2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
80 * (all other bits are reserved and shall be 0)
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
107 * NOTE: One dmask value must be given for every HFC-E1 card.
108 * If omitted, the E1 card has D-channel on time slot 16, which is default.
109 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110 * If multiple bits are set, multiple virtual card fragments are created.
111 * For each bit set, a bmask value must be given. Each bit on the bmask
112 * value stands for a B-channel. The bmask may not overlap with dmask or
113 * with other bmask values for that card.
114 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115 * This will create one fragment with D-channel on slot 1 with
116 * B-channels on slots 2..15, and a second fragment with D-channel
117 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
120 * Example: dmask=0x00000001 bmask=0xfffffffe
121 * This will create a port with all 31 usable timeslots as
123 * If no bits are set on bmask, no B-channel is created for that fragment.
124 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125 * This will create 31 ports with one D-channel only.
126 * If you don't know how to use it, you don't need it!
129 * NOTE: only one mode value must be given for every card.
130 * -> See hfc_multi.h for HFC_IO_MODE_* values
131 * By default, the IO mode is pci memory IO (MEMIO).
132 * Some cards require specific IO mode, so it cannot be changed.
133 * It may be useful to set IO mode to register io (REGIO) to solve
134 * PCI bridge problems.
135 * If unsure, don't give this parameter.
138 * NOTE: only one clockdelay_nt value must be given once for all cards.
139 * Give the value of the clock control register (A_ST_CLK_DLY)
140 * of the S/T interfaces in NT mode.
141 * This register is needed for the TBR3 certification, so don't change it.
144 * NOTE: only one clockdelay_te value must be given once
145 * Give the value of the clock control register (A_ST_CLK_DLY)
146 * of the S/T interfaces in TE mode.
147 * This register is needed for the TBR3 certification, so don't change it.
150 * NOTE: only one clock value must be given once
151 * Selects interface with clock source for mISDN and applications.
152 * Set to card number starting with 1. Set to -1 to disable.
153 * By default, the first card is used as clock source.
156 * NOTE: only one hwid value must be given once
157 * Enable special embedded devices with XHFC controllers.
161 * debug register access (never use this, it will flood your system log)
162 * #define HFC_REGISTER_DEBUG
165 #define HFC_MULTI_VERSION "2.03"
167 #include <linux/interrupt.h>
168 #include <linux/module.h>
169 #include <linux/slab.h>
170 #include <linux/pci.h>
171 #include <linux/delay.h>
172 #include <linux/mISDNhw.h>
173 #include <linux/mISDNdsp.h>
176 #define IRQCOUNT_DEBUG
180 #include "hfc_multi.h"
186 #define MAX_PORTS (8 * MAX_CARDS)
187 #define MAX_FRAGS (32 * MAX_CARDS)
189 static LIST_HEAD(HFClist
);
190 static spinlock_t HFClock
; /* global hfc list lock */
192 static void ph_state_change(struct dchannel
*);
194 static struct hfc_multi
*syncmaster
;
195 static int plxsd_master
; /* if we have a master card (yet) */
196 static spinlock_t plx_lock
; /* may not acquire other lock inside */
202 static int poll_timer
= 6; /* default = 128 samples = 16ms */
203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204 static int nt_t1_count
[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
205 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
206 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
207 (0x60 MUST be included!) */
209 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
210 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
211 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
217 static uint type
[MAX_CARDS
];
218 static int pcm
[MAX_CARDS
];
219 static uint dmask
[MAX_CARDS
];
220 static uint bmask
[MAX_FRAGS
];
221 static uint iomode
[MAX_CARDS
];
222 static uint port
[MAX_PORTS
];
227 static uint clockdelay_te
= CLKDEL_TE
;
228 static uint clockdelay_nt
= CLKDEL_NT
;
230 #define HWID_MINIP4 1
231 #define HWID_MINIP8 2
232 #define HWID_MINIP16 3
233 static uint hwid
= HWID_NONE
;
235 static int HFC_cnt
, E1_cnt
, bmask_cnt
, Port_cnt
, PCM_cnt
= 99;
237 MODULE_AUTHOR("Andreas Eversberg");
238 MODULE_LICENSE("GPL");
239 MODULE_VERSION(HFC_MULTI_VERSION
);
240 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
241 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
242 module_param(clock
, int, S_IRUGO
| S_IWUSR
);
243 module_param(timer
, uint
, S_IRUGO
| S_IWUSR
);
244 module_param(clockdelay_te
, uint
, S_IRUGO
| S_IWUSR
);
245 module_param(clockdelay_nt
, uint
, S_IRUGO
| S_IWUSR
);
246 module_param_array(type
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
247 module_param_array(pcm
, int, NULL
, S_IRUGO
| S_IWUSR
);
248 module_param_array(dmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
249 module_param_array(bmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
250 module_param_array(iomode
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
251 module_param_array(port
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
252 module_param(hwid
, uint
, S_IRUGO
| S_IWUSR
); /* The hardware ID */
254 #ifdef HFC_REGISTER_DEBUG
255 #define HFC_outb(hc, reg, val) \
256 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257 #define HFC_outb_nodebug(hc, reg, val) \
258 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259 #define HFC_inb(hc, reg) \
260 (hc->HFC_inb(hc, reg, __func__, __LINE__))
261 #define HFC_inb_nodebug(hc, reg) \
262 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263 #define HFC_inw(hc, reg) \
264 (hc->HFC_inw(hc, reg, __func__, __LINE__))
265 #define HFC_inw_nodebug(hc, reg) \
266 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267 #define HFC_wait(hc) \
268 (hc->HFC_wait(hc, __func__, __LINE__))
269 #define HFC_wait_nodebug(hc) \
270 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
272 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
273 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
274 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
275 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
276 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
277 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
278 #define HFC_wait(hc) (hc->HFC_wait(hc))
279 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
282 #ifdef CONFIG_MISDN_HFCMULTI_8xx
283 #include "hfc_multi_8xx.h"
286 /* HFC_IO_MODE_PCIMEM */
288 #ifdef HFC_REGISTER_DEBUG
289 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
,
290 const char *function
, int line
)
292 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
)
295 writeb(val
, hc
->pci_membase
+ reg
);
298 #ifdef HFC_REGISTER_DEBUG
299 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
301 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
)
304 return readb(hc
->pci_membase
+ reg
);
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
310 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
)
313 return readw(hc
->pci_membase
+ reg
);
316 #ifdef HFC_REGISTER_DEBUG
317 HFC_wait_pcimem(struct hfc_multi
*hc
, const char *function
, int line
)
319 HFC_wait_pcimem(struct hfc_multi
*hc
)
322 while (readb(hc
->pci_membase
+ R_STATUS
) & V_BUSY
)
326 /* HFC_IO_MODE_REGIO */
328 #ifdef HFC_REGISTER_DEBUG
329 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
,
330 const char *function
, int line
)
332 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
)
335 outb(reg
, hc
->pci_iobase
+ 4);
336 outb(val
, hc
->pci_iobase
);
339 #ifdef HFC_REGISTER_DEBUG
340 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
342 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
)
345 outb(reg
, hc
->pci_iobase
+ 4);
346 return inb(hc
->pci_iobase
);
349 #ifdef HFC_REGISTER_DEBUG
350 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
352 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
)
355 outb(reg
, hc
->pci_iobase
+ 4);
356 return inw(hc
->pci_iobase
);
359 #ifdef HFC_REGISTER_DEBUG
360 HFC_wait_regio(struct hfc_multi
*hc
, const char *function
, int line
)
362 HFC_wait_regio(struct hfc_multi
*hc
)
365 outb(R_STATUS
, hc
->pci_iobase
+ 4);
366 while (inb(hc
->pci_iobase
) & V_BUSY
)
370 #ifdef HFC_REGISTER_DEBUG
372 HFC_outb_debug(struct hfc_multi
*hc
, u_char reg
, u_char val
,
373 const char *function
, int line
)
375 char regname
[256] = "", bits
[9] = "xxxxxxxx";
379 while (hfc_register_names
[++i
].name
) {
380 if (hfc_register_names
[i
].reg
== reg
)
381 strcat(regname
, hfc_register_names
[i
].name
);
383 if (regname
[0] == '\0')
384 strcpy(regname
, "register");
386 bits
[7] = '0' + (!!(val
& 1));
387 bits
[6] = '0' + (!!(val
& 2));
388 bits
[5] = '0' + (!!(val
& 4));
389 bits
[4] = '0' + (!!(val
& 8));
390 bits
[3] = '0' + (!!(val
& 16));
391 bits
[2] = '0' + (!!(val
& 32));
392 bits
[1] = '0' + (!!(val
& 64));
393 bits
[0] = '0' + (!!(val
& 128));
395 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
397 HFC_outb_nodebug(hc
, reg
, val
);
400 HFC_inb_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
402 char regname
[256] = "", bits
[9] = "xxxxxxxx";
403 u_char val
= HFC_inb_nodebug(hc
, reg
);
407 while (hfc_register_names
[i
++].name
)
409 while (hfc_register_names
[++i
].name
) {
410 if (hfc_register_names
[i
].reg
== reg
)
411 strcat(regname
, hfc_register_names
[i
].name
);
413 if (regname
[0] == '\0')
414 strcpy(regname
, "register");
416 bits
[7] = '0' + (!!(val
& 1));
417 bits
[6] = '0' + (!!(val
& 2));
418 bits
[5] = '0' + (!!(val
& 4));
419 bits
[4] = '0' + (!!(val
& 8));
420 bits
[3] = '0' + (!!(val
& 16));
421 bits
[2] = '0' + (!!(val
& 32));
422 bits
[1] = '0' + (!!(val
& 64));
423 bits
[0] = '0' + (!!(val
& 128));
425 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
430 HFC_inw_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
432 char regname
[256] = "";
433 u_short val
= HFC_inw_nodebug(hc
, reg
);
437 while (hfc_register_names
[i
++].name
)
439 while (hfc_register_names
[++i
].name
) {
440 if (hfc_register_names
[i
].reg
== reg
)
441 strcat(regname
, hfc_register_names
[i
].name
);
443 if (regname
[0] == '\0')
444 strcpy(regname
, "register");
447 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448 hc
->id
, reg
, regname
, val
, function
, line
);
452 HFC_wait_debug(struct hfc_multi
*hc
, const char *function
, int line
)
454 printk(KERN_DEBUG
"HFC_wait(chip %d); in %s() line %d\n",
455 hc
->id
, function
, line
);
456 HFC_wait_nodebug(hc
);
460 /* write fifo data (REGIO) */
462 write_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
464 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
466 outl(cpu_to_le32(*(u32
*)data
), hc
->pci_iobase
);
471 outw(cpu_to_le16(*(u16
*)data
), hc
->pci_iobase
);
476 outb(*data
, hc
->pci_iobase
);
481 /* write fifo data (PCIMEM) */
483 write_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
486 writel(cpu_to_le32(*(u32
*)data
),
487 hc
->pci_membase
+ A_FIFO_DATA0
);
492 writew(cpu_to_le16(*(u16
*)data
),
493 hc
->pci_membase
+ A_FIFO_DATA0
);
498 writeb(*data
, hc
->pci_membase
+ A_FIFO_DATA0
);
504 /* read fifo data (REGIO) */
506 read_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
508 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
510 *(u32
*)data
= le32_to_cpu(inl(hc
->pci_iobase
));
515 *(u16
*)data
= le16_to_cpu(inw(hc
->pci_iobase
));
520 *data
= inb(hc
->pci_iobase
);
526 /* read fifo data (PCIMEM) */
528 read_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
532 le32_to_cpu(readl(hc
->pci_membase
+ A_FIFO_DATA0
));
538 le16_to_cpu(readw(hc
->pci_membase
+ A_FIFO_DATA0
));
543 *data
= readb(hc
->pci_membase
+ A_FIFO_DATA0
);
550 enable_hwirq(struct hfc_multi
*hc
)
552 hc
->hw
.r_irq_ctrl
|= V_GLOB_IRQ_EN
;
553 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
557 disable_hwirq(struct hfc_multi
*hc
)
559 hc
->hw
.r_irq_ctrl
&= ~((u_char
)V_GLOB_IRQ_EN
);
560 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
564 #define MAX_TDM_CHAN 32
568 enablepcibridge(struct hfc_multi
*c
)
570 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x3); /* was _io before */
574 disablepcibridge(struct hfc_multi
*c
)
576 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x2); /* was _io before */
579 static inline unsigned char
580 readpcibridge(struct hfc_multi
*hc
, unsigned char address
)
588 /* slow down a PCI read access by 1 PCI clock cycle */
589 HFC_outb(hc
, R_CTRL
, 0x4); /*was _io before*/
596 /* select local bridge port address by writing to CIP port */
597 /* data = HFC_inb(c, cipv); * was _io before */
598 outw(cipv
, hc
->pci_iobase
+ 4);
599 data
= inb(hc
->pci_iobase
);
601 /* restore R_CTRL for normal PCI read cycle speed */
602 HFC_outb(hc
, R_CTRL
, 0x0); /* was _io before */
608 writepcibridge(struct hfc_multi
*hc
, unsigned char address
, unsigned char data
)
621 /* select local bridge port address by writing to CIP port */
622 outw(cipv
, hc
->pci_iobase
+ 4);
623 /* define a 32 bit dword with 4 identical bytes for write sequence */
624 datav
= data
| ((__u32
) data
<< 8) | ((__u32
) data
<< 16) |
625 ((__u32
) data
<< 24);
628 * write this 32 bit dword to the bridge data port
629 * this will initiate a write sequence of up to 4 writes to the same
630 * address on the local bus interface the number of write accesses
631 * is undefined but >=1 and depends on the next PCI transaction
632 * during write sequence on the local bus
634 outl(datav
, hc
->pci_iobase
);
638 cpld_set_reg(struct hfc_multi
*hc
, unsigned char reg
)
640 /* Do data pin read low byte */
641 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
645 cpld_write_reg(struct hfc_multi
*hc
, unsigned char reg
, unsigned char val
)
647 cpld_set_reg(hc
, reg
);
650 writepcibridge(hc
, 1, val
);
651 disablepcibridge(hc
);
656 static inline unsigned char
657 cpld_read_reg(struct hfc_multi
*hc
, unsigned char reg
)
659 unsigned char bytein
;
661 cpld_set_reg(hc
, reg
);
663 /* Do data pin read low byte */
664 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
667 bytein
= readpcibridge(hc
, 1);
668 disablepcibridge(hc
);
674 vpm_write_address(struct hfc_multi
*hc
, unsigned short addr
)
676 cpld_write_reg(hc
, 0, 0xff & addr
);
677 cpld_write_reg(hc
, 1, 0x01 & (addr
>> 8));
680 static inline unsigned short
681 vpm_read_address(struct hfc_multi
*c
)
684 unsigned short highbit
;
686 addr
= cpld_read_reg(c
, 0);
687 highbit
= cpld_read_reg(c
, 1);
689 addr
= addr
| (highbit
<< 8);
694 static inline unsigned char
695 vpm_in(struct hfc_multi
*c
, int which
, unsigned short addr
)
699 vpm_write_address(c
, addr
);
707 res
= readpcibridge(c
, 1);
716 vpm_out(struct hfc_multi
*c
, int which
, unsigned short addr
,
719 vpm_write_address(c
, addr
);
728 writepcibridge(c
, 1, data
);
736 regin
= vpm_in(c
, which
, addr
);
738 printk(KERN_DEBUG
"Wrote 0x%x to register 0x%x but got back "
739 "0x%x\n", data
, addr
, regin
);
746 vpm_init(struct hfc_multi
*wc
)
750 unsigned int i
, x
, y
;
753 for (x
= 0; x
< NUM_EC
; x
++) {
756 ver
= vpm_in(wc
, x
, 0x1a0);
757 printk(KERN_DEBUG
"VPM: Chip %d: ver %02x\n", x
, ver
);
760 for (y
= 0; y
< 4; y
++) {
761 vpm_out(wc
, x
, 0x1a8 + y
, 0x00); /* GPIO out */
762 vpm_out(wc
, x
, 0x1ac + y
, 0x00); /* GPIO dir */
763 vpm_out(wc
, x
, 0x1b0 + y
, 0x00); /* GPIO sel */
766 /* Setup TDM path - sets fsync and tdm_clk as inputs */
767 reg
= vpm_in(wc
, x
, 0x1a3); /* misc_con */
768 vpm_out(wc
, x
, 0x1a3, reg
& ~2);
770 /* Setup Echo length (256 taps) */
771 vpm_out(wc
, x
, 0x022, 1);
772 vpm_out(wc
, x
, 0x023, 0xff);
774 /* Setup timeslots */
775 vpm_out(wc
, x
, 0x02f, 0x00);
776 mask
= 0x02020202 << (x
* 4);
778 /* Setup the tdm channel masks for all chips */
779 for (i
= 0; i
< 4; i
++)
780 vpm_out(wc
, x
, 0x33 - i
, (mask
>> (i
<< 3)) & 0xff);
782 /* Setup convergence rate */
783 printk(KERN_DEBUG
"VPM: A-law mode\n");
784 reg
= 0x00 | 0x10 | 0x01;
785 vpm_out(wc
, x
, 0x20, reg
);
786 printk(KERN_DEBUG
"VPM reg 0x20 is %x\n", reg
);
787 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
789 vpm_out(wc
, x
, 0x24, 0x02);
790 reg
= vpm_in(wc
, x
, 0x24);
791 printk(KERN_DEBUG
"NLP Thresh is set to %d (0x%x)\n", reg
, reg
);
793 /* Initialize echo cans */
794 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
795 if (mask
& (0x00000001 << i
))
796 vpm_out(wc
, x
, i
, 0x00);
800 * ARM arch at least disallows a udelay of
801 * more than 2ms... it gives a fake "__bad_udelay"
802 * reference at link-time.
803 * long delays in kernel code are pretty sucky anyway
804 * for now work around it using 5 x 2ms instead of 1 x 10ms
813 /* Put in bypass mode */
814 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
815 if (mask
& (0x00000001 << i
))
816 vpm_out(wc
, x
, i
, 0x01);
820 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
821 if (mask
& (0x00000001 << i
))
822 vpm_out(wc
, x
, 0x78 + i
, 0x01);
830 vpm_check(struct hfc_multi
*hctmp
)
834 gpi2
= HFC_inb(hctmp
, R_GPI_IN2
);
836 if ((gpi2
& 0x3) != 0x3)
837 printk(KERN_DEBUG
"Got interrupt 0x%x from VPM!\n", gpi2
);
843 * Interface to enable/disable the HW Echocan
845 * these functions are called within a spin_lock_irqsave on
846 * the channel instance lock, so we are not disturbed by irqs
848 * we can later easily change the interface to make other
849 * things configurable, for now we configure the taps
854 vpm_echocan_on(struct hfc_multi
*hc
, int ch
, int taps
)
856 unsigned int timeslot
;
858 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
863 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
870 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
871 sizeof(int), &txadj
, GFP_ATOMIC
);
873 recv_Bchannel_skb(bch
, skb
);
876 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
879 printk(KERN_NOTICE
"vpm_echocan_on called taps [%d] on timeslot %d\n",
882 vpm_out(hc
, unit
, timeslot
, 0x7e);
886 vpm_echocan_off(struct hfc_multi
*hc
, int ch
)
888 unsigned int timeslot
;
890 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
896 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
903 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
904 sizeof(int), &txadj
, GFP_ATOMIC
);
906 recv_Bchannel_skb(bch
, skb
);
909 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
912 printk(KERN_NOTICE
"vpm_echocan_off called on timeslot %d\n",
915 vpm_out(hc
, unit
, timeslot
, 0x01);
920 * Speech Design resync feature
921 * NOTE: This is called sometimes outside interrupt handler.
922 * We must lock irqsave, so no other interrupt (other card) will occur!
923 * Also multiple interrupts may nest, so must lock each access (lists, card)!
926 hfcmulti_resync(struct hfc_multi
*locked
, struct hfc_multi
*newmaster
, int rm
)
928 struct hfc_multi
*hc
, *next
, *pcmmaster
= NULL
;
929 void __iomem
*plx_acc_32
;
933 spin_lock_irqsave(&HFClock
, flags
);
934 spin_lock(&plx_lock
); /* must be locked inside other locks */
936 if (debug
& DEBUG_HFCMULTI_PLXSD
)
937 printk(KERN_DEBUG
"%s: RESYNC(syncmaster=0x%p)\n",
938 __func__
, syncmaster
);
940 /* select new master */
942 if (debug
& DEBUG_HFCMULTI_PLXSD
)
943 printk(KERN_DEBUG
"using provided controller\n");
945 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
946 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
947 if (hc
->syncronized
) {
955 /* Disable sync of all cards */
956 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
957 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
958 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
959 pv
= readl(plx_acc_32
);
960 pv
&= ~PLX_SYNC_O_EN
;
961 writel(pv
, plx_acc_32
);
962 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
964 if (hc
->ctype
== HFC_TYPE_E1
) {
965 if (debug
& DEBUG_HFCMULTI_PLXSD
)
967 "Schedule SYNC_I\n");
968 hc
->e1_resync
|= 1; /* get SYNC_I */
976 if (debug
& DEBUG_HFCMULTI_PLXSD
)
977 printk(KERN_DEBUG
"id=%d (0x%p) = syncronized with "
978 "interface.\n", hc
->id
, hc
);
979 /* Enable new sync master */
980 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
981 pv
= readl(plx_acc_32
);
983 writel(pv
, plx_acc_32
);
984 /* switch to jatt PLL, if not disabled by RX_SYNC */
985 if (hc
->ctype
== HFC_TYPE_E1
986 && !test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
)) {
987 if (debug
& DEBUG_HFCMULTI_PLXSD
)
988 printk(KERN_DEBUG
"Schedule jatt PLL\n");
989 hc
->e1_resync
|= 2; /* switch to jatt */
994 if (debug
& DEBUG_HFCMULTI_PLXSD
)
996 "id=%d (0x%p) = PCM master syncronized "
997 "with QUARTZ\n", hc
->id
, hc
);
998 if (hc
->ctype
== HFC_TYPE_E1
) {
999 /* Use the crystal clock for the PCM
1001 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1003 "Schedule QUARTZ for HFC-E1\n");
1004 hc
->e1_resync
|= 4; /* switch quartz */
1006 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1008 "QUARTZ is automatically "
1009 "enabled by HFC-%dS\n", hc
->ctype
);
1011 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1012 pv
= readl(plx_acc_32
);
1013 pv
|= PLX_SYNC_O_EN
;
1014 writel(pv
, plx_acc_32
);
1017 printk(KERN_ERR
"%s no pcm master, this MUST "
1018 "not happen!\n", __func__
);
1020 syncmaster
= newmaster
;
1022 spin_unlock(&plx_lock
);
1023 spin_unlock_irqrestore(&HFClock
, flags
);
1026 /* This must be called AND hc must be locked irqsave!!! */
1028 plxsd_checksync(struct hfc_multi
*hc
, int rm
)
1030 if (hc
->syncronized
) {
1031 if (syncmaster
== NULL
) {
1032 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1033 printk(KERN_DEBUG
"%s: GOT sync on card %d"
1034 " (id=%d)\n", __func__
, hc
->id
+ 1,
1036 hfcmulti_resync(hc
, hc
, rm
);
1039 if (syncmaster
== hc
) {
1040 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1041 printk(KERN_DEBUG
"%s: LOST sync on card %d"
1042 " (id=%d)\n", __func__
, hc
->id
+ 1,
1044 hfcmulti_resync(hc
, NULL
, rm
);
1051 * free hardware resources used by driver
1054 release_io_hfcmulti(struct hfc_multi
*hc
)
1056 void __iomem
*plx_acc_32
;
1060 if (debug
& DEBUG_HFCMULTI_INIT
)
1061 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1063 /* soft reset also masks all interrupts */
1064 hc
->hw
.r_cirm
|= V_SRES
;
1065 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1067 hc
->hw
.r_cirm
&= ~V_SRES
;
1068 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1069 udelay(1000); /* instead of 'wait' that may cause locking */
1071 /* release Speech Design card, if PLX was initialized */
1072 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) && hc
->plx_membase
) {
1073 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1074 printk(KERN_DEBUG
"%s: release PLXSD card %d\n",
1075 __func__
, hc
->id
+ 1);
1076 spin_lock_irqsave(&plx_lock
, plx_flags
);
1077 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1078 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1079 pv
= readl(plx_acc_32
);
1080 /* Termination off */
1082 /* Disconnect the PCM */
1083 pv
|= PLX_SLAVE_EN_N
;
1084 pv
&= ~PLX_MASTER_EN
;
1085 pv
&= ~PLX_SYNC_O_EN
;
1086 /* Put the DSP in Reset */
1087 pv
&= ~PLX_DSP_RES_N
;
1088 writel(pv
, plx_acc_32
);
1089 if (debug
& DEBUG_HFCMULTI_INIT
)
1090 printk(KERN_DEBUG
"%s: PCM off: PLX_GPIO=%x\n",
1092 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1095 /* disable memory mapped ports / io ports */
1096 test_and_clear_bit(HFC_CHIP_PLXSD
, &hc
->chip
); /* prevent resync */
1098 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, 0);
1099 if (hc
->pci_membase
)
1100 iounmap(hc
->pci_membase
);
1101 if (hc
->plx_membase
)
1102 iounmap(hc
->plx_membase
);
1104 release_region(hc
->pci_iobase
, 8);
1105 if (hc
->xhfc_membase
)
1106 iounmap((void *)hc
->xhfc_membase
);
1109 pci_disable_device(hc
->pci_dev
);
1110 pci_set_drvdata(hc
->pci_dev
, NULL
);
1112 if (debug
& DEBUG_HFCMULTI_INIT
)
1113 printk(KERN_DEBUG
"%s: done\n", __func__
);
1117 * function called to reset the HFC chip. A complete software reset of chip
1118 * and fifos is done. All configuration of the chip is done.
1122 init_chip(struct hfc_multi
*hc
)
1124 u_long flags
, val
, val2
= 0, rev
;
1126 u_char r_conf_en
, rval
;
1127 void __iomem
*plx_acc_32
;
1129 u_long plx_flags
, hfc_flags
;
1131 struct hfc_multi
*pos
, *next
, *plx_last_hc
;
1133 spin_lock_irqsave(&hc
->lock
, flags
);
1134 /* reset all registers */
1135 memset(&hc
->hw
, 0, sizeof(struct hfcm_hw
));
1137 /* revision check */
1138 if (debug
& DEBUG_HFCMULTI_INIT
)
1139 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1140 val
= HFC_inb(hc
, R_CHIP_ID
);
1141 if ((val
>> 4) != 0x8 && (val
>> 4) != 0xc && (val
>> 4) != 0xe &&
1142 (val
>> 1) != 0x31) {
1143 printk(KERN_INFO
"HFC_multi: unknown CHIP_ID:%x\n", (u_int
)val
);
1147 rev
= HFC_inb(hc
, R_CHIP_RV
);
1149 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150 val
, rev
, (rev
== 0 && (hc
->ctype
!= HFC_TYPE_XHFC
)) ?
1151 " (old FIFO handling)" : "");
1152 if (hc
->ctype
!= HFC_TYPE_XHFC
&& rev
== 0) {
1153 test_and_set_bit(HFC_CHIP_REVISION0
, &hc
->chip
);
1155 "HFC_multi: NOTE: Your chip is revision 0, "
1156 "ask Cologne Chip for update. Newer chips "
1157 "have a better FIFO handling. Old chips "
1158 "still work but may have slightly lower "
1159 "HDLC transmit performance.\n");
1162 printk(KERN_WARNING
"HFC_multi: WARNING: This driver doesn't "
1163 "consider chip revision = %ld. The chip / "
1164 "bridge may not work.\n", rev
);
1167 /* set s-ram size */
1171 hc
->DTMFbase
= 0x1000;
1172 if (test_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
)) {
1173 if (debug
& DEBUG_HFCMULTI_INIT
)
1174 printk(KERN_DEBUG
"%s: changing to 128K external RAM\n",
1176 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1177 hc
->hw
.r_ram_sz
= 1;
1181 hc
->DTMFbase
= 0x2000;
1183 if (test_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
)) {
1184 if (debug
& DEBUG_HFCMULTI_INIT
)
1185 printk(KERN_DEBUG
"%s: changing to 512K external RAM\n",
1187 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1188 hc
->hw
.r_ram_sz
= 2;
1192 hc
->DTMFbase
= 0x2000;
1194 if (hc
->ctype
== HFC_TYPE_XHFC
) {
1200 hc
->max_trans
= poll
<< 1;
1201 if (hc
->max_trans
> hc
->Zlen
)
1202 hc
->max_trans
= hc
->Zlen
;
1204 /* Speech Design PLX bridge */
1205 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1206 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1207 printk(KERN_DEBUG
"%s: initializing PLXSD card %d\n",
1208 __func__
, hc
->id
+ 1);
1209 spin_lock_irqsave(&plx_lock
, plx_flags
);
1210 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1211 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1212 pv
= readl(plx_acc_32
);
1213 /* The first and the last cards are terminating the PCM bus */
1214 pv
|= PLX_TERM_ON
; /* hc is currently the last */
1215 /* Disconnect the PCM */
1216 pv
|= PLX_SLAVE_EN_N
;
1217 pv
&= ~PLX_MASTER_EN
;
1218 pv
&= ~PLX_SYNC_O_EN
;
1219 /* Put the DSP in Reset */
1220 pv
&= ~PLX_DSP_RES_N
;
1221 writel(pv
, plx_acc_32
);
1222 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1223 if (debug
& DEBUG_HFCMULTI_INIT
)
1224 printk(KERN_DEBUG
"%s: slave/term: PLX_GPIO=%x\n",
1227 * If we are the 3rd PLXSD card or higher, we must turn
1228 * termination of last PLXSD card off.
1230 spin_lock_irqsave(&HFClock
, hfc_flags
);
1233 list_for_each_entry_safe(pos
, next
, &HFClist
, list
) {
1234 if (test_bit(HFC_CHIP_PLXSD
, &pos
->chip
)) {
1240 if (plx_count
>= 3) {
1241 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1242 printk(KERN_DEBUG
"%s: card %d is between, so "
1243 "we disable termination\n",
1244 __func__
, plx_last_hc
->id
+ 1);
1245 spin_lock_irqsave(&plx_lock
, plx_flags
);
1246 plx_acc_32
= plx_last_hc
->plx_membase
+ PLX_GPIOC
;
1247 pv
= readl(plx_acc_32
);
1249 writel(pv
, plx_acc_32
);
1250 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1251 if (debug
& DEBUG_HFCMULTI_INIT
)
1253 "%s: term off: PLX_GPIO=%x\n",
1256 spin_unlock_irqrestore(&HFClock
, hfc_flags
);
1257 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1260 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1261 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1263 /* we only want the real Z2 read-pointer for revision > 0 */
1264 if (!test_bit(HFC_CHIP_REVISION0
, &hc
->chip
))
1265 hc
->hw
.r_ram_sz
|= V_FZ_MD
;
1267 /* select pcm mode */
1268 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1269 if (debug
& DEBUG_HFCMULTI_INIT
)
1270 printk(KERN_DEBUG
"%s: setting PCM into slave mode\n",
1273 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
) && !plxsd_master
) {
1274 if (debug
& DEBUG_HFCMULTI_INIT
)
1275 printk(KERN_DEBUG
"%s: setting PCM into master mode\n",
1277 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1279 if (debug
& DEBUG_HFCMULTI_INIT
)
1280 printk(KERN_DEBUG
"%s: performing PCM auto detect\n",
1285 HFC_outb(hc
, R_CTRL
, hc
->hw
.r_ctrl
);
1286 if (hc
->ctype
== HFC_TYPE_XHFC
)
1287 HFC_outb(hc
, 0x0C /* R_FIFO_THRES */,
1288 0x11 /* 16 Bytes TX/RX */);
1290 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1291 HFC_outb(hc
, R_FIFO_MD
, 0);
1292 if (hc
->ctype
== HFC_TYPE_XHFC
)
1293 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
;
1295 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
1297 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1300 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1302 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1303 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1305 /* Speech Design PLX bridge pcm and sync mode */
1306 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1307 spin_lock_irqsave(&plx_lock
, plx_flags
);
1308 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1309 pv
= readl(plx_acc_32
);
1311 if (hc
->hw
.r_pcm_md0
& V_PCM_MD
) {
1312 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1313 pv
|= PLX_SYNC_O_EN
;
1314 if (debug
& DEBUG_HFCMULTI_INIT
)
1315 printk(KERN_DEBUG
"%s: master: PLX_GPIO=%x\n",
1318 pv
&= ~(PLX_MASTER_EN
| PLX_SLAVE_EN_N
);
1319 pv
&= ~PLX_SYNC_O_EN
;
1320 if (debug
& DEBUG_HFCMULTI_INIT
)
1321 printk(KERN_DEBUG
"%s: slave: PLX_GPIO=%x\n",
1324 writel(pv
, plx_acc_32
);
1325 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1329 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x90);
1330 if (hc
->slots
== 32)
1331 HFC_outb(hc
, R_PCM_MD1
, 0x00);
1332 if (hc
->slots
== 64)
1333 HFC_outb(hc
, R_PCM_MD1
, 0x10);
1334 if (hc
->slots
== 128)
1335 HFC_outb(hc
, R_PCM_MD1
, 0x20);
1336 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0xa0);
1337 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
1338 HFC_outb(hc
, R_PCM_MD2
, V_SYNC_SRC
); /* sync via SYNC_I / O */
1339 else if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1340 HFC_outb(hc
, R_PCM_MD2
, 0x10); /* V_C2O_EN */
1342 HFC_outb(hc
, R_PCM_MD2
, 0x00); /* sync from interface */
1343 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1344 for (i
= 0; i
< 256; i
++) {
1345 HFC_outb_nodebug(hc
, R_SLOT
, i
);
1346 HFC_outb_nodebug(hc
, A_SL_CFG
, 0);
1347 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1348 HFC_outb_nodebug(hc
, A_CONF
, 0);
1349 hc
->slot_owner
[i
] = -1;
1352 /* set clock speed */
1353 if (test_bit(HFC_CHIP_CLOCK2
, &hc
->chip
)) {
1354 if (debug
& DEBUG_HFCMULTI_INIT
)
1356 "%s: setting double clock\n", __func__
);
1357 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1360 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1361 HFC_outb(hc
, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1364 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1365 printk(KERN_NOTICE
"Setting GPIOs\n");
1366 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1367 HFC_outb(hc
, R_GPIO_EN1
, 0x3);
1369 printk(KERN_NOTICE
"calling vpm_init\n");
1373 /* check if R_F0_CNT counts (8 kHz frame count) */
1374 val
= HFC_inb(hc
, R_F0_CNTL
);
1375 val
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1376 if (debug
& DEBUG_HFCMULTI_INIT
)
1378 "HFC_multi F0_CNT %ld after reset\n", val
);
1379 spin_unlock_irqrestore(&hc
->lock
, flags
);
1380 set_current_state(TASK_UNINTERRUPTIBLE
);
1381 schedule_timeout((HZ
/ 100) ? : 1); /* Timeout minimum 10ms */
1382 spin_lock_irqsave(&hc
->lock
, flags
);
1383 val2
= HFC_inb(hc
, R_F0_CNTL
);
1384 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1385 if (debug
& DEBUG_HFCMULTI_INIT
)
1387 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1389 if (val2
>= val
+ 8) { /* 1 ms */
1390 /* it counts, so we keep the pcm mode */
1391 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1392 printk(KERN_INFO
"controller is PCM bus MASTER\n");
1394 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
))
1395 printk(KERN_INFO
"controller is PCM bus SLAVE\n");
1397 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
1398 printk(KERN_INFO
"controller is PCM bus SLAVE "
1399 "(auto detected)\n");
1402 /* does not count */
1403 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
1405 printk(KERN_ERR
"HFC_multi ERROR, getting no 125us "
1406 "pulse. Seems that controller fails.\n");
1410 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1411 printk(KERN_INFO
"controller is PCM bus SLAVE "
1412 "(ignoring missing PCM clock)\n");
1414 /* only one pcm master */
1415 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
1417 printk(KERN_ERR
"HFC_multi ERROR, no clock "
1418 "on another Speech Design card found. "
1419 "Please be sure to connect PCM cable.\n");
1423 /* retry with master clock */
1424 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1425 spin_lock_irqsave(&plx_lock
, plx_flags
);
1426 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1427 pv
= readl(plx_acc_32
);
1428 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1429 pv
|= PLX_SYNC_O_EN
;
1430 writel(pv
, plx_acc_32
);
1431 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1432 if (debug
& DEBUG_HFCMULTI_INIT
)
1433 printk(KERN_DEBUG
"%s: master: "
1434 "PLX_GPIO=%x\n", __func__
, pv
);
1436 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1437 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1438 spin_unlock_irqrestore(&hc
->lock
, flags
);
1439 set_current_state(TASK_UNINTERRUPTIBLE
);
1440 schedule_timeout((HZ
/ 100) ?: 1); /* Timeout min. 10ms */
1441 spin_lock_irqsave(&hc
->lock
, flags
);
1442 val2
= HFC_inb(hc
, R_F0_CNTL
);
1443 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1444 if (debug
& DEBUG_HFCMULTI_INIT
)
1445 printk(KERN_DEBUG
"HFC_multi F0_CNT %ld after "
1446 "10 ms (2nd try)\n", val2
);
1447 if (val2
>= val
+ 8) { /* 1 ms */
1448 test_and_set_bit(HFC_CHIP_PCM_MASTER
,
1450 printk(KERN_INFO
"controller is PCM bus MASTER "
1451 "(auto detected)\n");
1453 goto controller_fail
;
1457 /* Release the DSP Reset */
1458 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1459 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1461 spin_lock_irqsave(&plx_lock
, plx_flags
);
1462 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1463 pv
= readl(plx_acc_32
);
1464 pv
|= PLX_DSP_RES_N
;
1465 writel(pv
, plx_acc_32
);
1466 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1467 if (debug
& DEBUG_HFCMULTI_INIT
)
1468 printk(KERN_DEBUG
"%s: reset off: PLX_GPIO=%x\n",
1474 printk(KERN_INFO
"controller has given PCM BUS ID %d\n",
1477 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)
1478 || test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1479 PCM_cnt
++; /* SD has proprietary bridging */
1482 printk(KERN_INFO
"controller has PCM BUS ID %d "
1483 "(auto selected)\n", hc
->pcm
);
1487 HFC_outb(hc
, R_TI_WD
, poll_timer
);
1488 hc
->hw
.r_irqmsk_misc
|= V_TI_IRQMSK
;
1490 /* set E1 state machine IRQ */
1491 if (hc
->ctype
== HFC_TYPE_E1
)
1492 hc
->hw
.r_irqmsk_misc
|= V_STA_IRQMSK
;
1494 /* set DTMF detection */
1495 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
1496 if (debug
& DEBUG_HFCMULTI_INIT
)
1497 printk(KERN_DEBUG
"%s: enabling DTMF detection "
1498 "for all B-channel\n", __func__
);
1499 hc
->hw
.r_dtmf
= V_DTMF_EN
| V_DTMF_STOP
;
1500 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1501 hc
->hw
.r_dtmf
|= V_ULAW_SEL
;
1502 HFC_outb(hc
, R_DTMF_N
, 102 - 1);
1503 hc
->hw
.r_irqmsk_misc
|= V_DTMF_IRQMSK
;
1506 /* conference engine */
1507 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1508 r_conf_en
= V_CONF_EN
| V_ULAW
;
1510 r_conf_en
= V_CONF_EN
;
1511 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1512 HFC_outb(hc
, R_CONF_EN
, r_conf_en
);
1516 case 1: /* HFC-E1 OEM */
1517 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
1518 HFC_outb(hc
, R_GPIO_SEL
, 0x32);
1520 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1522 HFC_outb(hc
, R_GPIO_EN1
, 0x0f);
1523 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1525 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1528 case 2: /* HFC-4S OEM */
1530 HFC_outb(hc
, R_GPIO_SEL
, 0xf0);
1531 HFC_outb(hc
, R_GPIO_EN1
, 0xff);
1532 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1536 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
)) {
1537 hc
->hw
.r_st_sync
= 0x10; /* V_AUTO_SYNCI */
1538 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1541 /* set master clock */
1542 if (hc
->masterclk
>= 0) {
1543 if (debug
& DEBUG_HFCMULTI_INIT
)
1544 printk(KERN_DEBUG
"%s: setting ST master clock "
1545 "to port %d (0..%d)\n",
1546 __func__
, hc
->masterclk
, hc
->ports
- 1);
1547 hc
->hw
.r_st_sync
|= (hc
->masterclk
| V_AUTO_SYNC
);
1548 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1553 /* setting misc irq */
1554 HFC_outb(hc
, R_IRQMSK_MISC
, hc
->hw
.r_irqmsk_misc
);
1555 if (debug
& DEBUG_HFCMULTI_INIT
)
1556 printk(KERN_DEBUG
"r_irqmsk_misc.2: 0x%x\n",
1557 hc
->hw
.r_irqmsk_misc
);
1559 /* RAM access test */
1560 HFC_outb(hc
, R_RAM_ADDR0
, 0);
1561 HFC_outb(hc
, R_RAM_ADDR1
, 0);
1562 HFC_outb(hc
, R_RAM_ADDR2
, 0);
1563 for (i
= 0; i
< 256; i
++) {
1564 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1565 HFC_outb_nodebug(hc
, R_RAM_DATA
, ((i
* 3) & 0xff));
1567 for (i
= 0; i
< 256; i
++) {
1568 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1569 HFC_inb_nodebug(hc
, R_RAM_DATA
);
1570 rval
= HFC_inb_nodebug(hc
, R_INT_DATA
);
1571 if (rval
!= ((i
* 3) & 0xff)) {
1573 "addr:%x val:%x should:%x\n", i
, rval
,
1579 printk(KERN_DEBUG
"aborting - %d RAM access errors\n", err
);
1584 if (debug
& DEBUG_HFCMULTI_INIT
)
1585 printk(KERN_DEBUG
"%s: done\n", __func__
);
1587 spin_unlock_irqrestore(&hc
->lock
, flags
);
1593 * control the watchdog
1596 hfcmulti_watchdog(struct hfc_multi
*hc
)
1600 if (hc
->wdcount
> 10) {
1602 hc
->wdbyte
= hc
->wdbyte
== V_GPIO_OUT2
?
1603 V_GPIO_OUT3
: V_GPIO_OUT2
;
1605 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1607 HFC_outb(hc
, R_GPIO_OUT0
, hc
->wdbyte
);
1617 hfcmulti_leds(struct hfc_multi
*hc
)
1620 unsigned long leddw
;
1621 int i
, state
, active
, leds
;
1622 struct dchannel
*dch
;
1626 case 1: /* HFC-E1 OEM */
1627 /* 2 red steady: LOS
1628 * 1 red steady: L1 not active
1629 * 2 green steady: L1 active
1630 * 1st green flashing: activity on TX
1631 * 2nd green flashing: activity on RX
1637 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
1639 if (hc
->chan
[hc
->dnum
[0]].los
)
1641 if (hc
->e1_state
!= 1) {
1648 if (!hc
->flash
[2] && hc
->activity_tx
)
1649 hc
->flash
[2] = poll
;
1650 if (!hc
->flash
[3] && hc
->activity_rx
)
1651 hc
->flash
[3] = poll
;
1652 if (hc
->flash
[2] && hc
->flash
[2] < 1024)
1654 if (hc
->flash
[3] && hc
->flash
[3] < 1024)
1656 if (hc
->flash
[2] >= 2048)
1658 if (hc
->flash
[3] >= 2048)
1661 hc
->flash
[2] += poll
;
1663 hc
->flash
[3] += poll
;
1666 leds
= (led
[0] | (led
[1]<<2) | (led
[2]<<1) | (led
[3]<<3))^0xF;
1667 /* leds are inverted */
1668 if (leds
!= (int)hc
->ledstate
) {
1669 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
);
1670 hc
->ledstate
= leds
;
1674 case 2: /* HFC-4S OEM */
1675 /* red steady: PH_DEACTIVATE
1676 * green steady: PH_ACTIVATE
1677 * green flashing: activity on TX
1679 for (i
= 0; i
< 4; i
++) {
1682 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1685 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1691 if (state
== active
) {
1692 led
[i
] = 1; /* led green */
1693 hc
->activity_tx
|= hc
->activity_rx
;
1694 if (!hc
->flash
[i
] &&
1695 (hc
->activity_tx
& (1 << i
)))
1696 hc
->flash
[i
] = poll
;
1697 if (hc
->flash
[i
] && hc
->flash
[i
] < 1024)
1698 led
[i
] = 0; /* led off */
1699 if (hc
->flash
[i
] >= 2048)
1702 hc
->flash
[i
] += poll
;
1704 led
[i
] = 2; /* led red */
1708 led
[i
] = 0; /* led off */
1710 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1712 for (i
= 0; i
< 4; i
++) {
1715 leds
|= (0x2 << (i
* 2));
1716 } else if (led
[i
] == 2) {
1718 leds
|= (0x1 << (i
* 2));
1721 if (leds
!= (int)hc
->ledstate
) {
1722 vpm_out(hc
, 0, 0x1a8 + 3, leds
);
1723 hc
->ledstate
= leds
;
1726 leds
= ((led
[3] > 0) << 0) | ((led
[1] > 0) << 1) |
1727 ((led
[0] > 0) << 2) | ((led
[2] > 0) << 3) |
1728 ((led
[3] & 1) << 4) | ((led
[1] & 1) << 5) |
1729 ((led
[0] & 1) << 6) | ((led
[2] & 1) << 7);
1730 if (leds
!= (int)hc
->ledstate
) {
1731 HFC_outb_nodebug(hc
, R_GPIO_EN1
, leds
& 0x0F);
1732 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
>> 4);
1733 hc
->ledstate
= leds
;
1738 case 3: /* HFC 1S/2S Beronet */
1739 /* red steady: PH_DEACTIVATE
1740 * green steady: PH_ACTIVATE
1741 * green flashing: activity on TX
1743 for (i
= 0; i
< 2; i
++) {
1746 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1749 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1755 if (state
== active
) {
1756 led
[i
] = 1; /* led green */
1757 hc
->activity_tx
|= hc
->activity_rx
;
1758 if (!hc
->flash
[i
] &&
1759 (hc
->activity_tx
& (1 << i
)))
1760 hc
->flash
[i
] = poll
;
1761 if (hc
->flash
[i
] < 1024)
1762 led
[i
] = 0; /* led off */
1763 if (hc
->flash
[i
] >= 2048)
1766 hc
->flash
[i
] += poll
;
1768 led
[i
] = 2; /* led red */
1772 led
[i
] = 0; /* led off */
1774 leds
= (led
[0] > 0) | ((led
[1] > 0) << 1) | ((led
[0]&1) << 2)
1775 | ((led
[1]&1) << 3);
1776 if (leds
!= (int)hc
->ledstate
) {
1777 HFC_outb_nodebug(hc
, R_GPIO_EN1
,
1778 ((led
[0] > 0) << 2) | ((led
[1] > 0) << 3));
1779 HFC_outb_nodebug(hc
, R_GPIO_OUT1
,
1780 ((led
[0] & 1) << 2) | ((led
[1] & 1) << 3));
1781 hc
->ledstate
= leds
;
1784 case 8: /* HFC 8S+ Beronet */
1785 /* off: PH_DEACTIVATE
1786 * steady: PH_ACTIVATE
1787 * flashing: activity on TX
1789 lled
= 0xff; /* leds off */
1790 for (i
= 0; i
< 8; i
++) {
1793 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1796 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1802 if (state
== active
) {
1803 lled
&= ~(1 << i
); /* led on */
1804 hc
->activity_tx
|= hc
->activity_rx
;
1805 if (!hc
->flash
[i
] &&
1806 (hc
->activity_tx
& (1 << i
)))
1807 hc
->flash
[i
] = poll
;
1808 if (hc
->flash
[i
] < 1024)
1809 lled
|= 1 << i
; /* led off */
1810 if (hc
->flash
[i
] >= 2048)
1813 hc
->flash
[i
] += poll
;
1818 leddw
= lled
<< 24 | lled
<< 16 | lled
<< 8 | lled
;
1819 if (leddw
!= hc
->ledstate
) {
1820 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822 /* was _io before */
1823 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
1824 outw(0x4000, hc
->pci_iobase
+ 4);
1825 outl(leddw
, hc
->pci_iobase
);
1826 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1827 hc
->ledstate
= leddw
;
1831 hc
->activity_tx
= 0;
1832 hc
->activity_rx
= 0;
1835 * read dtmf coefficients
1839 hfcmulti_dtmf(struct hfc_multi
*hc
)
1844 struct bchannel
*bch
= NULL
;
1849 struct sk_buff
*skb
;
1850 struct mISDNhead
*hh
;
1852 if (debug
& DEBUG_HFCMULTI_DTMF
)
1853 printk(KERN_DEBUG
"%s: dtmf detection irq\n", __func__
);
1854 for (ch
= 0; ch
<= 31; ch
++) {
1855 /* only process enabled B-channels */
1856 bch
= hc
->chan
[ch
].bch
;
1859 if (!hc
->created
[hc
->chan
[ch
].port
])
1861 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1863 if (debug
& DEBUG_HFCMULTI_DTMF
)
1864 printk(KERN_DEBUG
"%s: dtmf channel %d:",
1866 coeff
= &(hc
->chan
[ch
].coeff
[hc
->chan
[ch
].coeff_count
* 16]);
1868 for (co
= 0; co
< 8; co
++) {
1869 /* read W(n-1) coefficient */
1870 addr
= hc
->DTMFbase
+ ((co
<< 7) | (ch
<< 2));
1871 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, addr
);
1872 HFC_outb_nodebug(hc
, R_RAM_ADDR1
, addr
>> 8);
1873 HFC_outb_nodebug(hc
, R_RAM_ADDR2
, (addr
>> 16)
1875 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1876 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1877 if (debug
& DEBUG_HFCMULTI_DTMF
)
1878 printk(" %04x", w_float
);
1880 /* decode float (see chip doc) */
1881 mantissa
= w_float
& 0x0fff;
1882 if (w_float
& 0x8000)
1883 mantissa
|= 0xfffff000;
1884 exponent
= (w_float
>> 12) & 0x7;
1887 mantissa
<<= (exponent
- 1);
1890 /* store coefficient */
1891 coeff
[co
<< 1] = mantissa
;
1893 /* read W(n) coefficient */
1894 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1895 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1896 if (debug
& DEBUG_HFCMULTI_DTMF
)
1897 printk(" %04x", w_float
);
1899 /* decode float (see chip doc) */
1900 mantissa
= w_float
& 0x0fff;
1901 if (w_float
& 0x8000)
1902 mantissa
|= 0xfffff000;
1903 exponent
= (w_float
>> 12) & 0x7;
1906 mantissa
<<= (exponent
- 1);
1909 /* store coefficient */
1910 coeff
[(co
<< 1) | 1] = mantissa
;
1912 if (debug
& DEBUG_HFCMULTI_DTMF
)
1913 printk(" DTMF ready %08x %08x %08x %08x "
1914 "%08x %08x %08x %08x\n",
1915 coeff
[0], coeff
[1], coeff
[2], coeff
[3],
1916 coeff
[4], coeff
[5], coeff
[6], coeff
[7]);
1917 hc
->chan
[ch
].coeff_count
++;
1918 if (hc
->chan
[ch
].coeff_count
== 8) {
1919 hc
->chan
[ch
].coeff_count
= 0;
1920 skb
= mI_alloc_skb(512, GFP_ATOMIC
);
1922 printk(KERN_DEBUG
"%s: No memory for skb\n",
1926 hh
= mISDN_HEAD_P(skb
);
1927 hh
->prim
= PH_CONTROL_IND
;
1928 hh
->id
= DTMF_HFC_COEF
;
1929 memcpy(skb_put(skb
, 512), hc
->chan
[ch
].coeff
, 512);
1930 recv_Bchannel_skb(bch
, skb
);
1934 /* restart DTMF processing */
1937 HFC_outb_nodebug(hc
, R_DTMF
, hc
->hw
.r_dtmf
| V_RST_DTMF
);
1942 * fill fifo as much as possible
1946 hfcmulti_tx(struct hfc_multi
*hc
, int ch
)
1948 int i
, ii
, temp
, len
= 0;
1949 int Zspace
, z1
, z2
; /* must be int for calculation */
1952 int *txpending
, slot_tx
;
1953 struct bchannel
*bch
;
1954 struct dchannel
*dch
;
1955 struct sk_buff
**sp
= NULL
;
1958 bch
= hc
->chan
[ch
].bch
;
1959 dch
= hc
->chan
[ch
].dch
;
1960 if ((!dch
) && (!bch
))
1963 txpending
= &hc
->chan
[ch
].txpending
;
1964 slot_tx
= hc
->chan
[ch
].slot_tx
;
1966 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
1969 idxp
= &dch
->tx_idx
;
1971 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
1974 idxp
= &bch
->tx_idx
;
1979 if ((!len
) && *txpending
!= 1)
1980 return; /* no data */
1982 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
1983 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
1984 (hc
->chan
[ch
].slot_rx
< 0) &&
1985 (hc
->chan
[ch
].slot_tx
< 0))
1986 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1));
1988 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
1989 HFC_wait_nodebug(hc
);
1991 if (*txpending
== 2) {
1993 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
1994 HFC_wait_nodebug(hc
);
1995 HFC_outb(hc
, A_SUBCH_CFG
, 0);
1999 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2000 f1
= HFC_inb_nodebug(hc
, A_F1
);
2001 f2
= HFC_inb_nodebug(hc
, A_F2
);
2002 while (f2
!= (temp
= HFC_inb_nodebug(hc
, A_F2
))) {
2003 if (debug
& DEBUG_HFCMULTI_FIFO
)
2005 "%s(card %d): reread f2 because %d!=%d\n",
2006 __func__
, hc
->id
+ 1, temp
, f2
);
2007 f2
= temp
; /* repeat until F2 is equal */
2009 Fspace
= f2
- f1
- 1;
2013 * Old FIFO handling doesn't give us the current Z2 read
2014 * pointer, so we cannot send the next frame before the fifo
2015 * is empty. It makes no difference except for a slightly
2016 * lower performance.
2018 if (test_bit(HFC_CHIP_REVISION0
, &hc
->chip
)) {
2024 /* one frame only for ST D-channels, to allow resending */
2025 if (hc
->ctype
!= HFC_TYPE_E1
&& dch
) {
2029 /* F-counter full condition */
2033 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2034 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2035 while (z2
!= (temp
= (HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
))) {
2036 if (debug
& DEBUG_HFCMULTI_FIFO
)
2037 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2038 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2039 z2
= temp
; /* repeat unti Z2 is equal */
2041 hc
->chan
[ch
].Zfill
= z1
- z2
;
2042 if (hc
->chan
[ch
].Zfill
< 0)
2043 hc
->chan
[ch
].Zfill
+= hc
->Zlen
;
2047 Zspace
-= 4; /* keep not too full, so pointers will not overrun */
2048 /* fill transparent data only to maxinum transparent load (minus 4) */
2049 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2050 Zspace
= Zspace
- hc
->Zlen
+ hc
->max_trans
;
2051 if (Zspace
<= 0) /* no space of 4 bytes */
2056 if (z1
== z2
) { /* empty */
2057 /* if done with FIFO audio data during PCM connection */
2058 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) &&
2059 *txpending
&& slot_tx
>= 0) {
2060 if (debug
& DEBUG_HFCMULTI_MODE
)
2062 "%s: reconnecting PCM due to no "
2063 "more FIFO data: channel %d "
2065 __func__
, ch
, slot_tx
);
2067 if (hc
->ctype
== HFC_TYPE_XHFC
)
2068 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2069 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2070 /* Enable FIFO, no interrupt */
2072 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2073 V_HDLC_TRP
| V_IFF
);
2074 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2075 HFC_wait_nodebug(hc
);
2076 if (hc
->ctype
== HFC_TYPE_XHFC
)
2077 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2078 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2079 /* Enable FIFO, no interrupt */
2081 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2082 V_HDLC_TRP
| V_IFF
);
2083 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2084 HFC_wait_nodebug(hc
);
2088 return; /* no data */
2091 /* "fill fifo if empty" feature */
2092 if (bch
&& test_bit(FLG_FILLEMPTY
, &bch
->Flags
)
2093 && !test_bit(FLG_HDLC
, &bch
->Flags
) && z2
== z1
) {
2094 if (debug
& DEBUG_HFCMULTI_FILL
)
2095 printk(KERN_DEBUG
"%s: buffer empty, so we have "
2096 "underrun\n", __func__
);
2097 /* fill buffer, to prevent future underrun */
2098 hc
->write_fifo(hc
, hc
->silence_data
, poll
>> 1);
2099 Zspace
-= (poll
>> 1);
2102 /* if audio data and connected slot */
2103 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) && (!*txpending
)
2105 if (debug
& DEBUG_HFCMULTI_MODE
)
2106 printk(KERN_DEBUG
"%s: disconnecting PCM due to "
2107 "FIFO data: channel %d slot_tx %d\n",
2108 __func__
, ch
, slot_tx
);
2109 /* disconnect slot */
2110 if (hc
->ctype
== HFC_TYPE_XHFC
)
2111 HFC_outb(hc
, A_CON_HDLC
, 0x80
2112 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2113 /* Enable FIFO, no interrupt */
2115 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2116 V_HDLC_TRP
| V_IFF
);
2117 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2118 HFC_wait_nodebug(hc
);
2119 if (hc
->ctype
== HFC_TYPE_XHFC
)
2120 HFC_outb(hc
, A_CON_HDLC
, 0x80
2121 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2122 /* Enable FIFO, no interrupt */
2124 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2125 V_HDLC_TRP
| V_IFF
);
2126 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2127 HFC_wait_nodebug(hc
);
2133 hc
->activity_tx
|= 1 << hc
->chan
[ch
].port
;
2135 /* fill fifo to what we have left */
2137 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
))
2142 d
= (*sp
)->data
+ i
;
2143 if (ii
- i
> Zspace
)
2145 if (debug
& DEBUG_HFCMULTI_FIFO
)
2146 printk(KERN_DEBUG
"%s(card %d): fifo(%d) has %d bytes space "
2147 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148 __func__
, hc
->id
+ 1, ch
, Zspace
, z1
, z2
, ii
-i
, len
-i
,
2149 temp
? "HDLC" : "TRANS");
2151 /* Have to prep the audio data */
2152 hc
->write_fifo(hc
, d
, ii
- i
);
2153 hc
->chan
[ch
].Zfill
+= ii
- i
;
2156 /* if not all data has been written */
2158 /* NOTE: fifo is started by the calling function */
2162 /* if all data has been written, terminate frame */
2163 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2164 /* increment f-counter */
2165 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2166 HFC_wait_nodebug(hc
);
2170 /* check for next frame */
2171 if (bch
&& get_next_bframe(bch
)) {
2175 if (dch
&& get_next_dframe(dch
)) {
2181 * now we have no more data, so in case of transparent,
2182 * we set the last byte in fifo to 'silence' in case we will get
2183 * no more data at all. this prevents sending an undefined value.
2185 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2186 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
2190 /* NOTE: only called if E1 card is in active state */
2192 hfcmulti_rx(struct hfc_multi
*hc
, int ch
)
2195 int Zsize
, z1
, z2
= 0; /* = 0, to make GCC happy */
2196 int f1
= 0, f2
= 0; /* = 0, to make GCC happy */
2198 struct bchannel
*bch
;
2199 struct dchannel
*dch
= NULL
;
2200 struct sk_buff
*skb
, **sp
= NULL
;
2203 bch
= hc
->chan
[ch
].bch
;
2205 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
2207 } else if (hc
->chan
[ch
].dch
) {
2208 dch
= hc
->chan
[ch
].dch
;
2209 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
2215 /* on first AND before getting next valid frame, R_FIFO must be written
2217 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2218 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
2219 (hc
->chan
[ch
].slot_rx
< 0) &&
2220 (hc
->chan
[ch
].slot_tx
< 0))
2221 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
2223 HFC_outb_nodebug(hc
, R_FIFO
, (ch
<< 1) | 1);
2224 HFC_wait_nodebug(hc
);
2226 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2227 if (hc
->chan
[ch
].rx_off
) {
2229 bch
->dropcnt
+= poll
; /* not exact but fair enough */
2233 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2234 f1
= HFC_inb_nodebug(hc
, A_F1
);
2235 while (f1
!= (temp
= HFC_inb_nodebug(hc
, A_F1
))) {
2236 if (debug
& DEBUG_HFCMULTI_FIFO
)
2238 "%s(card %d): reread f1 because %d!=%d\n",
2239 __func__
, hc
->id
+ 1, temp
, f1
);
2240 f1
= temp
; /* repeat until F1 is equal */
2242 f2
= HFC_inb_nodebug(hc
, A_F2
);
2244 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2245 while (z1
!= (temp
= (HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
))) {
2246 if (debug
& DEBUG_HFCMULTI_FIFO
)
2247 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2248 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2249 z1
= temp
; /* repeat until Z1 is equal */
2251 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2253 if ((dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) && f1
!= f2
)
2254 /* complete hdlc frame */
2258 /* if buffer is empty */
2263 maxlen
= bchannel_get_rxbuf(bch
, Zsize
);
2265 pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
2266 hc
->id
+ 1, bch
->nr
, Zsize
);
2270 maxlen
= bch
->maxlen
;
2271 } else { /* Dchannel */
2273 maxlen
= dch
->maxlen
+ 3;
2275 *sp
= mI_alloc_skb(maxlen
, GFP_ATOMIC
);
2277 pr_warning("card%d: No mem for dch rx_skb\n",
2285 hc
->activity_rx
|= 1 << hc
->chan
[ch
].port
;
2287 /* empty fifo with what we have */
2288 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2289 if (debug
& DEBUG_HFCMULTI_FIFO
)
2290 printk(KERN_DEBUG
"%s(card %d): fifo(%d) reading %d "
2291 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2292 "got=%d (again %d)\n", __func__
, hc
->id
+ 1, ch
,
2293 Zsize
, z1
, z2
, (f1
== f2
) ? "fragment" : "COMPLETE",
2294 f1
, f2
, Zsize
+ (*sp
)->len
, again
);
2296 if ((Zsize
+ (*sp
)->len
) > maxlen
) {
2297 if (debug
& DEBUG_HFCMULTI_FIFO
)
2299 "%s(card %d): hdlc-frame too large.\n",
2300 __func__
, hc
->id
+ 1);
2302 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
2303 HFC_wait_nodebug(hc
);
2307 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2310 /* increment Z2,F2-counter */
2311 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2312 HFC_wait_nodebug(hc
);
2314 if ((*sp
)->len
< 4) {
2315 if (debug
& DEBUG_HFCMULTI_FIFO
)
2317 "%s(card %d): Frame below minimum "
2318 "size\n", __func__
, hc
->id
+ 1);
2322 /* there is at least one complete frame, check crc */
2323 if ((*sp
)->data
[(*sp
)->len
- 1]) {
2324 if (debug
& DEBUG_HFCMULTI_CRC
)
2326 "%s: CRC-error\n", __func__
);
2330 skb_trim(*sp
, (*sp
)->len
- 3);
2331 if ((*sp
)->len
< MISDN_COPY_SIZE
) {
2333 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2335 memcpy(skb_put(*sp
, skb
->len
),
2336 skb
->data
, skb
->len
);
2339 printk(KERN_DEBUG
"%s: No mem\n",
2347 if (debug
& DEBUG_HFCMULTI_FIFO
) {
2348 printk(KERN_DEBUG
"%s(card %d):",
2349 __func__
, hc
->id
+ 1);
2351 while (temp
< (*sp
)->len
)
2352 printk(" %02x", (*sp
)->data
[temp
++]);
2358 recv_Bchannel(bch
, MISDN_ID_ANY
, false);
2363 /* there is an incomplete frame */
2366 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2367 if (debug
& DEBUG_HFCMULTI_FIFO
)
2369 "%s(card %d): fifo(%d) reading %d bytes "
2370 "(z1=%04x, z2=%04x) TRANS\n",
2371 __func__
, hc
->id
+ 1, ch
, Zsize
, z1
, z2
);
2372 /* only bch is transparent */
2373 recv_Bchannel(bch
, hc
->chan
[ch
].Zfill
, false);
2382 signal_state_up(struct dchannel
*dch
, int info
, char *msg
)
2384 struct sk_buff
*skb
;
2385 int id
, data
= info
;
2387 if (debug
& DEBUG_HFCMULTI_STATE
)
2388 printk(KERN_DEBUG
"%s: %s\n", __func__
, msg
);
2390 id
= TEI_SAPI
| (GROUP_TEI
<< 8); /* manager address */
2392 skb
= _alloc_mISDN_skb(MPH_INFORMATION_IND
, id
, sizeof(data
), &data
,
2396 recv_Dchannel_skb(dch
, skb
);
2400 handle_timer_irq(struct hfc_multi
*hc
)
2403 struct dchannel
*dch
;
2406 /* process queued resync jobs */
2407 if (hc
->e1_resync
) {
2408 /* lock, so e1_resync gets not changed */
2409 spin_lock_irqsave(&HFClock
, flags
);
2410 if (hc
->e1_resync
& 1) {
2411 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2412 printk(KERN_DEBUG
"Enable SYNC_I\n");
2413 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
);
2414 /* disable JATT, if RX_SYNC is set */
2415 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
2416 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
2418 if (hc
->e1_resync
& 2) {
2419 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2420 printk(KERN_DEBUG
"Enable jatt PLL\n");
2421 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
2423 if (hc
->e1_resync
& 4) {
2424 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2426 "Enable QUARTZ for HFC-E1\n");
2427 /* set jatt to quartz */
2428 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
2430 /* switch to JATT, in case it is not already */
2431 HFC_outb(hc
, R_SYNC_OUT
, 0);
2434 spin_unlock_irqrestore(&HFClock
, flags
);
2437 if (hc
->ctype
!= HFC_TYPE_E1
|| hc
->e1_state
== 1)
2438 for (ch
= 0; ch
<= 31; ch
++) {
2439 if (hc
->created
[hc
->chan
[ch
].port
]) {
2440 hfcmulti_tx(hc
, ch
);
2441 /* fifo is started when switching to rx-fifo */
2442 hfcmulti_rx(hc
, ch
);
2443 if (hc
->chan
[ch
].dch
&&
2444 hc
->chan
[ch
].nt_timer
> -1) {
2445 dch
= hc
->chan
[ch
].dch
;
2446 if (!(--hc
->chan
[ch
].nt_timer
)) {
2450 DEBUG_HFCMULTI_STATE
)
2460 if (hc
->ctype
== HFC_TYPE_E1
&& hc
->created
[0]) {
2461 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2463 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_SIG_LOS
;
2464 hc
->chan
[hc
->dnum
[0]].los
= temp
;
2465 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2466 if (!temp
&& hc
->chan
[hc
->dnum
[0]].los
)
2467 signal_state_up(dch
, L1_SIGNAL_LOS_ON
,
2469 if (temp
&& !hc
->chan
[hc
->dnum
[0]].los
)
2470 signal_state_up(dch
, L1_SIGNAL_LOS_OFF
,
2473 if (test_bit(HFC_CFG_REPORT_AIS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2475 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_AIS
;
2476 if (!temp
&& hc
->chan
[hc
->dnum
[0]].ais
)
2477 signal_state_up(dch
, L1_SIGNAL_AIS_ON
,
2479 if (temp
&& !hc
->chan
[hc
->dnum
[0]].ais
)
2480 signal_state_up(dch
, L1_SIGNAL_AIS_OFF
,
2482 hc
->chan
[hc
->dnum
[0]].ais
= temp
;
2484 if (test_bit(HFC_CFG_REPORT_SLIP
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2486 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_RX
;
2487 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_rx
)
2488 signal_state_up(dch
, L1_SIGNAL_SLIP_RX
,
2489 " bit SLIP detected RX");
2490 hc
->chan
[hc
->dnum
[0]].slip_rx
= temp
;
2491 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_TX
;
2492 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_tx
)
2493 signal_state_up(dch
, L1_SIGNAL_SLIP_TX
,
2494 " bit SLIP detected TX");
2495 hc
->chan
[hc
->dnum
[0]].slip_tx
= temp
;
2497 if (test_bit(HFC_CFG_REPORT_RDI
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2499 temp
= HFC_inb_nodebug(hc
, R_RX_SL0_0
) & V_A
;
2500 if (!temp
&& hc
->chan
[hc
->dnum
[0]].rdi
)
2501 signal_state_up(dch
, L1_SIGNAL_RDI_ON
,
2503 if (temp
&& !hc
->chan
[hc
->dnum
[0]].rdi
)
2504 signal_state_up(dch
, L1_SIGNAL_RDI_OFF
,
2506 hc
->chan
[hc
->dnum
[0]].rdi
= temp
;
2508 temp
= HFC_inb_nodebug(hc
, R_JATT_DIR
);
2509 switch (hc
->chan
[hc
->dnum
[0]].sync
) {
2511 if ((temp
& 0x60) == 0x60) {
2512 if (debug
& DEBUG_HFCMULTI_SYNC
)
2514 "%s: (id=%d) E1 now "
2517 HFC_outb(hc
, R_RX_OFF
,
2518 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2519 HFC_outb(hc
, R_TX_OFF
,
2520 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2521 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2522 goto check_framesync
;
2526 if ((temp
& 0x60) != 0x60) {
2527 if (debug
& DEBUG_HFCMULTI_SYNC
)
2530 "lost clock sync\n",
2532 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2536 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2538 if (debug
& DEBUG_HFCMULTI_SYNC
)
2541 "now in frame sync\n",
2543 hc
->chan
[hc
->dnum
[0]].sync
= 2;
2547 if ((temp
& 0x60) != 0x60) {
2548 if (debug
& DEBUG_HFCMULTI_SYNC
)
2550 "%s: (id=%d) E1 lost "
2551 "clock & frame sync\n",
2553 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2556 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2558 if (debug
& DEBUG_HFCMULTI_SYNC
)
2561 "lost frame sync\n",
2563 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2569 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
2570 hfcmulti_watchdog(hc
);
2577 ph_state_irq(struct hfc_multi
*hc
, u_char r_irq_statech
)
2579 struct dchannel
*dch
;
2582 u_char st_status
, temp
;
2585 for (ch
= 0; ch
<= 31; ch
++) {
2586 if (hc
->chan
[ch
].dch
) {
2587 dch
= hc
->chan
[ch
].dch
;
2588 if (r_irq_statech
& 1) {
2589 HFC_outb_nodebug(hc
, R_ST_SEL
,
2591 /* undocumented: delay after R_ST_SEL */
2593 /* undocumented: status changes during read */
2594 st_status
= HFC_inb_nodebug(hc
, A_ST_RD_STATE
);
2595 while (st_status
!= (temp
=
2596 HFC_inb_nodebug(hc
, A_ST_RD_STATE
))) {
2597 if (debug
& DEBUG_HFCMULTI_STATE
)
2598 printk(KERN_DEBUG
"%s: reread "
2599 "STATE because %d!=%d\n",
2602 st_status
= temp
; /* repeat */
2605 /* Speech Design TE-sync indication */
2606 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) &&
2607 dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
2608 if (st_status
& V_FR_SYNC_ST
)
2610 (1 << hc
->chan
[ch
].port
);
2613 ~(1 << hc
->chan
[ch
].port
);
2615 dch
->state
= st_status
& 0x0f;
2616 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
2620 if (dch
->state
== active
) {
2621 HFC_outb_nodebug(hc
, R_FIFO
,
2623 HFC_wait_nodebug(hc
);
2624 HFC_outb_nodebug(hc
,
2625 R_INC_RES_FIFO
, V_RES_F
);
2626 HFC_wait_nodebug(hc
);
2629 schedule_event(dch
, FLG_PHCHANGE
);
2630 if (debug
& DEBUG_HFCMULTI_STATE
)
2632 "%s: S/T newstate %x port %d\n",
2633 __func__
, dch
->state
,
2636 r_irq_statech
>>= 1;
2639 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2640 plxsd_checksync(hc
, 0);
2644 fifo_irq(struct hfc_multi
*hc
, int block
)
2647 struct dchannel
*dch
;
2648 struct bchannel
*bch
;
2649 u_char r_irq_fifo_bl
;
2651 r_irq_fifo_bl
= HFC_inb_nodebug(hc
, R_IRQ_FIFO_BL0
+ block
);
2654 ch
= (block
<< 2) + (j
>> 1);
2655 dch
= hc
->chan
[ch
].dch
;
2656 bch
= hc
->chan
[ch
].bch
;
2657 if (((!dch
) && (!bch
)) || (!hc
->created
[hc
->chan
[ch
].port
])) {
2661 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2662 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2663 hfcmulti_tx(hc
, ch
);
2665 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2666 HFC_wait_nodebug(hc
);
2668 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2669 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2670 hfcmulti_tx(hc
, ch
);
2672 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2673 HFC_wait_nodebug(hc
);
2676 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2677 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2678 hfcmulti_rx(hc
, ch
);
2680 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2681 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2682 hfcmulti_rx(hc
, ch
);
2692 hfcmulti_interrupt(int intno
, void *dev_id
)
2694 #ifdef IRQCOUNT_DEBUG
2695 static int iq1
= 0, iq2
= 0, iq3
= 0, iq4
= 0,
2696 iq5
= 0, iq6
= 0, iqcnt
= 0;
2698 struct hfc_multi
*hc
= dev_id
;
2699 struct dchannel
*dch
;
2700 u_char r_irq_statech
, status
, r_irq_misc
, r_irq_oview
;
2702 void __iomem
*plx_acc
;
2704 u_char e1_syncsta
, temp
, temp2
;
2708 printk(KERN_ERR
"HFC-multi: Spurious interrupt!\n");
2712 spin_lock(&hc
->lock
);
2716 printk(KERN_ERR
"irq for card %d during irq from "
2717 "card %d, this is no bug.\n", hc
->id
+ 1, irqsem
);
2718 irqsem
= hc
->id
+ 1;
2720 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2721 if (hc
->immap
->im_cpm
.cp_pbdat
& hc
->pb_irqmsk
)
2724 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
2725 spin_lock_irqsave(&plx_lock
, flags
);
2726 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
2727 wval
= readw(plx_acc
);
2728 spin_unlock_irqrestore(&plx_lock
, flags
);
2729 if (!(wval
& PLX_INTCSR_LINTI1_STATUS
))
2733 status
= HFC_inb_nodebug(hc
, R_STATUS
);
2734 r_irq_statech
= HFC_inb_nodebug(hc
, R_IRQ_STATECH
);
2735 #ifdef IRQCOUNT_DEBUG
2738 if (status
& V_DTMF_STA
)
2740 if (status
& V_LOST_STA
)
2742 if (status
& V_EXT_IRQSTA
)
2744 if (status
& V_MISC_IRQSTA
)
2746 if (status
& V_FR_IRQSTA
)
2748 if (iqcnt
++ > 5000) {
2749 printk(KERN_ERR
"iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2750 iq1
, iq2
, iq3
, iq4
, iq5
, iq6
);
2755 if (!r_irq_statech
&&
2756 !(status
& (V_DTMF_STA
| V_LOST_STA
| V_EXT_IRQSTA
|
2757 V_MISC_IRQSTA
| V_FR_IRQSTA
))) {
2758 /* irq is not for us */
2762 if (r_irq_statech
) {
2763 if (hc
->ctype
!= HFC_TYPE_E1
)
2764 ph_state_irq(hc
, r_irq_statech
);
2766 if (status
& V_EXT_IRQSTA
)
2767 ; /* external IRQ */
2768 if (status
& V_LOST_STA
) {
2770 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_LOST
); /* clear irq! */
2772 if (status
& V_MISC_IRQSTA
) {
2774 r_irq_misc
= HFC_inb_nodebug(hc
, R_IRQ_MISC
);
2775 r_irq_misc
&= hc
->hw
.r_irqmsk_misc
; /* ignore disabled irqs */
2776 if (r_irq_misc
& V_STA_IRQ
) {
2777 if (hc
->ctype
== HFC_TYPE_E1
) {
2779 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2780 e1_syncsta
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2781 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
2782 && hc
->e1_getclock
) {
2783 if (e1_syncsta
& V_FR_SYNC_E1
)
2784 hc
->syncronized
= 1;
2786 hc
->syncronized
= 0;
2788 /* undocumented: status changes during read */
2789 temp
= HFC_inb_nodebug(hc
, R_E1_RD_STA
);
2790 while (temp
!= (temp2
=
2791 HFC_inb_nodebug(hc
, R_E1_RD_STA
))) {
2792 if (debug
& DEBUG_HFCMULTI_STATE
)
2793 printk(KERN_DEBUG
"%s: reread "
2794 "STATE because %d!=%d\n",
2795 __func__
, temp
, temp2
);
2796 temp
= temp2
; /* repeat */
2798 /* broadcast state change to all fragments */
2799 if (debug
& DEBUG_HFCMULTI_STATE
)
2801 "%s: E1 (id=%d) newstate %x\n",
2802 __func__
, hc
->id
, temp
& 0x7);
2803 for (i
= 0; i
< hc
->ports
; i
++) {
2804 dch
= hc
->chan
[hc
->dnum
[i
]].dch
;
2805 dch
->state
= temp
& 0x7;
2806 schedule_event(dch
, FLG_PHCHANGE
);
2809 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2810 plxsd_checksync(hc
, 0);
2813 if (r_irq_misc
& V_TI_IRQ
) {
2815 mISDN_clock_update(hc
->iclock
, poll
, NULL
);
2816 handle_timer_irq(hc
);
2819 if (r_irq_misc
& V_DTMF_IRQ
)
2822 if (r_irq_misc
& V_IRQ_PROC
) {
2823 static int irq_proc_cnt
;
2824 if (!irq_proc_cnt
++)
2825 printk(KERN_DEBUG
"%s: got V_IRQ_PROC -"
2826 " this should not happen\n", __func__
);
2830 if (status
& V_FR_IRQSTA
) {
2832 r_irq_oview
= HFC_inb_nodebug(hc
, R_IRQ_OVIEW
);
2833 for (i
= 0; i
< 8; i
++) {
2834 if (r_irq_oview
& (1 << i
))
2842 spin_unlock(&hc
->lock
);
2849 spin_unlock(&hc
->lock
);
2855 * timer callback for D-chan busy resolution. Currently no function
2859 hfcmulti_dbusy_timer(struct hfc_multi
*hc
)
2865 * activate/deactivate hardware for selected channels and mode
2867 * configure B-channel with the given protocol
2868 * ch eqals to the HFC-channel (0-31)
2869 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2870 * for S/T, 1-31 for E1)
2871 * the hdlc interrupts will be set/unset
2874 mode_hfcmulti(struct hfc_multi
*hc
, int ch
, int protocol
, int slot_tx
,
2875 int bank_tx
, int slot_rx
, int bank_rx
)
2877 int flow_tx
= 0, flow_rx
= 0, routing
= 0;
2878 int oslot_tx
, oslot_rx
;
2881 if (ch
< 0 || ch
> 31)
2883 oslot_tx
= hc
->chan
[ch
].slot_tx
;
2884 oslot_rx
= hc
->chan
[ch
].slot_rx
;
2885 conf
= hc
->chan
[ch
].conf
;
2887 if (debug
& DEBUG_HFCMULTI_MODE
)
2889 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2890 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2891 __func__
, hc
->id
, ch
, protocol
, oslot_tx
, slot_tx
,
2892 bank_tx
, oslot_rx
, slot_rx
, bank_rx
);
2894 if (oslot_tx
>= 0 && slot_tx
!= oslot_tx
) {
2895 /* remove from slot */
2896 if (debug
& DEBUG_HFCMULTI_MODE
)
2897 printk(KERN_DEBUG
"%s: remove from slot %d (TX)\n",
2898 __func__
, oslot_tx
);
2899 if (hc
->slot_owner
[oslot_tx
<< 1] == ch
) {
2900 HFC_outb(hc
, R_SLOT
, oslot_tx
<< 1);
2901 HFC_outb(hc
, A_SL_CFG
, 0);
2902 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2903 HFC_outb(hc
, A_CONF
, 0);
2904 hc
->slot_owner
[oslot_tx
<< 1] = -1;
2906 if (debug
& DEBUG_HFCMULTI_MODE
)
2908 "%s: we are not owner of this tx slot "
2909 "anymore, channel %d is.\n",
2910 __func__
, hc
->slot_owner
[oslot_tx
<< 1]);
2914 if (oslot_rx
>= 0 && slot_rx
!= oslot_rx
) {
2915 /* remove from slot */
2916 if (debug
& DEBUG_HFCMULTI_MODE
)
2918 "%s: remove from slot %d (RX)\n",
2919 __func__
, oslot_rx
);
2920 if (hc
->slot_owner
[(oslot_rx
<< 1) | 1] == ch
) {
2921 HFC_outb(hc
, R_SLOT
, (oslot_rx
<< 1) | V_SL_DIR
);
2922 HFC_outb(hc
, A_SL_CFG
, 0);
2923 hc
->slot_owner
[(oslot_rx
<< 1) | 1] = -1;
2925 if (debug
& DEBUG_HFCMULTI_MODE
)
2927 "%s: we are not owner of this rx slot "
2928 "anymore, channel %d is.\n",
2930 hc
->slot_owner
[(oslot_rx
<< 1) | 1]);
2935 flow_tx
= 0x80; /* FIFO->ST */
2936 /* disable pcm slot */
2937 hc
->chan
[ch
].slot_tx
= -1;
2938 hc
->chan
[ch
].bank_tx
= 0;
2941 if (hc
->chan
[ch
].txpending
)
2942 flow_tx
= 0x80; /* FIFO->ST */
2944 flow_tx
= 0xc0; /* PCM->ST */
2946 routing
= bank_tx
? 0xc0 : 0x80;
2947 if (conf
>= 0 || bank_tx
> 1)
2948 routing
= 0x40; /* loop */
2949 if (debug
& DEBUG_HFCMULTI_MODE
)
2950 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2951 " %d flow %02x routing %02x conf %d (TX)\n",
2952 __func__
, ch
, slot_tx
, bank_tx
,
2953 flow_tx
, routing
, conf
);
2954 HFC_outb(hc
, R_SLOT
, slot_tx
<< 1);
2955 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | routing
);
2956 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2957 HFC_outb(hc
, A_CONF
,
2958 (conf
< 0) ? 0 : (conf
| V_CONF_SL
));
2959 hc
->slot_owner
[slot_tx
<< 1] = ch
;
2960 hc
->chan
[ch
].slot_tx
= slot_tx
;
2961 hc
->chan
[ch
].bank_tx
= bank_tx
;
2964 /* disable pcm slot */
2965 flow_rx
= 0x80; /* ST->FIFO */
2966 hc
->chan
[ch
].slot_rx
= -1;
2967 hc
->chan
[ch
].bank_rx
= 0;
2970 if (hc
->chan
[ch
].txpending
)
2971 flow_rx
= 0x80; /* ST->FIFO */
2973 flow_rx
= 0xc0; /* ST->(FIFO,PCM) */
2975 routing
= bank_rx
? 0x80 : 0xc0; /* reversed */
2976 if (conf
>= 0 || bank_rx
> 1)
2977 routing
= 0x40; /* loop */
2978 if (debug
& DEBUG_HFCMULTI_MODE
)
2979 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2980 " %d flow %02x routing %02x conf %d (RX)\n",
2981 __func__
, ch
, slot_rx
, bank_rx
,
2982 flow_rx
, routing
, conf
);
2983 HFC_outb(hc
, R_SLOT
, (slot_rx
<< 1) | V_SL_DIR
);
2984 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | V_CH_DIR
| routing
);
2985 hc
->slot_owner
[(slot_rx
<< 1) | 1] = ch
;
2986 hc
->chan
[ch
].slot_rx
= slot_rx
;
2987 hc
->chan
[ch
].bank_rx
= bank_rx
;
2992 /* disable TX fifo */
2993 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2995 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 | V_IFF
);
2996 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2997 HFC_outb(hc
, A_IRQ_MSK
, 0);
2998 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3000 /* disable RX fifo */
3001 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3003 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00);
3004 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3005 HFC_outb(hc
, A_IRQ_MSK
, 0);
3006 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3008 if (hc
->chan
[ch
].bch
&& hc
->ctype
!= HFC_TYPE_E1
) {
3009 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] &=
3010 ((ch
& 0x3) == 0) ? ~V_B1_EN
: ~V_B2_EN
;
3011 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3012 /* undocumented: delay after R_ST_SEL */
3014 HFC_outb(hc
, A_ST_CTRL0
,
3015 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3017 if (hc
->chan
[ch
].bch
) {
3018 test_and_clear_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3019 test_and_clear_bit(FLG_TRANSPARENT
,
3020 &hc
->chan
[ch
].bch
->Flags
);
3023 case (ISDN_P_B_RAW
): /* B-channel */
3025 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
3026 (hc
->chan
[ch
].slot_rx
< 0) &&
3027 (hc
->chan
[ch
].slot_tx
< 0)) {
3030 "Setting B-channel %d to echo cancelable "
3031 "state on PCM slot %d\n", ch
,
3032 ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1);
3034 "Enabling pass through for channel\n");
3035 vpm_out(hc
, ch
, ((ch
/ 4) * 8) +
3036 ((ch
% 4) * 4) + 1, 0x01);
3039 HFC_outb(hc
, R_FIFO
, (ch
<< 1));
3041 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3042 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3043 ((ch
% 4) * 4) + 1) << 1);
3044 HFC_outb(hc
, A_SL_CFG
, 0x80 | (ch
<< 1));
3047 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
3049 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3050 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3051 HFC_outb(hc
, A_IRQ_MSK
, 0);
3052 if (hc
->chan
[ch
].protocol
!= protocol
) {
3053 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3056 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3057 ((ch
% 4) * 4) + 1) << 1) | 1);
3058 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1) | 1);
3062 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3064 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3065 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3066 ((ch
% 4) * 4)) << 1) | 1);
3067 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x40 | (ch
<< 1) | 1);
3070 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1));
3072 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3073 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3074 HFC_outb(hc
, A_IRQ_MSK
, 0);
3075 if (hc
->chan
[ch
].protocol
!= protocol
) {
3076 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3080 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3081 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3082 ((ch
% 4) * 4)) << 1);
3083 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1));
3085 /* enable TX fifo */
3086 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3088 if (hc
->ctype
== HFC_TYPE_XHFC
)
3089 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x07 << 2 |
3090 V_HDLC_TRP
| V_IFF
);
3091 /* Enable FIFO, no interrupt */
3093 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 |
3094 V_HDLC_TRP
| V_IFF
);
3095 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3096 HFC_outb(hc
, A_IRQ_MSK
, 0);
3097 if (hc
->chan
[ch
].protocol
!= protocol
) {
3098 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3102 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3103 /* enable RX fifo */
3104 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3106 if (hc
->ctype
== HFC_TYPE_XHFC
)
3107 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x07 << 2 |
3109 /* Enable FIFO, no interrupt*/
3111 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00 |
3113 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3114 HFC_outb(hc
, A_IRQ_MSK
, 0);
3115 if (hc
->chan
[ch
].protocol
!= protocol
) {
3116 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3120 if (hc
->ctype
!= HFC_TYPE_E1
) {
3121 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3122 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3123 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3124 /* undocumented: delay after R_ST_SEL */
3126 HFC_outb(hc
, A_ST_CTRL0
,
3127 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3129 if (hc
->chan
[ch
].bch
)
3130 test_and_set_bit(FLG_TRANSPARENT
,
3131 &hc
->chan
[ch
].bch
->Flags
);
3133 case (ISDN_P_B_HDLC
): /* B-channel */
3134 case (ISDN_P_TE_S0
): /* D-channel */
3135 case (ISDN_P_NT_S0
):
3136 case (ISDN_P_TE_E1
):
3137 case (ISDN_P_NT_E1
):
3138 /* enable TX fifo */
3139 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3141 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
) {
3142 /* E1 or B-channel */
3143 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04);
3144 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3146 /* D-Channel without HDLC fill flags */
3147 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04 | V_IFF
);
3148 HFC_outb(hc
, A_SUBCH_CFG
, 2);
3150 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3151 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3153 /* enable RX fifo */
3154 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3156 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x04);
3157 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
)
3158 HFC_outb(hc
, A_SUBCH_CFG
, 0); /* full 8 bits */
3160 HFC_outb(hc
, A_SUBCH_CFG
, 2); /* 2 bits dchannel */
3161 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3162 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3164 if (hc
->chan
[ch
].bch
) {
3165 test_and_set_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3166 if (hc
->ctype
!= HFC_TYPE_E1
) {
3167 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3168 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3169 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3170 /* undocumented: delay after R_ST_SEL */
3172 HFC_outb(hc
, A_ST_CTRL0
,
3173 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3178 printk(KERN_DEBUG
"%s: protocol not known %x\n",
3179 __func__
, protocol
);
3180 hc
->chan
[ch
].protocol
= ISDN_P_NONE
;
3181 return -ENOPROTOOPT
;
3183 hc
->chan
[ch
].protocol
= protocol
;
3189 * connect/disconnect PCM
3193 hfcmulti_pcm(struct hfc_multi
*hc
, int ch
, int slot_tx
, int bank_tx
,
3194 int slot_rx
, int bank_rx
)
3196 if (slot_tx
< 0 || slot_rx
< 0 || bank_tx
< 0 || bank_rx
< 0) {
3198 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, -1, 0, -1, 0);
3203 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, slot_tx
, bank_tx
,
3208 * set/disable conference
3212 hfcmulti_conf(struct hfc_multi
*hc
, int ch
, int num
)
3214 if (num
>= 0 && num
<= 7)
3215 hc
->chan
[ch
].conf
= num
;
3217 hc
->chan
[ch
].conf
= -1;
3218 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, hc
->chan
[ch
].slot_tx
,
3219 hc
->chan
[ch
].bank_tx
, hc
->chan
[ch
].slot_rx
,
3220 hc
->chan
[ch
].bank_rx
);
3225 * set/disable sample loop
3228 /* NOTE: this function is experimental and therefore disabled */
3231 * Layer 1 callback function
3234 hfcm_l1callback(struct dchannel
*dch
, u_int cmd
)
3236 struct hfc_multi
*hc
= dch
->hw
;
3244 /* start activation */
3245 spin_lock_irqsave(&hc
->lock
, flags
);
3246 if (hc
->ctype
== HFC_TYPE_E1
) {
3247 if (debug
& DEBUG_HFCMULTI_MSG
)
3249 "%s: HW_RESET_REQ no BRI\n",
3252 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3253 /* undocumented: delay after R_ST_SEL */
3255 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 3); /* F3 */
3256 udelay(6); /* wait at least 5,21us */
3257 HFC_outb(hc
, A_ST_WR_STATE
, 3);
3258 HFC_outb(hc
, A_ST_WR_STATE
, 3 | (V_ST_ACT
* 3));
3261 spin_unlock_irqrestore(&hc
->lock
, flags
);
3262 l1_event(dch
->l1
, HW_POWERUP_IND
);
3265 /* start deactivation */
3266 spin_lock_irqsave(&hc
->lock
, flags
);
3267 if (hc
->ctype
== HFC_TYPE_E1
) {
3268 if (debug
& DEBUG_HFCMULTI_MSG
)
3270 "%s: HW_DEACT_REQ no BRI\n",
3273 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3274 /* undocumented: delay after R_ST_SEL */
3276 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3278 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3280 ~(1 << hc
->chan
[dch
->slot
].port
);
3281 plxsd_checksync(hc
, 0);
3284 skb_queue_purge(&dch
->squeue
);
3286 dev_kfree_skb(dch
->tx_skb
);
3291 dev_kfree_skb(dch
->rx_skb
);
3294 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3295 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3296 del_timer(&dch
->timer
);
3297 spin_unlock_irqrestore(&hc
->lock
, flags
);
3299 case HW_POWERUP_REQ
:
3300 spin_lock_irqsave(&hc
->lock
, flags
);
3301 if (hc
->ctype
== HFC_TYPE_E1
) {
3302 if (debug
& DEBUG_HFCMULTI_MSG
)
3304 "%s: HW_POWERUP_REQ no BRI\n",
3307 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3308 /* undocumented: delay after R_ST_SEL */
3310 HFC_outb(hc
, A_ST_WR_STATE
, 3 | 0x10); /* activate */
3311 udelay(6); /* wait at least 5,21us */
3312 HFC_outb(hc
, A_ST_WR_STATE
, 3); /* activate */
3314 spin_unlock_irqrestore(&hc
->lock
, flags
);
3316 case PH_ACTIVATE_IND
:
3317 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3318 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3321 case PH_DEACTIVATE_IND
:
3322 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3323 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3327 if (dch
->debug
& DEBUG_HW
)
3328 printk(KERN_DEBUG
"%s: unknown command %x\n",
3336 * Layer2 -> Layer 1 Transfer
3340 handle_dmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3342 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
3343 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
3344 struct hfc_multi
*hc
= dch
->hw
;
3345 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3354 spin_lock_irqsave(&hc
->lock
, flags
);
3355 ret
= dchannel_senddata(dch
, skb
);
3356 if (ret
> 0) { /* direct TX */
3357 id
= hh
->id
; /* skb can be freed */
3358 hfcmulti_tx(hc
, dch
->slot
);
3361 HFC_outb(hc
, R_FIFO
, 0);
3363 spin_unlock_irqrestore(&hc
->lock
, flags
);
3364 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3366 spin_unlock_irqrestore(&hc
->lock
, flags
);
3368 case PH_ACTIVATE_REQ
:
3369 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3370 spin_lock_irqsave(&hc
->lock
, flags
);
3372 if (debug
& DEBUG_HFCMULTI_MSG
)
3374 "%s: PH_ACTIVATE port %d (0..%d)\n",
3375 __func__
, hc
->chan
[dch
->slot
].port
,
3377 /* start activation */
3378 if (hc
->ctype
== HFC_TYPE_E1
) {
3379 ph_state_change(dch
);
3380 if (debug
& DEBUG_HFCMULTI_STATE
)
3382 "%s: E1 report state %x \n",
3383 __func__
, dch
->state
);
3385 HFC_outb(hc
, R_ST_SEL
,
3386 hc
->chan
[dch
->slot
].port
);
3387 /* undocumented: delay after R_ST_SEL */
3389 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 1);
3391 udelay(6); /* wait at least 5,21us */
3392 HFC_outb(hc
, A_ST_WR_STATE
, 1);
3393 HFC_outb(hc
, A_ST_WR_STATE
, 1 |
3394 (V_ST_ACT
* 3)); /* activate */
3397 spin_unlock_irqrestore(&hc
->lock
, flags
);
3399 ret
= l1_event(dch
->l1
, hh
->prim
);
3401 case PH_DEACTIVATE_REQ
:
3402 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
3403 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3404 spin_lock_irqsave(&hc
->lock
, flags
);
3405 if (debug
& DEBUG_HFCMULTI_MSG
)
3407 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3408 __func__
, hc
->chan
[dch
->slot
].port
,
3410 /* start deactivation */
3411 if (hc
->ctype
== HFC_TYPE_E1
) {
3412 if (debug
& DEBUG_HFCMULTI_MSG
)
3414 "%s: PH_DEACTIVATE no BRI\n",
3417 HFC_outb(hc
, R_ST_SEL
,
3418 hc
->chan
[dch
->slot
].port
);
3419 /* undocumented: delay after R_ST_SEL */
3421 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3425 skb_queue_purge(&dch
->squeue
);
3427 dev_kfree_skb(dch
->tx_skb
);
3432 dev_kfree_skb(dch
->rx_skb
);
3435 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3436 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3437 del_timer(&dch
->timer
);
3439 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
3440 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
3443 spin_unlock_irqrestore(&hc
->lock
, flags
);
3445 ret
= l1_event(dch
->l1
, hh
->prim
);
3454 deactivate_bchannel(struct bchannel
*bch
)
3456 struct hfc_multi
*hc
= bch
->hw
;
3459 spin_lock_irqsave(&hc
->lock
, flags
);
3460 mISDN_clear_bchannel(bch
);
3461 hc
->chan
[bch
->slot
].coeff_count
= 0;
3462 hc
->chan
[bch
->slot
].rx_off
= 0;
3463 hc
->chan
[bch
->slot
].conf
= -1;
3464 mode_hfcmulti(hc
, bch
->slot
, ISDN_P_NONE
, -1, 0, -1, 0);
3465 spin_unlock_irqrestore(&hc
->lock
, flags
);
3469 handle_bmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3471 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3472 struct hfc_multi
*hc
= bch
->hw
;
3474 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3475 unsigned long flags
;
3481 spin_lock_irqsave(&hc
->lock
, flags
);
3482 ret
= bchannel_senddata(bch
, skb
);
3483 if (ret
> 0) { /* direct TX */
3484 hfcmulti_tx(hc
, bch
->slot
);
3487 HFC_outb_nodebug(hc
, R_FIFO
, 0);
3488 HFC_wait_nodebug(hc
);
3490 spin_unlock_irqrestore(&hc
->lock
, flags
);
3492 case PH_ACTIVATE_REQ
:
3493 if (debug
& DEBUG_HFCMULTI_MSG
)
3494 printk(KERN_DEBUG
"%s: PH_ACTIVATE ch %d (0..32)\n",
3495 __func__
, bch
->slot
);
3496 spin_lock_irqsave(&hc
->lock
, flags
);
3497 /* activate B-channel if not already activated */
3498 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
3499 hc
->chan
[bch
->slot
].txpending
= 0;
3500 ret
= mode_hfcmulti(hc
, bch
->slot
,
3502 hc
->chan
[bch
->slot
].slot_tx
,
3503 hc
->chan
[bch
->slot
].bank_tx
,
3504 hc
->chan
[bch
->slot
].slot_rx
,
3505 hc
->chan
[bch
->slot
].bank_rx
);
3507 if (ch
->protocol
== ISDN_P_B_RAW
&& !hc
->dtmf
3508 && test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
3511 if (debug
& DEBUG_HFCMULTI_DTMF
)
3513 "%s: start dtmf decoder\n",
3515 HFC_outb(hc
, R_DTMF
, hc
->hw
.r_dtmf
|
3521 spin_unlock_irqrestore(&hc
->lock
, flags
);
3523 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3526 case PH_CONTROL_REQ
:
3527 spin_lock_irqsave(&hc
->lock
, flags
);
3529 case HFC_SPL_LOOP_ON
: /* set sample loop */
3530 if (debug
& DEBUG_HFCMULTI_MSG
)
3532 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3533 __func__
, skb
->len
);
3536 case HFC_SPL_LOOP_OFF
: /* set silence */
3537 if (debug
& DEBUG_HFCMULTI_MSG
)
3538 printk(KERN_DEBUG
"%s: HFC_SPL_LOOP_OFF\n",
3544 "%s: unknown PH_CONTROL_REQ info %x\n",
3548 spin_unlock_irqrestore(&hc
->lock
, flags
);
3550 case PH_DEACTIVATE_REQ
:
3551 deactivate_bchannel(bch
); /* locked there */
3552 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3563 * bchannel control function
3566 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
3569 struct dsp_features
*features
=
3570 (struct dsp_features
*)(*((u_long
*)&cq
->p1
));
3571 struct hfc_multi
*hc
= bch
->hw
;
3579 case MISDN_CTRL_GETOP
:
3580 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3581 cq
->op
|= MISDN_CTRL_HFC_OP
| MISDN_CTRL_HW_FEATURES_OP
;
3583 case MISDN_CTRL_RX_OFF
: /* turn off / on rx stream */
3584 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3585 hc
->chan
[bch
->slot
].rx_off
= !!cq
->p1
;
3586 if (!hc
->chan
[bch
->slot
].rx_off
) {
3587 /* reset fifo on rx on */
3588 HFC_outb_nodebug(hc
, R_FIFO
, (bch
->slot
<< 1) | 1);
3589 HFC_wait_nodebug(hc
);
3590 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
3591 HFC_wait_nodebug(hc
);
3593 if (debug
& DEBUG_HFCMULTI_MSG
)
3594 printk(KERN_DEBUG
"%s: RX_OFF request (nr=%d off=%d)\n",
3595 __func__
, bch
->nr
, hc
->chan
[bch
->slot
].rx_off
);
3597 case MISDN_CTRL_FILL_EMPTY
:
3598 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3599 hc
->silence
= bch
->fill
[0];
3600 memset(hc
->silence_data
, hc
->silence
, sizeof(hc
->silence_data
));
3602 case MISDN_CTRL_HW_FEATURES
: /* fill features structure */
3603 if (debug
& DEBUG_HFCMULTI_MSG
)
3604 printk(KERN_DEBUG
"%s: HW_FEATURE request\n",
3606 /* create confirm */
3607 features
->hfc_id
= hc
->id
;
3608 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
))
3609 features
->hfc_dtmf
= 1;
3610 if (test_bit(HFC_CHIP_CONF
, &hc
->chip
))
3611 features
->hfc_conf
= 1;
3612 features
->hfc_loops
= 0;
3613 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
3614 features
->hfc_echocanhw
= 1;
3616 features
->pcm_id
= hc
->pcm
;
3617 features
->pcm_slots
= hc
->slots
;
3618 features
->pcm_banks
= 2;
3621 case MISDN_CTRL_HFC_PCM_CONN
: /* connect to pcm timeslot (0..N) */
3622 slot_tx
= cq
->p1
& 0xff;
3623 bank_tx
= cq
->p1
>> 8;
3624 slot_rx
= cq
->p2
& 0xff;
3625 bank_rx
= cq
->p2
>> 8;
3626 if (debug
& DEBUG_HFCMULTI_MSG
)
3628 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3629 "slot %d bank %d (RX)\n",
3630 __func__
, slot_tx
, bank_tx
,
3632 if (slot_tx
< hc
->slots
&& bank_tx
<= 2 &&
3633 slot_rx
< hc
->slots
&& bank_rx
<= 2)
3634 hfcmulti_pcm(hc
, bch
->slot
,
3635 slot_tx
, bank_tx
, slot_rx
, bank_rx
);
3638 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3639 "slot %d bank %d (RX) out of range\n",
3640 __func__
, slot_tx
, bank_tx
,
3645 case MISDN_CTRL_HFC_PCM_DISC
: /* release interface from pcm timeslot */
3646 if (debug
& DEBUG_HFCMULTI_MSG
)
3647 printk(KERN_DEBUG
"%s: HFC_PCM_DISC\n",
3649 hfcmulti_pcm(hc
, bch
->slot
, -1, 0, -1, 0);
3651 case MISDN_CTRL_HFC_CONF_JOIN
: /* join conference (0..7) */
3652 num
= cq
->p1
& 0xff;
3653 if (debug
& DEBUG_HFCMULTI_MSG
)
3654 printk(KERN_DEBUG
"%s: HFC_CONF_JOIN conf %d\n",
3657 hfcmulti_conf(hc
, bch
->slot
, num
);
3660 "%s: HW_CONF_JOIN conf %d out of range\n",
3665 case MISDN_CTRL_HFC_CONF_SPLIT
: /* split conference */
3666 if (debug
& DEBUG_HFCMULTI_MSG
)
3667 printk(KERN_DEBUG
"%s: HFC_CONF_SPLIT\n", __func__
);
3668 hfcmulti_conf(hc
, bch
->slot
, -1);
3670 case MISDN_CTRL_HFC_ECHOCAN_ON
:
3671 if (debug
& DEBUG_HFCMULTI_MSG
)
3672 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_ON\n", __func__
);
3673 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3674 vpm_echocan_on(hc
, bch
->slot
, cq
->p1
);
3679 case MISDN_CTRL_HFC_ECHOCAN_OFF
:
3680 if (debug
& DEBUG_HFCMULTI_MSG
)
3681 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_OFF\n",
3683 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3684 vpm_echocan_off(hc
, bch
->slot
);
3689 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3696 hfcm_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
3698 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3699 struct hfc_multi
*hc
= bch
->hw
;
3703 if (bch
->debug
& DEBUG_HW
)
3704 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
3705 __func__
, cmd
, arg
);
3708 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
3709 deactivate_bchannel(bch
); /* locked there */
3710 ch
->protocol
= ISDN_P_NONE
;
3712 module_put(THIS_MODULE
);
3715 case CONTROL_CHANNEL
:
3716 spin_lock_irqsave(&hc
->lock
, flags
);
3717 err
= channel_bctrl(bch
, arg
);
3718 spin_unlock_irqrestore(&hc
->lock
, flags
);
3721 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
3728 * handle D-channel events
3730 * handle state change event
3733 ph_state_change(struct dchannel
*dch
)
3735 struct hfc_multi
*hc
;
3739 printk(KERN_WARNING
"%s: ERROR given dch is NULL\n", __func__
);
3745 if (hc
->ctype
== HFC_TYPE_E1
) {
3746 if (dch
->dev
.D
.protocol
== ISDN_P_TE_E1
) {
3747 if (debug
& DEBUG_HFCMULTI_STATE
)
3749 "%s: E1 TE (id=%d) newstate %x\n",
3750 __func__
, hc
->id
, dch
->state
);
3752 if (debug
& DEBUG_HFCMULTI_STATE
)
3754 "%s: E1 NT (id=%d) newstate %x\n",
3755 __func__
, hc
->id
, dch
->state
);
3757 switch (dch
->state
) {
3759 if (hc
->e1_state
!= 1) {
3760 for (i
= 1; i
<= 31; i
++) {
3761 /* reset fifos on e1 activation */
3762 HFC_outb_nodebug(hc
, R_FIFO
,
3764 HFC_wait_nodebug(hc
);
3765 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
,
3767 HFC_wait_nodebug(hc
);
3770 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3771 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3772 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3776 if (hc
->e1_state
!= 1)
3778 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3779 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3780 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3782 hc
->e1_state
= dch
->state
;
3784 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
3785 if (debug
& DEBUG_HFCMULTI_STATE
)
3787 "%s: S/T TE newstate %x\n",
3788 __func__
, dch
->state
);
3789 switch (dch
->state
) {
3791 l1_event(dch
->l1
, HW_RESET_IND
);
3794 l1_event(dch
->l1
, HW_DEACT_IND
);
3798 l1_event(dch
->l1
, ANYSIGNAL
);
3801 l1_event(dch
->l1
, INFO2
);
3804 l1_event(dch
->l1
, INFO4_P8
);
3808 if (debug
& DEBUG_HFCMULTI_STATE
)
3809 printk(KERN_DEBUG
"%s: S/T NT newstate %x\n",
3810 __func__
, dch
->state
);
3811 switch (dch
->state
) {
3813 if (hc
->chan
[ch
].nt_timer
== 0) {
3814 hc
->chan
[ch
].nt_timer
= -1;
3815 HFC_outb(hc
, R_ST_SEL
,
3817 /* undocumented: delay after R_ST_SEL */
3819 HFC_outb(hc
, A_ST_WR_STATE
, 4 |
3820 V_ST_LD_STA
); /* G4 */
3821 udelay(6); /* wait at least 5,21us */
3822 HFC_outb(hc
, A_ST_WR_STATE
, 4);
3825 /* one extra count for the next event */
3826 hc
->chan
[ch
].nt_timer
=
3827 nt_t1_count
[poll_timer
] + 1;
3828 HFC_outb(hc
, R_ST_SEL
,
3830 /* undocumented: delay after R_ST_SEL */
3832 /* allow G2 -> G3 transition */
3833 HFC_outb(hc
, A_ST_WR_STATE
, 2 |
3838 hc
->chan
[ch
].nt_timer
= -1;
3839 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3840 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3841 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3844 hc
->chan
[ch
].nt_timer
= -1;
3847 hc
->chan
[ch
].nt_timer
= -1;
3848 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3849 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3850 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3858 * called for card mode init message
3862 hfcmulti_initmode(struct dchannel
*dch
)
3864 struct hfc_multi
*hc
= dch
->hw
;
3865 u_char a_st_wr_state
, r_e1_wr_sta
;
3868 if (debug
& DEBUG_HFCMULTI_INIT
)
3869 printk(KERN_DEBUG
"%s: entered\n", __func__
);
3872 pt
= hc
->chan
[i
].port
;
3873 if (hc
->ctype
== HFC_TYPE_E1
) {
3875 hc
->chan
[hc
->dnum
[pt
]].slot_tx
= -1;
3876 hc
->chan
[hc
->dnum
[pt
]].slot_rx
= -1;
3877 hc
->chan
[hc
->dnum
[pt
]].conf
= -1;
3879 mode_hfcmulti(hc
, dch
->slot
, dch
->dev
.D
.protocol
,
3881 dch
->timer
.function
= (void *) hfcmulti_dbusy_timer
;
3882 dch
->timer
.data
= (long) dch
;
3883 init_timer(&dch
->timer
);
3885 for (i
= 1; i
<= 31; i
++) {
3886 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
3888 hc
->chan
[i
].slot_tx
= -1;
3889 hc
->chan
[i
].slot_rx
= -1;
3890 hc
->chan
[i
].conf
= -1;
3891 mode_hfcmulti(hc
, i
, ISDN_P_NONE
, -1, 0, -1, 0);
3894 if (hc
->ctype
== HFC_TYPE_E1
&& pt
== 0) {
3896 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
3897 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3898 HFC_outb(hc
, R_LOS0
, 255); /* 2 ms */
3899 HFC_outb(hc
, R_LOS1
, 255); /* 512 ms */
3901 if (test_bit(HFC_CFG_OPTICAL
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3902 HFC_outb(hc
, R_RX0
, 0);
3903 hc
->hw
.r_tx0
= 0 | V_OUT_EN
;
3905 HFC_outb(hc
, R_RX0
, 1);
3906 hc
->hw
.r_tx0
= 1 | V_OUT_EN
;
3908 hc
->hw
.r_tx1
= V_ATX
| V_NTRI
;
3909 HFC_outb(hc
, R_TX0
, hc
->hw
.r_tx0
);
3910 HFC_outb(hc
, R_TX1
, hc
->hw
.r_tx1
);
3911 HFC_outb(hc
, R_TX_FR0
, 0x00);
3912 HFC_outb(hc
, R_TX_FR1
, 0xf8);
3914 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3915 HFC_outb(hc
, R_TX_FR2
, V_TX_MF
| V_TX_E
| V_NEG_E
);
3917 HFC_outb(hc
, R_RX_FR0
, V_AUTO_RESYNC
| V_AUTO_RECO
| 0);
3919 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3920 HFC_outb(hc
, R_RX_FR1
, V_RX_MF
| V_RX_MF_SYNC
);
3922 if (dch
->dev
.D
.protocol
== ISDN_P_NT_E1
) {
3923 if (debug
& DEBUG_HFCMULTI_INIT
)
3924 printk(KERN_DEBUG
"%s: E1 port is NT-mode\n",
3926 r_e1_wr_sta
= 0; /* G0 */
3927 hc
->e1_getclock
= 0;
3929 if (debug
& DEBUG_HFCMULTI_INIT
)
3930 printk(KERN_DEBUG
"%s: E1 port is TE-mode\n",
3932 r_e1_wr_sta
= 0; /* F0 */
3933 hc
->e1_getclock
= 1;
3935 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
3936 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
3938 HFC_outb(hc
, R_SYNC_OUT
, 0);
3939 if (test_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
))
3940 hc
->e1_getclock
= 1;
3941 if (test_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
))
3942 hc
->e1_getclock
= 0;
3943 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
3944 /* SLAVE (clock master) */
3945 if (debug
& DEBUG_HFCMULTI_INIT
)
3947 "%s: E1 port is clock master "
3948 "(clock from PCM)\n", __func__
);
3949 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
| V_PCM_SYNC
);
3951 if (hc
->e1_getclock
) {
3952 /* MASTER (clock slave) */
3953 if (debug
& DEBUG_HFCMULTI_INIT
)
3955 "%s: E1 port is clock slave "
3956 "(clock to PCM)\n", __func__
);
3957 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
3959 /* MASTER (clock master) */
3960 if (debug
& DEBUG_HFCMULTI_INIT
)
3961 printk(KERN_DEBUG
"%s: E1 port is "
3963 "(clock from QUARTZ)\n",
3965 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
|
3966 V_PCM_SYNC
| V_JATT_OFF
);
3967 HFC_outb(hc
, R_SYNC_OUT
, 0);
3970 HFC_outb(hc
, R_JATT_ATT
, 0x9c); /* undoc register */
3971 HFC_outb(hc
, R_PWM_MD
, V_PWM0_MD
);
3972 HFC_outb(hc
, R_PWM0
, 0x50);
3973 HFC_outb(hc
, R_PWM1
, 0xff);
3974 /* state machine setup */
3975 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
| V_E1_LD_STA
);
3976 udelay(6); /* wait at least 5,21us */
3977 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
);
3978 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3979 hc
->syncronized
= 0;
3980 plxsd_checksync(hc
, 0);
3983 if (hc
->ctype
!= HFC_TYPE_E1
) {
3985 hc
->chan
[i
].slot_tx
= -1;
3986 hc
->chan
[i
].slot_rx
= -1;
3987 hc
->chan
[i
].conf
= -1;
3988 mode_hfcmulti(hc
, i
, dch
->dev
.D
.protocol
, -1, 0, -1, 0);
3989 dch
->timer
.function
= (void *) hfcmulti_dbusy_timer
;
3990 dch
->timer
.data
= (long) dch
;
3991 init_timer(&dch
->timer
);
3992 hc
->chan
[i
- 2].slot_tx
= -1;
3993 hc
->chan
[i
- 2].slot_rx
= -1;
3994 hc
->chan
[i
- 2].conf
= -1;
3995 mode_hfcmulti(hc
, i
- 2, ISDN_P_NONE
, -1, 0, -1, 0);
3996 hc
->chan
[i
- 1].slot_tx
= -1;
3997 hc
->chan
[i
- 1].slot_rx
= -1;
3998 hc
->chan
[i
- 1].conf
= -1;
3999 mode_hfcmulti(hc
, i
- 1, ISDN_P_NONE
, -1, 0, -1, 0);
4000 /* select interface */
4001 HFC_outb(hc
, R_ST_SEL
, pt
);
4002 /* undocumented: delay after R_ST_SEL */
4004 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) {
4005 if (debug
& DEBUG_HFCMULTI_INIT
)
4007 "%s: ST port %d is NT-mode\n",
4010 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_nt
);
4011 a_st_wr_state
= 1; /* G1 */
4012 hc
->hw
.a_st_ctrl0
[pt
] = V_ST_MD
;
4014 if (debug
& DEBUG_HFCMULTI_INIT
)
4016 "%s: ST port %d is TE-mode\n",
4019 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_te
);
4020 a_st_wr_state
= 2; /* F2 */
4021 hc
->hw
.a_st_ctrl0
[pt
] = 0;
4023 if (!test_bit(HFC_CFG_NONCAP_TX
, &hc
->chan
[i
].cfg
))
4024 hc
->hw
.a_st_ctrl0
[pt
] |= V_TX_LI
;
4025 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4026 hc
->hw
.a_st_ctrl0
[pt
] |= 0x40 /* V_ST_PU_CTRL */;
4027 HFC_outb(hc
, 0x35 /* A_ST_CTRL3 */,
4028 0x7c << 1 /* V_ST_PULSE */);
4031 HFC_outb(hc
, A_ST_CTRL0
, hc
->hw
.a_st_ctrl0
[pt
]);
4032 /* disable E-channel */
4033 if ((dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) ||
4034 test_bit(HFC_CFG_DIS_ECHANNEL
, &hc
->chan
[i
].cfg
))
4035 HFC_outb(hc
, A_ST_CTRL1
, V_E_IGNO
);
4037 HFC_outb(hc
, A_ST_CTRL1
, 0);
4038 /* enable B-channel receive */
4039 HFC_outb(hc
, A_ST_CTRL2
, V_B1_RX_EN
| V_B2_RX_EN
);
4040 /* state machine setup */
4041 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
| V_ST_LD_STA
);
4042 udelay(6); /* wait at least 5,21us */
4043 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
);
4044 hc
->hw
.r_sci_msk
|= 1 << pt
;
4045 /* state machine interrupts */
4046 HFC_outb(hc
, R_SCI_MSK
, hc
->hw
.r_sci_msk
);
4047 /* unset sync on port */
4048 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4050 ~(1 << hc
->chan
[dch
->slot
].port
);
4051 plxsd_checksync(hc
, 0);
4054 if (debug
& DEBUG_HFCMULTI_INIT
)
4055 printk("%s: done\n", __func__
);
4060 open_dchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4061 struct channel_req
*rq
)
4066 if (debug
& DEBUG_HW_OPEN
)
4067 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
4068 dch
->dev
.id
, __builtin_return_address(0));
4069 if (rq
->protocol
== ISDN_P_NONE
)
4071 if ((dch
->dev
.D
.protocol
!= ISDN_P_NONE
) &&
4072 (dch
->dev
.D
.protocol
!= rq
->protocol
)) {
4073 if (debug
& DEBUG_HFCMULTI_MODE
)
4074 printk(KERN_DEBUG
"%s: change protocol %x to %x\n",
4075 __func__
, dch
->dev
.D
.protocol
, rq
->protocol
);
4077 if ((dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) &&
4078 (rq
->protocol
!= ISDN_P_TE_S0
))
4079 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4080 if (dch
->dev
.D
.protocol
!= rq
->protocol
) {
4081 if (rq
->protocol
== ISDN_P_TE_S0
) {
4082 err
= create_l1(dch
, hfcm_l1callback
);
4086 dch
->dev
.D
.protocol
= rq
->protocol
;
4087 spin_lock_irqsave(&hc
->lock
, flags
);
4088 hfcmulti_initmode(dch
);
4089 spin_unlock_irqrestore(&hc
->lock
, flags
);
4091 if (test_bit(FLG_ACTIVE
, &dch
->Flags
))
4092 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
4093 0, NULL
, GFP_KERNEL
);
4094 rq
->ch
= &dch
->dev
.D
;
4095 if (!try_module_get(THIS_MODULE
))
4096 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4101 open_bchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4102 struct channel_req
*rq
)
4104 struct bchannel
*bch
;
4107 if (!test_channelmap(rq
->adr
.channel
, dch
->dev
.channelmap
))
4109 if (rq
->protocol
== ISDN_P_NONE
)
4111 if (hc
->ctype
== HFC_TYPE_E1
)
4112 ch
= rq
->adr
.channel
;
4114 ch
= (rq
->adr
.channel
- 1) + (dch
->slot
- 2);
4115 bch
= hc
->chan
[ch
].bch
;
4117 printk(KERN_ERR
"%s:internal error ch %d has no bch\n",
4121 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
4122 return -EBUSY
; /* b-channel can be only open once */
4123 bch
->ch
.protocol
= rq
->protocol
;
4124 hc
->chan
[ch
].rx_off
= 0;
4126 if (!try_module_get(THIS_MODULE
))
4127 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4132 * device control function
4135 channel_dctrl(struct dchannel
*dch
, struct mISDN_ctrl_req
*cq
)
4137 struct hfc_multi
*hc
= dch
->hw
;
4139 int wd_mode
, wd_cnt
;
4142 case MISDN_CTRL_GETOP
:
4143 cq
->op
= MISDN_CTRL_HFC_OP
| MISDN_CTRL_L1_TIMER3
;
4145 case MISDN_CTRL_HFC_WD_INIT
: /* init the watchdog */
4146 wd_cnt
= cq
->p1
& 0xf;
4147 wd_mode
= !!(cq
->p1
>> 4);
4148 if (debug
& DEBUG_HFCMULTI_MSG
)
4149 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4150 ", counter 0x%x\n", __func__
,
4151 wd_mode
? "AUTO" : "MANUAL", wd_cnt
);
4152 /* set the watchdog timer */
4153 HFC_outb(hc
, R_TI_WD
, poll_timer
| (wd_cnt
<< 4));
4154 hc
->hw
.r_bert_wd_md
= (wd_mode
? V_AUTO_WD_RES
: 0);
4155 if (hc
->ctype
== HFC_TYPE_XHFC
)
4156 hc
->hw
.r_bert_wd_md
|= 0x40 /* V_WD_EN */;
4157 /* init the watchdog register and reset the counter */
4158 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4159 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4160 /* enable the watchdog output for Speech-Design */
4161 HFC_outb(hc
, R_GPIO_SEL
, V_GPIO_SEL7
);
4162 HFC_outb(hc
, R_GPIO_EN1
, V_GPIO_EN15
);
4163 HFC_outb(hc
, R_GPIO_OUT1
, 0);
4164 HFC_outb(hc
, R_GPIO_OUT1
, V_GPIO_OUT15
);
4167 case MISDN_CTRL_HFC_WD_RESET
: /* reset the watchdog counter */
4168 if (debug
& DEBUG_HFCMULTI_MSG
)
4169 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_RESET\n",
4171 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4173 case MISDN_CTRL_L1_TIMER3
:
4174 ret
= l1_event(dch
->l1
, HW_TIMER3_VALUE
| (cq
->p1
& 0xff));
4177 printk(KERN_WARNING
"%s: unknown Op %x\n",
4186 hfcm_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
4188 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
4189 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
4190 struct hfc_multi
*hc
= dch
->hw
;
4191 struct channel_req
*rq
;
4195 if (dch
->debug
& DEBUG_HW
)
4196 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
4197 __func__
, cmd
, arg
);
4201 switch (rq
->protocol
) {
4204 if (hc
->ctype
== HFC_TYPE_E1
) {
4208 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4212 if (hc
->ctype
!= HFC_TYPE_E1
) {
4216 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4219 spin_lock_irqsave(&hc
->lock
, flags
);
4220 err
= open_bchannel(hc
, dch
, rq
);
4221 spin_unlock_irqrestore(&hc
->lock
, flags
);
4225 if (debug
& DEBUG_HW_OPEN
)
4226 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
4227 __func__
, dch
->dev
.id
,
4228 __builtin_return_address(0));
4229 module_put(THIS_MODULE
);
4231 case CONTROL_CHANNEL
:
4232 spin_lock_irqsave(&hc
->lock
, flags
);
4233 err
= channel_dctrl(dch
, arg
);
4234 spin_unlock_irqrestore(&hc
->lock
, flags
);
4237 if (dch
->debug
& DEBUG_HW
)
4238 printk(KERN_DEBUG
"%s: unknown command %x\n",
4246 clockctl(void *priv
, int enable
)
4248 struct hfc_multi
*hc
= priv
;
4250 hc
->iclock_on
= enable
;
4255 * initialize the card
4259 * start timer irq, wait some time and check if we have interrupts.
4260 * if not, reset chip and try again.
4263 init_card(struct hfc_multi
*hc
)
4267 void __iomem
*plx_acc
;
4270 if (debug
& DEBUG_HFCMULTI_INIT
)
4271 printk(KERN_DEBUG
"%s: entered\n", __func__
);
4273 spin_lock_irqsave(&hc
->lock
, flags
);
4274 /* set interrupts but leave global interrupt disabled */
4275 hc
->hw
.r_irq_ctrl
= V_FIFO_IRQ
;
4277 spin_unlock_irqrestore(&hc
->lock
, flags
);
4279 if (request_irq(hc
->irq
, hfcmulti_interrupt
, IRQF_SHARED
,
4281 printk(KERN_WARNING
"mISDN: Could not get interrupt %d.\n",
4287 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4288 spin_lock_irqsave(&plx_lock
, plx_flags
);
4289 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4290 writew((PLX_INTCSR_PCIINT_ENABLE
| PLX_INTCSR_LINTI1_ENABLE
),
4291 plx_acc
); /* enable PCI & LINT1 irq */
4292 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4295 if (debug
& DEBUG_HFCMULTI_INIT
)
4296 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4297 __func__
, hc
->irq
, hc
->irqcnt
);
4298 err
= init_chip(hc
);
4302 * Finally enable IRQ output
4303 * this is only allowed, if an IRQ routine is already
4304 * established for this HFC, so don't do that earlier
4306 spin_lock_irqsave(&hc
->lock
, flags
);
4308 spin_unlock_irqrestore(&hc
->lock
, flags
);
4309 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4310 set_current_state(TASK_UNINTERRUPTIBLE
);
4311 schedule_timeout((100 * HZ
) / 1000); /* Timeout 100ms */
4312 /* turn IRQ off until chip is completely initialized */
4313 spin_lock_irqsave(&hc
->lock
, flags
);
4315 spin_unlock_irqrestore(&hc
->lock
, flags
);
4316 if (debug
& DEBUG_HFCMULTI_INIT
)
4317 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4318 __func__
, hc
->irq
, hc
->irqcnt
);
4320 if (debug
& DEBUG_HFCMULTI_INIT
)
4321 printk(KERN_DEBUG
"%s: done\n", __func__
);
4325 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
4326 printk(KERN_INFO
"ignoring missing interrupts\n");
4330 printk(KERN_ERR
"HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4336 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4337 spin_lock_irqsave(&plx_lock
, plx_flags
);
4338 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4339 writew(0x00, plx_acc
); /*disable IRQs*/
4340 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4343 if (debug
& DEBUG_HFCMULTI_INIT
)
4344 printk(KERN_DEBUG
"%s: free irq %d\n", __func__
, hc
->irq
);
4346 free_irq(hc
->irq
, hc
);
4350 if (debug
& DEBUG_HFCMULTI_INIT
)
4351 printk(KERN_DEBUG
"%s: done (err=%d)\n", __func__
, err
);
4356 * find pci device and set it up
4360 setup_pci(struct hfc_multi
*hc
, struct pci_dev
*pdev
,
4361 const struct pci_device_id
*ent
)
4363 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4366 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4367 m
->vendor_name
, m
->card_name
, m
->clock2
? "double" : "normal");
4371 test_and_set_bit(HFC_CHIP_CLOCK2
, &hc
->chip
);
4373 if (ent
->device
== 0xB410) {
4374 test_and_set_bit(HFC_CHIP_B410P
, &hc
->chip
);
4375 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4376 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4380 if (hc
->pci_dev
->irq
<= 0) {
4381 printk(KERN_WARNING
"HFC-multi: No IRQ for PCI card found.\n");
4384 if (pci_enable_device(hc
->pci_dev
)) {
4385 printk(KERN_WARNING
"HFC-multi: Error enabling PCI card.\n");
4389 hc
->ledstate
= 0xAFFEAFFE;
4390 hc
->opticalsupport
= m
->opticalsupport
;
4393 hc
->pci_membase
= NULL
;
4394 hc
->plx_membase
= NULL
;
4396 /* set memory access methods */
4397 if (m
->io_mode
) /* use mode from card config */
4398 hc
->io_mode
= m
->io_mode
;
4399 switch (hc
->io_mode
) {
4400 case HFC_IO_MODE_PLXSD
:
4401 test_and_set_bit(HFC_CHIP_PLXSD
, &hc
->chip
);
4402 hc
->slots
= 128; /* required */
4403 hc
->HFC_outb
= HFC_outb_pcimem
;
4404 hc
->HFC_inb
= HFC_inb_pcimem
;
4405 hc
->HFC_inw
= HFC_inw_pcimem
;
4406 hc
->HFC_wait
= HFC_wait_pcimem
;
4407 hc
->read_fifo
= read_fifo_pcimem
;
4408 hc
->write_fifo
= write_fifo_pcimem
;
4409 hc
->plx_origmembase
= hc
->pci_dev
->resource
[0].start
;
4410 /* MEMBASE 1 is PLX PCI Bridge */
4412 if (!hc
->plx_origmembase
) {
4414 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4415 pci_disable_device(hc
->pci_dev
);
4419 hc
->plx_membase
= ioremap(hc
->plx_origmembase
, 0x80);
4420 if (!hc
->plx_membase
) {
4422 "HFC-multi: failed to remap plx address space. "
4423 "(internal error)\n");
4424 pci_disable_device(hc
->pci_dev
);
4428 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4429 (u_long
)hc
->plx_membase
, hc
->plx_origmembase
);
4431 hc
->pci_origmembase
= hc
->pci_dev
->resource
[2].start
;
4432 /* MEMBASE 1 is PLX PCI Bridge */
4433 if (!hc
->pci_origmembase
) {
4435 "HFC-multi: No IO-Memory for PCI card found\n");
4436 pci_disable_device(hc
->pci_dev
);
4440 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 0x400);
4441 if (!hc
->pci_membase
) {
4442 printk(KERN_WARNING
"HFC-multi: failed to remap io "
4443 "address space. (internal error)\n");
4444 pci_disable_device(hc
->pci_dev
);
4449 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4451 hc
->id
, (u_long
)hc
->pci_membase
, hc
->pci_origmembase
,
4452 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4453 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4455 case HFC_IO_MODE_PCIMEM
:
4456 hc
->HFC_outb
= HFC_outb_pcimem
;
4457 hc
->HFC_inb
= HFC_inb_pcimem
;
4458 hc
->HFC_inw
= HFC_inw_pcimem
;
4459 hc
->HFC_wait
= HFC_wait_pcimem
;
4460 hc
->read_fifo
= read_fifo_pcimem
;
4461 hc
->write_fifo
= write_fifo_pcimem
;
4462 hc
->pci_origmembase
= hc
->pci_dev
->resource
[1].start
;
4463 if (!hc
->pci_origmembase
) {
4465 "HFC-multi: No IO-Memory for PCI card found\n");
4466 pci_disable_device(hc
->pci_dev
);
4470 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 256);
4471 if (!hc
->pci_membase
) {
4473 "HFC-multi: failed to remap io address space. "
4474 "(internal error)\n");
4475 pci_disable_device(hc
->pci_dev
);
4478 printk(KERN_INFO
"card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4479 "%d HZ %d leds-type %d\n", hc
->id
, (u_long
)hc
->pci_membase
,
4480 hc
->pci_origmembase
, hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4481 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4483 case HFC_IO_MODE_REGIO
:
4484 hc
->HFC_outb
= HFC_outb_regio
;
4485 hc
->HFC_inb
= HFC_inb_regio
;
4486 hc
->HFC_inw
= HFC_inw_regio
;
4487 hc
->HFC_wait
= HFC_wait_regio
;
4488 hc
->read_fifo
= read_fifo_regio
;
4489 hc
->write_fifo
= write_fifo_regio
;
4490 hc
->pci_iobase
= (u_int
) hc
->pci_dev
->resource
[0].start
;
4491 if (!hc
->pci_iobase
) {
4493 "HFC-multi: No IO for PCI card found\n");
4494 pci_disable_device(hc
->pci_dev
);
4498 if (!request_region(hc
->pci_iobase
, 8, "hfcmulti")) {
4499 printk(KERN_WARNING
"HFC-multi: failed to request "
4500 "address space at 0x%08lx (internal error)\n",
4502 pci_disable_device(hc
->pci_dev
);
4507 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4508 m
->vendor_name
, m
->card_name
, (u_int
) hc
->pci_iobase
,
4509 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4510 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_REGIO
);
4513 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4514 pci_disable_device(hc
->pci_dev
);
4518 pci_set_drvdata(hc
->pci_dev
, hc
);
4520 /* At this point the needed PCI config is done */
4521 /* fifos are still not enabled */
4531 release_port(struct hfc_multi
*hc
, struct dchannel
*dch
)
4535 struct bchannel
*pb
;
4538 pt
= hc
->chan
[ci
].port
;
4540 if (debug
& DEBUG_HFCMULTI_INIT
)
4541 printk(KERN_DEBUG
"%s: entered for port %d\n",
4544 if (pt
>= hc
->ports
) {
4545 printk(KERN_WARNING
"%s: ERROR port out of range (%d).\n",
4550 if (debug
& DEBUG_HFCMULTI_INIT
)
4551 printk(KERN_DEBUG
"%s: releasing port=%d\n",
4554 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
4555 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4557 hc
->chan
[ci
].dch
= NULL
;
4559 if (hc
->created
[pt
]) {
4560 hc
->created
[pt
] = 0;
4561 mISDN_unregister_device(&dch
->dev
);
4564 spin_lock_irqsave(&hc
->lock
, flags
);
4566 if (dch
->timer
.function
) {
4567 del_timer(&dch
->timer
);
4568 dch
->timer
.function
= NULL
;
4571 if (hc
->ctype
== HFC_TYPE_E1
) { /* E1 */
4573 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4574 hc
->syncronized
= 0;
4575 plxsd_checksync(hc
, 1);
4578 for (i
= 0; i
<= 31; i
++) {
4579 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
4581 if (hc
->chan
[i
].bch
) {
4582 if (debug
& DEBUG_HFCMULTI_INIT
)
4584 "%s: free port %d channel %d\n",
4585 __func__
, hc
->chan
[i
].port
+ 1, i
);
4586 pb
= hc
->chan
[i
].bch
;
4587 hc
->chan
[i
].bch
= NULL
;
4588 spin_unlock_irqrestore(&hc
->lock
, flags
);
4589 mISDN_freebchannel(pb
);
4591 kfree(hc
->chan
[i
].coeff
);
4592 spin_lock_irqsave(&hc
->lock
, flags
);
4597 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4599 ~(1 << hc
->chan
[ci
].port
);
4600 plxsd_checksync(hc
, 1);
4603 if (hc
->chan
[ci
- 2].bch
) {
4604 if (debug
& DEBUG_HFCMULTI_INIT
)
4606 "%s: free port %d channel %d\n",
4607 __func__
, hc
->chan
[ci
- 2].port
+ 1,
4609 pb
= hc
->chan
[ci
- 2].bch
;
4610 hc
->chan
[ci
- 2].bch
= NULL
;
4611 spin_unlock_irqrestore(&hc
->lock
, flags
);
4612 mISDN_freebchannel(pb
);
4614 kfree(hc
->chan
[ci
- 2].coeff
);
4615 spin_lock_irqsave(&hc
->lock
, flags
);
4617 if (hc
->chan
[ci
- 1].bch
) {
4618 if (debug
& DEBUG_HFCMULTI_INIT
)
4620 "%s: free port %d channel %d\n",
4621 __func__
, hc
->chan
[ci
- 1].port
+ 1,
4623 pb
= hc
->chan
[ci
- 1].bch
;
4624 hc
->chan
[ci
- 1].bch
= NULL
;
4625 spin_unlock_irqrestore(&hc
->lock
, flags
);
4626 mISDN_freebchannel(pb
);
4628 kfree(hc
->chan
[ci
- 1].coeff
);
4629 spin_lock_irqsave(&hc
->lock
, flags
);
4633 spin_unlock_irqrestore(&hc
->lock
, flags
);
4635 if (debug
& DEBUG_HFCMULTI_INIT
)
4636 printk(KERN_DEBUG
"%s: free port %d channel D(%d)\n", __func__
,
4638 mISDN_freedchannel(dch
);
4641 if (debug
& DEBUG_HFCMULTI_INIT
)
4642 printk(KERN_DEBUG
"%s: done!\n", __func__
);
4646 release_card(struct hfc_multi
*hc
)
4651 if (debug
& DEBUG_HFCMULTI_INIT
)
4652 printk(KERN_DEBUG
"%s: release card (%d) entered\n",
4655 /* unregister clock source */
4657 mISDN_unregister_clock(hc
->iclock
);
4659 /* disable and free irq */
4660 spin_lock_irqsave(&hc
->lock
, flags
);
4662 spin_unlock_irqrestore(&hc
->lock
, flags
);
4665 if (debug
& DEBUG_HFCMULTI_INIT
)
4666 printk(KERN_DEBUG
"%s: free irq %d (hc=%p)\n",
4667 __func__
, hc
->irq
, hc
);
4668 free_irq(hc
->irq
, hc
);
4673 /* disable D-channels & B-channels */
4674 if (debug
& DEBUG_HFCMULTI_INIT
)
4675 printk(KERN_DEBUG
"%s: disable all channels (d and b)\n",
4677 for (ch
= 0; ch
<= 31; ch
++) {
4678 if (hc
->chan
[ch
].dch
)
4679 release_port(hc
, hc
->chan
[ch
].dch
);
4686 /* release hardware */
4687 release_io_hfcmulti(hc
);
4689 if (debug
& DEBUG_HFCMULTI_INIT
)
4690 printk(KERN_DEBUG
"%s: remove instance from list\n",
4692 list_del(&hc
->list
);
4694 if (debug
& DEBUG_HFCMULTI_INIT
)
4695 printk(KERN_DEBUG
"%s: delete instance\n", __func__
);
4696 if (hc
== syncmaster
)
4699 if (debug
& DEBUG_HFCMULTI_INIT
)
4700 printk(KERN_DEBUG
"%s: card successfully removed\n",
4705 init_e1_port_hw(struct hfc_multi
*hc
, struct hm_map
*m
)
4707 /* set optical line type */
4708 if (port
[Port_cnt
] & 0x001) {
4709 if (!m
->opticalsupport
) {
4711 "This board has no optical "
4714 if (debug
& DEBUG_HFCMULTI_INIT
)
4716 "%s: PORT set optical "
4717 "interfacs: card(%d) "
4721 test_and_set_bit(HFC_CFG_OPTICAL
,
4722 &hc
->chan
[hc
->dnum
[0]].cfg
);
4725 /* set LOS report */
4726 if (port
[Port_cnt
] & 0x004) {
4727 if (debug
& DEBUG_HFCMULTI_INIT
)
4728 printk(KERN_DEBUG
"%s: PORT set "
4729 "LOS report: card(%d) port(%d)\n",
4730 __func__
, HFC_cnt
+ 1, 1);
4731 test_and_set_bit(HFC_CFG_REPORT_LOS
,
4732 &hc
->chan
[hc
->dnum
[0]].cfg
);
4734 /* set AIS report */
4735 if (port
[Port_cnt
] & 0x008) {
4736 if (debug
& DEBUG_HFCMULTI_INIT
)
4737 printk(KERN_DEBUG
"%s: PORT set "
4738 "AIS report: card(%d) port(%d)\n",
4739 __func__
, HFC_cnt
+ 1, 1);
4740 test_and_set_bit(HFC_CFG_REPORT_AIS
,
4741 &hc
->chan
[hc
->dnum
[0]].cfg
);
4743 /* set SLIP report */
4744 if (port
[Port_cnt
] & 0x010) {
4745 if (debug
& DEBUG_HFCMULTI_INIT
)
4747 "%s: PORT set SLIP report: "
4748 "card(%d) port(%d)\n",
4749 __func__
, HFC_cnt
+ 1, 1);
4750 test_and_set_bit(HFC_CFG_REPORT_SLIP
,
4751 &hc
->chan
[hc
->dnum
[0]].cfg
);
4753 /* set RDI report */
4754 if (port
[Port_cnt
] & 0x020) {
4755 if (debug
& DEBUG_HFCMULTI_INIT
)
4757 "%s: PORT set RDI report: "
4758 "card(%d) port(%d)\n",
4759 __func__
, HFC_cnt
+ 1, 1);
4760 test_and_set_bit(HFC_CFG_REPORT_RDI
,
4761 &hc
->chan
[hc
->dnum
[0]].cfg
);
4763 /* set CRC-4 Mode */
4764 if (!(port
[Port_cnt
] & 0x100)) {
4765 if (debug
& DEBUG_HFCMULTI_INIT
)
4766 printk(KERN_DEBUG
"%s: PORT turn on CRC4 report:"
4767 " card(%d) port(%d)\n",
4768 __func__
, HFC_cnt
+ 1, 1);
4769 test_and_set_bit(HFC_CFG_CRC4
,
4770 &hc
->chan
[hc
->dnum
[0]].cfg
);
4772 if (debug
& DEBUG_HFCMULTI_INIT
)
4773 printk(KERN_DEBUG
"%s: PORT turn off CRC4"
4774 " report: card(%d) port(%d)\n",
4775 __func__
, HFC_cnt
+ 1, 1);
4777 /* set forced clock */
4778 if (port
[Port_cnt
] & 0x0200) {
4779 if (debug
& DEBUG_HFCMULTI_INIT
)
4780 printk(KERN_DEBUG
"%s: PORT force getting clock from "
4781 "E1: card(%d) port(%d)\n",
4782 __func__
, HFC_cnt
+ 1, 1);
4783 test_and_set_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
);
4785 if (port
[Port_cnt
] & 0x0400) {
4786 if (debug
& DEBUG_HFCMULTI_INIT
)
4787 printk(KERN_DEBUG
"%s: PORT force putting clock to "
4788 "E1: card(%d) port(%d)\n",
4789 __func__
, HFC_cnt
+ 1, 1);
4790 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
);
4793 if (port
[Port_cnt
] & 0x0800) {
4794 if (debug
& DEBUG_HFCMULTI_INIT
)
4795 printk(KERN_DEBUG
"%s: PORT disable JATT PLL on "
4796 "E1: card(%d) port(%d)\n",
4797 __func__
, HFC_cnt
+ 1, 1);
4798 test_and_set_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
);
4800 /* set elastic jitter buffer */
4801 if (port
[Port_cnt
] & 0x3000) {
4802 hc
->chan
[hc
->dnum
[0]].jitter
= (port
[Port_cnt
]>>12) & 0x3;
4803 if (debug
& DEBUG_HFCMULTI_INIT
)
4805 "%s: PORT set elastic "
4806 "buffer to %d: card(%d) port(%d)\n",
4807 __func__
, hc
->chan
[hc
->dnum
[0]].jitter
,
4810 hc
->chan
[hc
->dnum
[0]].jitter
= 2; /* default */
4814 init_e1_port(struct hfc_multi
*hc
, struct hm_map
*m
, int pt
)
4816 struct dchannel
*dch
;
4817 struct bchannel
*bch
;
4819 char name
[MISDN_MAX_IDLEN
];
4822 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4826 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4828 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_E1
) | (1 << ISDN_P_NT_E1
);
4829 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4830 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4831 dch
->dev
.D
.send
= handle_dmsg
;
4832 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4833 dch
->slot
= hc
->dnum
[pt
];
4834 hc
->chan
[hc
->dnum
[pt
]].dch
= dch
;
4835 hc
->chan
[hc
->dnum
[pt
]].port
= pt
;
4836 hc
->chan
[hc
->dnum
[pt
]].nt_timer
= -1;
4837 for (ch
= 1; ch
<= 31; ch
++) {
4838 if (!((1 << ch
) & hc
->bmask
[pt
])) /* skip unused channel */
4840 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4842 printk(KERN_ERR
"%s: no memory for bchannel\n",
4847 hc
->chan
[ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4848 if (!hc
->chan
[ch
].coeff
) {
4849 printk(KERN_ERR
"%s: no memory for coeffs\n",
4858 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4860 bch
->ch
.send
= handle_bmsg
;
4861 bch
->ch
.ctrl
= hfcm_bctrl
;
4863 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4864 hc
->chan
[ch
].bch
= bch
;
4865 hc
->chan
[ch
].port
= pt
;
4866 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4869 dch
->dev
.nrbchan
= bcount
;
4871 init_e1_port_hw(hc
, m
);
4873 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d-%d",
4876 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d", HFC_cnt
+ 1);
4877 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4880 hc
->created
[pt
] = 1;
4883 release_port(hc
, dch
);
4888 init_multi_port(struct hfc_multi
*hc
, int pt
)
4890 struct dchannel
*dch
;
4891 struct bchannel
*bch
;
4893 char name
[MISDN_MAX_IDLEN
];
4895 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4899 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4901 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
4902 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4903 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4904 dch
->dev
.D
.send
= handle_dmsg
;
4905 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4906 dch
->dev
.nrbchan
= 2;
4909 hc
->chan
[i
+ 2].dch
= dch
;
4910 hc
->chan
[i
+ 2].port
= pt
;
4911 hc
->chan
[i
+ 2].nt_timer
= -1;
4912 for (ch
= 0; ch
< dch
->dev
.nrbchan
; ch
++) {
4913 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4915 printk(KERN_ERR
"%s: no memory for bchannel\n",
4920 hc
->chan
[i
+ ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4921 if (!hc
->chan
[i
+ ch
].coeff
) {
4922 printk(KERN_ERR
"%s: no memory for coeffs\n",
4931 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4933 bch
->ch
.send
= handle_bmsg
;
4934 bch
->ch
.ctrl
= hfcm_bctrl
;
4935 bch
->ch
.nr
= ch
+ 1;
4936 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4937 hc
->chan
[i
+ ch
].bch
= bch
;
4938 hc
->chan
[i
+ ch
].port
= pt
;
4939 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4941 /* set master clock */
4942 if (port
[Port_cnt
] & 0x001) {
4943 if (debug
& DEBUG_HFCMULTI_INIT
)
4945 "%s: PROTOCOL set master clock: "
4946 "card(%d) port(%d)\n",
4947 __func__
, HFC_cnt
+ 1, pt
+ 1);
4948 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
4949 printk(KERN_ERR
"Error: Master clock "
4950 "for port(%d) of card(%d) is only"
4951 " possible with TE-mode\n",
4952 pt
+ 1, HFC_cnt
+ 1);
4956 if (hc
->masterclk
>= 0) {
4957 printk(KERN_ERR
"Error: Master clock "
4958 "for port(%d) of card(%d) already "
4959 "defined for port(%d)\n",
4960 pt
+ 1, HFC_cnt
+ 1, hc
->masterclk
+ 1);
4966 /* set transmitter line to non capacitive */
4967 if (port
[Port_cnt
] & 0x002) {
4968 if (debug
& DEBUG_HFCMULTI_INIT
)
4970 "%s: PROTOCOL set non capacitive "
4971 "transmitter: card(%d) port(%d)\n",
4972 __func__
, HFC_cnt
+ 1, pt
+ 1);
4973 test_and_set_bit(HFC_CFG_NONCAP_TX
,
4974 &hc
->chan
[i
+ 2].cfg
);
4976 /* disable E-channel */
4977 if (port
[Port_cnt
] & 0x004) {
4978 if (debug
& DEBUG_HFCMULTI_INIT
)
4980 "%s: PROTOCOL disable E-channel: "
4981 "card(%d) port(%d)\n",
4982 __func__
, HFC_cnt
+ 1, pt
+ 1);
4983 test_and_set_bit(HFC_CFG_DIS_ECHANNEL
,
4984 &hc
->chan
[i
+ 2].cfg
);
4986 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4987 snprintf(name
, MISDN_MAX_IDLEN
- 1, "xhfc.%d-%d",
4988 HFC_cnt
+ 1, pt
+ 1);
4989 ret
= mISDN_register_device(&dch
->dev
, NULL
, name
);
4991 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-%ds.%d-%d",
4992 hc
->ctype
, HFC_cnt
+ 1, pt
+ 1);
4993 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4997 hc
->created
[pt
] = 1;
5000 release_port(hc
, dch
);
5005 hfcmulti_init(struct hm_map
*m
, struct pci_dev
*pdev
,
5006 const struct pci_device_id
*ent
)
5010 struct hfc_multi
*hc
;
5012 u_char dips
= 0, pmj
= 0; /* dip settings, port mode Jumpers */
5016 if (HFC_cnt
>= MAX_CARDS
) {
5017 printk(KERN_ERR
"too many cards (max=%d).\n",
5021 if ((type
[HFC_cnt
] & 0xff) && (type
[HFC_cnt
] & 0xff) != m
->type
) {
5022 printk(KERN_WARNING
"HFC-MULTI: Card '%s:%s' type %d found but "
5023 "type[%d] %d was supplied as module parameter\n",
5024 m
->vendor_name
, m
->card_name
, m
->type
, HFC_cnt
,
5025 type
[HFC_cnt
] & 0xff);
5026 printk(KERN_WARNING
"HFC-MULTI: Load module without parameters "
5027 "first, to see cards and their types.");
5030 if (debug
& DEBUG_HFCMULTI_INIT
)
5031 printk(KERN_DEBUG
"%s: Registering %s:%s chip type %d (0x%x)\n",
5032 __func__
, m
->vendor_name
, m
->card_name
, m
->type
,
5035 /* allocate card+fifo structure */
5036 hc
= kzalloc(sizeof(struct hfc_multi
), GFP_KERNEL
);
5038 printk(KERN_ERR
"No kmem for HFC-Multi card\n");
5041 spin_lock_init(&hc
->lock
);
5043 hc
->ctype
= m
->type
;
5044 hc
->ports
= m
->ports
;
5046 hc
->pcm
= pcm
[HFC_cnt
];
5047 hc
->io_mode
= iomode
[HFC_cnt
];
5048 if (hc
->ctype
== HFC_TYPE_E1
&& dmask
[E1_cnt
]) {
5052 for (ch
= 0; ch
<= 31; ch
++) {
5053 if (!((1 << ch
) & dmask
[E1_cnt
]))
5056 hc
->bmask
[pt
] = bmask
[bmask_cnt
++];
5057 if ((maskcheck
& hc
->bmask
[pt
])
5058 || (dmask
[E1_cnt
] & hc
->bmask
[pt
])) {
5060 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5065 maskcheck
|= hc
->bmask
[pt
];
5067 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5068 E1_cnt
+ 1, ch
, hc
->bmask
[pt
]);
5073 if (hc
->ctype
== HFC_TYPE_E1
&& !dmask
[E1_cnt
]) {
5074 /* default card layout */
5076 hc
->bmask
[0] = 0xfffefffe;
5080 /* set chip specific features */
5082 if (type
[HFC_cnt
] & 0x100) {
5083 test_and_set_bit(HFC_CHIP_ULAW
, &hc
->chip
);
5084 hc
->silence
= 0xff; /* ulaw silence */
5086 hc
->silence
= 0x2a; /* alaw silence */
5087 if ((poll
>> 1) > sizeof(hc
->silence_data
)) {
5088 printk(KERN_ERR
"HFCMULTI error: silence_data too small, "
5093 for (i
= 0; i
< (poll
>> 1); i
++)
5094 hc
->silence_data
[i
] = hc
->silence
;
5096 if (hc
->ctype
!= HFC_TYPE_XHFC
) {
5097 if (!(type
[HFC_cnt
] & 0x200))
5098 test_and_set_bit(HFC_CHIP_DTMF
, &hc
->chip
);
5099 test_and_set_bit(HFC_CHIP_CONF
, &hc
->chip
);
5102 if (type
[HFC_cnt
] & 0x800)
5103 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5104 if (type
[HFC_cnt
] & 0x1000) {
5105 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
5106 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5108 if (type
[HFC_cnt
] & 0x4000)
5109 test_and_set_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
);
5110 if (type
[HFC_cnt
] & 0x8000)
5111 test_and_set_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
);
5113 if (type
[HFC_cnt
] & 0x10000)
5115 if (type
[HFC_cnt
] & 0x20000)
5117 if (type
[HFC_cnt
] & 0x80000) {
5118 test_and_set_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
);
5120 hc
->wdbyte
= V_GPIO_OUT2
;
5121 printk(KERN_NOTICE
"Watchdog enabled\n");
5125 /* setup pci, hc->slots may change due to PLXSD */
5126 ret_err
= setup_pci(hc
, pdev
, ent
);
5128 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5129 ret_err
= setup_embedded(hc
, m
);
5132 printk(KERN_WARNING
"Embedded IO Mode not selected\n");
5137 if (hc
== syncmaster
)
5143 hc
->HFC_outb_nodebug
= hc
->HFC_outb
;
5144 hc
->HFC_inb_nodebug
= hc
->HFC_inb
;
5145 hc
->HFC_inw_nodebug
= hc
->HFC_inw
;
5146 hc
->HFC_wait_nodebug
= hc
->HFC_wait
;
5147 #ifdef HFC_REGISTER_DEBUG
5148 hc
->HFC_outb
= HFC_outb_debug
;
5149 hc
->HFC_inb
= HFC_inb_debug
;
5150 hc
->HFC_inw
= HFC_inw_debug
;
5151 hc
->HFC_wait
= HFC_wait_debug
;
5153 /* create channels */
5154 for (pt
= 0; pt
< hc
->ports
; pt
++) {
5155 if (Port_cnt
>= MAX_PORTS
) {
5156 printk(KERN_ERR
"too many ports (max=%d).\n",
5161 if (hc
->ctype
== HFC_TYPE_E1
)
5162 ret_err
= init_e1_port(hc
, m
, pt
);
5164 ret_err
= init_multi_port(hc
, pt
);
5165 if (debug
& DEBUG_HFCMULTI_INIT
)
5167 "%s: Registering D-channel, card(%d) port(%d) "
5169 __func__
, HFC_cnt
+ 1, pt
+ 1, ret_err
);
5172 while (pt
) { /* release already registered ports */
5174 if (hc
->ctype
== HFC_TYPE_E1
)
5176 hc
->chan
[hc
->dnum
[pt
]].dch
);
5179 hc
->chan
[(pt
<< 2) + 2].dch
);
5183 if (hc
->ctype
!= HFC_TYPE_E1
)
5184 Port_cnt
++; /* for each S0 port */
5186 if (hc
->ctype
== HFC_TYPE_E1
) {
5187 Port_cnt
++; /* for each E1 port */
5192 switch (m
->dip_type
) {
5195 * Get DIP setting for beroNet 1S/2S/4S cards
5196 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5197 * GPI 19/23 (R_GPI_IN2))
5199 dips
= ((~HFC_inb(hc
, R_GPIO_IN1
) & 0xE0) >> 5) |
5200 ((~HFC_inb(hc
, R_GPI_IN2
) & 0x80) >> 3) |
5201 (~HFC_inb(hc
, R_GPI_IN2
) & 0x08);
5203 /* Port mode (TE/NT) jumpers */
5204 pmj
= ((HFC_inb(hc
, R_GPI_IN3
) >> 4) & 0xf);
5206 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
5209 printk(KERN_INFO
"%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5210 m
->vendor_name
, m
->card_name
, dips
, pmj
);
5214 * Get DIP Setting for beroNet 8S0+ cards
5215 * Enable PCI auxbridge function
5217 HFC_outb(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
5218 /* prepare access to auxport */
5219 outw(0x4000, hc
->pci_iobase
+ 4);
5221 * some dummy reads are required to
5222 * read valid DIP switch data
5224 dips
= inb(hc
->pci_iobase
);
5225 dips
= inb(hc
->pci_iobase
);
5226 dips
= inb(hc
->pci_iobase
);
5227 dips
= ~inb(hc
->pci_iobase
) & 0x3F;
5228 outw(0x0, hc
->pci_iobase
+ 4);
5229 /* disable PCI auxbridge function */
5230 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
5231 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5232 m
->vendor_name
, m
->card_name
, dips
);
5236 * get DIP Setting for beroNet E1 cards
5237 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5239 dips
= (~HFC_inb(hc
, R_GPI_IN0
) & 0xF0) >> 4;
5240 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5241 m
->vendor_name
, m
->card_name
, dips
);
5246 spin_lock_irqsave(&HFClock
, flags
);
5247 list_add_tail(&hc
->list
, &HFClist
);
5248 spin_unlock_irqrestore(&HFClock
, flags
);
5250 /* use as clock source */
5251 if (clock
== HFC_cnt
+ 1)
5252 hc
->iclock
= mISDN_register_clock("HFCMulti", 0, clockctl
, hc
);
5254 /* initialize hardware */
5255 hc
->irq
= (m
->irq
) ? : hc
->pci_dev
->irq
;
5256 ret_err
= init_card(hc
);
5258 printk(KERN_ERR
"init card returns %d\n", ret_err
);
5263 /* start IRQ and return */
5264 spin_lock_irqsave(&hc
->lock
, flags
);
5266 spin_unlock_irqrestore(&hc
->lock
, flags
);
5270 release_io_hfcmulti(hc
);
5271 if (hc
== syncmaster
)
5277 static void hfc_remove_pci(struct pci_dev
*pdev
)
5279 struct hfc_multi
*card
= pci_get_drvdata(pdev
);
5283 printk(KERN_INFO
"removing hfc_multi card vendor:%x "
5284 "device:%x subvendor:%x subdevice:%x\n",
5285 pdev
->vendor
, pdev
->device
,
5286 pdev
->subsystem_vendor
, pdev
->subsystem_device
);
5289 spin_lock_irqsave(&HFClock
, flags
);
5291 spin_unlock_irqrestore(&HFClock
, flags
);
5294 printk(KERN_DEBUG
"%s: drvdata already removed\n",
5299 #define VENDOR_CCD "Cologne Chip AG"
5300 #define VENDOR_BN "beroNet GmbH"
5301 #define VENDOR_DIG "Digium Inc."
5302 #define VENDOR_JH "Junghanns.NET GmbH"
5303 #define VENDOR_PRIM "PrimuX"
5305 static const struct hm_map hfcm_map
[] = {
5306 /*0*/ {VENDOR_BN
, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S
, 0, 0},
5307 /*1*/ {VENDOR_BN
, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5308 /*2*/ {VENDOR_BN
, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5309 /*3*/ {VENDOR_BN
, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5310 /*4*/ {VENDOR_BN
, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5311 /*5*/ {VENDOR_CCD
, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5312 /*6*/ {VENDOR_CCD
, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5313 /*7*/ {VENDOR_CCD
, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5314 /*8*/ {VENDOR_DIG
, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO
, 0},
5315 /*9*/ {VENDOR_CCD
, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5316 /*10*/ {VENDOR_JH
, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5317 /*11*/ {VENDOR_PRIM
, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5319 /*12*/ {VENDOR_BN
, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5320 /*13*/ {VENDOR_BN
, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S
,
5321 HFC_IO_MODE_REGIO
, 0},
5322 /*14*/ {VENDOR_CCD
, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5323 /*15*/ {VENDOR_CCD
, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5325 /*16*/ {VENDOR_CCD
, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5326 /*17*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5327 /*18*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5329 /*19*/ {VENDOR_BN
, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5330 /*20*/ {VENDOR_BN
, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5331 /*21*/ {VENDOR_BN
, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5332 /*22*/ {VENDOR_BN
, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5334 /*23*/ {VENDOR_CCD
, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5335 /*24*/ {VENDOR_CCD
, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5336 /*25*/ {VENDOR_CCD
, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5338 /*26*/ {VENDOR_CCD
, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5339 HFC_IO_MODE_PLXSD
, 0},
5340 /*27*/ {VENDOR_CCD
, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5341 HFC_IO_MODE_PLXSD
, 0},
5342 /*28*/ {VENDOR_CCD
, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5343 /*29*/ {VENDOR_CCD
, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5344 /*30*/ {VENDOR_CCD
, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5345 /*31*/ {VENDOR_CCD
, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5346 HFC_IO_MODE_EMBSD
, XHFC_IRQ
},
5347 /*32*/ {VENDOR_JH
, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5348 /*33*/ {VENDOR_BN
, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5349 /*34*/ {VENDOR_BN
, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5353 #define H(x) ((unsigned long)&hfcm_map[x])
5354 static struct pci_device_id hfmultipci_ids
[] = {
5356 /* Cards with HFC-4S Chip */
5357 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5358 PCI_SUBDEVICE_ID_CCD_BN1SM
, 0, 0, H(0)}, /* BN1S mini PCI */
5359 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5360 PCI_SUBDEVICE_ID_CCD_BN2S
, 0, 0, H(1)}, /* BN2S */
5361 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5362 PCI_SUBDEVICE_ID_CCD_BN2SM
, 0, 0, H(2)}, /* BN2S mini PCI */
5363 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5364 PCI_SUBDEVICE_ID_CCD_BN4S
, 0, 0, H(3)}, /* BN4S */
5365 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5366 PCI_SUBDEVICE_ID_CCD_BN4SM
, 0, 0, H(4)}, /* BN4S mini PCI */
5367 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5368 PCI_DEVICE_ID_CCD_HFC4S
, 0, 0, H(5)}, /* Old Eval */
5369 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5370 PCI_SUBDEVICE_ID_CCD_IOB4ST
, 0, 0, H(6)}, /* IOB4ST */
5371 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5372 PCI_SUBDEVICE_ID_CCD_HFC4S
, 0, 0, H(7)}, /* 4S */
5373 { PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
,
5374 PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
, 0, 0, H(8)},
5375 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5376 PCI_SUBDEVICE_ID_CCD_SWYX4S
, 0, 0, H(9)}, /* 4S Swyx */
5377 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5378 PCI_SUBDEVICE_ID_CCD_JH4S20
, 0, 0, H(10)},
5379 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5380 PCI_SUBDEVICE_ID_CCD_PMX2S
, 0, 0, H(11)}, /* Primux */
5381 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5382 PCI_SUBDEVICE_ID_CCD_OV4S
, 0, 0, H(28)}, /* OpenVox 4 */
5383 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5384 PCI_SUBDEVICE_ID_CCD_OV2S
, 0, 0, H(29)}, /* OpenVox 2 */
5385 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5386 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5387 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5388 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5390 /* Cards with HFC-8S Chip */
5391 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5392 PCI_SUBDEVICE_ID_CCD_BN8S
, 0, 0, H(12)}, /* BN8S */
5393 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5394 PCI_SUBDEVICE_ID_CCD_BN8SP
, 0, 0, H(13)}, /* BN8S+ */
5395 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5396 PCI_DEVICE_ID_CCD_HFC8S
, 0, 0, H(14)}, /* old Eval */
5397 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5398 PCI_SUBDEVICE_ID_CCD_IOB8STR
, 0, 0, H(15)}, /* IOB8ST Recording */
5399 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5400 PCI_SUBDEVICE_ID_CCD_IOB8ST
, 0, 0, H(16)}, /* IOB8ST */
5401 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5402 PCI_SUBDEVICE_ID_CCD_IOB8ST_1
, 0, 0, H(17)}, /* IOB8ST */
5403 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5404 PCI_SUBDEVICE_ID_CCD_HFC8S
, 0, 0, H(18)}, /* 8S */
5405 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5406 PCI_SUBDEVICE_ID_CCD_OV8S
, 0, 0, H(30)}, /* OpenVox 8 */
5407 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5408 PCI_SUBDEVICE_ID_CCD_JH8S
, 0, 0, H(32)}, /* Junganns 8S */
5411 /* Cards with HFC-E1 Chip */
5412 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5413 PCI_SUBDEVICE_ID_CCD_BNE1
, 0, 0, H(19)}, /* BNE1 */
5414 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5415 PCI_SUBDEVICE_ID_CCD_BNE1M
, 0, 0, H(20)}, /* BNE1 mini PCI */
5416 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5417 PCI_SUBDEVICE_ID_CCD_BNE1DP
, 0, 0, H(21)}, /* BNE1 + (Dual) */
5418 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5419 PCI_SUBDEVICE_ID_CCD_BNE1D
, 0, 0, H(22)}, /* BNE1 (Dual) */
5421 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5422 PCI_DEVICE_ID_CCD_HFCE1
, 0, 0, H(23)}, /* Old Eval */
5423 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5424 PCI_SUBDEVICE_ID_CCD_IOB1E1
, 0, 0, H(24)}, /* IOB1E1 */
5425 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5426 PCI_SUBDEVICE_ID_CCD_HFCE1
, 0, 0, H(25)}, /* E1 */
5428 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5429 PCI_SUBDEVICE_ID_CCD_SPD4S
, 0, 0, H(26)}, /* PLX PCI Bridge */
5430 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5431 PCI_SUBDEVICE_ID_CCD_SPDE1
, 0, 0, H(27)}, /* PLX PCI Bridge */
5433 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5434 PCI_SUBDEVICE_ID_CCD_JHSE1
, 0, 0, H(25)}, /* Junghanns E1 */
5436 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC4S
), 0 },
5437 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC8S
), 0 },
5438 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFCE1
), 0 },
5443 MODULE_DEVICE_TABLE(pci
, hfmultipci_ids
);
5446 hfcmulti_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5448 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
5451 if (m
== NULL
&& ent
->vendor
== PCI_VENDOR_ID_CCD
&& (
5452 ent
->device
== PCI_DEVICE_ID_CCD_HFC4S
||
5453 ent
->device
== PCI_DEVICE_ID_CCD_HFC8S
||
5454 ent
->device
== PCI_DEVICE_ID_CCD_HFCE1
)) {
5456 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5457 "subvendor:%04x subdevice:%04x)\n", pdev
->vendor
,
5458 pdev
->device
, pdev
->subsystem_vendor
,
5459 pdev
->subsystem_device
);
5461 "Please contact the driver maintainer for support.\n");
5464 ret
= hfcmulti_init(m
, pdev
, ent
);
5468 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5472 static struct pci_driver hfcmultipci_driver
= {
5473 .name
= "hfc_multi",
5474 .probe
= hfcmulti_probe
,
5475 .remove
= hfc_remove_pci
,
5476 .id_table
= hfmultipci_ids
,
5480 HFCmulti_cleanup(void)
5482 struct hfc_multi
*card
, *next
;
5484 /* get rid of all devices of this driver */
5485 list_for_each_entry_safe(card
, next
, &HFClist
, list
)
5487 pci_unregister_driver(&hfcmultipci_driver
);
5497 printk(KERN_INFO
"mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION
);
5500 printk(KERN_DEBUG
"%s: IRQ_DEBUG IS ENABLED!\n", __func__
);
5503 spin_lock_init(&HFClock
);
5504 spin_lock_init(&plx_lock
);
5506 if (debug
& DEBUG_HFCMULTI_INIT
)
5507 printk(KERN_DEBUG
"%s: init entered\n", __func__
);
5534 "%s: Wrong poll value (%d).\n", __func__
, poll
);
5543 /* Register the embedded devices.
5544 * This should be done before the PCI cards registration */
5562 for (i
= 0; i
< xhfc
; ++i
) {
5563 err
= hfcmulti_init(&m
, NULL
, NULL
);
5565 printk(KERN_ERR
"error registering embedded driver: "
5570 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5573 /* Register the PCI cards */
5574 err
= pci_register_driver(&hfcmultipci_driver
);
5576 printk(KERN_ERR
"error registering pci driver: %x\n", err
);
5584 module_init(HFCmulti_init
);
5585 module_exit(HFCmulti_cleanup
);