in_page,
1009 e->grain, e->syndrome);
1010 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1011 detail, e->other_detail, e->enable_per_layer_report,
1012 e->page_frame_number, e->offset_in_page, e->grain);
1013 } else {
1014 snprintf(detail, sizeof(detail),
1015 "page:0x%lx offset:0x%lx grain:%ld",
1016 e->page_frame_number, e->offset_in_page, e->grain);
1018 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1019 detail, e->other_detail, e->enable_per_layer_report);
1024 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1026 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1027 struct mem_ctl_info *mci,
1028 const u16 error_count,
1029 const unsigned long page_frame_number,
1030 const unsigned long offset_in_page,
1031 const unsigned long syndrome,
1032 const int top_layer,
1033 const int mid_layer,
1034 const int low_layer,
1035 const char *msg,
1036 const char *other_detail)
1038 char *p;
1039 int row = -1, chan = -1;
1040 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1041 int i, n_labels = 0;
1042 u8 grain_bits;
1043 struct edac_raw_error_desc *e = &mci->error_desc;
1045 edac_dbg(3, "MC%d\n", mci->mc_idx);
1047 /* Fills the error report buffer */
1048 memset(e, 0, sizeof (*e));
1049 e->error_count = error_count;
1050 e->top_layer = top_layer;
1051 e->mid_layer = mid_layer;
1052 e->low_layer = low_layer;
1053 e->page_frame_number = page_frame_number;
1054 e->offset_in_page = offset_in_page;
1055 e->syndrome = syndrome;
1056 e->msg = msg;
1057 e->other_detail = other_detail;
1060 * Check if the event report is consistent and if the memory
1061 * location is known. If it is known, enable_per_layer_report will be
1062 * true, the DIMM(s) label info will be filled and the per-layer
1063 * error counters will be incremented.
1065 for (i = 0; i < mci->n_layers; i++) {
1066 if (pos[i] >= (int)mci->layers[i].size) {
1068 edac_mc_printk(mci, KERN_ERR,
1069 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1070 edac_layer_name[mci->layers[i].type],
1071 pos[i], mci->layers[i].size);
1073 * Instead of just returning it, let's use what's
1074 * known about the error. The increment routines and
1075 * the DIMM filter logic will do the right thing by
1076 * pointing the likely damaged DIMMs.
1078 pos[i] = -1;
1080 if (pos[i] >= 0)
1081 e->enable_per_layer_report = true;
1085 * Get the dimm label/grain that applies to the match criteria.
1086 * As the error algorithm may not be able to point to just one memory
1087 * stick, the logic here will get all possible labels that could
1088 * pottentially be affected by the error.
1089 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1090 * to have only the MC channel and the MC dimm (also called "branch")
1091 * but the channel is not known, as the memory is arranged in pairs,
1092 * where each memory belongs to a separate channel within the same
1093 * branch.
1095 p = e->label;
1096 *p = '\0';
1098 for (i = 0; i < mci->tot_dimms; i++) {
1099 struct dimm_info *dimm = mci->dimms[i];
1101 if (top_layer >= 0 && top_layer != dimm->location[0])
1102 continue;
1103 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1104 continue;
1105 if (low_layer >= 0 && low_layer != dimm->location[2])
1106 continue;
1108 /* get the max grain, over the error match range */
1109 if (dimm->grain > e->grain)
1110 e->grain = dimm->grain;
1113 * If the error is memory-controller wide, there's no need to
1114 * seek for the affected DIMMs because the whole
1115 * channel/memory controller/... may be affected.
1116 * Also, don't show errors for empty DIMM slots.
1118 if (e->enable_per_layer_report && dimm->nr_pages) {
1119 if (n_labels >= EDAC_MAX_LABELS) {
1120 e->enable_per_layer_report = false;
1121 break;
1123 n_labels++;
1124 if (p != e->label) {
1125 strcpy(p, OTHER_LABEL);
1126 p += strlen(OTHER_LABEL);
1128 strcpy(p, dimm->label);
1129 p += strlen(p);
1130 *p = '\0';
1133 * get csrow/channel of the DIMM, in order to allow
1134 * incrementing the compat API counters
1136 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1137 mci->csbased ? "rank" : "dimm",
1138 dimm->csrow, dimm->cschannel);
1139 if (row == -1)
1140 row = dimm->csrow;
1141 else if (row >= 0 && row != dimm->csrow)
1142 row = -2;
1144 if (chan == -1)
1145 chan = dimm->cschannel;
1146 else if (chan >= 0 && chan != dimm->cschannel)
1147 chan = -2;
1151 if (!e->enable_per_layer_report) {
1152 strcpy(e->label, "any memory");
1153 } else {
1154 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1155 if (p == e->label)
1156 strcpy(e->label, "unknown memory");
1157 if (type == HW_EVENT_ERR_CORRECTED) {
1158 if (row >= 0) {
1159 mci->csrows[row]->ce_count += error_count;
1160 if (chan >= 0)
1161 mci->csrows[row]->channels[chan]->ce_count += error_count;
1163 } else
1164 if (row >= 0)
1165 mci->csrows[row]->ue_count += error_count;
1168 /* Fill the RAM location data */
1169 p = e->location;
1171 for (i = 0; i < mci->n_layers; i++) {
1172 if (pos[i] < 0)
1173 continue;
1175 p += sprintf(p, "%s:%d ",
1176 edac_layer_name[mci->layers[i].type],
1177 pos[i]);
1179 if (p > e->location)
1180 *(p - 1) = '\0';
1182 /* Report the error via the trace interface */
1183 grain_bits = fls_long(e->grain) + 1;
1184 trace_mc_event(type, e->msg, e->label, e->error_count,
1185 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1186 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1187 grain_bits, e->syndrome, e->other_detail);
1189 edac_raw_mc_handle_error(type, mci, e);
1191 EXPORT_SYMBOL_GPL(edac_mc_handle_error);