1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
30 #include "edac_module.h"
33 static LIST_HEAD(sbridge_edac_list
);
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.1 "
39 #define EDAC_MOD_STR "sbridge_edac"
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule
[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule
[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule
[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr
)
94 static const u32 sbridge_interleave_list
[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list
[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list
[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
114 struct interleave_pkg
{
119 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
130 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
141 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
144 return GET_BITFIELD(reg
, table
[interleave
].start
,
145 table
[interleave
].end
);
148 /* Devices 12 Function 7 */
152 #define HASWELL_TOLM 0xd0
153 #define HASWELL_TOHM_0 0xd4
154 #define HASWELL_TOHM_1 0xd8
155 #define KNL_TOLM 0xd0
156 #define KNL_TOHM_0 0xd4
157 #define KNL_TOHM_1 0xd8
159 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
162 /* Device 13 Function 6 */
164 #define SAD_TARGET 0xf0
166 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
168 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
170 #define SAD_CONTROL 0xf4
172 /* Device 14 function 0 */
174 static const u32 tad_dram_rule
[] = {
175 0x40, 0x44, 0x48, 0x4c,
176 0x50, 0x54, 0x58, 0x5c,
177 0x60, 0x64, 0x68, 0x6c,
179 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
181 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
184 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
185 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
186 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
187 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
189 /* Device 15, function 0 */
192 #define KNL_MCMTR 0x624
194 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
198 /* Device 15, function 1 */
200 #define RASENABLES 0xac
201 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
203 /* Device 15, functions 2-5 */
205 static const int mtr_regs
[] = {
209 static const int knl_mtr_reg
= 0xb60;
211 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
217 static const u32 tad_ch_nilv_offset
[] = {
218 0x90, 0x94, 0x98, 0x9c,
219 0xa0, 0xa4, 0xa8, 0xac,
220 0xb0, 0xb4, 0xb8, 0xbc,
222 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
225 static const u32 rir_way_limit
[] = {
226 0x108, 0x10c, 0x110, 0x114, 0x118,
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
230 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
233 #define MAX_RIR_WAY 8
235 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
236 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
249 /* Device 16, functions 2-7 */
252 * FIXME: Implement the error count reads directly
255 static const u32 correrrcnt
[] = {
256 0x104, 0x108, 0x10c, 0x110,
259 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
264 static const u32 correrrthrsld
[] = {
265 0x11c, 0x120, 0x124, 0x128,
268 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
272 /* Device 17, function 0 */
274 #define SB_RANK_CFG_A 0x0328
276 #define IB_RANK_CFG_A 0x0320
282 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
283 #define MAX_DIMMS 3 /* Max DIMMS per channel */
284 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
298 struct sbridge_info
{
302 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
303 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
304 u64 (*rir_limit
)(u32 reg
);
305 u64 (*sad_limit
)(u32 reg
);
306 u32 (*interleave_mode
)(u32 reg
);
307 char* (*show_interleave_mode
)(u32 reg
);
308 u32 (*dram_attr
)(u32 reg
);
309 const u32
*dram_rule
;
310 const u32
*interleave_list
;
311 const struct interleave_pkg
*interleave_pkg
;
314 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
315 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
316 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
317 struct pci_dev
*pci_vtd
;
320 struct sbridge_channel
{
325 struct pci_id_descr
{
330 struct pci_id_table
{
331 const struct pci_id_descr
*descr
;
337 struct list_head list
;
339 u8 node_id
, source_id
;
340 struct pci_dev
**pdev
;
342 struct mem_ctl_info
*mci
;
346 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
347 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
348 struct pci_dev
*pci_mc0
;
349 struct pci_dev
*pci_mc1
;
350 struct pci_dev
*pci_mc0_misc
;
351 struct pci_dev
*pci_mc1_misc
;
352 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
356 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
357 struct pci_dev
*pci_sad0
, *pci_sad1
;
358 struct pci_dev
*pci_ha0
, *pci_ha1
;
359 struct pci_dev
*pci_br0
, *pci_br1
;
360 struct pci_dev
*pci_ha1_ta
;
361 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
363 struct sbridge_dev
*sbridge_dev
;
365 struct sbridge_info info
;
366 struct sbridge_channel channel
[NUM_CHANNELS
];
368 /* Memory type detection */
369 bool is_mirrored
, is_lockstep
, is_close_pg
;
372 /* Memory description */
377 #define PCI_DESCR(device_id, opt) \
378 .dev_id = (device_id), \
381 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
382 /* Processor Home Agent */
383 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
385 /* Memory controller */
386 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
387 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
388 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
389 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
390 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
391 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
392 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
394 /* System Address Decoder */
395 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
396 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
398 /* Broadcast Registers */
399 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
402 #define PCI_ID_TABLE_ENTRY(A, T) { \
404 .n_devs = ARRAY_SIZE(A), \
408 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
409 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, SANDY_BRIDGE
),
410 {0,} /* 0 terminated list. */
413 /* This changes depending if 1HA or 2HA:
415 * 0x0eb8 (17.0) is DDRIO0
417 * 0x0ebc (17.4) is DDRIO0
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
441 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
442 /* Processor Home Agent */
443 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
445 /* Memory controller */
446 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
447 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
448 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
449 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
450 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
451 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
453 /* System Address Decoder */
454 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
456 /* Broadcast Registers */
457 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
458 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
460 /* Optional, mode 2HA */
461 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
463 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
464 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
466 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
467 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
475 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
476 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, IVY_BRIDGE
),
477 {0,} /* 0 terminated list. */
480 /* Haswell support */
483 * - 3 DDR3 channels, 2 DPC per channel
486 * - 4 DDR4 channels, 3 DPC per channel
489 * - 4 DDR4 channels, 3 DPC per channel
492 * - each IMC interfaces with a SMI 2 channel
493 * - each SMI channel interfaces with a scalable memory buffer
494 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
496 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
497 #define HASWELL_HASYSDEFEATURE2 0x84
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
519 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
520 /* first item must be the HA */
521 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
523 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
524 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
526 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
528 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
529 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
530 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
531 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
532 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
533 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
535 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
536 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1) },
537 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1) },
538 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1) },
540 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
543 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
548 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
549 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, HASWELL
),
550 {0,} /* 0 terminated list. */
553 /* Knight's Landing Support */
555 * KNL's memory channels are swizzled between memory controllers.
556 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
558 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
560 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
562 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL 0x7843
564 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
565 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
566 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
567 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
568 /* SAD target - 1-29-1 (1 of these) */
569 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
570 /* Caching / Home Agent */
571 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
572 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
573 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
576 * KNL differs from SB, IB, and Haswell in that it has multiple
577 * instances of the same device with the same device ID, so we handle that
578 * by creating as many copies in the table as we expect to find.
579 * (Like device ID must be grouped together.)
582 static const struct pci_id_descr pci_dev_descr_knl
[] = {
583 [0] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0) },
584 [1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0) },
585 [2 ... 3] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0)},
586 [4 ... 41] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0) },
587 [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
, 0) },
588 [48] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0) },
589 [49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0) },
592 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
593 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, KNIGHTS_LANDING
),
602 * - 2 DDR3 channels, 2 DPC per channel
605 * - 4 DDR4 channels, 3 DPC per channel
608 * - 4 DDR4 channels, 3 DPC per channel
611 * - each IMC interfaces with a SMI 2 channel
612 * - each SMI channel interfaces with a scalable memory buffer
613 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
634 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
635 /* first item must be the HA */
636 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0) },
638 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0) },
639 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0) },
641 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1) },
643 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0) },
644 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
, 0) },
645 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0) },
646 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0) },
647 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1) },
648 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1) },
650 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1) },
652 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1) },
653 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL
, 1) },
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1) },
656 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1) },
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1) },
660 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
661 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, BROADWELL
),
662 {0,} /* 0 terminated list. */
666 /****************************************************************************
667 Ancillary status routines
668 ****************************************************************************/
670 static inline int numrank(enum type type
, u32 mtr
)
672 int ranks
= (1 << RANK_CNT_BITS(mtr
));
675 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
679 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
680 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
687 static inline int numrow(u32 mtr
)
689 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
691 if (rows
< 13 || rows
> 18) {
692 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
693 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
700 static inline int numcol(u32 mtr
)
702 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
705 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
706 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
713 static struct sbridge_dev
*get_sbridge_dev(u8 bus
, int multi_bus
)
715 struct sbridge_dev
*sbridge_dev
;
718 * If we have devices scattered across several busses that pertain
719 * to the same memory controller, we'll lump them all together.
722 return list_first_entry_or_null(&sbridge_edac_list
,
723 struct sbridge_dev
, list
);
726 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
727 if (sbridge_dev
->bus
== bus
)
734 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
735 const struct pci_id_table
*table
)
737 struct sbridge_dev
*sbridge_dev
;
739 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
743 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
745 if (!sbridge_dev
->pdev
) {
750 sbridge_dev
->bus
= bus
;
751 sbridge_dev
->n_devs
= table
->n_devs
;
752 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
757 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
759 list_del(&sbridge_dev
->list
);
760 kfree(sbridge_dev
->pdev
);
764 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
768 /* Address range is 32:28 */
769 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
770 return GET_TOLM(reg
);
773 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
777 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
778 return GET_TOHM(reg
);
781 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
785 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
787 return GET_TOLM(reg
);
790 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
794 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
796 return GET_TOHM(reg
);
799 static u64
rir_limit(u32 reg
)
801 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
804 static u64
sad_limit(u32 reg
)
806 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
809 static u32
interleave_mode(u32 reg
)
811 return GET_BITFIELD(reg
, 1, 1);
814 char *show_interleave_mode(u32 reg
)
816 return interleave_mode(reg
) ? "8:6" : "[8:6]XOR[18:16]";
819 static u32
dram_attr(u32 reg
)
821 return GET_BITFIELD(reg
, 2, 3);
824 static u64
knl_sad_limit(u32 reg
)
826 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
829 static u32
knl_interleave_mode(u32 reg
)
831 return GET_BITFIELD(reg
, 1, 2);
834 static char *knl_show_interleave_mode(u32 reg
)
838 switch (knl_interleave_mode(reg
)) {
840 s
= "use address bits [8:6]";
843 s
= "use address bits [10:8]";
846 s
= "use address bits [14:12]";
849 s
= "use address bits [32:30]";
859 static u32
dram_attr_knl(u32 reg
)
861 return GET_BITFIELD(reg
, 3, 4);
865 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
870 if (pvt
->pci_ddrio
) {
871 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
873 if (GET_BITFIELD(reg
, 11, 11))
874 /* FIXME: Can also be LRDIMM */
884 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
887 bool registered
= false;
888 enum mem_type mtype
= MEM_UNKNOWN
;
893 pci_read_config_dword(pvt
->pci_ddrio
,
894 HASWELL_DDRCRCLKCONTROLS
, ®
);
896 if (GET_BITFIELD(reg
, 16, 16))
899 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
900 if (GET_BITFIELD(reg
, 14, 14)) {
916 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
918 /* for KNL value is fixed */
922 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
924 /* there's no way to figure out */
928 static enum dev_type
__ibridge_get_width(u32 mtr
)
950 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
953 * ddr3_width on the documentation but also valid for DDR4 on
956 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
959 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
961 /* ddr3_width on the documentation but also valid for DDR4 */
962 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
965 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
967 /* DDR4 RDIMMS and LRDIMMS are supported */
971 static u8
get_node_id(struct sbridge_pvt
*pvt
)
974 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
975 return GET_BITFIELD(reg
, 0, 2);
978 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
982 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
983 return GET_BITFIELD(reg
, 0, 3);
986 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
990 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
991 return GET_BITFIELD(reg
, 0, 2);
995 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
999 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1000 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1003 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1008 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1009 rc
= GET_BITFIELD(reg
, 26, 31);
1010 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1011 rc
= ((reg
<< 6) | rc
) << 26;
1013 return rc
| 0x1ffffff;
1016 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1020 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1021 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1024 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1029 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1030 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1031 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1032 return rc
| 0x3ffffff;
1036 static u64
haswell_rir_limit(u32 reg
)
1038 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1041 static inline u8
sad_pkg_socket(u8 pkg
)
1043 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1044 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1047 static inline u8
sad_pkg_ha(u8 pkg
)
1049 return (pkg
>> 2) & 0x1;
1052 static int haswell_chan_hash(int idx
, u64 addr
)
1057 * XOR even bits from 12:26 to bit0 of idx,
1058 * odd bits from 13:27 to bit1
1060 for (i
= 12; i
< 28; i
+= 2)
1061 idx
^= (addr
>> i
) & 3;
1066 /****************************************************************************
1067 Memory check routines
1068 ****************************************************************************/
1069 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
1071 struct pci_dev
*pdev
= NULL
;
1074 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
1075 if (pdev
&& pdev
->bus
->number
== bus
)
1083 * check_if_ecc_is_active() - Checks if ECC is active
1085 * @type: Memory controller type
1086 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1089 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
1091 struct pci_dev
*pdev
= NULL
;
1096 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
1099 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
1102 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
1105 id
= PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
;
1107 case KNIGHTS_LANDING
:
1109 * KNL doesn't group things by bus the same way
1110 * SB/IB/Haswell does.
1112 id
= PCI_DEVICE_ID_INTEL_KNL_IMC_TA
;
1118 if (type
!= KNIGHTS_LANDING
)
1119 pdev
= get_pdev_same_bus(bus
, id
);
1121 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, 0);
1124 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
1125 "%04x:%04x! on bus %02d\n",
1126 PCI_VENDOR_ID_INTEL
, id
, bus
);
1130 pci_read_config_dword(pdev
,
1131 type
== KNIGHTS_LANDING
? KNL_MCMTR
: MCMTR
, &mcmtr
);
1132 if (!IS_ECC_ENABLED(mcmtr
)) {
1133 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
1139 /* Low bits of TAD limit, and some metadata. */
1140 static const u32 knl_tad_dram_limit_lo
[] = {
1141 0x400, 0x500, 0x600, 0x700,
1142 0x800, 0x900, 0xa00, 0xb00,
1145 /* Low bits of TAD offset. */
1146 static const u32 knl_tad_dram_offset_lo
[] = {
1147 0x404, 0x504, 0x604, 0x704,
1148 0x804, 0x904, 0xa04, 0xb04,
1151 /* High 16 bits of TAD limit and offset. */
1152 static const u32 knl_tad_dram_hi
[] = {
1153 0x408, 0x508, 0x608, 0x708,
1154 0x808, 0x908, 0xa08, 0xb08,
1157 /* Number of ways a tad entry is interleaved. */
1158 static const u32 knl_tad_ways
[] = {
1163 * Retrieve the n'th Target Address Decode table entry
1164 * from the memory controller's TAD table.
1166 * @pvt: driver private data
1167 * @entry: which entry you want to retrieve
1168 * @mc: which memory controller (0 or 1)
1169 * @offset: output tad range offset
1170 * @limit: output address of first byte above tad range
1171 * @ways: output number of interleave ways
1173 * The offset value has curious semantics. It's a sort of running total
1174 * of the sizes of all the memory regions that aren't mapped in this
1177 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1184 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1185 struct pci_dev
*pci_mc
;
1190 pci_mc
= pvt
->knl
.pci_mc0
;
1193 pci_mc
= pvt
->knl
.pci_mc1
;
1200 pci_read_config_dword(pci_mc
,
1201 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1202 pci_read_config_dword(pci_mc
,
1203 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1204 pci_read_config_dword(pci_mc
,
1205 knl_tad_dram_hi
[entry
], ®_hi
);
1207 /* Is this TAD entry enabled? */
1208 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1211 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1213 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1214 *ways
= knl_tad_ways
[way_id
];
1217 sbridge_printk(KERN_ERR
,
1218 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1224 * The least significant 6 bits of base and limit are truncated.
1225 * For limit, we fill the missing bits with 1s.
1227 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1228 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1229 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1230 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1235 /* Determine which memory controller is responsible for a given channel. */
1236 static int knl_channel_mc(int channel
)
1238 WARN_ON(channel
< 0 || channel
>= 6);
1240 return channel
< 3 ? 1 : 0;
1244 * Get the Nth entry from EDC_ROUTE_TABLE register.
1245 * (This is the per-tile mapping of logical interleave targets to
1246 * physical EDC modules.)
1258 static u32
knl_get_edc_route(int entry
, u32 reg
)
1260 WARN_ON(entry
>= KNL_MAX_EDCS
);
1261 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1265 * Get the Nth entry from MC_ROUTE_TABLE register.
1266 * (This is the per-tile mapping of logical interleave targets to
1267 * physical DRAM channels modules.)
1269 * entry 0: mc 0:2 channel 18:19
1270 * 1: mc 3:5 channel 20:21
1271 * 2: mc 6:8 channel 22:23
1272 * 3: mc 9:11 channel 24:25
1273 * 4: mc 12:14 channel 26:27
1274 * 5: mc 15:17 channel 28:29
1277 * Though we have 3 bits to identify the MC, we should only see
1278 * the values 0 or 1.
1281 static u32
knl_get_mc_route(int entry
, u32 reg
)
1285 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1287 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1288 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1290 return knl_channel_remap(mc
, chan
);
1294 * Render the EDC_ROUTE register in human-readable form.
1295 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1297 static void knl_show_edc_route(u32 reg
, char *s
)
1301 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1302 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1306 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1310 * Render the MC_ROUTE register in human-readable form.
1311 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1313 static void knl_show_mc_route(u32 reg
, char *s
)
1317 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1318 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1322 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1325 #define KNL_EDC_ROUTE 0xb8
1326 #define KNL_MC_ROUTE 0xb4
1328 /* Is this dram rule backed by regular DRAM in flat mode? */
1329 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1331 /* Is this dram rule cached? */
1332 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1334 /* Is this rule backed by edc ? */
1335 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1337 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1338 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1340 /* Is this rule mod3? */
1341 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1344 * Figure out how big our RAM modules are.
1346 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1347 * have to figure this out from the SAD rules, interleave lists, route tables,
1350 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1351 * inspect the TAD rules to figure out how large the SAD regions really are.
1353 * When we know the real size of a SAD region and how many ways it's
1354 * interleaved, we know the individual contribution of each channel to
1357 * Finally, we have to check whether each channel participates in each SAD
1360 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1361 * much memory the channel uses, we know the DIMM is at least that large.
1362 * (The BIOS might possibly choose not to map all available memory, in which
1363 * case we will underreport the size of the DIMM.)
1365 * In theory, we could try to determine the EDC sizes as well, but that would
1366 * only work in flat mode, not in cache mode.
1368 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1371 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1373 u64 sad_base
, sad_size
, sad_limit
= 0;
1374 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1377 int intrlv_ways
, tad_ways
;
1380 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1381 u32 dram_rule
, interleave_reg
;
1382 u32 mc_route_reg
[KNL_MAX_CHAS
];
1383 u32 edc_route_reg
[KNL_MAX_CHAS
];
1385 char edc_route_string
[KNL_MAX_EDCS
*2];
1386 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1391 int participants
[KNL_MAX_CHANNELS
];
1392 int participant_count
= 0;
1394 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1397 /* Read the EDC route table in each CHA. */
1399 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1400 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1401 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1403 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1404 knl_show_edc_route(edc_route_reg
[i
-1],
1406 if (cur_reg_start
== i
-1)
1407 edac_dbg(0, "edc route table for CHA %d: %s\n",
1408 cur_reg_start
, edc_route_string
);
1410 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1411 cur_reg_start
, i
-1, edc_route_string
);
1415 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1416 if (cur_reg_start
== i
-1)
1417 edac_dbg(0, "edc route table for CHA %d: %s\n",
1418 cur_reg_start
, edc_route_string
);
1420 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1421 cur_reg_start
, i
-1, edc_route_string
);
1423 /* Read the MC route table in each CHA. */
1425 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1426 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1427 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1429 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1430 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1431 if (cur_reg_start
== i
-1)
1432 edac_dbg(0, "mc route table for CHA %d: %s\n",
1433 cur_reg_start
, mc_route_string
);
1435 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1436 cur_reg_start
, i
-1, mc_route_string
);
1440 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1441 if (cur_reg_start
== i
-1)
1442 edac_dbg(0, "mc route table for CHA %d: %s\n",
1443 cur_reg_start
, mc_route_string
);
1445 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1446 cur_reg_start
, i
-1, mc_route_string
);
1448 /* Process DRAM rules */
1449 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1450 /* previous limit becomes the new base */
1451 sad_base
= sad_limit
;
1453 pci_read_config_dword(pvt
->pci_sad0
,
1454 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1456 if (!DRAM_RULE_ENABLE(dram_rule
))
1459 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1461 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1462 sad_size
= sad_limit
- sad_base
;
1464 pci_read_config_dword(pvt
->pci_sad0
,
1465 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1468 * Find out how many ways this dram rule is interleaved.
1469 * We stop when we see the first channel again.
1471 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1473 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1474 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1475 interleave_reg
, intrlv_ways
);
1477 if ((pkg
& 0x8) == 0) {
1479 * 0 bit means memory is non-local,
1480 * which KNL doesn't support
1482 edac_dbg(0, "Unexpected interleave target %d\n",
1487 if (pkg
== first_pkg
)
1490 if (KNL_MOD3(dram_rule
))
1493 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1498 edram_only
? ", EDRAM" : "");
1501 * Find out how big the SAD region really is by iterating
1502 * over TAD tables (SAD regions may contain holes).
1503 * Each memory controller might have a different TAD table, so
1504 * we have to look at both.
1506 * Livespace is the memory that's mapped in this TAD table,
1507 * deadspace is the holes (this could be the MMIO hole, or it
1508 * could be memory that's mapped by the other TAD table but
1511 for (mc
= 0; mc
< 2; mc
++) {
1512 sad_actual_size
[mc
] = 0;
1515 tad_rule
< ARRAY_SIZE(
1516 knl_tad_dram_limit_lo
);
1518 if (knl_get_tad(pvt
,
1526 tad_size
= (tad_limit
+1) -
1527 (tad_livespace
+ tad_deadspace
);
1528 tad_livespace
+= tad_size
;
1529 tad_base
= (tad_limit
+1) - tad_size
;
1531 if (tad_base
< sad_base
) {
1532 if (tad_limit
> sad_base
)
1533 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1534 } else if (tad_base
< sad_limit
) {
1535 if (tad_limit
+1 > sad_limit
) {
1536 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1538 /* TAD region is completely inside SAD region */
1539 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1541 tad_limit
, tad_size
,
1543 sad_actual_size
[mc
] += tad_size
;
1546 tad_base
= tad_limit
+1;
1550 for (mc
= 0; mc
< 2; mc
++) {
1551 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1552 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1555 /* Ignore EDRAM rule */
1559 /* Figure out which channels participate in interleave. */
1560 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1561 participants
[channel
] = 0;
1563 /* For each channel, does at least one CHA have
1564 * this channel mapped to the given target?
1566 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1567 for (way
= 0; way
< intrlv_ways
; way
++) {
1571 if (KNL_MOD3(dram_rule
))
1574 target
= 0x7 & sad_pkg(
1575 pvt
->info
.interleave_pkg
, interleave_reg
, way
);
1577 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1578 if (knl_get_mc_route(target
,
1579 mc_route_reg
[cha
]) == channel
1580 && !participants
[channel
]) {
1581 participant_count
++;
1582 participants
[channel
] = 1;
1589 if (participant_count
!= intrlv_ways
)
1590 edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1591 participant_count
, intrlv_ways
);
1593 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1594 mc
= knl_channel_mc(channel
);
1595 if (participants
[channel
]) {
1596 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1598 sad_actual_size
[mc
]/intrlv_ways
,
1600 mc_sizes
[channel
] +=
1601 sad_actual_size
[mc
]/intrlv_ways
;
1609 static int get_dimm_config(struct mem_ctl_info
*mci
)
1611 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1612 struct dimm_info
*dimm
;
1613 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
1616 enum edac_type mode
;
1617 enum mem_type mtype
;
1618 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
?
1619 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
1620 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1622 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1623 pci_read_config_dword(pvt
->pci_ha0
, HASWELL_HASYSDEFEATURE2
, ®
);
1624 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1626 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1627 pvt
->info
.type
== KNIGHTS_LANDING
)
1628 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1630 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1632 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1633 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1635 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1637 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1638 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1639 pvt
->sbridge_dev
->mc
,
1640 pvt
->sbridge_dev
->node_id
,
1641 pvt
->sbridge_dev
->source_id
);
1643 /* KNL doesn't support mirroring or lockstep,
1644 * and is always closed page
1646 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1647 mode
= EDAC_S4ECD4ED
;
1648 pvt
->is_mirrored
= false;
1650 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1653 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
1654 if (IS_MIRROR_ENABLED(reg
)) {
1655 edac_dbg(0, "Memory mirror is enabled\n");
1656 pvt
->is_mirrored
= true;
1658 edac_dbg(0, "Memory mirror is disabled\n");
1659 pvt
->is_mirrored
= false;
1662 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
1663 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1664 edac_dbg(0, "Lockstep is enabled\n");
1665 mode
= EDAC_S8ECD8ED
;
1666 pvt
->is_lockstep
= true;
1668 edac_dbg(0, "Lockstep is disabled\n");
1669 mode
= EDAC_S4ECD4ED
;
1670 pvt
->is_lockstep
= false;
1672 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1673 edac_dbg(0, "address map is on closed page mode\n");
1674 pvt
->is_close_pg
= true;
1676 edac_dbg(0, "address map is on open page mode\n");
1677 pvt
->is_close_pg
= false;
1681 mtype
= pvt
->info
.get_memory_type(pvt
);
1682 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1683 edac_dbg(0, "Memory is registered\n");
1684 else if (mtype
== MEM_UNKNOWN
)
1685 edac_dbg(0, "Cannot determine memory type\n");
1687 edac_dbg(0, "Memory is unregistered\n");
1689 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1694 for (i
= 0; i
< channels
; i
++) {
1697 int max_dimms_per_channel
;
1699 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1700 max_dimms_per_channel
= 1;
1701 if (!pvt
->knl
.pci_channel
[i
])
1704 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1705 if (!pvt
->pci_tad
[i
])
1709 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1710 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
1712 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1713 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1716 pci_read_config_dword(pvt
->pci_tad
[i
],
1719 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1720 if (IS_DIMM_PRESENT(mtr
)) {
1721 pvt
->channel
[i
].dimms
++;
1723 ranks
= numrank(pvt
->info
.type
, mtr
);
1725 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1726 /* For DDR4, this is fixed. */
1728 rows
= knl_mc_sizes
[i
] /
1729 ((u64
) cols
* ranks
* banks
* 8);
1735 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1736 npages
= MiB_TO_PAGES(size
);
1738 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1739 pvt
->sbridge_dev
->mc
, i
/4, i
%4, j
,
1741 banks
, ranks
, rows
, cols
);
1743 dimm
->nr_pages
= npages
;
1745 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1746 dimm
->mtype
= mtype
;
1747 dimm
->edac_mode
= mode
;
1748 snprintf(dimm
->label
, sizeof(dimm
->label
),
1749 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1750 pvt
->sbridge_dev
->source_id
, i
/4, i
%4, j
);
1758 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1760 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1761 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1769 * Step 1) Get TOLM/TOHM ranges
1772 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1773 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1775 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1776 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1777 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1779 /* Address range is already 45:25 */
1780 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1781 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1783 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1784 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1785 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1788 * Step 2) Get SAD range and SAD Interleave list
1789 * TAD registers contain the interleave wayness. However, it
1790 * seems simpler to just discover it indirectly, with the
1794 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1795 /* SAD_LIMIT Address range is 45:26 */
1796 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1798 limit
= pvt
->info
.sad_limit(reg
);
1800 if (!DRAM_RULE_ENABLE(reg
))
1806 tmp_mb
= (limit
+ 1) >> 20;
1807 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1808 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1810 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1812 ((u64
)tmp_mb
) << 20L,
1813 pvt
->info
.show_interleave_mode(reg
),
1817 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1819 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1820 for (j
= 0; j
< 8; j
++) {
1821 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1822 if (j
> 0 && sad_interl
== pkg
)
1825 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1830 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1834 * Step 3) Get TAD range
1837 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1838 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
1840 limit
= TAD_LIMIT(reg
);
1843 tmp_mb
= (limit
+ 1) >> 20;
1845 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1846 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1847 n_tads
, gb
, (mb
*1000)/1024,
1848 ((u64
)tmp_mb
) << 20L,
1849 (u32
)(1 << TAD_SOCK(reg
)),
1850 (u32
)TAD_CH(reg
) + 1,
1860 * Step 4) Get TAD offsets, per each channel
1862 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1863 if (!pvt
->channel
[i
].dimms
)
1865 for (j
= 0; j
< n_tads
; j
++) {
1866 pci_read_config_dword(pvt
->pci_tad
[i
],
1867 tad_ch_nilv_offset
[j
],
1869 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1870 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1871 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1874 ((u64
)tmp_mb
) << 20L,
1880 * Step 6) Get RIR Wayness/Limit, per each channel
1882 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1883 if (!pvt
->channel
[i
].dimms
)
1885 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1886 pci_read_config_dword(pvt
->pci_tad
[i
],
1890 if (!IS_RIR_VALID(reg
))
1893 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1894 rir_way
= 1 << RIR_WAY(reg
);
1895 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1896 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1899 ((u64
)tmp_mb
) << 20L,
1903 for (k
= 0; k
< rir_way
; k
++) {
1904 pci_read_config_dword(pvt
->pci_tad
[i
],
1907 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1909 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1910 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1913 ((u64
)tmp_mb
) << 20L,
1914 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1921 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1923 struct sbridge_dev
*sbridge_dev
;
1925 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1926 if (sbridge_dev
->node_id
== node_id
)
1927 return sbridge_dev
->mci
;
1932 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1937 char **area_type
, char *msg
)
1939 struct mem_ctl_info
*new_mci
;
1940 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1941 struct pci_dev
*pci_ha
;
1942 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1943 int sad_interl
, idx
, base_ch
;
1944 int interleave_mode
, shiftup
= 0;
1945 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1947 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, ch_add
= 0;
1951 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1955 * Step 0) Check if the address is at special memory ranges
1956 * The check bellow is probably enough to fill all cases where
1957 * the error is not inside a memory, except for the legacy
1958 * range (e. g. VGA addresses). It is unlikely, however, that the
1959 * memory controller would generate an error on that range.
1961 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1962 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1965 if (addr
>= (u64
)pvt
->tohm
) {
1966 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1971 * Step 1) Get socket
1973 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1974 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1977 if (!DRAM_RULE_ENABLE(reg
))
1980 limit
= pvt
->info
.sad_limit(reg
);
1982 sprintf(msg
, "Can't discover the memory socket");
1989 if (n_sads
== pvt
->info
.max_sad
) {
1990 sprintf(msg
, "Can't discover the memory socket");
1994 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1995 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1997 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
2000 if (pvt
->info
.type
== SANDY_BRIDGE
) {
2001 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
2002 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
2003 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
2004 if (sad_way
> 0 && sad_interl
== pkg
)
2006 sad_interleave
[sad_way
] = pkg
;
2007 edac_dbg(0, "SAD interleave #%d: %d\n",
2008 sad_way
, sad_interleave
[sad_way
]);
2010 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2011 pvt
->sbridge_dev
->mc
,
2016 !interleave_mode
? "" : "XOR[18:16]");
2017 if (interleave_mode
)
2018 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2020 idx
= (addr
>> 6) & 7;
2034 sprintf(msg
, "Can't discover socket interleave");
2037 *socket
= sad_interleave
[idx
];
2038 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2039 idx
, sad_way
, *socket
);
2040 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2041 int bits
, a7mode
= A7MODE(dram_rule
);
2044 /* A7 mode swaps P9 with P6 */
2045 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2046 bits
|= GET_BITFIELD(addr
, 9, 9);
2048 bits
= GET_BITFIELD(addr
, 6, 8);
2050 if (interleave_mode
== 0) {
2051 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2052 idx
= GET_BITFIELD(addr
, 16, 18);
2057 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2058 *socket
= sad_pkg_socket(pkg
);
2059 sad_ha
= sad_pkg_ha(pkg
);
2064 /* MCChanShiftUpEnable */
2065 pci_read_config_dword(pvt
->pci_ha0
,
2066 HASWELL_HASYSDEFEATURE2
, ®
);
2067 shiftup
= GET_BITFIELD(reg
, 22, 22);
2070 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2071 idx
, *socket
, sad_ha
, shiftup
);
2073 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2074 idx
= (addr
>> 6) & 7;
2075 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2076 *socket
= sad_pkg_socket(pkg
);
2077 sad_ha
= sad_pkg_ha(pkg
);
2080 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2081 idx
, *socket
, sad_ha
);
2087 * Move to the proper node structure, in order to access the
2088 * right PCI registers
2090 new_mci
= get_mci_for_node_id(*socket
);
2092 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2097 pvt
= mci
->pvt_info
;
2100 * Step 2) Get memory channel
2103 if (pvt
->info
.type
== SANDY_BRIDGE
)
2104 pci_ha
= pvt
->pci_ha0
;
2107 pci_ha
= pvt
->pci_ha1
;
2109 pci_ha
= pvt
->pci_ha0
;
2111 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2112 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2113 limit
= TAD_LIMIT(reg
);
2115 sprintf(msg
, "Can't discover the memory channel");
2122 if (n_tads
== MAX_TAD
) {
2123 sprintf(msg
, "Can't discover the memory channel");
2127 ch_way
= TAD_CH(reg
) + 1;
2128 sck_way
= TAD_SOCK(reg
);
2133 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2134 if (pvt
->is_chan_hash
)
2135 idx
= haswell_chan_hash(idx
, addr
);
2140 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2144 base_ch
= TAD_TGT0(reg
);
2147 base_ch
= TAD_TGT1(reg
);
2150 base_ch
= TAD_TGT2(reg
);
2153 base_ch
= TAD_TGT3(reg
);
2156 sprintf(msg
, "Can't discover the TAD target");
2159 *channel_mask
= 1 << base_ch
;
2161 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2162 tad_ch_nilv_offset
[n_tads
],
2165 if (pvt
->is_mirrored
) {
2166 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2170 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2173 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2177 sck_xch
= (1 << sck_way
) * ch_way
;
2179 if (pvt
->is_lockstep
)
2180 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2182 offset
= TAD_OFFSET(tad_offset
);
2184 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2195 /* Calculate channel address */
2196 /* Remove the TAD offset */
2198 if (offset
> addr
) {
2199 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2204 ch_addr
= addr
- offset
;
2205 ch_addr
>>= (6 + shiftup
);
2207 ch_addr
<<= (6 + shiftup
);
2208 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2211 * Step 3) Decode rank
2213 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2214 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2215 rir_way_limit
[n_rir
],
2218 if (!IS_RIR_VALID(reg
))
2221 limit
= pvt
->info
.rir_limit(reg
);
2222 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2223 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2228 if (ch_addr
<= limit
)
2231 if (n_rir
== MAX_RIR_RANGES
) {
2232 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2236 rir_way
= RIR_WAY(reg
);
2238 if (pvt
->is_close_pg
)
2239 idx
= (ch_addr
>> 6);
2241 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2242 idx
%= 1 << rir_way
;
2244 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2245 rir_offset
[n_rir
][idx
],
2247 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2249 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2259 /****************************************************************************
2260 Device initialization routines: put/get, init/exit
2261 ****************************************************************************/
2264 * sbridge_put_all_devices 'put' all the devices that we have
2265 * reserved via 'get'
2267 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2272 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2273 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2276 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2278 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2283 static void sbridge_put_all_devices(void)
2285 struct sbridge_dev
*sbridge_dev
, *tmp
;
2287 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2288 sbridge_put_devices(sbridge_dev
);
2289 free_sbridge_dev(sbridge_dev
);
2293 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2295 const struct pci_id_table
*table
,
2296 const unsigned devno
,
2297 const int multi_bus
)
2299 struct sbridge_dev
*sbridge_dev
;
2300 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2301 struct pci_dev
*pdev
= NULL
;
2304 sbridge_printk(KERN_DEBUG
,
2305 "Seeking for: PCI ID %04x:%04x\n",
2306 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2308 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2309 dev_descr
->dev_id
, *prev
);
2317 if (dev_descr
->optional
)
2320 /* if the HA wasn't found */
2324 sbridge_printk(KERN_INFO
,
2325 "Device not found: %04x:%04x\n",
2326 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2328 /* End of list, leave */
2331 bus
= pdev
->bus
->number
;
2333 sbridge_dev
= get_sbridge_dev(bus
, multi_bus
);
2335 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
2343 if (sbridge_dev
->pdev
[devno
]) {
2344 sbridge_printk(KERN_ERR
,
2345 "Duplicated device for %04x:%04x\n",
2346 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2351 sbridge_dev
->pdev
[devno
] = pdev
;
2353 /* Be sure that the device is enabled */
2354 if (unlikely(pci_enable_device(pdev
) < 0)) {
2355 sbridge_printk(KERN_ERR
,
2356 "Couldn't enable %04x:%04x\n",
2357 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2361 edac_dbg(0, "Detected %04x:%04x\n",
2362 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2365 * As stated on drivers/pci/search.c, the reference count for
2366 * @from is always decremented if it is not %NULL. So, as we need
2367 * to get all devices up to null, we need to do a get for the device
2377 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2378 * devices we want to reference for this driver.
2379 * @num_mc: pointer to the memory controllers count, to be incremented in case
2381 * @table: model specific table
2383 * returns 0 in case of success or error code
2385 static int sbridge_get_all_devices(u8
*num_mc
,
2386 const struct pci_id_table
*table
)
2389 struct pci_dev
*pdev
= NULL
;
2393 if (table
->type
== KNIGHTS_LANDING
)
2394 allow_dups
= multi_bus
= 1;
2395 while (table
&& table
->descr
) {
2396 for (i
= 0; i
< table
->n_devs
; i
++) {
2397 if (!allow_dups
|| i
== 0 ||
2398 table
->descr
[i
].dev_id
!=
2399 table
->descr
[i
-1].dev_id
) {
2403 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2404 table
, i
, multi_bus
);
2410 sbridge_put_all_devices();
2413 } while (pdev
&& !allow_dups
);
2421 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2422 struct sbridge_dev
*sbridge_dev
)
2424 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2425 struct pci_dev
*pdev
;
2426 u8 saw_chan_mask
= 0;
2429 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2430 pdev
= sbridge_dev
->pdev
[i
];
2434 switch (pdev
->device
) {
2435 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2436 pvt
->pci_sad0
= pdev
;
2438 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2439 pvt
->pci_sad1
= pdev
;
2441 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2442 pvt
->pci_br0
= pdev
;
2444 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2445 pvt
->pci_ha0
= pdev
;
2447 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2450 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2451 pvt
->pci_ras
= pdev
;
2453 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2454 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2455 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2456 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2458 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
2459 pvt
->pci_tad
[id
] = pdev
;
2460 saw_chan_mask
|= 1 << id
;
2463 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2464 pvt
->pci_ddrio
= pdev
;
2470 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2471 pdev
->vendor
, pdev
->device
,
2476 /* Check if everything were registered */
2477 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
2478 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2481 if (saw_chan_mask
!= 0x0f)
2486 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2490 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2491 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2495 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2496 struct sbridge_dev
*sbridge_dev
)
2498 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2499 struct pci_dev
*pdev
;
2500 u8 saw_chan_mask
= 0;
2503 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2504 pdev
= sbridge_dev
->pdev
[i
];
2508 switch (pdev
->device
) {
2509 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2510 pvt
->pci_ha0
= pdev
;
2512 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2514 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2515 pvt
->pci_ras
= pdev
;
2517 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2518 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2519 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2520 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2522 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
2523 pvt
->pci_tad
[id
] = pdev
;
2524 saw_chan_mask
|= 1 << id
;
2527 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2528 pvt
->pci_ddrio
= pdev
;
2530 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2531 pvt
->pci_ddrio
= pdev
;
2533 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2534 pvt
->pci_sad0
= pdev
;
2536 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2537 pvt
->pci_br0
= pdev
;
2539 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2540 pvt
->pci_br1
= pdev
;
2542 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2543 pvt
->pci_ha1
= pdev
;
2545 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2546 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2547 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2548 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2550 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 4;
2551 pvt
->pci_tad
[id
] = pdev
;
2552 saw_chan_mask
|= 1 << id
;
2559 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2561 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2565 /* Check if everything were registered */
2566 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
2567 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2570 if (saw_chan_mask
!= 0x0f && /* -EN */
2571 saw_chan_mask
!= 0x33 && /* -EP */
2572 saw_chan_mask
!= 0xff) /* -EX */
2577 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2581 sbridge_printk(KERN_ERR
,
2582 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2587 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2588 struct sbridge_dev
*sbridge_dev
)
2590 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2591 struct pci_dev
*pdev
;
2592 u8 saw_chan_mask
= 0;
2595 /* there's only one device per system; not tied to any bus */
2596 if (pvt
->info
.pci_vtd
== NULL
)
2597 /* result will be checked later */
2598 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2599 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2602 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2603 pdev
= sbridge_dev
->pdev
[i
];
2607 switch (pdev
->device
) {
2608 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2609 pvt
->pci_sad0
= pdev
;
2611 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2612 pvt
->pci_sad1
= pdev
;
2614 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2615 pvt
->pci_ha0
= pdev
;
2617 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2620 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
2621 pvt
->pci_ras
= pdev
;
2623 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2624 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2625 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2626 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2628 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
;
2630 pvt
->pci_tad
[id
] = pdev
;
2631 saw_chan_mask
|= 1 << id
;
2634 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2635 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2636 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2637 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2639 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
+ 4;
2641 pvt
->pci_tad
[id
] = pdev
;
2642 saw_chan_mask
|= 1 << id
;
2645 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2646 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2647 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2648 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2649 if (!pvt
->pci_ddrio
)
2650 pvt
->pci_ddrio
= pdev
;
2652 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2653 pvt
->pci_ha1
= pdev
;
2655 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2656 pvt
->pci_ha1_ta
= pdev
;
2662 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2664 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2668 /* Check if everything were registered */
2669 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2670 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2673 if (saw_chan_mask
!= 0x0f && /* -EN */
2674 saw_chan_mask
!= 0x33 && /* -EP */
2675 saw_chan_mask
!= 0xff) /* -EX */
2680 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2684 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2685 struct sbridge_dev
*sbridge_dev
)
2687 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2688 struct pci_dev
*pdev
;
2689 u8 saw_chan_mask
= 0;
2692 /* there's only one device per system; not tied to any bus */
2693 if (pvt
->info
.pci_vtd
== NULL
)
2694 /* result will be checked later */
2695 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2696 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2699 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2700 pdev
= sbridge_dev
->pdev
[i
];
2704 switch (pdev
->device
) {
2705 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2706 pvt
->pci_sad0
= pdev
;
2708 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2709 pvt
->pci_sad1
= pdev
;
2711 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2712 pvt
->pci_ha0
= pdev
;
2714 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2717 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
:
2718 pvt
->pci_ras
= pdev
;
2720 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2721 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2722 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2723 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2725 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
;
2726 pvt
->pci_tad
[id
] = pdev
;
2727 saw_chan_mask
|= 1 << id
;
2730 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2731 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2732 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2733 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2735 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
+ 4;
2736 pvt
->pci_tad
[id
] = pdev
;
2737 saw_chan_mask
|= 1 << id
;
2740 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2741 pvt
->pci_ddrio
= pdev
;
2743 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2744 pvt
->pci_ha1
= pdev
;
2746 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2747 pvt
->pci_ha1_ta
= pdev
;
2753 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2755 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2759 /* Check if everything were registered */
2760 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2761 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2764 if (saw_chan_mask
!= 0x0f && /* -EN */
2765 saw_chan_mask
!= 0x33 && /* -EP */
2766 saw_chan_mask
!= 0xff) /* -EX */
2771 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2775 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2776 struct sbridge_dev
*sbridge_dev
)
2778 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2779 struct pci_dev
*pdev
;
2785 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2786 pdev
= sbridge_dev
->pdev
[i
];
2790 /* Extract PCI device and function. */
2791 dev
= (pdev
->devfn
>> 3) & 0x1f;
2792 func
= pdev
->devfn
& 0x7;
2794 switch (pdev
->device
) {
2795 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2797 pvt
->knl
.pci_mc0
= pdev
;
2799 pvt
->knl
.pci_mc1
= pdev
;
2801 sbridge_printk(KERN_ERR
,
2802 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2808 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2809 pvt
->pci_sad0
= pdev
;
2812 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2813 pvt
->pci_sad1
= pdev
;
2816 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2817 /* There are one of these per tile, and range from
2820 devidx
= ((dev
-14)*8)+func
;
2822 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2823 sbridge_printk(KERN_ERR
,
2824 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2829 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2831 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2834 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
:
2838 * MC0 channels 0-2 are device 9 function 2-4,
2839 * MC1 channels 3-5 are device 8 function 2-4.
2845 devidx
= 3 + (func
-2);
2847 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2848 sbridge_printk(KERN_ERR
,
2849 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2854 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2855 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2858 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2859 pvt
->knl
.pci_mc_info
= pdev
;
2862 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2867 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2873 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2874 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2879 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2880 if (!pvt
->knl
.pci_channel
[i
]) {
2881 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2886 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2887 if (!pvt
->knl
.pci_cha
[i
]) {
2888 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2896 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2900 /****************************************************************************
2901 Error check routines
2902 ****************************************************************************/
2905 * While Sandy Bridge has error count registers, SMI BIOS read values from
2906 * and resets the counters. So, they are not reliable for the OS to read
2907 * from them. So, we have no option but to just trust on whatever MCE is
2908 * telling us about the errors.
2910 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2911 const struct mce
*m
)
2913 struct mem_ctl_info
*new_mci
;
2914 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2915 enum hw_event_mc_err_type tp_event
;
2916 char *type
, *optype
, msg
[256];
2917 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2918 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2919 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2921 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2922 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2923 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2924 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2925 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2926 long channel_mask
, first_channel
;
2927 u8 rank
, socket
, ha
;
2929 char *area_type
= NULL
;
2931 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2934 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2936 if (uncorrected_error
) {
2939 tp_event
= HW_EVENT_ERR_FATAL
;
2942 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2946 tp_event
= HW_EVENT_ERR_CORRECTED
;
2950 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2951 * memory errors should fit in this mask:
2952 * 000f 0000 1mmm cccc (binary)
2954 * f = Correction Report Filtering Bit. If 1, subsequent errors
2958 * If the mask doesn't match, report an error to the parsing logic
2960 if (! ((errcode
& 0xef80) == 0x80)) {
2961 optype
= "Can't parse: it is not a mem";
2963 switch (optypenum
) {
2965 optype
= "generic undef request error";
2968 optype
= "memory read error";
2971 optype
= "memory write error";
2974 optype
= "addr/cmd error";
2977 optype
= "memory scrubbing error";
2980 optype
= "reserved";
2985 /* Only decode errors with an valid address (ADDRV) */
2986 if (!GET_BITFIELD(m
->status
, 58, 58))
2989 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
2990 if (channel
== 14) {
2991 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2992 overflow
? " OVERFLOW" : "",
2993 (uncorrected_error
&& recoverable
)
2994 ? " recoverable" : "",
3001 * Reported channel is in range 0-2, so we can't map it
3002 * back to mc. To figure out mc we check machine check
3003 * bank register that reported this error.
3004 * bank15 means mc0 and bank16 means mc1.
3006 channel
= knl_channel_remap(m
->bank
== 16, channel
);
3007 channel_mask
= 1 << channel
;
3009 snprintf(msg
, sizeof(msg
),
3010 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3011 overflow
? " OVERFLOW" : "",
3012 (uncorrected_error
&& recoverable
)
3013 ? " recoverable" : " ",
3014 mscod
, errcode
, channel
, A
+ channel
);
3015 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3016 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3022 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3023 &channel_mask
, &rank
, &area_type
, msg
);
3028 new_mci
= get_mci_for_node_id(socket
);
3030 strcpy(msg
, "Error: socket got corrupted!");
3034 pvt
= mci
->pvt_info
;
3036 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3047 * FIXME: On some memory configurations (mirror, lockstep), the
3048 * Memory Controller can't point the error to a single DIMM. The
3049 * EDAC core should be handling the channel mask, in order to point
3050 * to the group of dimm's where the error may be happening.
3052 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
3053 channel
= first_channel
;
3055 snprintf(msg
, sizeof(msg
),
3056 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3057 overflow
? " OVERFLOW" : "",
3058 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3065 edac_dbg(0, "%s\n", msg
);
3067 /* FIXME: need support for channel mask */
3069 if (channel
== CHANNEL_UNSPECIFIED
)
3072 /* Call the helper to output message */
3073 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3074 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3075 4*ha
+channel
, dimm
, -1,
3079 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3086 * Check that logging is enabled and that this is the right type
3087 * of error for us to handle.
3089 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3092 struct mce
*mce
= (struct mce
*)data
;
3093 struct mem_ctl_info
*mci
;
3094 struct sbridge_pvt
*pvt
;
3097 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3100 mci
= get_mci_for_node_id(mce
->socketid
);
3103 pvt
= mci
->pvt_info
;
3106 * Just let mcelog handle it if the error is
3107 * outside the memory controller. A memory error
3108 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3109 * bit 12 has an special meaning.
3111 if ((mce
->status
& 0xefff) >> 7 != 1)
3114 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3119 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3121 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3122 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3123 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3124 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3125 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3126 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3128 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3129 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3130 mce
->time
, mce
->socketid
, mce
->apicid
);
3132 sbridge_mce_output_error(mci
, mce
);
3134 /* Advice mcelog that the error were handled */
3138 static struct notifier_block sbridge_mce_dec
= {
3139 .notifier_call
= sbridge_mce_check_error
,
3142 /****************************************************************************
3143 EDAC register/unregister logic
3144 ****************************************************************************/
3146 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3148 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3149 struct sbridge_pvt
*pvt
;
3151 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3152 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3154 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3158 pvt
= mci
->pvt_info
;
3160 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3161 mci
, &sbridge_dev
->pdev
[0]->dev
);
3163 /* Remove MC sysfs nodes */
3164 edac_mc_del_mc(mci
->pdev
);
3166 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3167 kfree(mci
->ctl_name
);
3169 sbridge_dev
->mci
= NULL
;
3172 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3174 struct mem_ctl_info
*mci
;
3175 struct edac_mc_layer layers
[2];
3176 struct sbridge_pvt
*pvt
;
3177 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3180 /* Check the number of active and not disabled channels */
3181 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
3182 if (unlikely(rc
< 0))
3185 /* allocate a new MC control structure */
3186 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3187 layers
[0].size
= type
== KNIGHTS_LANDING
?
3188 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3189 layers
[0].is_virt_csrow
= false;
3190 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3191 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3192 layers
[1].is_virt_csrow
= true;
3193 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3199 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3202 pvt
= mci
->pvt_info
;
3203 memset(pvt
, 0, sizeof(*pvt
));
3205 /* Associate sbridge_dev and mci for future usage */
3206 pvt
->sbridge_dev
= sbridge_dev
;
3207 sbridge_dev
->mci
= mci
;
3209 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3210 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3211 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3212 mci
->edac_cap
= EDAC_FLAG_NONE
;
3213 mci
->mod_name
= "sbridge_edac.c";
3214 mci
->mod_ver
= SBRIDGE_REVISION
;
3215 mci
->dev_name
= pci_name(pdev
);
3216 mci
->ctl_page_to_phys
= NULL
;
3218 pvt
->info
.type
= type
;
3221 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3222 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3223 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3224 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3225 pvt
->info
.get_memory_type
= get_memory_type
;
3226 pvt
->info
.get_node_id
= get_node_id
;
3227 pvt
->info
.rir_limit
= rir_limit
;
3228 pvt
->info
.sad_limit
= sad_limit
;
3229 pvt
->info
.interleave_mode
= interleave_mode
;
3230 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3231 pvt
->info
.dram_attr
= dram_attr
;
3232 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3233 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3234 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3235 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3236 pvt
->info
.get_width
= ibridge_get_width
;
3237 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
3239 /* Store pci devices at mci for faster access */
3240 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3241 if (unlikely(rc
< 0))
3245 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3246 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3247 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3248 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3249 pvt
->info
.get_memory_type
= get_memory_type
;
3250 pvt
->info
.get_node_id
= get_node_id
;
3251 pvt
->info
.rir_limit
= rir_limit
;
3252 pvt
->info
.sad_limit
= sad_limit
;
3253 pvt
->info
.interleave_mode
= interleave_mode
;
3254 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3255 pvt
->info
.dram_attr
= dram_attr
;
3256 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3257 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3258 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
3259 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3260 pvt
->info
.get_width
= sbridge_get_width
;
3261 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
3263 /* Store pci devices at mci for faster access */
3264 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3265 if (unlikely(rc
< 0))
3269 /* rankcfgr isn't used */
3270 pvt
->info
.get_tolm
= haswell_get_tolm
;
3271 pvt
->info
.get_tohm
= haswell_get_tohm
;
3272 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3273 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3274 pvt
->info
.get_node_id
= haswell_get_node_id
;
3275 pvt
->info
.rir_limit
= haswell_rir_limit
;
3276 pvt
->info
.sad_limit
= sad_limit
;
3277 pvt
->info
.interleave_mode
= interleave_mode
;
3278 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3279 pvt
->info
.dram_attr
= dram_attr
;
3280 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3281 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3282 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3283 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3284 pvt
->info
.get_width
= ibridge_get_width
;
3285 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
3287 /* Store pci devices at mci for faster access */
3288 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3289 if (unlikely(rc
< 0))
3293 /* rankcfgr isn't used */
3294 pvt
->info
.get_tolm
= haswell_get_tolm
;
3295 pvt
->info
.get_tohm
= haswell_get_tohm
;
3296 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3297 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3298 pvt
->info
.get_node_id
= haswell_get_node_id
;
3299 pvt
->info
.rir_limit
= haswell_rir_limit
;
3300 pvt
->info
.sad_limit
= sad_limit
;
3301 pvt
->info
.interleave_mode
= interleave_mode
;
3302 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3303 pvt
->info
.dram_attr
= dram_attr
;
3304 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3305 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3306 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3307 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3308 pvt
->info
.get_width
= broadwell_get_width
;
3309 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell Socket#%d", mci
->mc_idx
);
3311 /* Store pci devices at mci for faster access */
3312 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3313 if (unlikely(rc
< 0))
3316 case KNIGHTS_LANDING
:
3317 /* pvt->info.rankcfgr == ??? */
3318 pvt
->info
.get_tolm
= knl_get_tolm
;
3319 pvt
->info
.get_tohm
= knl_get_tohm
;
3320 pvt
->info
.dram_rule
= knl_dram_rule
;
3321 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3322 pvt
->info
.get_node_id
= knl_get_node_id
;
3323 pvt
->info
.rir_limit
= NULL
;
3324 pvt
->info
.sad_limit
= knl_sad_limit
;
3325 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3326 pvt
->info
.show_interleave_mode
= knl_show_interleave_mode
;
3327 pvt
->info
.dram_attr
= dram_attr_knl
;
3328 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3329 pvt
->info
.interleave_list
= knl_interleave_list
;
3330 pvt
->info
.max_interleave
= ARRAY_SIZE(knl_interleave_list
);
3331 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3332 pvt
->info
.get_width
= knl_get_width
;
3333 mci
->ctl_name
= kasprintf(GFP_KERNEL
,
3334 "Knights Landing Socket#%d", mci
->mc_idx
);
3336 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3337 if (unlikely(rc
< 0))
3342 /* Get dimm basic config and the memory layout */
3343 get_dimm_config(mci
);
3344 get_memory_layout(mci
);
3346 /* record ptr to the generic device */
3347 mci
->pdev
= &pdev
->dev
;
3349 /* add this new MC control structure to EDAC's list of MCs */
3350 if (unlikely(edac_mc_add_mc(mci
))) {
3351 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3359 kfree(mci
->ctl_name
);
3361 sbridge_dev
->mci
= NULL
;
3365 #define ICPU(model, table) \
3366 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3368 static const struct x86_cpu_id sbridge_cpuids
[] = {
3369 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, pci_dev_descr_sbridge_table
),
3370 ICPU(INTEL_FAM6_IVYBRIDGE_X
, pci_dev_descr_ibridge_table
),
3371 ICPU(INTEL_FAM6_HASWELL_X
, pci_dev_descr_haswell_table
),
3372 ICPU(INTEL_FAM6_BROADWELL_X
, pci_dev_descr_broadwell_table
),
3373 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, pci_dev_descr_broadwell_table
),
3374 ICPU(INTEL_FAM6_XEON_PHI_KNL
, pci_dev_descr_knl_table
),
3375 ICPU(INTEL_FAM6_XEON_PHI_KNM
, pci_dev_descr_knl_table
),
3378 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3381 * sbridge_probe Get all devices and register memory controllers
3384 * 0 for FOUND a device
3385 * < 0 for error code
3388 static int sbridge_probe(const struct x86_cpu_id
*id
)
3392 struct sbridge_dev
*sbridge_dev
;
3393 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3395 /* get the pci devices we want to reserve for our use */
3396 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3398 if (unlikely(rc
< 0)) {
3399 edac_dbg(0, "couldn't get all devices\n");
3405 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3406 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3407 mc
, mc
+ 1, num_mc
);
3409 sbridge_dev
->mc
= mc
++;
3410 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3411 if (unlikely(rc
< 0))
3415 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3420 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3421 sbridge_unregister_mci(sbridge_dev
);
3423 sbridge_put_all_devices();
3429 * sbridge_remove cleanup
3432 static void sbridge_remove(void)
3434 struct sbridge_dev
*sbridge_dev
;
3438 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3439 sbridge_unregister_mci(sbridge_dev
);
3441 /* Release PCI resources */
3442 sbridge_put_all_devices();
3446 * sbridge_init Module entry function
3447 * Try to initialize this module for its devices
3449 static int __init
sbridge_init(void)
3451 const struct x86_cpu_id
*id
;
3456 id
= x86_match_cpu(sbridge_cpuids
);
3460 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3463 rc
= sbridge_probe(id
);
3466 mce_register_decode_chain(&sbridge_mce_dec
);
3467 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3468 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3472 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3479 * sbridge_exit() Module exit function
3480 * Unregister the driver
3482 static void __exit
sbridge_exit(void)
3486 mce_unregister_decode_chain(&sbridge_mce_dec
);
3489 module_init(sbridge_init
);
3490 module_exit(sbridge_exit
);
3492 module_param(edac_op_state
, int, 0444);
3493 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3495 MODULE_LICENSE("GPL");
3496 MODULE_AUTHOR("Mauro Carvalho Chehab");
3497 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3498 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "