2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex
);
45 static LIST_HEAD(mc_devices
);
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
51 static void const *edac_mc_owner
;
53 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
55 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
58 struct mem_ctl_info
*mci
= dimm
->mci
;
62 for (i
= 0; i
< mci
->n_layers
; i
++) {
63 n
= snprintf(p
, len
, "%s %d ",
64 edac_layer_name
[mci
->layers
[i
].type
],
76 #ifdef CONFIG_EDAC_DEBUG
78 static void edac_mc_dump_channel(struct rank_info
*chan
)
80 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
81 edac_dbg(4, " channel = %p\n", chan
);
82 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
83 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
86 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
90 edac_dimm_info_location(dimm
, location
, sizeof(location
));
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 dimm
->mci
->csbased
? "rank" : "dimm",
94 number
, location
, dimm
->csrow
, dimm
->cschannel
);
95 edac_dbg(4, " dimm = %p\n", dimm
);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
98 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
102 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
105 edac_dbg(4, " csrow = %p\n", csrow
);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
110 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
111 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
114 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
116 edac_dbg(3, "\tmci = %p\n", mci
);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci
->nr_csrows
, mci
->csrows
);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci
->tot_dimms
, mci
->dimms
);
125 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci
->mod_name
, mci
->ctl_name
);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
131 #endif /* CONFIG_EDAC_DEBUG */
133 const char * const edac_mem_types
[] = {
134 [MEM_EMPTY
] = "Empty csrow",
135 [MEM_RESERVED
] = "Reserved csrow type",
136 [MEM_UNKNOWN
] = "Unknown csrow type",
137 [MEM_FPM
] = "Fast page mode RAM",
138 [MEM_EDO
] = "Extended data out RAM",
139 [MEM_BEDO
] = "Burst Extended data out RAM",
140 [MEM_SDR
] = "Single data rate SDRAM",
141 [MEM_RDR
] = "Registered single data rate SDRAM",
142 [MEM_DDR
] = "Double data rate SDRAM",
143 [MEM_RDDR
] = "Registered Double data rate SDRAM",
144 [MEM_RMBS
] = "Rambus DRAM",
145 [MEM_DDR2
] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2
] = "Fully buffered DDR2",
147 [MEM_RDDR2
] = "Registered DDR2 RAM",
148 [MEM_XDR
] = "Rambus XDR",
149 [MEM_DDR3
] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3
] = "Registered DDR3 RAM",
151 [MEM_LRDDR3
] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4
] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4
] = "Registered DDR4 RAM",
155 EXPORT_SYMBOL_GPL(edac_mem_types
);
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
164 * If 'size' is a constant, the compiler will optimize this whole function
165 * down to either a no-op or the addition of a constant to the value of '*p'.
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
172 * At return, the pointer 'p' will be incremented to be used on a next call
175 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
180 *p
+= size
* n_elems
;
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
191 if (size
> sizeof(long))
192 align
= sizeof(long long);
193 else if (size
> sizeof(int))
194 align
= sizeof(long);
195 else if (size
> sizeof(short))
197 else if (size
> sizeof(char))
198 align
= sizeof(short);
202 r
= (unsigned long)p
% align
;
209 return (void *)(((unsigned long)ptr
) + align
- r
);
212 static void _edac_mc_free(struct mem_ctl_info
*mci
)
215 struct csrow_info
*csr
;
216 const unsigned int tot_dimms
= mci
->tot_dimms
;
217 const unsigned int tot_channels
= mci
->num_cschannel
;
218 const unsigned int tot_csrows
= mci
->nr_csrows
;
221 for (i
= 0; i
< tot_dimms
; i
++)
222 kfree(mci
->dimms
[i
]);
226 for (row
= 0; row
< tot_csrows
; row
++) {
227 csr
= mci
->csrows
[row
];
230 for (chn
= 0; chn
< tot_channels
; chn
++)
231 kfree(csr
->channels
[chn
]);
232 kfree(csr
->channels
);
242 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
244 struct edac_mc_layer
*layers
,
247 struct mem_ctl_info
*mci
;
248 struct edac_mc_layer
*layer
;
249 struct csrow_info
*csr
;
250 struct rank_info
*chan
;
251 struct dimm_info
*dimm
;
252 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
253 unsigned pos
[EDAC_MAX_LAYERS
];
254 unsigned size
, tot_dimms
= 1, count
= 1;
255 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
256 void *pvt
, *p
, *ptr
= NULL
;
257 int i
, j
, row
, chn
, n
, len
, off
;
258 bool per_rank
= false;
260 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
265 for (i
= 0; i
< n_layers
; i
++) {
266 tot_dimms
*= layers
[i
].size
;
267 if (layers
[i
].is_virt_csrow
)
268 tot_csrows
*= layers
[i
].size
;
270 tot_channels
*= layers
[i
].size
;
272 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
281 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
282 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
283 for (i
= 0; i
< n_layers
; i
++) {
284 count
*= layers
[i
].size
;
285 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
286 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
287 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
288 tot_errcount
+= 2 * count
;
291 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
292 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
293 size
= ((unsigned long)pvt
) + sz_pvt
;
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
298 per_rank
? "ranks" : "dimms",
299 tot_csrows
* tot_channels
);
301 mci
= kzalloc(size
, GFP_KERNEL
);
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
308 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
309 for (i
= 0; i
< n_layers
; i
++) {
310 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
311 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
313 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
315 /* setup index and various internal pointers */
316 mci
->mc_idx
= mc_num
;
317 mci
->tot_dimms
= tot_dimms
;
319 mci
->n_layers
= n_layers
;
321 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
322 mci
->nr_csrows
= tot_csrows
;
323 mci
->num_cschannel
= tot_channels
;
324 mci
->csbased
= per_rank
;
327 * Alocate and fill the csrow/channels structs
329 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
332 for (row
= 0; row
< tot_csrows
; row
++) {
333 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
336 mci
->csrows
[row
] = csr
;
337 csr
->csrow_idx
= row
;
339 csr
->nr_channels
= tot_channels
;
340 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
345 for (chn
= 0; chn
< tot_channels
; chn
++) {
346 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
349 csr
->channels
[chn
] = chan
;
350 chan
->chan_idx
= chn
;
356 * Allocate and fill the dimm structs
358 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
362 memset(&pos
, 0, sizeof(pos
));
365 for (i
= 0; i
< tot_dimms
; i
++) {
366 chan
= mci
->csrows
[row
]->channels
[chn
];
367 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
368 if (off
< 0 || off
>= tot_dimms
) {
369 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
373 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
376 mci
->dimms
[off
] = dimm
;
380 * Copy DIMM location and initialize it.
382 len
= sizeof(dimm
->label
);
384 n
= snprintf(p
, len
, "mc#%u", mc_num
);
387 for (j
= 0; j
< n_layers
; j
++) {
388 n
= snprintf(p
, len
, "%s#%u",
389 edac_layer_name
[layers
[j
].type
],
393 dimm
->location
[j
] = pos
[j
];
399 /* Link it to the csrows old API data */
402 dimm
->cschannel
= chn
;
404 /* Increment csrow location */
405 if (layers
[0].is_virt_csrow
) {
407 if (chn
== tot_channels
) {
413 if (row
== tot_csrows
) {
419 /* Increment dimm location */
420 for (j
= n_layers
- 1; j
>= 0; j
--) {
422 if (pos
[j
] < layers
[j
].size
)
428 mci
->op_state
= OP_ALLOC
;
437 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
439 void edac_mc_free(struct mem_ctl_info
*mci
)
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
446 if (!device_is_registered(&mci
->dev
)) {
451 /* the mci instance is freed here, when the sysfs object is dropped */
452 edac_unregister_sysfs(mci
);
454 EXPORT_SYMBOL_GPL(edac_mc_free
);
456 /* Caller must hold mem_ctls_mutex */
457 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
459 struct mem_ctl_info
*mci
;
460 struct list_head
*item
;
464 list_for_each(item
, &mc_devices
) {
465 mci
= list_entry(item
, struct mem_ctl_info
, link
);
467 if (mci
->pdev
== dev
)
477 * scan list of controllers looking for the one that manages
479 * @dev: pointer to a struct device related with the MCI
481 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
483 struct mem_ctl_info
*ret
;
485 mutex_lock(&mem_ctls_mutex
);
486 ret
= __find_mci_by_dev(dev
);
487 mutex_unlock(&mem_ctls_mutex
);
491 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
494 * handler for EDAC to check if NMI type handler has asserted interrupt
496 static int edac_mc_assert_error_check_and_clear(void)
500 if (edac_op_state
== EDAC_OPSTATE_POLL
)
503 old_state
= edac_err_assert
;
510 * edac_mc_workq_function
511 * performs the operation scheduled by a workq request
513 static void edac_mc_workq_function(struct work_struct
*work_req
)
515 struct delayed_work
*d_work
= to_delayed_work(work_req
);
516 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
518 mutex_lock(&mem_ctls_mutex
);
520 if (mci
->op_state
!= OP_RUNNING_POLL
) {
521 mutex_unlock(&mem_ctls_mutex
);
525 if (edac_mc_assert_error_check_and_clear())
526 mci
->edac_check(mci
);
528 mutex_unlock(&mem_ctls_mutex
);
530 /* Queue ourselves again. */
531 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
535 * edac_mc_reset_delay_period(unsigned long value)
537 * user space has updated our poll period value, need to
538 * reset our workq delays
540 void edac_mc_reset_delay_period(unsigned long value
)
542 struct mem_ctl_info
*mci
;
543 struct list_head
*item
;
545 mutex_lock(&mem_ctls_mutex
);
547 list_for_each(item
, &mc_devices
) {
548 mci
= list_entry(item
, struct mem_ctl_info
, link
);
550 if (mci
->op_state
== OP_RUNNING_POLL
)
551 edac_mod_work(&mci
->work
, value
);
553 mutex_unlock(&mem_ctls_mutex
);
558 /* Return 0 on success, 1 on failure.
559 * Before calling this function, caller must
560 * assign a unique value to mci->mc_idx.
564 * called with the mem_ctls_mutex lock held
566 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
568 struct list_head
*item
, *insert_before
;
569 struct mem_ctl_info
*p
;
571 insert_before
= &mc_devices
;
573 p
= __find_mci_by_dev(mci
->pdev
);
574 if (unlikely(p
!= NULL
))
577 list_for_each(item
, &mc_devices
) {
578 p
= list_entry(item
, struct mem_ctl_info
, link
);
580 if (p
->mc_idx
>= mci
->mc_idx
) {
581 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
584 insert_before
= item
;
589 list_add_tail_rcu(&mci
->link
, insert_before
);
590 atomic_inc(&edac_handlers
);
594 edac_printk(KERN_WARNING
, EDAC_MC
,
595 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
596 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
600 edac_printk(KERN_WARNING
, EDAC_MC
,
601 "bug in low-level driver: attempt to assign\n"
602 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
606 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
608 int handlers
= atomic_dec_return(&edac_handlers
);
609 list_del_rcu(&mci
->link
);
611 /* these are for safe removal of devices from global list while
612 * NMI handlers may be traversing list
615 INIT_LIST_HEAD(&mci
->link
);
620 struct mem_ctl_info
*edac_mc_find(int idx
)
622 struct mem_ctl_info
*mci
= NULL
;
623 struct list_head
*item
;
625 mutex_lock(&mem_ctls_mutex
);
627 list_for_each(item
, &mc_devices
) {
628 mci
= list_entry(item
, struct mem_ctl_info
, link
);
630 if (mci
->mc_idx
>= idx
) {
631 if (mci
->mc_idx
== idx
) {
639 mutex_unlock(&mem_ctls_mutex
);
642 EXPORT_SYMBOL(edac_mc_find
);
645 /* FIXME - should a warning be printed if no error detection? correction? */
646 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
647 const struct attribute_group
**groups
)
652 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
653 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
657 #ifdef CONFIG_EDAC_DEBUG
658 if (edac_debug_level
>= 3)
659 edac_mc_dump_mci(mci
);
661 if (edac_debug_level
>= 4) {
664 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
665 struct csrow_info
*csrow
= mci
->csrows
[i
];
669 for (j
= 0; j
< csrow
->nr_channels
; j
++)
670 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
673 edac_mc_dump_csrow(csrow
);
674 for (j
= 0; j
< csrow
->nr_channels
; j
++)
675 if (csrow
->channels
[j
]->dimm
->nr_pages
)
676 edac_mc_dump_channel(csrow
->channels
[j
]);
678 for (i
= 0; i
< mci
->tot_dimms
; i
++)
679 if (mci
->dimms
[i
]->nr_pages
)
680 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
683 mutex_lock(&mem_ctls_mutex
);
685 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
690 if (add_mc_to_global_list(mci
))
693 /* set load time so that error rate can be tracked */
694 mci
->start_time
= jiffies
;
696 mci
->bus
= &mc_bus
[mci
->mc_idx
];
698 if (edac_create_sysfs_mci_device(mci
, groups
)) {
699 edac_mc_printk(mci
, KERN_WARNING
,
700 "failed to create sysfs device\n");
704 if (mci
->edac_check
) {
705 mci
->op_state
= OP_RUNNING_POLL
;
707 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
708 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
711 mci
->op_state
= OP_RUNNING_INTERRUPT
;
714 /* Report action taken */
715 edac_mc_printk(mci
, KERN_INFO
,
716 "Giving out device to module %s controller %s: DEV %s (%s)\n",
717 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
718 edac_op_state_to_string(mci
->op_state
));
720 edac_mc_owner
= mci
->mod_name
;
722 mutex_unlock(&mem_ctls_mutex
);
726 del_mc_from_global_list(mci
);
729 mutex_unlock(&mem_ctls_mutex
);
732 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
734 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
736 struct mem_ctl_info
*mci
;
740 mutex_lock(&mem_ctls_mutex
);
742 /* find the requested mci struct in the global list */
743 mci
= __find_mci_by_dev(dev
);
745 mutex_unlock(&mem_ctls_mutex
);
749 /* mark MCI offline: */
750 mci
->op_state
= OP_OFFLINE
;
752 if (!del_mc_from_global_list(mci
))
753 edac_mc_owner
= NULL
;
755 mutex_unlock(&mem_ctls_mutex
);
758 edac_stop_work(&mci
->work
);
760 /* remove from sysfs */
761 edac_remove_sysfs_mci_device(mci
);
763 edac_printk(KERN_INFO
, EDAC_MC
,
764 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
765 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
769 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
771 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
776 unsigned long flags
= 0;
780 /* ECC error page was not in our memory. Ignore it. */
781 if (!pfn_valid(page
))
784 /* Find the actual page structure then map it and fix */
785 pg
= pfn_to_page(page
);
788 local_irq_save(flags
);
790 virt_addr
= kmap_atomic(pg
);
792 /* Perform architecture specific atomic scrub operation */
793 edac_atomic_scrub(virt_addr
+ offset
, size
);
795 /* Unmap and complete */
796 kunmap_atomic(virt_addr
);
799 local_irq_restore(flags
);
802 /* FIXME - should return -1 */
803 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
805 struct csrow_info
**csrows
= mci
->csrows
;
808 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
811 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
812 struct csrow_info
*csrow
= csrows
[i
];
814 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
815 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
821 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
823 csrow
->first_page
, page
, csrow
->last_page
,
826 if ((page
>= csrow
->first_page
) &&
827 (page
<= csrow
->last_page
) &&
828 ((page
& csrow
->page_mask
) ==
829 (csrow
->first_page
& csrow
->page_mask
))) {
836 edac_mc_printk(mci
, KERN_ERR
,
837 "could not look up page error address %lx\n",
838 (unsigned long)page
);
842 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
844 const char *edac_layer_name
[] = {
845 [EDAC_MC_LAYER_BRANCH
] = "branch",
846 [EDAC_MC_LAYER_CHANNEL
] = "channel",
847 [EDAC_MC_LAYER_SLOT
] = "slot",
848 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
849 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
851 EXPORT_SYMBOL_GPL(edac_layer_name
);
853 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
854 bool enable_per_layer_report
,
855 const int pos
[EDAC_MAX_LAYERS
],
862 if (!enable_per_layer_report
) {
863 mci
->ce_noinfo_count
+= count
;
867 for (i
= 0; i
< mci
->n_layers
; i
++) {
871 mci
->ce_per_layer
[i
][index
] += count
;
873 if (i
< mci
->n_layers
- 1)
874 index
*= mci
->layers
[i
+ 1].size
;
878 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
879 bool enable_per_layer_report
,
880 const int pos
[EDAC_MAX_LAYERS
],
887 if (!enable_per_layer_report
) {
888 mci
->ue_noinfo_count
+= count
;
892 for (i
= 0; i
< mci
->n_layers
; i
++) {
896 mci
->ue_per_layer
[i
][index
] += count
;
898 if (i
< mci
->n_layers
- 1)
899 index
*= mci
->layers
[i
+ 1].size
;
903 static void edac_ce_error(struct mem_ctl_info
*mci
,
904 const u16 error_count
,
905 const int pos
[EDAC_MAX_LAYERS
],
907 const char *location
,
910 const char *other_detail
,
911 const bool enable_per_layer_report
,
912 const unsigned long page_frame_number
,
913 const unsigned long offset_in_page
,
916 unsigned long remapped_page
;
922 if (edac_mc_get_log_ce()) {
923 if (other_detail
&& *other_detail
)
924 edac_mc_printk(mci
, KERN_WARNING
,
925 "%d CE %s%son %s (%s %s - %s)\n",
926 error_count
, msg
, msg_aux
, label
,
927 location
, detail
, other_detail
);
929 edac_mc_printk(mci
, KERN_WARNING
,
930 "%d CE %s%son %s (%s %s)\n",
931 error_count
, msg
, msg_aux
, label
,
934 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
936 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
938 * Some memory controllers (called MCs below) can remap
939 * memory so that it is still available at a different
940 * address when PCI devices map into memory.
941 * MC's that can't do this, lose the memory where PCI
942 * devices are mapped. This mapping is MC-dependent
943 * and so we call back into the MC driver for it to
944 * map the MC page to a physical (CPU) page which can
945 * then be mapped to a virtual page - which can then
948 remapped_page
= mci
->ctl_page_to_phys
?
949 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
952 edac_mc_scrub_block(remapped_page
,
953 offset_in_page
, grain
);
957 static void edac_ue_error(struct mem_ctl_info
*mci
,
958 const u16 error_count
,
959 const int pos
[EDAC_MAX_LAYERS
],
961 const char *location
,
964 const char *other_detail
,
965 const bool enable_per_layer_report
)
972 if (edac_mc_get_log_ue()) {
973 if (other_detail
&& *other_detail
)
974 edac_mc_printk(mci
, KERN_WARNING
,
975 "%d UE %s%son %s (%s %s - %s)\n",
976 error_count
, msg
, msg_aux
, label
,
977 location
, detail
, other_detail
);
979 edac_mc_printk(mci
, KERN_WARNING
,
980 "%d UE %s%son %s (%s %s)\n",
981 error_count
, msg
, msg_aux
, label
,
985 if (edac_mc_get_panic_on_ue()) {
986 if (other_detail
&& *other_detail
)
987 panic("UE %s%son %s (%s%s - %s)\n",
988 msg
, msg_aux
, label
, location
, detail
, other_detail
);
990 panic("UE %s%son %s (%s%s)\n",
991 msg
, msg_aux
, label
, location
, detail
);
994 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
997 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
998 struct mem_ctl_info
*mci
,
999 struct edac_raw_error_desc
*e
)
1002 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1004 /* Memory type dependent details about the error */
1005 if (type
== HW_EVENT_ERR_CORRECTED
) {
1006 snprintf(detail
, sizeof(detail
),
1007 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1008 e
->page_frame_number
, e
->offset_in_page
,
1009 e
->grain
, e
->syndrome
);
1010 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1011 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1012 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1014 snprintf(detail
, sizeof(detail
),
1015 "page:0x%lx offset:0x%lx grain:%ld",
1016 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1018 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1019 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1024 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1026 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1027 struct mem_ctl_info
*mci
,
1028 const u16 error_count
,
1029 const unsigned long page_frame_number
,
1030 const unsigned long offset_in_page
,
1031 const unsigned long syndrome
,
1032 const int top_layer
,
1033 const int mid_layer
,
1034 const int low_layer
,
1036 const char *other_detail
)
1039 int row
= -1, chan
= -1;
1040 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1041 int i
, n_labels
= 0;
1043 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1045 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1047 /* Fills the error report buffer */
1048 memset(e
, 0, sizeof (*e
));
1049 e
->error_count
= error_count
;
1050 e
->top_layer
= top_layer
;
1051 e
->mid_layer
= mid_layer
;
1052 e
->low_layer
= low_layer
;
1053 e
->page_frame_number
= page_frame_number
;
1054 e
->offset_in_page
= offset_in_page
;
1055 e
->syndrome
= syndrome
;
1057 e
->other_detail
= other_detail
;
1060 * Check if the event report is consistent and if the memory
1061 * location is known. If it is known, enable_per_layer_report will be
1062 * true, the DIMM(s) label info will be filled and the per-layer
1063 * error counters will be incremented.
1065 for (i
= 0; i
< mci
->n_layers
; i
++) {
1066 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1068 edac_mc_printk(mci
, KERN_ERR
,
1069 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1070 edac_layer_name
[mci
->layers
[i
].type
],
1071 pos
[i
], mci
->layers
[i
].size
);
1073 * Instead of just returning it, let's use what's
1074 * known about the error. The increment routines and
1075 * the DIMM filter logic will do the right thing by
1076 * pointing the likely damaged DIMMs.
1081 e
->enable_per_layer_report
= true;
1085 * Get the dimm label/grain that applies to the match criteria.
1086 * As the error algorithm may not be able to point to just one memory
1087 * stick, the logic here will get all possible labels that could
1088 * pottentially be affected by the error.
1089 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1090 * to have only the MC channel and the MC dimm (also called "branch")
1091 * but the channel is not known, as the memory is arranged in pairs,
1092 * where each memory belongs to a separate channel within the same
1098 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1099 struct dimm_info
*dimm
= mci
->dimms
[i
];
1101 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1103 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1105 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1108 /* get the max grain, over the error match range */
1109 if (dimm
->grain
> e
->grain
)
1110 e
->grain
= dimm
->grain
;
1113 * If the error is memory-controller wide, there's no need to
1114 * seek for the affected DIMMs because the whole
1115 * channel/memory controller/... may be affected.
1116 * Also, don't show errors for empty DIMM slots.
1118 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1119 if (n_labels
>= EDAC_MAX_LABELS
) {
1120 e
->enable_per_layer_report
= false;
1124 if (p
!= e
->label
) {
1125 strcpy(p
, OTHER_LABEL
);
1126 p
+= strlen(OTHER_LABEL
);
1128 strcpy(p
, dimm
->label
);
1133 * get csrow/channel of the DIMM, in order to allow
1134 * incrementing the compat API counters
1136 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1137 mci
->csbased
? "rank" : "dimm",
1138 dimm
->csrow
, dimm
->cschannel
);
1141 else if (row
>= 0 && row
!= dimm
->csrow
)
1145 chan
= dimm
->cschannel
;
1146 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1151 if (!e
->enable_per_layer_report
) {
1152 strcpy(e
->label
, "any memory");
1154 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1156 strcpy(e
->label
, "unknown memory");
1157 if (type
== HW_EVENT_ERR_CORRECTED
) {
1159 mci
->csrows
[row
]->ce_count
+= error_count
;
1161 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1165 mci
->csrows
[row
]->ue_count
+= error_count
;
1168 /* Fill the RAM location data */
1171 for (i
= 0; i
< mci
->n_layers
; i
++) {
1175 p
+= sprintf(p
, "%s:%d ",
1176 edac_layer_name
[mci
->layers
[i
].type
],
1179 if (p
> e
->location
)
1182 /* Report the error via the trace interface */
1183 grain_bits
= fls_long(e
->grain
) + 1;
1184 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1185 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1186 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1187 grain_bits
, e
->syndrome
, e
->other_detail
);
1189 edac_raw_mc_handle_error(type
, mci
, e
);
1191 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);