sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / md / bcache / writeback.c
blob69e1ae59cab8b9755d33c77e4435cabce634dce6
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <trace/events/bcache.h>
18 /* Rate limiting */
20 static void __update_writeback_rate(struct cached_dev *dc)
22 struct cache_set *c = dc->disk.c;
23 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
24 uint64_t cache_dirty_target =
25 div_u64(cache_sectors * dc->writeback_percent, 100);
27 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
28 c->cached_dev_sectors);
30 /* PD controller */
32 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
33 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
34 int64_t proportional = dirty - target;
35 int64_t change;
37 dc->disk.sectors_dirty_last = dirty;
39 /* Scale to sectors per second */
41 proportional *= dc->writeback_rate_update_seconds;
42 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
44 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
46 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
47 (dc->writeback_rate_d_term /
48 dc->writeback_rate_update_seconds) ?: 1, 0);
50 derivative *= dc->writeback_rate_d_term;
51 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
53 change = proportional + derivative;
55 /* Don't increase writeback rate if the device isn't keeping up */
56 if (change > 0 &&
57 time_after64(local_clock(),
58 dc->writeback_rate.next + NSEC_PER_MSEC))
59 change = 0;
61 dc->writeback_rate.rate =
62 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
63 1, NSEC_PER_MSEC);
65 dc->writeback_rate_proportional = proportional;
66 dc->writeback_rate_derivative = derivative;
67 dc->writeback_rate_change = change;
68 dc->writeback_rate_target = target;
71 static void update_writeback_rate(struct work_struct *work)
73 struct cached_dev *dc = container_of(to_delayed_work(work),
74 struct cached_dev,
75 writeback_rate_update);
77 down_read(&dc->writeback_lock);
79 if (atomic_read(&dc->has_dirty) &&
80 dc->writeback_percent)
81 __update_writeback_rate(dc);
83 up_read(&dc->writeback_lock);
85 schedule_delayed_work(&dc->writeback_rate_update,
86 dc->writeback_rate_update_seconds * HZ);
89 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
91 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
92 !dc->writeback_percent)
93 return 0;
95 return bch_next_delay(&dc->writeback_rate, sectors);
98 struct dirty_io {
99 struct closure cl;
100 struct cached_dev *dc;
101 struct bio bio;
104 static void dirty_init(struct keybuf_key *w)
106 struct dirty_io *io = w->private;
107 struct bio *bio = &io->bio;
109 bio_init(bio, bio->bi_inline_vecs,
110 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
111 if (!io->dc->writeback_percent)
112 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
114 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
115 bio->bi_private = w;
116 bch_bio_map(bio, NULL);
119 static void dirty_io_destructor(struct closure *cl)
121 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
122 kfree(io);
125 static void write_dirty_finish(struct closure *cl)
127 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
128 struct keybuf_key *w = io->bio.bi_private;
129 struct cached_dev *dc = io->dc;
131 bio_free_pages(&io->bio);
133 /* This is kind of a dumb way of signalling errors. */
134 if (KEY_DIRTY(&w->key)) {
135 int ret;
136 unsigned i;
137 struct keylist keys;
139 bch_keylist_init(&keys);
141 bkey_copy(keys.top, &w->key);
142 SET_KEY_DIRTY(keys.top, false);
143 bch_keylist_push(&keys);
145 for (i = 0; i < KEY_PTRS(&w->key); i++)
146 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
148 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
150 if (ret)
151 trace_bcache_writeback_collision(&w->key);
153 atomic_long_inc(ret
154 ? &dc->disk.c->writeback_keys_failed
155 : &dc->disk.c->writeback_keys_done);
158 bch_keybuf_del(&dc->writeback_keys, w);
159 up(&dc->in_flight);
161 closure_return_with_destructor(cl, dirty_io_destructor);
164 static void dirty_endio(struct bio *bio)
166 struct keybuf_key *w = bio->bi_private;
167 struct dirty_io *io = w->private;
169 if (bio->bi_error)
170 SET_KEY_DIRTY(&w->key, false);
172 closure_put(&io->cl);
175 static void write_dirty(struct closure *cl)
177 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
178 struct keybuf_key *w = io->bio.bi_private;
180 dirty_init(w);
181 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
182 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
183 io->bio.bi_bdev = io->dc->bdev;
184 io->bio.bi_end_io = dirty_endio;
186 closure_bio_submit(&io->bio, cl);
188 continue_at(cl, write_dirty_finish, system_wq);
191 static void read_dirty_endio(struct bio *bio)
193 struct keybuf_key *w = bio->bi_private;
194 struct dirty_io *io = w->private;
196 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
197 bio->bi_error, "reading dirty data from cache");
199 dirty_endio(bio);
202 static void read_dirty_submit(struct closure *cl)
204 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
206 closure_bio_submit(&io->bio, cl);
208 continue_at(cl, write_dirty, system_wq);
211 static void read_dirty(struct cached_dev *dc)
213 unsigned delay = 0;
214 struct keybuf_key *w;
215 struct dirty_io *io;
216 struct closure cl;
218 closure_init_stack(&cl);
221 * XXX: if we error, background writeback just spins. Should use some
222 * mempools.
225 while (!kthread_should_stop()) {
227 w = bch_keybuf_next(&dc->writeback_keys);
228 if (!w)
229 break;
231 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
233 if (KEY_START(&w->key) != dc->last_read ||
234 jiffies_to_msecs(delay) > 50)
235 while (!kthread_should_stop() && delay)
236 delay = schedule_timeout_interruptible(delay);
238 dc->last_read = KEY_OFFSET(&w->key);
240 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
241 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
242 GFP_KERNEL);
243 if (!io)
244 goto err;
246 w->private = io;
247 io->dc = dc;
249 dirty_init(w);
250 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
251 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
252 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
253 &w->key, 0)->bdev;
254 io->bio.bi_end_io = read_dirty_endio;
256 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
257 goto err_free;
259 trace_bcache_writeback(&w->key);
261 down(&dc->in_flight);
262 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
264 delay = writeback_delay(dc, KEY_SIZE(&w->key));
267 if (0) {
268 err_free:
269 kfree(w->private);
270 err:
271 bch_keybuf_del(&dc->writeback_keys, w);
275 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
276 * freed) before refilling again
278 closure_sync(&cl);
281 /* Scan for dirty data */
283 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
284 uint64_t offset, int nr_sectors)
286 struct bcache_device *d = c->devices[inode];
287 unsigned stripe_offset, stripe, sectors_dirty;
289 if (!d)
290 return;
292 stripe = offset_to_stripe(d, offset);
293 stripe_offset = offset & (d->stripe_size - 1);
295 while (nr_sectors) {
296 int s = min_t(unsigned, abs(nr_sectors),
297 d->stripe_size - stripe_offset);
299 if (nr_sectors < 0)
300 s = -s;
302 if (stripe >= d->nr_stripes)
303 return;
305 sectors_dirty = atomic_add_return(s,
306 d->stripe_sectors_dirty + stripe);
307 if (sectors_dirty == d->stripe_size)
308 set_bit(stripe, d->full_dirty_stripes);
309 else
310 clear_bit(stripe, d->full_dirty_stripes);
312 nr_sectors -= s;
313 stripe_offset = 0;
314 stripe++;
318 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
320 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
322 BUG_ON(KEY_INODE(k) != dc->disk.id);
324 return KEY_DIRTY(k);
327 static void refill_full_stripes(struct cached_dev *dc)
329 struct keybuf *buf = &dc->writeback_keys;
330 unsigned start_stripe, stripe, next_stripe;
331 bool wrapped = false;
333 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
335 if (stripe >= dc->disk.nr_stripes)
336 stripe = 0;
338 start_stripe = stripe;
340 while (1) {
341 stripe = find_next_bit(dc->disk.full_dirty_stripes,
342 dc->disk.nr_stripes, stripe);
344 if (stripe == dc->disk.nr_stripes)
345 goto next;
347 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
348 dc->disk.nr_stripes, stripe);
350 buf->last_scanned = KEY(dc->disk.id,
351 stripe * dc->disk.stripe_size, 0);
353 bch_refill_keybuf(dc->disk.c, buf,
354 &KEY(dc->disk.id,
355 next_stripe * dc->disk.stripe_size, 0),
356 dirty_pred);
358 if (array_freelist_empty(&buf->freelist))
359 return;
361 stripe = next_stripe;
362 next:
363 if (wrapped && stripe > start_stripe)
364 return;
366 if (stripe == dc->disk.nr_stripes) {
367 stripe = 0;
368 wrapped = true;
374 * Returns true if we scanned the entire disk
376 static bool refill_dirty(struct cached_dev *dc)
378 struct keybuf *buf = &dc->writeback_keys;
379 struct bkey start = KEY(dc->disk.id, 0, 0);
380 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
381 struct bkey start_pos;
384 * make sure keybuf pos is inside the range for this disk - at bringup
385 * we might not be attached yet so this disk's inode nr isn't
386 * initialized then
388 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
389 bkey_cmp(&buf->last_scanned, &end) > 0)
390 buf->last_scanned = start;
392 if (dc->partial_stripes_expensive) {
393 refill_full_stripes(dc);
394 if (array_freelist_empty(&buf->freelist))
395 return false;
398 start_pos = buf->last_scanned;
399 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
401 if (bkey_cmp(&buf->last_scanned, &end) < 0)
402 return false;
405 * If we get to the end start scanning again from the beginning, and
406 * only scan up to where we initially started scanning from:
408 buf->last_scanned = start;
409 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
411 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
414 static int bch_writeback_thread(void *arg)
416 struct cached_dev *dc = arg;
417 bool searched_full_index;
419 while (!kthread_should_stop()) {
420 down_write(&dc->writeback_lock);
421 if (!atomic_read(&dc->has_dirty) ||
422 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
423 !dc->writeback_running)) {
424 up_write(&dc->writeback_lock);
425 set_current_state(TASK_INTERRUPTIBLE);
427 if (kthread_should_stop())
428 return 0;
430 schedule();
431 continue;
434 searched_full_index = refill_dirty(dc);
436 if (searched_full_index &&
437 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
438 atomic_set(&dc->has_dirty, 0);
439 cached_dev_put(dc);
440 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
441 bch_write_bdev_super(dc, NULL);
444 up_write(&dc->writeback_lock);
446 bch_ratelimit_reset(&dc->writeback_rate);
447 read_dirty(dc);
449 if (searched_full_index) {
450 unsigned delay = dc->writeback_delay * HZ;
452 while (delay &&
453 !kthread_should_stop() &&
454 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
455 delay = schedule_timeout_interruptible(delay);
459 return 0;
462 /* Init */
464 struct sectors_dirty_init {
465 struct btree_op op;
466 unsigned inode;
469 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
470 struct bkey *k)
472 struct sectors_dirty_init *op = container_of(_op,
473 struct sectors_dirty_init, op);
474 if (KEY_INODE(k) > op->inode)
475 return MAP_DONE;
477 if (KEY_DIRTY(k))
478 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
479 KEY_START(k), KEY_SIZE(k));
481 return MAP_CONTINUE;
484 void bch_sectors_dirty_init(struct cached_dev *dc)
486 struct sectors_dirty_init op;
488 bch_btree_op_init(&op.op, -1);
489 op.inode = dc->disk.id;
491 bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
492 sectors_dirty_init_fn, 0);
494 dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
497 void bch_cached_dev_writeback_init(struct cached_dev *dc)
499 sema_init(&dc->in_flight, 64);
500 init_rwsem(&dc->writeback_lock);
501 bch_keybuf_init(&dc->writeback_keys);
503 dc->writeback_metadata = true;
504 dc->writeback_running = true;
505 dc->writeback_percent = 10;
506 dc->writeback_delay = 30;
507 dc->writeback_rate.rate = 1024;
509 dc->writeback_rate_update_seconds = 5;
510 dc->writeback_rate_d_term = 30;
511 dc->writeback_rate_p_term_inverse = 6000;
513 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
516 int bch_cached_dev_writeback_start(struct cached_dev *dc)
518 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
519 "bcache_writeback");
520 if (IS_ERR(dc->writeback_thread))
521 return PTR_ERR(dc->writeback_thread);
523 schedule_delayed_work(&dc->writeback_rate_update,
524 dc->writeback_rate_update_seconds * HZ);
526 bch_writeback_queue(dc);
528 return 0;