sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
bloba43eedd5804dd8a9c13b60d96c5bca59fd355b81
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
38 * Todo:
39 * register_bcache: Return errors out to userspace correctly
41 * Writeback: don't undirty key until after a cache flush
43 * Create an iterator for key pointers
45 * On btree write error, mark bucket such that it won't be freed from the cache
47 * Journalling:
48 * Check for bad keys in replay
49 * Propagate barriers
50 * Refcount journal entries in journal_replay
52 * Garbage collection:
53 * Finish incremental gc
54 * Gc should free old UUIDs, data for invalid UUIDs
56 * Provide a way to list backing device UUIDs we have data cached for, and
57 * probably how long it's been since we've seen them, and a way to invalidate
58 * dirty data for devices that will never be attached again
60 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61 * that based on that and how much dirty data we have we can keep writeback
62 * from being starved
64 * Add a tracepoint or somesuch to watch for writeback starvation
66 * When btree depth > 1 and splitting an interior node, we have to make sure
67 * alloc_bucket() cannot fail. This should be true but is not completely
68 * obvious.
70 * Plugging?
72 * If data write is less than hard sector size of ssd, round up offset in open
73 * bucket to the next whole sector
75 * Superblock needs to be fleshed out for multiple cache devices
77 * Add a sysfs tunable for the number of writeback IOs in flight
79 * Add a sysfs tunable for the number of open data buckets
81 * IO tracking: Can we track when one process is doing io on behalf of another?
82 * IO tracking: Don't use just an average, weigh more recent stuff higher
84 * Test module load/unload
87 #define MAX_NEED_GC 64
88 #define MAX_SAVE_PRIO 72
90 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
92 #define PTR_HASH(c, k) \
93 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95 #define insert_lock(s, b) ((b)->level <= (s)->lock)
98 * These macros are for recursing down the btree - they handle the details of
99 * locking and looking up nodes in the cache for you. They're best treated as
100 * mere syntax when reading code that uses them.
102 * op->lock determines whether we take a read or a write lock at a given depth.
103 * If you've got a read lock and find that you need a write lock (i.e. you're
104 * going to have to split), set op->lock and return -EINTR; btree_root() will
105 * call you again and you'll have the correct lock.
109 * btree - recurse down the btree on a specified key
110 * @fn: function to call, which will be passed the child node
111 * @key: key to recurse on
112 * @b: parent btree node
113 * @op: pointer to struct btree_op
115 #define btree(fn, key, b, op, ...) \
116 ({ \
117 int _r, l = (b)->level - 1; \
118 bool _w = l <= (op)->lock; \
119 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
120 _w, b); \
121 if (!IS_ERR(_child)) { \
122 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
123 rw_unlock(_w, _child); \
124 } else \
125 _r = PTR_ERR(_child); \
126 _r; \
130 * btree_root - call a function on the root of the btree
131 * @fn: function to call, which will be passed the child node
132 * @c: cache set
133 * @op: pointer to struct btree_op
135 #define btree_root(fn, c, op, ...) \
136 ({ \
137 int _r = -EINTR; \
138 do { \
139 struct btree *_b = (c)->root; \
140 bool _w = insert_lock(op, _b); \
141 rw_lock(_w, _b, _b->level); \
142 if (_b == (c)->root && \
143 _w == insert_lock(op, _b)) { \
144 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
146 rw_unlock(_w, _b); \
147 bch_cannibalize_unlock(c); \
148 if (_r == -EINTR) \
149 schedule(); \
150 } while (_r == -EINTR); \
152 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
153 _r; \
156 static inline struct bset *write_block(struct btree *b)
158 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
161 static void bch_btree_init_next(struct btree *b)
163 /* If not a leaf node, always sort */
164 if (b->level && b->keys.nsets)
165 bch_btree_sort(&b->keys, &b->c->sort);
166 else
167 bch_btree_sort_lazy(&b->keys, &b->c->sort);
169 if (b->written < btree_blocks(b))
170 bch_bset_init_next(&b->keys, write_block(b),
171 bset_magic(&b->c->sb));
175 /* Btree key manipulation */
177 void bkey_put(struct cache_set *c, struct bkey *k)
179 unsigned i;
181 for (i = 0; i < KEY_PTRS(k); i++)
182 if (ptr_available(c, k, i))
183 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
186 /* Btree IO */
188 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
190 uint64_t crc = b->key.ptr[0];
191 void *data = (void *) i + 8, *end = bset_bkey_last(i);
193 crc = bch_crc64_update(crc, data, end - data);
194 return crc ^ 0xffffffffffffffffULL;
197 void bch_btree_node_read_done(struct btree *b)
199 const char *err = "bad btree header";
200 struct bset *i = btree_bset_first(b);
201 struct btree_iter *iter;
203 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
204 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
205 iter->used = 0;
207 #ifdef CONFIG_BCACHE_DEBUG
208 iter->b = &b->keys;
209 #endif
211 if (!i->seq)
212 goto err;
214 for (;
215 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
216 i = write_block(b)) {
217 err = "unsupported bset version";
218 if (i->version > BCACHE_BSET_VERSION)
219 goto err;
221 err = "bad btree header";
222 if (b->written + set_blocks(i, block_bytes(b->c)) >
223 btree_blocks(b))
224 goto err;
226 err = "bad magic";
227 if (i->magic != bset_magic(&b->c->sb))
228 goto err;
230 err = "bad checksum";
231 switch (i->version) {
232 case 0:
233 if (i->csum != csum_set(i))
234 goto err;
235 break;
236 case BCACHE_BSET_VERSION:
237 if (i->csum != btree_csum_set(b, i))
238 goto err;
239 break;
242 err = "empty set";
243 if (i != b->keys.set[0].data && !i->keys)
244 goto err;
246 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
248 b->written += set_blocks(i, block_bytes(b->c));
251 err = "corrupted btree";
252 for (i = write_block(b);
253 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
254 i = ((void *) i) + block_bytes(b->c))
255 if (i->seq == b->keys.set[0].data->seq)
256 goto err;
258 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
260 i = b->keys.set[0].data;
261 err = "short btree key";
262 if (b->keys.set[0].size &&
263 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
264 goto err;
266 if (b->written < btree_blocks(b))
267 bch_bset_init_next(&b->keys, write_block(b),
268 bset_magic(&b->c->sb));
269 out:
270 mempool_free(iter, b->c->fill_iter);
271 return;
272 err:
273 set_btree_node_io_error(b);
274 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
275 err, PTR_BUCKET_NR(b->c, &b->key, 0),
276 bset_block_offset(b, i), i->keys);
277 goto out;
280 static void btree_node_read_endio(struct bio *bio)
282 struct closure *cl = bio->bi_private;
283 closure_put(cl);
286 static void bch_btree_node_read(struct btree *b)
288 uint64_t start_time = local_clock();
289 struct closure cl;
290 struct bio *bio;
292 trace_bcache_btree_read(b);
294 closure_init_stack(&cl);
296 bio = bch_bbio_alloc(b->c);
297 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
298 bio->bi_end_io = btree_node_read_endio;
299 bio->bi_private = &cl;
300 bio->bi_opf = REQ_OP_READ | REQ_META;
302 bch_bio_map(bio, b->keys.set[0].data);
304 bch_submit_bbio(bio, b->c, &b->key, 0);
305 closure_sync(&cl);
307 if (bio->bi_error)
308 set_btree_node_io_error(b);
310 bch_bbio_free(bio, b->c);
312 if (btree_node_io_error(b))
313 goto err;
315 bch_btree_node_read_done(b);
316 bch_time_stats_update(&b->c->btree_read_time, start_time);
318 return;
319 err:
320 bch_cache_set_error(b->c, "io error reading bucket %zu",
321 PTR_BUCKET_NR(b->c, &b->key, 0));
324 static void btree_complete_write(struct btree *b, struct btree_write *w)
326 if (w->prio_blocked &&
327 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
328 wake_up_allocators(b->c);
330 if (w->journal) {
331 atomic_dec_bug(w->journal);
332 __closure_wake_up(&b->c->journal.wait);
335 w->prio_blocked = 0;
336 w->journal = NULL;
339 static void btree_node_write_unlock(struct closure *cl)
341 struct btree *b = container_of(cl, struct btree, io);
343 up(&b->io_mutex);
346 static void __btree_node_write_done(struct closure *cl)
348 struct btree *b = container_of(cl, struct btree, io);
349 struct btree_write *w = btree_prev_write(b);
351 bch_bbio_free(b->bio, b->c);
352 b->bio = NULL;
353 btree_complete_write(b, w);
355 if (btree_node_dirty(b))
356 schedule_delayed_work(&b->work, 30 * HZ);
358 closure_return_with_destructor(cl, btree_node_write_unlock);
361 static void btree_node_write_done(struct closure *cl)
363 struct btree *b = container_of(cl, struct btree, io);
365 bio_free_pages(b->bio);
366 __btree_node_write_done(cl);
369 static void btree_node_write_endio(struct bio *bio)
371 struct closure *cl = bio->bi_private;
372 struct btree *b = container_of(cl, struct btree, io);
374 if (bio->bi_error)
375 set_btree_node_io_error(b);
377 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
378 closure_put(cl);
381 static void do_btree_node_write(struct btree *b)
383 struct closure *cl = &b->io;
384 struct bset *i = btree_bset_last(b);
385 BKEY_PADDED(key) k;
387 i->version = BCACHE_BSET_VERSION;
388 i->csum = btree_csum_set(b, i);
390 BUG_ON(b->bio);
391 b->bio = bch_bbio_alloc(b->c);
393 b->bio->bi_end_io = btree_node_write_endio;
394 b->bio->bi_private = cl;
395 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
396 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
397 bch_bio_map(b->bio, i);
400 * If we're appending to a leaf node, we don't technically need FUA -
401 * this write just needs to be persisted before the next journal write,
402 * which will be marked FLUSH|FUA.
404 * Similarly if we're writing a new btree root - the pointer is going to
405 * be in the next journal entry.
407 * But if we're writing a new btree node (that isn't a root) or
408 * appending to a non leaf btree node, we need either FUA or a flush
409 * when we write the parent with the new pointer. FUA is cheaper than a
410 * flush, and writes appending to leaf nodes aren't blocking anything so
411 * just make all btree node writes FUA to keep things sane.
414 bkey_copy(&k.key, &b->key);
415 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
416 bset_sector_offset(&b->keys, i));
418 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
419 int j;
420 struct bio_vec *bv;
421 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
423 bio_for_each_segment_all(bv, b->bio, j)
424 memcpy(page_address(bv->bv_page),
425 base + j * PAGE_SIZE, PAGE_SIZE);
427 bch_submit_bbio(b->bio, b->c, &k.key, 0);
429 continue_at(cl, btree_node_write_done, NULL);
430 } else {
431 b->bio->bi_vcnt = 0;
432 bch_bio_map(b->bio, i);
434 bch_submit_bbio(b->bio, b->c, &k.key, 0);
436 closure_sync(cl);
437 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
441 void __bch_btree_node_write(struct btree *b, struct closure *parent)
443 struct bset *i = btree_bset_last(b);
445 lockdep_assert_held(&b->write_lock);
447 trace_bcache_btree_write(b);
449 BUG_ON(current->bio_list);
450 BUG_ON(b->written >= btree_blocks(b));
451 BUG_ON(b->written && !i->keys);
452 BUG_ON(btree_bset_first(b)->seq != i->seq);
453 bch_check_keys(&b->keys, "writing");
455 cancel_delayed_work(&b->work);
457 /* If caller isn't waiting for write, parent refcount is cache set */
458 down(&b->io_mutex);
459 closure_init(&b->io, parent ?: &b->c->cl);
461 clear_bit(BTREE_NODE_dirty, &b->flags);
462 change_bit(BTREE_NODE_write_idx, &b->flags);
464 do_btree_node_write(b);
466 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
467 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
469 b->written += set_blocks(i, block_bytes(b->c));
472 void bch_btree_node_write(struct btree *b, struct closure *parent)
474 unsigned nsets = b->keys.nsets;
476 lockdep_assert_held(&b->lock);
478 __bch_btree_node_write(b, parent);
481 * do verify if there was more than one set initially (i.e. we did a
482 * sort) and we sorted down to a single set:
484 if (nsets && !b->keys.nsets)
485 bch_btree_verify(b);
487 bch_btree_init_next(b);
490 static void bch_btree_node_write_sync(struct btree *b)
492 struct closure cl;
494 closure_init_stack(&cl);
496 mutex_lock(&b->write_lock);
497 bch_btree_node_write(b, &cl);
498 mutex_unlock(&b->write_lock);
500 closure_sync(&cl);
503 static void btree_node_write_work(struct work_struct *w)
505 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
507 mutex_lock(&b->write_lock);
508 if (btree_node_dirty(b))
509 __bch_btree_node_write(b, NULL);
510 mutex_unlock(&b->write_lock);
513 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
515 struct bset *i = btree_bset_last(b);
516 struct btree_write *w = btree_current_write(b);
518 lockdep_assert_held(&b->write_lock);
520 BUG_ON(!b->written);
521 BUG_ON(!i->keys);
523 if (!btree_node_dirty(b))
524 schedule_delayed_work(&b->work, 30 * HZ);
526 set_btree_node_dirty(b);
528 if (journal_ref) {
529 if (w->journal &&
530 journal_pin_cmp(b->c, w->journal, journal_ref)) {
531 atomic_dec_bug(w->journal);
532 w->journal = NULL;
535 if (!w->journal) {
536 w->journal = journal_ref;
537 atomic_inc(w->journal);
541 /* Force write if set is too big */
542 if (set_bytes(i) > PAGE_SIZE - 48 &&
543 !current->bio_list)
544 bch_btree_node_write(b, NULL);
548 * Btree in memory cache - allocation/freeing
549 * mca -> memory cache
552 #define mca_reserve(c) (((c->root && c->root->level) \
553 ? c->root->level : 1) * 8 + 16)
554 #define mca_can_free(c) \
555 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
557 static void mca_data_free(struct btree *b)
559 BUG_ON(b->io_mutex.count != 1);
561 bch_btree_keys_free(&b->keys);
563 b->c->btree_cache_used--;
564 list_move(&b->list, &b->c->btree_cache_freed);
567 static void mca_bucket_free(struct btree *b)
569 BUG_ON(btree_node_dirty(b));
571 b->key.ptr[0] = 0;
572 hlist_del_init_rcu(&b->hash);
573 list_move(&b->list, &b->c->btree_cache_freeable);
576 static unsigned btree_order(struct bkey *k)
578 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
581 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
583 if (!bch_btree_keys_alloc(&b->keys,
584 max_t(unsigned,
585 ilog2(b->c->btree_pages),
586 btree_order(k)),
587 gfp)) {
588 b->c->btree_cache_used++;
589 list_move(&b->list, &b->c->btree_cache);
590 } else {
591 list_move(&b->list, &b->c->btree_cache_freed);
595 static struct btree *mca_bucket_alloc(struct cache_set *c,
596 struct bkey *k, gfp_t gfp)
598 struct btree *b = kzalloc(sizeof(struct btree), gfp);
599 if (!b)
600 return NULL;
602 init_rwsem(&b->lock);
603 lockdep_set_novalidate_class(&b->lock);
604 mutex_init(&b->write_lock);
605 lockdep_set_novalidate_class(&b->write_lock);
606 INIT_LIST_HEAD(&b->list);
607 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
608 b->c = c;
609 sema_init(&b->io_mutex, 1);
611 mca_data_alloc(b, k, gfp);
612 return b;
615 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
617 struct closure cl;
619 closure_init_stack(&cl);
620 lockdep_assert_held(&b->c->bucket_lock);
622 if (!down_write_trylock(&b->lock))
623 return -ENOMEM;
625 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
627 if (b->keys.page_order < min_order)
628 goto out_unlock;
630 if (!flush) {
631 if (btree_node_dirty(b))
632 goto out_unlock;
634 if (down_trylock(&b->io_mutex))
635 goto out_unlock;
636 up(&b->io_mutex);
639 mutex_lock(&b->write_lock);
640 if (btree_node_dirty(b))
641 __bch_btree_node_write(b, &cl);
642 mutex_unlock(&b->write_lock);
644 closure_sync(&cl);
646 /* wait for any in flight btree write */
647 down(&b->io_mutex);
648 up(&b->io_mutex);
650 return 0;
651 out_unlock:
652 rw_unlock(true, b);
653 return -ENOMEM;
656 static unsigned long bch_mca_scan(struct shrinker *shrink,
657 struct shrink_control *sc)
659 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
660 struct btree *b, *t;
661 unsigned long i, nr = sc->nr_to_scan;
662 unsigned long freed = 0;
664 if (c->shrinker_disabled)
665 return SHRINK_STOP;
667 if (c->btree_cache_alloc_lock)
668 return SHRINK_STOP;
670 /* Return -1 if we can't do anything right now */
671 if (sc->gfp_mask & __GFP_IO)
672 mutex_lock(&c->bucket_lock);
673 else if (!mutex_trylock(&c->bucket_lock))
674 return -1;
677 * It's _really_ critical that we don't free too many btree nodes - we
678 * have to always leave ourselves a reserve. The reserve is how we
679 * guarantee that allocating memory for a new btree node can always
680 * succeed, so that inserting keys into the btree can always succeed and
681 * IO can always make forward progress:
683 nr /= c->btree_pages;
684 nr = min_t(unsigned long, nr, mca_can_free(c));
686 i = 0;
687 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
688 if (freed >= nr)
689 break;
691 if (++i > 3 &&
692 !mca_reap(b, 0, false)) {
693 mca_data_free(b);
694 rw_unlock(true, b);
695 freed++;
699 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
700 if (list_empty(&c->btree_cache))
701 goto out;
703 b = list_first_entry(&c->btree_cache, struct btree, list);
704 list_rotate_left(&c->btree_cache);
706 if (!b->accessed &&
707 !mca_reap(b, 0, false)) {
708 mca_bucket_free(b);
709 mca_data_free(b);
710 rw_unlock(true, b);
711 freed++;
712 } else
713 b->accessed = 0;
715 out:
716 mutex_unlock(&c->bucket_lock);
717 return freed;
720 static unsigned long bch_mca_count(struct shrinker *shrink,
721 struct shrink_control *sc)
723 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
725 if (c->shrinker_disabled)
726 return 0;
728 if (c->btree_cache_alloc_lock)
729 return 0;
731 return mca_can_free(c) * c->btree_pages;
734 void bch_btree_cache_free(struct cache_set *c)
736 struct btree *b;
737 struct closure cl;
738 closure_init_stack(&cl);
740 if (c->shrink.list.next)
741 unregister_shrinker(&c->shrink);
743 mutex_lock(&c->bucket_lock);
745 #ifdef CONFIG_BCACHE_DEBUG
746 if (c->verify_data)
747 list_move(&c->verify_data->list, &c->btree_cache);
749 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
750 #endif
752 list_splice(&c->btree_cache_freeable,
753 &c->btree_cache);
755 while (!list_empty(&c->btree_cache)) {
756 b = list_first_entry(&c->btree_cache, struct btree, list);
758 if (btree_node_dirty(b))
759 btree_complete_write(b, btree_current_write(b));
760 clear_bit(BTREE_NODE_dirty, &b->flags);
762 mca_data_free(b);
765 while (!list_empty(&c->btree_cache_freed)) {
766 b = list_first_entry(&c->btree_cache_freed,
767 struct btree, list);
768 list_del(&b->list);
769 cancel_delayed_work_sync(&b->work);
770 kfree(b);
773 mutex_unlock(&c->bucket_lock);
776 int bch_btree_cache_alloc(struct cache_set *c)
778 unsigned i;
780 for (i = 0; i < mca_reserve(c); i++)
781 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
782 return -ENOMEM;
784 list_splice_init(&c->btree_cache,
785 &c->btree_cache_freeable);
787 #ifdef CONFIG_BCACHE_DEBUG
788 mutex_init(&c->verify_lock);
790 c->verify_ondisk = (void *)
791 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
793 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
795 if (c->verify_data &&
796 c->verify_data->keys.set->data)
797 list_del_init(&c->verify_data->list);
798 else
799 c->verify_data = NULL;
800 #endif
802 c->shrink.count_objects = bch_mca_count;
803 c->shrink.scan_objects = bch_mca_scan;
804 c->shrink.seeks = 4;
805 c->shrink.batch = c->btree_pages * 2;
806 register_shrinker(&c->shrink);
808 return 0;
811 /* Btree in memory cache - hash table */
813 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
815 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
818 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
820 struct btree *b;
822 rcu_read_lock();
823 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
824 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
825 goto out;
826 b = NULL;
827 out:
828 rcu_read_unlock();
829 return b;
832 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
834 struct task_struct *old;
836 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
837 if (old && old != current) {
838 if (op)
839 prepare_to_wait(&c->btree_cache_wait, &op->wait,
840 TASK_UNINTERRUPTIBLE);
841 return -EINTR;
844 return 0;
847 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
848 struct bkey *k)
850 struct btree *b;
852 trace_bcache_btree_cache_cannibalize(c);
854 if (mca_cannibalize_lock(c, op))
855 return ERR_PTR(-EINTR);
857 list_for_each_entry_reverse(b, &c->btree_cache, list)
858 if (!mca_reap(b, btree_order(k), false))
859 return b;
861 list_for_each_entry_reverse(b, &c->btree_cache, list)
862 if (!mca_reap(b, btree_order(k), true))
863 return b;
865 WARN(1, "btree cache cannibalize failed\n");
866 return ERR_PTR(-ENOMEM);
870 * We can only have one thread cannibalizing other cached btree nodes at a time,
871 * or we'll deadlock. We use an open coded mutex to ensure that, which a
872 * cannibalize_bucket() will take. This means every time we unlock the root of
873 * the btree, we need to release this lock if we have it held.
875 static void bch_cannibalize_unlock(struct cache_set *c)
877 if (c->btree_cache_alloc_lock == current) {
878 c->btree_cache_alloc_lock = NULL;
879 wake_up(&c->btree_cache_wait);
883 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
884 struct bkey *k, int level)
886 struct btree *b;
888 BUG_ON(current->bio_list);
890 lockdep_assert_held(&c->bucket_lock);
892 if (mca_find(c, k))
893 return NULL;
895 /* btree_free() doesn't free memory; it sticks the node on the end of
896 * the list. Check if there's any freed nodes there:
898 list_for_each_entry(b, &c->btree_cache_freeable, list)
899 if (!mca_reap(b, btree_order(k), false))
900 goto out;
902 /* We never free struct btree itself, just the memory that holds the on
903 * disk node. Check the freed list before allocating a new one:
905 list_for_each_entry(b, &c->btree_cache_freed, list)
906 if (!mca_reap(b, 0, false)) {
907 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
908 if (!b->keys.set[0].data)
909 goto err;
910 else
911 goto out;
914 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
915 if (!b)
916 goto err;
918 BUG_ON(!down_write_trylock(&b->lock));
919 if (!b->keys.set->data)
920 goto err;
921 out:
922 BUG_ON(b->io_mutex.count != 1);
924 bkey_copy(&b->key, k);
925 list_move(&b->list, &c->btree_cache);
926 hlist_del_init_rcu(&b->hash);
927 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
929 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
930 b->parent = (void *) ~0UL;
931 b->flags = 0;
932 b->written = 0;
933 b->level = level;
935 if (!b->level)
936 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
937 &b->c->expensive_debug_checks);
938 else
939 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
940 &b->c->expensive_debug_checks);
942 return b;
943 err:
944 if (b)
945 rw_unlock(true, b);
947 b = mca_cannibalize(c, op, k);
948 if (!IS_ERR(b))
949 goto out;
951 return b;
955 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
956 * in from disk if necessary.
958 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
960 * The btree node will have either a read or a write lock held, depending on
961 * level and op->lock.
963 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
964 struct bkey *k, int level, bool write,
965 struct btree *parent)
967 int i = 0;
968 struct btree *b;
970 BUG_ON(level < 0);
971 retry:
972 b = mca_find(c, k);
974 if (!b) {
975 if (current->bio_list)
976 return ERR_PTR(-EAGAIN);
978 mutex_lock(&c->bucket_lock);
979 b = mca_alloc(c, op, k, level);
980 mutex_unlock(&c->bucket_lock);
982 if (!b)
983 goto retry;
984 if (IS_ERR(b))
985 return b;
987 bch_btree_node_read(b);
989 if (!write)
990 downgrade_write(&b->lock);
991 } else {
992 rw_lock(write, b, level);
993 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
994 rw_unlock(write, b);
995 goto retry;
997 BUG_ON(b->level != level);
1000 b->parent = parent;
1001 b->accessed = 1;
1003 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1004 prefetch(b->keys.set[i].tree);
1005 prefetch(b->keys.set[i].data);
1008 for (; i <= b->keys.nsets; i++)
1009 prefetch(b->keys.set[i].data);
1011 if (btree_node_io_error(b)) {
1012 rw_unlock(write, b);
1013 return ERR_PTR(-EIO);
1016 BUG_ON(!b->written);
1018 return b;
1021 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1023 struct btree *b;
1025 mutex_lock(&parent->c->bucket_lock);
1026 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1027 mutex_unlock(&parent->c->bucket_lock);
1029 if (!IS_ERR_OR_NULL(b)) {
1030 b->parent = parent;
1031 bch_btree_node_read(b);
1032 rw_unlock(true, b);
1036 /* Btree alloc */
1038 static void btree_node_free(struct btree *b)
1040 trace_bcache_btree_node_free(b);
1042 BUG_ON(b == b->c->root);
1044 mutex_lock(&b->write_lock);
1046 if (btree_node_dirty(b))
1047 btree_complete_write(b, btree_current_write(b));
1048 clear_bit(BTREE_NODE_dirty, &b->flags);
1050 mutex_unlock(&b->write_lock);
1052 cancel_delayed_work(&b->work);
1054 mutex_lock(&b->c->bucket_lock);
1055 bch_bucket_free(b->c, &b->key);
1056 mca_bucket_free(b);
1057 mutex_unlock(&b->c->bucket_lock);
1060 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1061 int level, bool wait,
1062 struct btree *parent)
1064 BKEY_PADDED(key) k;
1065 struct btree *b = ERR_PTR(-EAGAIN);
1067 mutex_lock(&c->bucket_lock);
1068 retry:
1069 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1070 goto err;
1072 bkey_put(c, &k.key);
1073 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1075 b = mca_alloc(c, op, &k.key, level);
1076 if (IS_ERR(b))
1077 goto err_free;
1079 if (!b) {
1080 cache_bug(c,
1081 "Tried to allocate bucket that was in btree cache");
1082 goto retry;
1085 b->accessed = 1;
1086 b->parent = parent;
1087 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1089 mutex_unlock(&c->bucket_lock);
1091 trace_bcache_btree_node_alloc(b);
1092 return b;
1093 err_free:
1094 bch_bucket_free(c, &k.key);
1095 err:
1096 mutex_unlock(&c->bucket_lock);
1098 trace_bcache_btree_node_alloc_fail(c);
1099 return b;
1102 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1103 struct btree_op *op, int level,
1104 struct btree *parent)
1106 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1109 static struct btree *btree_node_alloc_replacement(struct btree *b,
1110 struct btree_op *op)
1112 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1113 if (!IS_ERR_OR_NULL(n)) {
1114 mutex_lock(&n->write_lock);
1115 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1116 bkey_copy_key(&n->key, &b->key);
1117 mutex_unlock(&n->write_lock);
1120 return n;
1123 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1125 unsigned i;
1127 mutex_lock(&b->c->bucket_lock);
1129 atomic_inc(&b->c->prio_blocked);
1131 bkey_copy(k, &b->key);
1132 bkey_copy_key(k, &ZERO_KEY);
1134 for (i = 0; i < KEY_PTRS(k); i++)
1135 SET_PTR_GEN(k, i,
1136 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1137 PTR_BUCKET(b->c, &b->key, i)));
1139 mutex_unlock(&b->c->bucket_lock);
1142 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1144 struct cache_set *c = b->c;
1145 struct cache *ca;
1146 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1148 mutex_lock(&c->bucket_lock);
1150 for_each_cache(ca, c, i)
1151 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1152 if (op)
1153 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1154 TASK_UNINTERRUPTIBLE);
1155 mutex_unlock(&c->bucket_lock);
1156 return -EINTR;
1159 mutex_unlock(&c->bucket_lock);
1161 return mca_cannibalize_lock(b->c, op);
1164 /* Garbage collection */
1166 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1167 struct bkey *k)
1169 uint8_t stale = 0;
1170 unsigned i;
1171 struct bucket *g;
1174 * ptr_invalid() can't return true for the keys that mark btree nodes as
1175 * freed, but since ptr_bad() returns true we'll never actually use them
1176 * for anything and thus we don't want mark their pointers here
1178 if (!bkey_cmp(k, &ZERO_KEY))
1179 return stale;
1181 for (i = 0; i < KEY_PTRS(k); i++) {
1182 if (!ptr_available(c, k, i))
1183 continue;
1185 g = PTR_BUCKET(c, k, i);
1187 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1188 g->last_gc = PTR_GEN(k, i);
1190 if (ptr_stale(c, k, i)) {
1191 stale = max(stale, ptr_stale(c, k, i));
1192 continue;
1195 cache_bug_on(GC_MARK(g) &&
1196 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1197 c, "inconsistent ptrs: mark = %llu, level = %i",
1198 GC_MARK(g), level);
1200 if (level)
1201 SET_GC_MARK(g, GC_MARK_METADATA);
1202 else if (KEY_DIRTY(k))
1203 SET_GC_MARK(g, GC_MARK_DIRTY);
1204 else if (!GC_MARK(g))
1205 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1207 /* guard against overflow */
1208 SET_GC_SECTORS_USED(g, min_t(unsigned,
1209 GC_SECTORS_USED(g) + KEY_SIZE(k),
1210 MAX_GC_SECTORS_USED));
1212 BUG_ON(!GC_SECTORS_USED(g));
1215 return stale;
1218 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1220 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1222 unsigned i;
1224 for (i = 0; i < KEY_PTRS(k); i++)
1225 if (ptr_available(c, k, i) &&
1226 !ptr_stale(c, k, i)) {
1227 struct bucket *b = PTR_BUCKET(c, k, i);
1229 b->gen = PTR_GEN(k, i);
1231 if (level && bkey_cmp(k, &ZERO_KEY))
1232 b->prio = BTREE_PRIO;
1233 else if (!level && b->prio == BTREE_PRIO)
1234 b->prio = INITIAL_PRIO;
1237 __bch_btree_mark_key(c, level, k);
1240 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1242 uint8_t stale = 0;
1243 unsigned keys = 0, good_keys = 0;
1244 struct bkey *k;
1245 struct btree_iter iter;
1246 struct bset_tree *t;
1248 gc->nodes++;
1250 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1251 stale = max(stale, btree_mark_key(b, k));
1252 keys++;
1254 if (bch_ptr_bad(&b->keys, k))
1255 continue;
1257 gc->key_bytes += bkey_u64s(k);
1258 gc->nkeys++;
1259 good_keys++;
1261 gc->data += KEY_SIZE(k);
1264 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1265 btree_bug_on(t->size &&
1266 bset_written(&b->keys, t) &&
1267 bkey_cmp(&b->key, &t->end) < 0,
1268 b, "found short btree key in gc");
1270 if (b->c->gc_always_rewrite)
1271 return true;
1273 if (stale > 10)
1274 return true;
1276 if ((keys - good_keys) * 2 > keys)
1277 return true;
1279 return false;
1282 #define GC_MERGE_NODES 4U
1284 struct gc_merge_info {
1285 struct btree *b;
1286 unsigned keys;
1289 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1290 struct keylist *, atomic_t *, struct bkey *);
1292 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1293 struct gc_stat *gc, struct gc_merge_info *r)
1295 unsigned i, nodes = 0, keys = 0, blocks;
1296 struct btree *new_nodes[GC_MERGE_NODES];
1297 struct keylist keylist;
1298 struct closure cl;
1299 struct bkey *k;
1301 bch_keylist_init(&keylist);
1303 if (btree_check_reserve(b, NULL))
1304 return 0;
1306 memset(new_nodes, 0, sizeof(new_nodes));
1307 closure_init_stack(&cl);
1309 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1310 keys += r[nodes++].keys;
1312 blocks = btree_default_blocks(b->c) * 2 / 3;
1314 if (nodes < 2 ||
1315 __set_blocks(b->keys.set[0].data, keys,
1316 block_bytes(b->c)) > blocks * (nodes - 1))
1317 return 0;
1319 for (i = 0; i < nodes; i++) {
1320 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1321 if (IS_ERR_OR_NULL(new_nodes[i]))
1322 goto out_nocoalesce;
1326 * We have to check the reserve here, after we've allocated our new
1327 * nodes, to make sure the insert below will succeed - we also check
1328 * before as an optimization to potentially avoid a bunch of expensive
1329 * allocs/sorts
1331 if (btree_check_reserve(b, NULL))
1332 goto out_nocoalesce;
1334 for (i = 0; i < nodes; i++)
1335 mutex_lock(&new_nodes[i]->write_lock);
1337 for (i = nodes - 1; i > 0; --i) {
1338 struct bset *n1 = btree_bset_first(new_nodes[i]);
1339 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1340 struct bkey *k, *last = NULL;
1342 keys = 0;
1344 if (i > 1) {
1345 for (k = n2->start;
1346 k < bset_bkey_last(n2);
1347 k = bkey_next(k)) {
1348 if (__set_blocks(n1, n1->keys + keys +
1349 bkey_u64s(k),
1350 block_bytes(b->c)) > blocks)
1351 break;
1353 last = k;
1354 keys += bkey_u64s(k);
1356 } else {
1358 * Last node we're not getting rid of - we're getting
1359 * rid of the node at r[0]. Have to try and fit all of
1360 * the remaining keys into this node; we can't ensure
1361 * they will always fit due to rounding and variable
1362 * length keys (shouldn't be possible in practice,
1363 * though)
1365 if (__set_blocks(n1, n1->keys + n2->keys,
1366 block_bytes(b->c)) >
1367 btree_blocks(new_nodes[i]))
1368 goto out_nocoalesce;
1370 keys = n2->keys;
1371 /* Take the key of the node we're getting rid of */
1372 last = &r->b->key;
1375 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1376 btree_blocks(new_nodes[i]));
1378 if (last)
1379 bkey_copy_key(&new_nodes[i]->key, last);
1381 memcpy(bset_bkey_last(n1),
1382 n2->start,
1383 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1385 n1->keys += keys;
1386 r[i].keys = n1->keys;
1388 memmove(n2->start,
1389 bset_bkey_idx(n2, keys),
1390 (void *) bset_bkey_last(n2) -
1391 (void *) bset_bkey_idx(n2, keys));
1393 n2->keys -= keys;
1395 if (__bch_keylist_realloc(&keylist,
1396 bkey_u64s(&new_nodes[i]->key)))
1397 goto out_nocoalesce;
1399 bch_btree_node_write(new_nodes[i], &cl);
1400 bch_keylist_add(&keylist, &new_nodes[i]->key);
1403 for (i = 0; i < nodes; i++)
1404 mutex_unlock(&new_nodes[i]->write_lock);
1406 closure_sync(&cl);
1408 /* We emptied out this node */
1409 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1410 btree_node_free(new_nodes[0]);
1411 rw_unlock(true, new_nodes[0]);
1412 new_nodes[0] = NULL;
1414 for (i = 0; i < nodes; i++) {
1415 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1416 goto out_nocoalesce;
1418 make_btree_freeing_key(r[i].b, keylist.top);
1419 bch_keylist_push(&keylist);
1422 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1423 BUG_ON(!bch_keylist_empty(&keylist));
1425 for (i = 0; i < nodes; i++) {
1426 btree_node_free(r[i].b);
1427 rw_unlock(true, r[i].b);
1429 r[i].b = new_nodes[i];
1432 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1433 r[nodes - 1].b = ERR_PTR(-EINTR);
1435 trace_bcache_btree_gc_coalesce(nodes);
1436 gc->nodes--;
1438 bch_keylist_free(&keylist);
1440 /* Invalidated our iterator */
1441 return -EINTR;
1443 out_nocoalesce:
1444 closure_sync(&cl);
1445 bch_keylist_free(&keylist);
1447 while ((k = bch_keylist_pop(&keylist)))
1448 if (!bkey_cmp(k, &ZERO_KEY))
1449 atomic_dec(&b->c->prio_blocked);
1451 for (i = 0; i < nodes; i++)
1452 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1453 btree_node_free(new_nodes[i]);
1454 rw_unlock(true, new_nodes[i]);
1456 return 0;
1459 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1460 struct btree *replace)
1462 struct keylist keys;
1463 struct btree *n;
1465 if (btree_check_reserve(b, NULL))
1466 return 0;
1468 n = btree_node_alloc_replacement(replace, NULL);
1470 /* recheck reserve after allocating replacement node */
1471 if (btree_check_reserve(b, NULL)) {
1472 btree_node_free(n);
1473 rw_unlock(true, n);
1474 return 0;
1477 bch_btree_node_write_sync(n);
1479 bch_keylist_init(&keys);
1480 bch_keylist_add(&keys, &n->key);
1482 make_btree_freeing_key(replace, keys.top);
1483 bch_keylist_push(&keys);
1485 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1486 BUG_ON(!bch_keylist_empty(&keys));
1488 btree_node_free(replace);
1489 rw_unlock(true, n);
1491 /* Invalidated our iterator */
1492 return -EINTR;
1495 static unsigned btree_gc_count_keys(struct btree *b)
1497 struct bkey *k;
1498 struct btree_iter iter;
1499 unsigned ret = 0;
1501 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1502 ret += bkey_u64s(k);
1504 return ret;
1507 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1508 struct closure *writes, struct gc_stat *gc)
1510 int ret = 0;
1511 bool should_rewrite;
1512 struct bkey *k;
1513 struct btree_iter iter;
1514 struct gc_merge_info r[GC_MERGE_NODES];
1515 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1517 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1519 for (i = r; i < r + ARRAY_SIZE(r); i++)
1520 i->b = ERR_PTR(-EINTR);
1522 while (1) {
1523 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1524 if (k) {
1525 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1526 true, b);
1527 if (IS_ERR(r->b)) {
1528 ret = PTR_ERR(r->b);
1529 break;
1532 r->keys = btree_gc_count_keys(r->b);
1534 ret = btree_gc_coalesce(b, op, gc, r);
1535 if (ret)
1536 break;
1539 if (!last->b)
1540 break;
1542 if (!IS_ERR(last->b)) {
1543 should_rewrite = btree_gc_mark_node(last->b, gc);
1544 if (should_rewrite) {
1545 ret = btree_gc_rewrite_node(b, op, last->b);
1546 if (ret)
1547 break;
1550 if (last->b->level) {
1551 ret = btree_gc_recurse(last->b, op, writes, gc);
1552 if (ret)
1553 break;
1556 bkey_copy_key(&b->c->gc_done, &last->b->key);
1559 * Must flush leaf nodes before gc ends, since replace
1560 * operations aren't journalled
1562 mutex_lock(&last->b->write_lock);
1563 if (btree_node_dirty(last->b))
1564 bch_btree_node_write(last->b, writes);
1565 mutex_unlock(&last->b->write_lock);
1566 rw_unlock(true, last->b);
1569 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1570 r->b = NULL;
1572 if (need_resched()) {
1573 ret = -EAGAIN;
1574 break;
1578 for (i = r; i < r + ARRAY_SIZE(r); i++)
1579 if (!IS_ERR_OR_NULL(i->b)) {
1580 mutex_lock(&i->b->write_lock);
1581 if (btree_node_dirty(i->b))
1582 bch_btree_node_write(i->b, writes);
1583 mutex_unlock(&i->b->write_lock);
1584 rw_unlock(true, i->b);
1587 return ret;
1590 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1591 struct closure *writes, struct gc_stat *gc)
1593 struct btree *n = NULL;
1594 int ret = 0;
1595 bool should_rewrite;
1597 should_rewrite = btree_gc_mark_node(b, gc);
1598 if (should_rewrite) {
1599 n = btree_node_alloc_replacement(b, NULL);
1601 if (!IS_ERR_OR_NULL(n)) {
1602 bch_btree_node_write_sync(n);
1604 bch_btree_set_root(n);
1605 btree_node_free(b);
1606 rw_unlock(true, n);
1608 return -EINTR;
1612 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1614 if (b->level) {
1615 ret = btree_gc_recurse(b, op, writes, gc);
1616 if (ret)
1617 return ret;
1620 bkey_copy_key(&b->c->gc_done, &b->key);
1622 return ret;
1625 static void btree_gc_start(struct cache_set *c)
1627 struct cache *ca;
1628 struct bucket *b;
1629 unsigned i;
1631 if (!c->gc_mark_valid)
1632 return;
1634 mutex_lock(&c->bucket_lock);
1636 c->gc_mark_valid = 0;
1637 c->gc_done = ZERO_KEY;
1639 for_each_cache(ca, c, i)
1640 for_each_bucket(b, ca) {
1641 b->last_gc = b->gen;
1642 if (!atomic_read(&b->pin)) {
1643 SET_GC_MARK(b, 0);
1644 SET_GC_SECTORS_USED(b, 0);
1648 mutex_unlock(&c->bucket_lock);
1651 static size_t bch_btree_gc_finish(struct cache_set *c)
1653 size_t available = 0;
1654 struct bucket *b;
1655 struct cache *ca;
1656 unsigned i;
1658 mutex_lock(&c->bucket_lock);
1660 set_gc_sectors(c);
1661 c->gc_mark_valid = 1;
1662 c->need_gc = 0;
1664 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1665 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1666 GC_MARK_METADATA);
1668 /* don't reclaim buckets to which writeback keys point */
1669 rcu_read_lock();
1670 for (i = 0; i < c->nr_uuids; i++) {
1671 struct bcache_device *d = c->devices[i];
1672 struct cached_dev *dc;
1673 struct keybuf_key *w, *n;
1674 unsigned j;
1676 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1677 continue;
1678 dc = container_of(d, struct cached_dev, disk);
1680 spin_lock(&dc->writeback_keys.lock);
1681 rbtree_postorder_for_each_entry_safe(w, n,
1682 &dc->writeback_keys.keys, node)
1683 for (j = 0; j < KEY_PTRS(&w->key); j++)
1684 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1685 GC_MARK_DIRTY);
1686 spin_unlock(&dc->writeback_keys.lock);
1688 rcu_read_unlock();
1690 for_each_cache(ca, c, i) {
1691 uint64_t *i;
1693 ca->invalidate_needs_gc = 0;
1695 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1696 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1698 for (i = ca->prio_buckets;
1699 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1700 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1702 for_each_bucket(b, ca) {
1703 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1705 if (atomic_read(&b->pin))
1706 continue;
1708 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1710 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1711 available++;
1715 mutex_unlock(&c->bucket_lock);
1716 return available;
1719 static void bch_btree_gc(struct cache_set *c)
1721 int ret;
1722 unsigned long available;
1723 struct gc_stat stats;
1724 struct closure writes;
1725 struct btree_op op;
1726 uint64_t start_time = local_clock();
1728 trace_bcache_gc_start(c);
1730 memset(&stats, 0, sizeof(struct gc_stat));
1731 closure_init_stack(&writes);
1732 bch_btree_op_init(&op, SHRT_MAX);
1734 btree_gc_start(c);
1736 do {
1737 ret = btree_root(gc_root, c, &op, &writes, &stats);
1738 closure_sync(&writes);
1739 cond_resched();
1741 if (ret && ret != -EAGAIN)
1742 pr_warn("gc failed!");
1743 } while (ret);
1745 available = bch_btree_gc_finish(c);
1746 wake_up_allocators(c);
1748 bch_time_stats_update(&c->btree_gc_time, start_time);
1750 stats.key_bytes *= sizeof(uint64_t);
1751 stats.data <<= 9;
1752 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1753 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1755 trace_bcache_gc_end(c);
1757 bch_moving_gc(c);
1760 static bool gc_should_run(struct cache_set *c)
1762 struct cache *ca;
1763 unsigned i;
1765 for_each_cache(ca, c, i)
1766 if (ca->invalidate_needs_gc)
1767 return true;
1769 if (atomic_read(&c->sectors_to_gc) < 0)
1770 return true;
1772 return false;
1775 static int bch_gc_thread(void *arg)
1777 struct cache_set *c = arg;
1779 while (1) {
1780 wait_event_interruptible(c->gc_wait,
1781 kthread_should_stop() || gc_should_run(c));
1783 if (kthread_should_stop())
1784 break;
1786 set_gc_sectors(c);
1787 bch_btree_gc(c);
1790 return 0;
1793 int bch_gc_thread_start(struct cache_set *c)
1795 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1796 if (IS_ERR(c->gc_thread))
1797 return PTR_ERR(c->gc_thread);
1799 return 0;
1802 /* Initial partial gc */
1804 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1806 int ret = 0;
1807 struct bkey *k, *p = NULL;
1808 struct btree_iter iter;
1810 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1811 bch_initial_mark_key(b->c, b->level, k);
1813 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1815 if (b->level) {
1816 bch_btree_iter_init(&b->keys, &iter, NULL);
1818 do {
1819 k = bch_btree_iter_next_filter(&iter, &b->keys,
1820 bch_ptr_bad);
1821 if (k)
1822 btree_node_prefetch(b, k);
1824 if (p)
1825 ret = btree(check_recurse, p, b, op);
1827 p = k;
1828 } while (p && !ret);
1831 return ret;
1834 int bch_btree_check(struct cache_set *c)
1836 struct btree_op op;
1838 bch_btree_op_init(&op, SHRT_MAX);
1840 return btree_root(check_recurse, c, &op);
1843 void bch_initial_gc_finish(struct cache_set *c)
1845 struct cache *ca;
1846 struct bucket *b;
1847 unsigned i;
1849 bch_btree_gc_finish(c);
1851 mutex_lock(&c->bucket_lock);
1854 * We need to put some unused buckets directly on the prio freelist in
1855 * order to get the allocator thread started - it needs freed buckets in
1856 * order to rewrite the prios and gens, and it needs to rewrite prios
1857 * and gens in order to free buckets.
1859 * This is only safe for buckets that have no live data in them, which
1860 * there should always be some of.
1862 for_each_cache(ca, c, i) {
1863 for_each_bucket(b, ca) {
1864 if (fifo_full(&ca->free[RESERVE_PRIO]))
1865 break;
1867 if (bch_can_invalidate_bucket(ca, b) &&
1868 !GC_MARK(b)) {
1869 __bch_invalidate_one_bucket(ca, b);
1870 fifo_push(&ca->free[RESERVE_PRIO],
1871 b - ca->buckets);
1876 mutex_unlock(&c->bucket_lock);
1879 /* Btree insertion */
1881 static bool btree_insert_key(struct btree *b, struct bkey *k,
1882 struct bkey *replace_key)
1884 unsigned status;
1886 BUG_ON(bkey_cmp(k, &b->key) > 0);
1888 status = bch_btree_insert_key(&b->keys, k, replace_key);
1889 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1890 bch_check_keys(&b->keys, "%u for %s", status,
1891 replace_key ? "replace" : "insert");
1893 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1894 status);
1895 return true;
1896 } else
1897 return false;
1900 static size_t insert_u64s_remaining(struct btree *b)
1902 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1905 * Might land in the middle of an existing extent and have to split it
1907 if (b->keys.ops->is_extents)
1908 ret -= KEY_MAX_U64S;
1910 return max(ret, 0L);
1913 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1914 struct keylist *insert_keys,
1915 struct bkey *replace_key)
1917 bool ret = false;
1918 int oldsize = bch_count_data(&b->keys);
1920 while (!bch_keylist_empty(insert_keys)) {
1921 struct bkey *k = insert_keys->keys;
1923 if (bkey_u64s(k) > insert_u64s_remaining(b))
1924 break;
1926 if (bkey_cmp(k, &b->key) <= 0) {
1927 if (!b->level)
1928 bkey_put(b->c, k);
1930 ret |= btree_insert_key(b, k, replace_key);
1931 bch_keylist_pop_front(insert_keys);
1932 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1933 BKEY_PADDED(key) temp;
1934 bkey_copy(&temp.key, insert_keys->keys);
1936 bch_cut_back(&b->key, &temp.key);
1937 bch_cut_front(&b->key, insert_keys->keys);
1939 ret |= btree_insert_key(b, &temp.key, replace_key);
1940 break;
1941 } else {
1942 break;
1946 if (!ret)
1947 op->insert_collision = true;
1949 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1951 BUG_ON(bch_count_data(&b->keys) < oldsize);
1952 return ret;
1955 static int btree_split(struct btree *b, struct btree_op *op,
1956 struct keylist *insert_keys,
1957 struct bkey *replace_key)
1959 bool split;
1960 struct btree *n1, *n2 = NULL, *n3 = NULL;
1961 uint64_t start_time = local_clock();
1962 struct closure cl;
1963 struct keylist parent_keys;
1965 closure_init_stack(&cl);
1966 bch_keylist_init(&parent_keys);
1968 if (btree_check_reserve(b, op)) {
1969 if (!b->level)
1970 return -EINTR;
1971 else
1972 WARN(1, "insufficient reserve for split\n");
1975 n1 = btree_node_alloc_replacement(b, op);
1976 if (IS_ERR(n1))
1977 goto err;
1979 split = set_blocks(btree_bset_first(n1),
1980 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1982 if (split) {
1983 unsigned keys = 0;
1985 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1987 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1988 if (IS_ERR(n2))
1989 goto err_free1;
1991 if (!b->parent) {
1992 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1993 if (IS_ERR(n3))
1994 goto err_free2;
1997 mutex_lock(&n1->write_lock);
1998 mutex_lock(&n2->write_lock);
2000 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2003 * Has to be a linear search because we don't have an auxiliary
2004 * search tree yet
2007 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2008 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2009 keys));
2011 bkey_copy_key(&n1->key,
2012 bset_bkey_idx(btree_bset_first(n1), keys));
2013 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2015 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2016 btree_bset_first(n1)->keys = keys;
2018 memcpy(btree_bset_first(n2)->start,
2019 bset_bkey_last(btree_bset_first(n1)),
2020 btree_bset_first(n2)->keys * sizeof(uint64_t));
2022 bkey_copy_key(&n2->key, &b->key);
2024 bch_keylist_add(&parent_keys, &n2->key);
2025 bch_btree_node_write(n2, &cl);
2026 mutex_unlock(&n2->write_lock);
2027 rw_unlock(true, n2);
2028 } else {
2029 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2031 mutex_lock(&n1->write_lock);
2032 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2035 bch_keylist_add(&parent_keys, &n1->key);
2036 bch_btree_node_write(n1, &cl);
2037 mutex_unlock(&n1->write_lock);
2039 if (n3) {
2040 /* Depth increases, make a new root */
2041 mutex_lock(&n3->write_lock);
2042 bkey_copy_key(&n3->key, &MAX_KEY);
2043 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2044 bch_btree_node_write(n3, &cl);
2045 mutex_unlock(&n3->write_lock);
2047 closure_sync(&cl);
2048 bch_btree_set_root(n3);
2049 rw_unlock(true, n3);
2050 } else if (!b->parent) {
2051 /* Root filled up but didn't need to be split */
2052 closure_sync(&cl);
2053 bch_btree_set_root(n1);
2054 } else {
2055 /* Split a non root node */
2056 closure_sync(&cl);
2057 make_btree_freeing_key(b, parent_keys.top);
2058 bch_keylist_push(&parent_keys);
2060 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2061 BUG_ON(!bch_keylist_empty(&parent_keys));
2064 btree_node_free(b);
2065 rw_unlock(true, n1);
2067 bch_time_stats_update(&b->c->btree_split_time, start_time);
2069 return 0;
2070 err_free2:
2071 bkey_put(b->c, &n2->key);
2072 btree_node_free(n2);
2073 rw_unlock(true, n2);
2074 err_free1:
2075 bkey_put(b->c, &n1->key);
2076 btree_node_free(n1);
2077 rw_unlock(true, n1);
2078 err:
2079 WARN(1, "bcache: btree split failed (level %u)", b->level);
2081 if (n3 == ERR_PTR(-EAGAIN) ||
2082 n2 == ERR_PTR(-EAGAIN) ||
2083 n1 == ERR_PTR(-EAGAIN))
2084 return -EAGAIN;
2086 return -ENOMEM;
2089 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2090 struct keylist *insert_keys,
2091 atomic_t *journal_ref,
2092 struct bkey *replace_key)
2094 struct closure cl;
2096 BUG_ON(b->level && replace_key);
2098 closure_init_stack(&cl);
2100 mutex_lock(&b->write_lock);
2102 if (write_block(b) != btree_bset_last(b) &&
2103 b->keys.last_set_unwritten)
2104 bch_btree_init_next(b); /* just wrote a set */
2106 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2107 mutex_unlock(&b->write_lock);
2108 goto split;
2111 BUG_ON(write_block(b) != btree_bset_last(b));
2113 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2114 if (!b->level)
2115 bch_btree_leaf_dirty(b, journal_ref);
2116 else
2117 bch_btree_node_write(b, &cl);
2120 mutex_unlock(&b->write_lock);
2122 /* wait for btree node write if necessary, after unlock */
2123 closure_sync(&cl);
2125 return 0;
2126 split:
2127 if (current->bio_list) {
2128 op->lock = b->c->root->level + 1;
2129 return -EAGAIN;
2130 } else if (op->lock <= b->c->root->level) {
2131 op->lock = b->c->root->level + 1;
2132 return -EINTR;
2133 } else {
2134 /* Invalidated all iterators */
2135 int ret = btree_split(b, op, insert_keys, replace_key);
2137 if (bch_keylist_empty(insert_keys))
2138 return 0;
2139 else if (!ret)
2140 return -EINTR;
2141 return ret;
2145 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2146 struct bkey *check_key)
2148 int ret = -EINTR;
2149 uint64_t btree_ptr = b->key.ptr[0];
2150 unsigned long seq = b->seq;
2151 struct keylist insert;
2152 bool upgrade = op->lock == -1;
2154 bch_keylist_init(&insert);
2156 if (upgrade) {
2157 rw_unlock(false, b);
2158 rw_lock(true, b, b->level);
2160 if (b->key.ptr[0] != btree_ptr ||
2161 b->seq != seq + 1) {
2162 op->lock = b->level;
2163 goto out;
2167 SET_KEY_PTRS(check_key, 1);
2168 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2170 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2172 bch_keylist_add(&insert, check_key);
2174 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2176 BUG_ON(!ret && !bch_keylist_empty(&insert));
2177 out:
2178 if (upgrade)
2179 downgrade_write(&b->lock);
2180 return ret;
2183 struct btree_insert_op {
2184 struct btree_op op;
2185 struct keylist *keys;
2186 atomic_t *journal_ref;
2187 struct bkey *replace_key;
2190 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2192 struct btree_insert_op *op = container_of(b_op,
2193 struct btree_insert_op, op);
2195 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2196 op->journal_ref, op->replace_key);
2197 if (ret && !bch_keylist_empty(op->keys))
2198 return ret;
2199 else
2200 return MAP_DONE;
2203 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2204 atomic_t *journal_ref, struct bkey *replace_key)
2206 struct btree_insert_op op;
2207 int ret = 0;
2209 BUG_ON(current->bio_list);
2210 BUG_ON(bch_keylist_empty(keys));
2212 bch_btree_op_init(&op.op, 0);
2213 op.keys = keys;
2214 op.journal_ref = journal_ref;
2215 op.replace_key = replace_key;
2217 while (!ret && !bch_keylist_empty(keys)) {
2218 op.op.lock = 0;
2219 ret = bch_btree_map_leaf_nodes(&op.op, c,
2220 &START_KEY(keys->keys),
2221 btree_insert_fn);
2224 if (ret) {
2225 struct bkey *k;
2227 pr_err("error %i", ret);
2229 while ((k = bch_keylist_pop(keys)))
2230 bkey_put(c, k);
2231 } else if (op.op.insert_collision)
2232 ret = -ESRCH;
2234 return ret;
2237 void bch_btree_set_root(struct btree *b)
2239 unsigned i;
2240 struct closure cl;
2242 closure_init_stack(&cl);
2244 trace_bcache_btree_set_root(b);
2246 BUG_ON(!b->written);
2248 for (i = 0; i < KEY_PTRS(&b->key); i++)
2249 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2251 mutex_lock(&b->c->bucket_lock);
2252 list_del_init(&b->list);
2253 mutex_unlock(&b->c->bucket_lock);
2255 b->c->root = b;
2257 bch_journal_meta(b->c, &cl);
2258 closure_sync(&cl);
2261 /* Map across nodes or keys */
2263 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2264 struct bkey *from,
2265 btree_map_nodes_fn *fn, int flags)
2267 int ret = MAP_CONTINUE;
2269 if (b->level) {
2270 struct bkey *k;
2271 struct btree_iter iter;
2273 bch_btree_iter_init(&b->keys, &iter, from);
2275 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2276 bch_ptr_bad))) {
2277 ret = btree(map_nodes_recurse, k, b,
2278 op, from, fn, flags);
2279 from = NULL;
2281 if (ret != MAP_CONTINUE)
2282 return ret;
2286 if (!b->level || flags == MAP_ALL_NODES)
2287 ret = fn(op, b);
2289 return ret;
2292 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2293 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2295 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2298 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2299 struct bkey *from, btree_map_keys_fn *fn,
2300 int flags)
2302 int ret = MAP_CONTINUE;
2303 struct bkey *k;
2304 struct btree_iter iter;
2306 bch_btree_iter_init(&b->keys, &iter, from);
2308 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2309 ret = !b->level
2310 ? fn(op, b, k)
2311 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2312 from = NULL;
2314 if (ret != MAP_CONTINUE)
2315 return ret;
2318 if (!b->level && (flags & MAP_END_KEY))
2319 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2320 KEY_OFFSET(&b->key), 0));
2322 return ret;
2325 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2326 struct bkey *from, btree_map_keys_fn *fn, int flags)
2328 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2331 /* Keybuf code */
2333 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2335 /* Overlapping keys compare equal */
2336 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2337 return -1;
2338 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2339 return 1;
2340 return 0;
2343 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2344 struct keybuf_key *r)
2346 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2349 struct refill {
2350 struct btree_op op;
2351 unsigned nr_found;
2352 struct keybuf *buf;
2353 struct bkey *end;
2354 keybuf_pred_fn *pred;
2357 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2358 struct bkey *k)
2360 struct refill *refill = container_of(op, struct refill, op);
2361 struct keybuf *buf = refill->buf;
2362 int ret = MAP_CONTINUE;
2364 if (bkey_cmp(k, refill->end) >= 0) {
2365 ret = MAP_DONE;
2366 goto out;
2369 if (!KEY_SIZE(k)) /* end key */
2370 goto out;
2372 if (refill->pred(buf, k)) {
2373 struct keybuf_key *w;
2375 spin_lock(&buf->lock);
2377 w = array_alloc(&buf->freelist);
2378 if (!w) {
2379 spin_unlock(&buf->lock);
2380 return MAP_DONE;
2383 w->private = NULL;
2384 bkey_copy(&w->key, k);
2386 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2387 array_free(&buf->freelist, w);
2388 else
2389 refill->nr_found++;
2391 if (array_freelist_empty(&buf->freelist))
2392 ret = MAP_DONE;
2394 spin_unlock(&buf->lock);
2396 out:
2397 buf->last_scanned = *k;
2398 return ret;
2401 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2402 struct bkey *end, keybuf_pred_fn *pred)
2404 struct bkey start = buf->last_scanned;
2405 struct refill refill;
2407 cond_resched();
2409 bch_btree_op_init(&refill.op, -1);
2410 refill.nr_found = 0;
2411 refill.buf = buf;
2412 refill.end = end;
2413 refill.pred = pred;
2415 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2416 refill_keybuf_fn, MAP_END_KEY);
2418 trace_bcache_keyscan(refill.nr_found,
2419 KEY_INODE(&start), KEY_OFFSET(&start),
2420 KEY_INODE(&buf->last_scanned),
2421 KEY_OFFSET(&buf->last_scanned));
2423 spin_lock(&buf->lock);
2425 if (!RB_EMPTY_ROOT(&buf->keys)) {
2426 struct keybuf_key *w;
2427 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2428 buf->start = START_KEY(&w->key);
2430 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2431 buf->end = w->key;
2432 } else {
2433 buf->start = MAX_KEY;
2434 buf->end = MAX_KEY;
2437 spin_unlock(&buf->lock);
2440 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2442 rb_erase(&w->node, &buf->keys);
2443 array_free(&buf->freelist, w);
2446 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2448 spin_lock(&buf->lock);
2449 __bch_keybuf_del(buf, w);
2450 spin_unlock(&buf->lock);
2453 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2454 struct bkey *end)
2456 bool ret = false;
2457 struct keybuf_key *p, *w, s;
2458 s.key = *start;
2460 if (bkey_cmp(end, &buf->start) <= 0 ||
2461 bkey_cmp(start, &buf->end) >= 0)
2462 return false;
2464 spin_lock(&buf->lock);
2465 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2467 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2468 p = w;
2469 w = RB_NEXT(w, node);
2471 if (p->private)
2472 ret = true;
2473 else
2474 __bch_keybuf_del(buf, p);
2477 spin_unlock(&buf->lock);
2478 return ret;
2481 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2483 struct keybuf_key *w;
2484 spin_lock(&buf->lock);
2486 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2488 while (w && w->private)
2489 w = RB_NEXT(w, node);
2491 if (w)
2492 w->private = ERR_PTR(-EINTR);
2494 spin_unlock(&buf->lock);
2495 return w;
2498 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2499 struct keybuf *buf,
2500 struct bkey *end,
2501 keybuf_pred_fn *pred)
2503 struct keybuf_key *ret;
2505 while (1) {
2506 ret = bch_keybuf_next(buf);
2507 if (ret)
2508 break;
2510 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2511 pr_debug("scan finished");
2512 break;
2515 bch_refill_keybuf(c, buf, end, pred);
2518 return ret;
2521 void bch_keybuf_init(struct keybuf *buf)
2523 buf->last_scanned = MAX_KEY;
2524 buf->keys = RB_ROOT;
2526 spin_lock_init(&buf->lock);
2527 array_allocator_init(&buf->freelist);