2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
6 * Copyright 2013 Linaro Limited; author Roy Franz
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
19 efi_status_t
update_fdt(efi_system_table_t
*sys_table
, void *orig_fdt
,
20 unsigned long orig_fdt_size
,
21 void *fdt
, int new_fdt_size
, char *cmdline_ptr
,
22 u64 initrd_addr
, u64 initrd_size
,
23 efi_memory_desc_t
*memory_map
,
24 unsigned long map_size
, unsigned long desc_size
,
32 /* Do some checks on provided FDT, if it exists*/
34 if (fdt_check_header(orig_fdt
)) {
35 pr_efi_err(sys_table
, "Device Tree header not valid!\n");
36 return EFI_LOAD_ERROR
;
39 * We don't get the size of the FDT if we get if from a
40 * configuration table.
42 if (orig_fdt_size
&& fdt_totalsize(orig_fdt
) > orig_fdt_size
) {
43 pr_efi_err(sys_table
, "Truncated device tree! foo!\n");
44 return EFI_LOAD_ERROR
;
49 status
= fdt_open_into(orig_fdt
, fdt
, new_fdt_size
);
51 status
= fdt_create_empty_tree(fdt
, new_fdt_size
);
57 * Delete all memory reserve map entries. When booting via UEFI,
58 * kernel will use the UEFI memory map to find reserved regions.
60 num_rsv
= fdt_num_mem_rsv(fdt
);
62 fdt_del_mem_rsv(fdt
, num_rsv
);
64 node
= fdt_subnode_offset(fdt
, 0, "chosen");
66 node
= fdt_add_subnode(fdt
, 0, "chosen");
68 status
= node
; /* node is error code when negative */
73 if ((cmdline_ptr
!= NULL
) && (strlen(cmdline_ptr
) > 0)) {
74 status
= fdt_setprop(fdt
, node
, "bootargs", cmdline_ptr
,
75 strlen(cmdline_ptr
) + 1);
80 /* Set initrd address/end in device tree, if present */
81 if (initrd_size
!= 0) {
83 u64 initrd_image_start
= cpu_to_fdt64(initrd_addr
);
85 status
= fdt_setprop(fdt
, node
, "linux,initrd-start",
86 &initrd_image_start
, sizeof(u64
));
89 initrd_image_end
= cpu_to_fdt64(initrd_addr
+ initrd_size
);
90 status
= fdt_setprop(fdt
, node
, "linux,initrd-end",
91 &initrd_image_end
, sizeof(u64
));
96 /* Add FDT entries for EFI runtime services in chosen node. */
97 node
= fdt_subnode_offset(fdt
, 0, "chosen");
98 fdt_val64
= cpu_to_fdt64((u64
)(unsigned long)sys_table
);
99 status
= fdt_setprop(fdt
, node
, "linux,uefi-system-table",
100 &fdt_val64
, sizeof(fdt_val64
));
104 fdt_val64
= cpu_to_fdt64((u64
)(unsigned long)memory_map
);
105 status
= fdt_setprop(fdt
, node
, "linux,uefi-mmap-start",
106 &fdt_val64
, sizeof(fdt_val64
));
110 fdt_val32
= cpu_to_fdt32(map_size
);
111 status
= fdt_setprop(fdt
, node
, "linux,uefi-mmap-size",
112 &fdt_val32
, sizeof(fdt_val32
));
116 fdt_val32
= cpu_to_fdt32(desc_size
);
117 status
= fdt_setprop(fdt
, node
, "linux,uefi-mmap-desc-size",
118 &fdt_val32
, sizeof(fdt_val32
));
122 fdt_val32
= cpu_to_fdt32(desc_ver
);
123 status
= fdt_setprop(fdt
, node
, "linux,uefi-mmap-desc-ver",
124 &fdt_val32
, sizeof(fdt_val32
));
128 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
)) {
129 efi_status_t efi_status
;
131 efi_status
= efi_get_random_bytes(sys_table
, sizeof(fdt_val64
),
133 if (efi_status
== EFI_SUCCESS
) {
134 status
= fdt_setprop(fdt
, node
, "kaslr-seed",
135 &fdt_val64
, sizeof(fdt_val64
));
138 } else if (efi_status
!= EFI_NOT_FOUND
) {
145 if (status
== -FDT_ERR_NOSPACE
)
146 return EFI_BUFFER_TOO_SMALL
;
148 return EFI_LOAD_ERROR
;
151 #ifndef EFI_FDT_ALIGN
152 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
155 struct exit_boot_struct
{
156 efi_memory_desc_t
*runtime_map
;
157 int *runtime_entry_count
;
160 static efi_status_t
exit_boot_func(efi_system_table_t
*sys_table_arg
,
161 struct efi_boot_memmap
*map
,
164 struct exit_boot_struct
*p
= priv
;
166 * Update the memory map with virtual addresses. The function will also
167 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
168 * entries so that we can pass it straight to SetVirtualAddressMap()
170 efi_get_virtmap(*map
->map
, *map
->map_size
, *map
->desc_size
,
171 p
->runtime_map
, p
->runtime_entry_count
);
177 * Allocate memory for a new FDT, then add EFI, commandline, and
178 * initrd related fields to the FDT. This routine increases the
179 * FDT allocation size until the allocated memory is large
180 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
181 * which are fixed at 4K bytes, so in most cases the first
182 * allocation should succeed.
183 * EFI boot services are exited at the end of this function.
184 * There must be no allocations between the get_memory_map()
185 * call and the exit_boot_services() call, so the exiting of
186 * boot services is very tightly tied to the creation of the FDT
187 * with the final memory map in it.
190 efi_status_t
allocate_new_fdt_and_exit_boot(efi_system_table_t
*sys_table
,
192 unsigned long *new_fdt_addr
,
193 unsigned long max_addr
,
194 u64 initrd_addr
, u64 initrd_size
,
196 unsigned long fdt_addr
,
197 unsigned long fdt_size
)
199 unsigned long map_size
, desc_size
, buff_size
;
201 unsigned long mmap_key
;
202 efi_memory_desc_t
*memory_map
, *runtime_map
;
203 unsigned long new_fdt_size
;
205 int runtime_entry_count
= 0;
206 struct efi_boot_memmap map
;
207 struct exit_boot_struct priv
;
209 map
.map
= &runtime_map
;
210 map
.map_size
= &map_size
;
211 map
.desc_size
= &desc_size
;
212 map
.desc_ver
= &desc_ver
;
213 map
.key_ptr
= &mmap_key
;
214 map
.buff_size
= &buff_size
;
217 * Get a copy of the current memory map that we will use to prepare
218 * the input for SetVirtualAddressMap(). We don't have to worry about
219 * subsequent allocations adding entries, since they could not affect
220 * the number of EFI_MEMORY_RUNTIME regions.
222 status
= efi_get_memory_map(sys_table
, &map
);
223 if (status
!= EFI_SUCCESS
) {
224 pr_efi_err(sys_table
, "Unable to retrieve UEFI memory map.\n");
229 "Exiting boot services and installing virtual address map...\n");
231 map
.map
= &memory_map
;
233 * Estimate size of new FDT, and allocate memory for it. We
234 * will allocate a bigger buffer if this ends up being too
235 * small, so a rough guess is OK here.
237 new_fdt_size
= fdt_size
+ EFI_PAGE_SIZE
;
239 status
= efi_high_alloc(sys_table
, new_fdt_size
, EFI_FDT_ALIGN
,
240 new_fdt_addr
, max_addr
);
241 if (status
!= EFI_SUCCESS
) {
242 pr_efi_err(sys_table
, "Unable to allocate memory for new device tree.\n");
247 * Now that we have done our final memory allocation (and free)
248 * we can get the memory map key needed for
249 * exit_boot_services().
251 status
= efi_get_memory_map(sys_table
, &map
);
252 if (status
!= EFI_SUCCESS
)
253 goto fail_free_new_fdt
;
255 status
= update_fdt(sys_table
,
256 (void *)fdt_addr
, fdt_size
,
257 (void *)*new_fdt_addr
, new_fdt_size
,
258 cmdline_ptr
, initrd_addr
, initrd_size
,
259 memory_map
, map_size
, desc_size
, desc_ver
);
261 /* Succeeding the first time is the expected case. */
262 if (status
== EFI_SUCCESS
)
265 if (status
== EFI_BUFFER_TOO_SMALL
) {
267 * We need to allocate more space for the new
268 * device tree, so free existing buffer that is
269 * too small. Also free memory map, as we will need
270 * to get new one that reflects the free/alloc we do
271 * on the device tree buffer.
273 efi_free(sys_table
, new_fdt_size
, *new_fdt_addr
);
274 sys_table
->boottime
->free_pool(memory_map
);
275 new_fdt_size
+= EFI_PAGE_SIZE
;
277 pr_efi_err(sys_table
, "Unable to construct new device tree.\n");
282 sys_table
->boottime
->free_pool(memory_map
);
283 priv
.runtime_map
= runtime_map
;
284 priv
.runtime_entry_count
= &runtime_entry_count
;
285 status
= efi_exit_boot_services(sys_table
, handle
, &map
, &priv
,
288 if (status
== EFI_SUCCESS
) {
289 efi_set_virtual_address_map_t
*svam
;
291 /* Install the new virtual address map */
292 svam
= sys_table
->runtime
->set_virtual_address_map
;
293 status
= svam(runtime_entry_count
* desc_size
, desc_size
,
294 desc_ver
, runtime_map
);
297 * We are beyond the point of no return here, so if the call to
298 * SetVirtualAddressMap() failed, we need to signal that to the
299 * incoming kernel but proceed normally otherwise.
301 if (status
!= EFI_SUCCESS
) {
305 * Set the virtual address field of all
306 * EFI_MEMORY_RUNTIME entries to 0. This will signal
307 * the incoming kernel that no virtual translation has
310 for (l
= 0; l
< map_size
; l
+= desc_size
) {
311 efi_memory_desc_t
*p
= (void *)memory_map
+ l
;
313 if (p
->attribute
& EFI_MEMORY_RUNTIME
)
320 pr_efi_err(sys_table
, "Exit boot services failed.\n");
323 sys_table
->boottime
->free_pool(memory_map
);
326 efi_free(sys_table
, new_fdt_size
, *new_fdt_addr
);
329 sys_table
->boottime
->free_pool(runtime_map
);
330 return EFI_LOAD_ERROR
;
333 void *get_fdt(efi_system_table_t
*sys_table
, unsigned long *fdt_size
)
335 efi_guid_t fdt_guid
= DEVICE_TREE_GUID
;
336 efi_config_table_t
*tables
;
340 tables
= (efi_config_table_t
*) sys_table
->tables
;
343 for (i
= 0; i
< sys_table
->nr_tables
; i
++)
344 if (efi_guidcmp(tables
[i
].guid
, fdt_guid
) == 0) {
345 fdt
= (void *) tables
[i
].table
;
346 if (fdt_check_header(fdt
) != 0) {
347 pr_efi_err(sys_table
, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
350 *fdt_size
= fdt_totalsize(fdt
);