2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
50 /* when we get a read error on a read-only array, we redirect to another
51 * device without failing the first device, or trying to over-write to
52 * correct the read error. To keep track of bad blocks on a per-bio
53 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
55 #define IO_BLOCKED ((struct bio *)1)
56 /* When we successfully write to a known bad-block, we need to remove the
57 * bad-block marking which must be done from process context. So we record
58 * the success by setting devs[n].bio to IO_MADE_GOOD
60 #define IO_MADE_GOOD ((struct bio *)2)
62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
64 /* When there are this many requests queue to be written by
65 * the raid1 thread, we become 'congested' to provide back-pressure
68 static int max_queued_requests
= 1024;
70 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
72 static void lower_barrier(struct r1conf
*conf
);
74 #define raid1_log(md, fmt, args...) \
75 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
77 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
79 struct pool_info
*pi
= data
;
80 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
82 /* allocate a r1bio with room for raid_disks entries in the bios array */
83 return kzalloc(size
, gfp_flags
);
86 static void r1bio_pool_free(void *r1_bio
, void *data
)
91 #define RESYNC_BLOCK_SIZE (64*1024)
92 #define RESYNC_DEPTH 32
93 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
94 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
95 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
96 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
97 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
98 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
99 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
101 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
103 struct pool_info
*pi
= data
;
104 struct r1bio
*r1_bio
;
109 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
114 * Allocate bios : 1 for reading, n-1 for writing
116 for (j
= pi
->raid_disks
; j
-- ; ) {
117 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
120 r1_bio
->bios
[j
] = bio
;
123 * Allocate RESYNC_PAGES data pages and attach them to
125 * If this is a user-requested check/repair, allocate
126 * RESYNC_PAGES for each bio.
128 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
129 need_pages
= pi
->raid_disks
;
132 for (j
= 0; j
< need_pages
; j
++) {
133 bio
= r1_bio
->bios
[j
];
134 bio
->bi_vcnt
= RESYNC_PAGES
;
136 if (bio_alloc_pages(bio
, gfp_flags
))
139 /* If not user-requests, copy the page pointers to all bios */
140 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
141 for (i
=0; i
<RESYNC_PAGES
; i
++)
142 for (j
=1; j
<pi
->raid_disks
; j
++)
143 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
144 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
147 r1_bio
->master_bio
= NULL
;
153 bio_free_pages(r1_bio
->bios
[j
]);
156 while (++j
< pi
->raid_disks
)
157 bio_put(r1_bio
->bios
[j
]);
158 r1bio_pool_free(r1_bio
, data
);
162 static void r1buf_pool_free(void *__r1_bio
, void *data
)
164 struct pool_info
*pi
= data
;
166 struct r1bio
*r1bio
= __r1_bio
;
168 for (i
= 0; i
< RESYNC_PAGES
; i
++)
169 for (j
= pi
->raid_disks
; j
-- ;) {
171 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
172 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
173 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
175 for (i
=0 ; i
< pi
->raid_disks
; i
++)
176 bio_put(r1bio
->bios
[i
]);
178 r1bio_pool_free(r1bio
, data
);
181 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
185 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
186 struct bio
**bio
= r1_bio
->bios
+ i
;
187 if (!BIO_SPECIAL(*bio
))
193 static void free_r1bio(struct r1bio
*r1_bio
)
195 struct r1conf
*conf
= r1_bio
->mddev
->private;
197 put_all_bios(conf
, r1_bio
);
198 mempool_free(r1_bio
, conf
->r1bio_pool
);
201 static void put_buf(struct r1bio
*r1_bio
)
203 struct r1conf
*conf
= r1_bio
->mddev
->private;
206 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
207 struct bio
*bio
= r1_bio
->bios
[i
];
209 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
212 mempool_free(r1_bio
, conf
->r1buf_pool
);
217 static void reschedule_retry(struct r1bio
*r1_bio
)
220 struct mddev
*mddev
= r1_bio
->mddev
;
221 struct r1conf
*conf
= mddev
->private;
223 spin_lock_irqsave(&conf
->device_lock
, flags
);
224 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
226 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
228 wake_up(&conf
->wait_barrier
);
229 md_wakeup_thread(mddev
->thread
);
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
237 static void call_bio_endio(struct r1bio
*r1_bio
)
239 struct bio
*bio
= r1_bio
->master_bio
;
241 struct r1conf
*conf
= r1_bio
->mddev
->private;
242 sector_t start_next_window
= r1_bio
->start_next_window
;
243 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
245 if (bio
->bi_phys_segments
) {
247 spin_lock_irqsave(&conf
->device_lock
, flags
);
248 bio
->bi_phys_segments
--;
249 done
= (bio
->bi_phys_segments
== 0);
250 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
255 wake_up(&conf
->wait_barrier
);
259 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
260 bio
->bi_error
= -EIO
;
265 * Wake up any possible resync thread that waits for the device
268 allow_barrier(conf
, start_next_window
, bi_sector
);
272 static void raid_end_bio_io(struct r1bio
*r1_bio
)
274 struct bio
*bio
= r1_bio
->master_bio
;
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
280 (unsigned long long) bio
->bi_iter
.bi_sector
,
281 (unsigned long long) bio_end_sector(bio
) - 1);
283 call_bio_endio(r1_bio
);
289 * Update disk head position estimator based on IRQ completion info.
291 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
293 struct r1conf
*conf
= r1_bio
->mddev
->private;
295 conf
->mirrors
[disk
].head_position
=
296 r1_bio
->sector
+ (r1_bio
->sectors
);
300 * Find the disk number which triggered given bio
302 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
305 struct r1conf
*conf
= r1_bio
->mddev
->private;
306 int raid_disks
= conf
->raid_disks
;
308 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
309 if (r1_bio
->bios
[mirror
] == bio
)
312 BUG_ON(mirror
== raid_disks
* 2);
313 update_head_pos(mirror
, r1_bio
);
318 static void raid1_end_read_request(struct bio
*bio
)
320 int uptodate
= !bio
->bi_error
;
321 struct r1bio
*r1_bio
= bio
->bi_private
;
322 struct r1conf
*conf
= r1_bio
->mddev
->private;
323 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
326 * this branch is our 'one mirror IO has finished' event handler:
328 update_head_pos(r1_bio
->read_disk
, r1_bio
);
331 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
332 else if (test_bit(FailFast
, &rdev
->flags
) &&
333 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
334 /* This was a fail-fast read so we definitely
338 /* If all other devices have failed, we want to return
339 * the error upwards rather than fail the last device.
340 * Here we redefine "uptodate" to mean "Don't want to retry"
343 spin_lock_irqsave(&conf
->device_lock
, flags
);
344 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
345 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
346 test_bit(In_sync
, &rdev
->flags
)))
348 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
352 raid_end_bio_io(r1_bio
);
353 rdev_dec_pending(rdev
, conf
->mddev
);
358 char b
[BDEVNAME_SIZE
];
359 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
361 bdevname(rdev
->bdev
, b
),
362 (unsigned long long)r1_bio
->sector
);
363 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
364 reschedule_retry(r1_bio
);
365 /* don't drop the reference on read_disk yet */
369 static void close_write(struct r1bio
*r1_bio
)
371 /* it really is the end of this request */
372 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
373 /* free extra copy of the data pages */
374 int i
= r1_bio
->behind_page_count
;
376 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
377 kfree(r1_bio
->behind_bvecs
);
378 r1_bio
->behind_bvecs
= NULL
;
380 /* clear the bitmap if all writes complete successfully */
381 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
383 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
384 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
385 md_write_end(r1_bio
->mddev
);
388 static void r1_bio_write_done(struct r1bio
*r1_bio
)
390 if (!atomic_dec_and_test(&r1_bio
->remaining
))
393 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
394 reschedule_retry(r1_bio
);
397 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
398 reschedule_retry(r1_bio
);
400 raid_end_bio_io(r1_bio
);
404 static void raid1_end_write_request(struct bio
*bio
)
406 struct r1bio
*r1_bio
= bio
->bi_private
;
407 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
408 struct r1conf
*conf
= r1_bio
->mddev
->private;
409 struct bio
*to_put
= NULL
;
410 int mirror
= find_bio_disk(r1_bio
, bio
);
411 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
414 discard_error
= bio
->bi_error
&& bio_op(bio
) == REQ_OP_DISCARD
;
417 * 'one mirror IO has finished' event handler:
419 if (bio
->bi_error
&& !discard_error
) {
420 set_bit(WriteErrorSeen
, &rdev
->flags
);
421 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
422 set_bit(MD_RECOVERY_NEEDED
, &
423 conf
->mddev
->recovery
);
425 if (test_bit(FailFast
, &rdev
->flags
) &&
426 (bio
->bi_opf
& MD_FAILFAST
) &&
427 /* We never try FailFast to WriteMostly devices */
428 !test_bit(WriteMostly
, &rdev
->flags
)) {
429 md_error(r1_bio
->mddev
, rdev
);
430 if (!test_bit(Faulty
, &rdev
->flags
))
431 /* This is the only remaining device,
432 * We need to retry the write without
435 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
437 /* Finished with this branch */
438 r1_bio
->bios
[mirror
] = NULL
;
442 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
445 * Set R1BIO_Uptodate in our master bio, so that we
446 * will return a good error code for to the higher
447 * levels even if IO on some other mirrored buffer
450 * The 'master' represents the composite IO operation
451 * to user-side. So if something waits for IO, then it
452 * will wait for the 'master' bio.
457 r1_bio
->bios
[mirror
] = NULL
;
460 * Do not set R1BIO_Uptodate if the current device is
461 * rebuilding or Faulty. This is because we cannot use
462 * such device for properly reading the data back (we could
463 * potentially use it, if the current write would have felt
464 * before rdev->recovery_offset, but for simplicity we don't
467 if (test_bit(In_sync
, &rdev
->flags
) &&
468 !test_bit(Faulty
, &rdev
->flags
))
469 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
471 /* Maybe we can clear some bad blocks. */
472 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
473 &first_bad
, &bad_sectors
) && !discard_error
) {
474 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
475 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
480 if (test_bit(WriteMostly
, &rdev
->flags
))
481 atomic_dec(&r1_bio
->behind_remaining
);
484 * In behind mode, we ACK the master bio once the I/O
485 * has safely reached all non-writemostly
486 * disks. Setting the Returned bit ensures that this
487 * gets done only once -- we don't ever want to return
488 * -EIO here, instead we'll wait
490 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
491 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
492 /* Maybe we can return now */
493 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
494 struct bio
*mbio
= r1_bio
->master_bio
;
495 pr_debug("raid1: behind end write sectors"
497 (unsigned long long) mbio
->bi_iter
.bi_sector
,
498 (unsigned long long) bio_end_sector(mbio
) - 1);
499 call_bio_endio(r1_bio
);
503 if (r1_bio
->bios
[mirror
] == NULL
)
504 rdev_dec_pending(rdev
, conf
->mddev
);
507 * Let's see if all mirrored write operations have finished
510 r1_bio_write_done(r1_bio
);
517 * This routine returns the disk from which the requested read should
518 * be done. There is a per-array 'next expected sequential IO' sector
519 * number - if this matches on the next IO then we use the last disk.
520 * There is also a per-disk 'last know head position' sector that is
521 * maintained from IRQ contexts, both the normal and the resync IO
522 * completion handlers update this position correctly. If there is no
523 * perfect sequential match then we pick the disk whose head is closest.
525 * If there are 2 mirrors in the same 2 devices, performance degrades
526 * because position is mirror, not device based.
528 * The rdev for the device selected will have nr_pending incremented.
530 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
532 const sector_t this_sector
= r1_bio
->sector
;
534 int best_good_sectors
;
535 int best_disk
, best_dist_disk
, best_pending_disk
;
539 unsigned int min_pending
;
540 struct md_rdev
*rdev
;
542 int choose_next_idle
;
546 * Check if we can balance. We can balance on the whole
547 * device if no resync is going on, or below the resync window.
548 * We take the first readable disk when above the resync window.
551 sectors
= r1_bio
->sectors
;
554 best_dist
= MaxSector
;
555 best_pending_disk
= -1;
556 min_pending
= UINT_MAX
;
557 best_good_sectors
= 0;
559 choose_next_idle
= 0;
560 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
562 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
563 (mddev_is_clustered(conf
->mddev
) &&
564 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
565 this_sector
+ sectors
)))
570 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
574 unsigned int pending
;
577 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
578 if (r1_bio
->bios
[disk
] == IO_BLOCKED
580 || test_bit(Faulty
, &rdev
->flags
))
582 if (!test_bit(In_sync
, &rdev
->flags
) &&
583 rdev
->recovery_offset
< this_sector
+ sectors
)
585 if (test_bit(WriteMostly
, &rdev
->flags
)) {
586 /* Don't balance among write-mostly, just
587 * use the first as a last resort */
588 if (best_dist_disk
< 0) {
589 if (is_badblock(rdev
, this_sector
, sectors
,
590 &first_bad
, &bad_sectors
)) {
591 if (first_bad
<= this_sector
)
592 /* Cannot use this */
594 best_good_sectors
= first_bad
- this_sector
;
596 best_good_sectors
= sectors
;
597 best_dist_disk
= disk
;
598 best_pending_disk
= disk
;
602 /* This is a reasonable device to use. It might
605 if (is_badblock(rdev
, this_sector
, sectors
,
606 &first_bad
, &bad_sectors
)) {
607 if (best_dist
< MaxSector
)
608 /* already have a better device */
610 if (first_bad
<= this_sector
) {
611 /* cannot read here. If this is the 'primary'
612 * device, then we must not read beyond
613 * bad_sectors from another device..
615 bad_sectors
-= (this_sector
- first_bad
);
616 if (choose_first
&& sectors
> bad_sectors
)
617 sectors
= bad_sectors
;
618 if (best_good_sectors
> sectors
)
619 best_good_sectors
= sectors
;
622 sector_t good_sectors
= first_bad
- this_sector
;
623 if (good_sectors
> best_good_sectors
) {
624 best_good_sectors
= good_sectors
;
632 best_good_sectors
= sectors
;
635 /* At least two disks to choose from so failfast is OK */
636 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
638 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
639 has_nonrot_disk
|= nonrot
;
640 pending
= atomic_read(&rdev
->nr_pending
);
641 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
646 /* Don't change to another disk for sequential reads */
647 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
649 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
650 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
654 * If buffered sequential IO size exceeds optimal
655 * iosize, check if there is idle disk. If yes, choose
656 * the idle disk. read_balance could already choose an
657 * idle disk before noticing it's a sequential IO in
658 * this disk. This doesn't matter because this disk
659 * will idle, next time it will be utilized after the
660 * first disk has IO size exceeds optimal iosize. In
661 * this way, iosize of the first disk will be optimal
662 * iosize at least. iosize of the second disk might be
663 * small, but not a big deal since when the second disk
664 * starts IO, the first disk is likely still busy.
666 if (nonrot
&& opt_iosize
> 0 &&
667 mirror
->seq_start
!= MaxSector
&&
668 mirror
->next_seq_sect
> opt_iosize
&&
669 mirror
->next_seq_sect
- opt_iosize
>=
671 choose_next_idle
= 1;
677 if (choose_next_idle
)
680 if (min_pending
> pending
) {
681 min_pending
= pending
;
682 best_pending_disk
= disk
;
685 if (dist
< best_dist
) {
687 best_dist_disk
= disk
;
692 * If all disks are rotational, choose the closest disk. If any disk is
693 * non-rotational, choose the disk with less pending request even the
694 * disk is rotational, which might/might not be optimal for raids with
695 * mixed ratation/non-rotational disks depending on workload.
697 if (best_disk
== -1) {
698 if (has_nonrot_disk
|| min_pending
== 0)
699 best_disk
= best_pending_disk
;
701 best_disk
= best_dist_disk
;
704 if (best_disk
>= 0) {
705 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
708 atomic_inc(&rdev
->nr_pending
);
709 sectors
= best_good_sectors
;
711 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
712 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
714 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
717 *max_sectors
= sectors
;
722 static int raid1_congested(struct mddev
*mddev
, int bits
)
724 struct r1conf
*conf
= mddev
->private;
727 if ((bits
& (1 << WB_async_congested
)) &&
728 conf
->pending_count
>= max_queued_requests
)
732 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
733 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
734 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
735 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
739 /* Note the '|| 1' - when read_balance prefers
740 * non-congested targets, it can be removed
742 if ((bits
& (1 << WB_async_congested
)) || 1)
743 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
745 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
752 static void flush_pending_writes(struct r1conf
*conf
)
754 /* Any writes that have been queued but are awaiting
755 * bitmap updates get flushed here.
757 spin_lock_irq(&conf
->device_lock
);
759 if (conf
->pending_bio_list
.head
) {
761 bio
= bio_list_get(&conf
->pending_bio_list
);
762 conf
->pending_count
= 0;
763 spin_unlock_irq(&conf
->device_lock
);
764 /* flush any pending bitmap writes to
765 * disk before proceeding w/ I/O */
766 bitmap_unplug(conf
->mddev
->bitmap
);
767 wake_up(&conf
->wait_barrier
);
769 while (bio
) { /* submit pending writes */
770 struct bio
*next
= bio
->bi_next
;
771 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
773 bio
->bi_bdev
= rdev
->bdev
;
774 if (test_bit(Faulty
, &rdev
->flags
)) {
775 bio
->bi_error
= -EIO
;
777 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
778 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
782 generic_make_request(bio
);
786 spin_unlock_irq(&conf
->device_lock
);
790 * Sometimes we need to suspend IO while we do something else,
791 * either some resync/recovery, or reconfigure the array.
792 * To do this we raise a 'barrier'.
793 * The 'barrier' is a counter that can be raised multiple times
794 * to count how many activities are happening which preclude
796 * We can only raise the barrier if there is no pending IO.
797 * i.e. if nr_pending == 0.
798 * We choose only to raise the barrier if no-one is waiting for the
799 * barrier to go down. This means that as soon as an IO request
800 * is ready, no other operations which require a barrier will start
801 * until the IO request has had a chance.
803 * So: regular IO calls 'wait_barrier'. When that returns there
804 * is no backgroup IO happening, It must arrange to call
805 * allow_barrier when it has finished its IO.
806 * backgroup IO calls must call raise_barrier. Once that returns
807 * there is no normal IO happeing. It must arrange to call
808 * lower_barrier when the particular background IO completes.
810 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
812 spin_lock_irq(&conf
->resync_lock
);
814 /* Wait until no block IO is waiting */
815 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
818 /* block any new IO from starting */
820 conf
->next_resync
= sector_nr
;
822 /* For these conditions we must wait:
823 * A: while the array is in frozen state
824 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
825 * the max count which allowed.
826 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
827 * next resync will reach to the window which normal bios are
829 * D: while there are any active requests in the current window.
831 wait_event_lock_irq(conf
->wait_barrier
,
832 !conf
->array_frozen
&&
833 conf
->barrier
< RESYNC_DEPTH
&&
834 conf
->current_window_requests
== 0 &&
835 (conf
->start_next_window
>=
836 conf
->next_resync
+ RESYNC_SECTORS
),
840 spin_unlock_irq(&conf
->resync_lock
);
843 static void lower_barrier(struct r1conf
*conf
)
846 BUG_ON(conf
->barrier
<= 0);
847 spin_lock_irqsave(&conf
->resync_lock
, flags
);
850 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
851 wake_up(&conf
->wait_barrier
);
854 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
858 if (conf
->array_frozen
|| !bio
)
860 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
861 if ((conf
->mddev
->curr_resync_completed
862 >= bio_end_sector(bio
)) ||
863 (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
864 <= bio
->bi_iter
.bi_sector
))
873 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
877 spin_lock_irq(&conf
->resync_lock
);
878 if (need_to_wait_for_sync(conf
, bio
)) {
880 /* Wait for the barrier to drop.
881 * However if there are already pending
882 * requests (preventing the barrier from
883 * rising completely), and the
884 * per-process bio queue isn't empty,
885 * then don't wait, as we need to empty
886 * that queue to allow conf->start_next_window
889 raid1_log(conf
->mddev
, "wait barrier");
890 wait_event_lock_irq(conf
->wait_barrier
,
891 !conf
->array_frozen
&&
893 ((conf
->start_next_window
<
894 conf
->next_resync
+ RESYNC_SECTORS
) &&
896 !bio_list_empty(current
->bio_list
))),
901 if (bio
&& bio_data_dir(bio
) == WRITE
) {
902 if (bio
->bi_iter
.bi_sector
>= conf
->next_resync
) {
903 if (conf
->start_next_window
== MaxSector
)
904 conf
->start_next_window
=
906 NEXT_NORMALIO_DISTANCE
;
908 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
909 <= bio
->bi_iter
.bi_sector
)
910 conf
->next_window_requests
++;
912 conf
->current_window_requests
++;
913 sector
= conf
->start_next_window
;
918 spin_unlock_irq(&conf
->resync_lock
);
922 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
927 spin_lock_irqsave(&conf
->resync_lock
, flags
);
929 if (start_next_window
) {
930 if (start_next_window
== conf
->start_next_window
) {
931 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
933 conf
->next_window_requests
--;
935 conf
->current_window_requests
--;
937 conf
->current_window_requests
--;
939 if (!conf
->current_window_requests
) {
940 if (conf
->next_window_requests
) {
941 conf
->current_window_requests
=
942 conf
->next_window_requests
;
943 conf
->next_window_requests
= 0;
944 conf
->start_next_window
+=
945 NEXT_NORMALIO_DISTANCE
;
947 conf
->start_next_window
= MaxSector
;
950 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
951 wake_up(&conf
->wait_barrier
);
954 static void freeze_array(struct r1conf
*conf
, int extra
)
956 /* stop syncio and normal IO and wait for everything to
958 * We wait until nr_pending match nr_queued+extra
959 * This is called in the context of one normal IO request
960 * that has failed. Thus any sync request that might be pending
961 * will be blocked by nr_pending, and we need to wait for
962 * pending IO requests to complete or be queued for re-try.
963 * Thus the number queued (nr_queued) plus this request (extra)
964 * must match the number of pending IOs (nr_pending) before
967 spin_lock_irq(&conf
->resync_lock
);
968 conf
->array_frozen
= 1;
969 raid1_log(conf
->mddev
, "wait freeze");
970 wait_event_lock_irq_cmd(conf
->wait_barrier
,
971 conf
->nr_pending
== conf
->nr_queued
+extra
,
973 flush_pending_writes(conf
));
974 spin_unlock_irq(&conf
->resync_lock
);
976 static void unfreeze_array(struct r1conf
*conf
)
978 /* reverse the effect of the freeze */
979 spin_lock_irq(&conf
->resync_lock
);
980 conf
->array_frozen
= 0;
981 wake_up(&conf
->wait_barrier
);
982 spin_unlock_irq(&conf
->resync_lock
);
985 /* duplicate the data pages for behind I/O
987 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
990 struct bio_vec
*bvec
;
991 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
993 if (unlikely(!bvecs
))
996 bio_for_each_segment_all(bvec
, bio
, i
) {
998 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
999 if (unlikely(!bvecs
[i
].bv_page
))
1001 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
1002 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
1003 kunmap(bvecs
[i
].bv_page
);
1004 kunmap(bvec
->bv_page
);
1006 r1_bio
->behind_bvecs
= bvecs
;
1007 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
1008 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1012 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1013 if (bvecs
[i
].bv_page
)
1014 put_page(bvecs
[i
].bv_page
);
1016 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1017 bio
->bi_iter
.bi_size
);
1020 struct raid1_plug_cb
{
1021 struct blk_plug_cb cb
;
1022 struct bio_list pending
;
1026 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1028 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1030 struct mddev
*mddev
= plug
->cb
.data
;
1031 struct r1conf
*conf
= mddev
->private;
1034 if (from_schedule
|| current
->bio_list
) {
1035 spin_lock_irq(&conf
->device_lock
);
1036 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1037 conf
->pending_count
+= plug
->pending_cnt
;
1038 spin_unlock_irq(&conf
->device_lock
);
1039 wake_up(&conf
->wait_barrier
);
1040 md_wakeup_thread(mddev
->thread
);
1045 /* we aren't scheduling, so we can do the write-out directly. */
1046 bio
= bio_list_get(&plug
->pending
);
1047 bitmap_unplug(mddev
->bitmap
);
1048 wake_up(&conf
->wait_barrier
);
1050 while (bio
) { /* submit pending writes */
1051 struct bio
*next
= bio
->bi_next
;
1052 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
1053 bio
->bi_next
= NULL
;
1054 bio
->bi_bdev
= rdev
->bdev
;
1055 if (test_bit(Faulty
, &rdev
->flags
)) {
1056 bio
->bi_error
= -EIO
;
1058 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1059 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1060 /* Just ignore it */
1063 generic_make_request(bio
);
1069 static void raid1_make_request(struct mddev
*mddev
, struct bio
* bio
)
1071 struct r1conf
*conf
= mddev
->private;
1072 struct raid1_info
*mirror
;
1073 struct r1bio
*r1_bio
;
1074 struct bio
*read_bio
;
1076 struct bitmap
*bitmap
;
1077 unsigned long flags
;
1078 const int op
= bio_op(bio
);
1079 const int rw
= bio_data_dir(bio
);
1080 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1081 const unsigned long do_flush_fua
= (bio
->bi_opf
&
1082 (REQ_PREFLUSH
| REQ_FUA
));
1083 struct md_rdev
*blocked_rdev
;
1084 struct blk_plug_cb
*cb
;
1085 struct raid1_plug_cb
*plug
= NULL
;
1087 int sectors_handled
;
1089 sector_t start_next_window
;
1092 * Register the new request and wait if the reconstruction
1093 * thread has put up a bar for new requests.
1094 * Continue immediately if no resync is active currently.
1097 md_write_start(mddev
, bio
); /* wait on superblock update early */
1099 if (bio_data_dir(bio
) == WRITE
&&
1100 ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1101 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1102 (mddev_is_clustered(mddev
) &&
1103 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1104 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))) {
1105 /* As the suspend_* range is controlled by
1106 * userspace, we want an interruptible
1111 flush_signals(current
);
1112 prepare_to_wait(&conf
->wait_barrier
,
1113 &w
, TASK_INTERRUPTIBLE
);
1114 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1115 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
||
1116 (mddev_is_clustered(mddev
) &&
1117 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1118 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))
1122 finish_wait(&conf
->wait_barrier
, &w
);
1125 start_next_window
= wait_barrier(conf
, bio
);
1127 bitmap
= mddev
->bitmap
;
1130 * make_request() can abort the operation when read-ahead is being
1131 * used and no empty request is available.
1134 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1136 r1_bio
->master_bio
= bio
;
1137 r1_bio
->sectors
= bio_sectors(bio
);
1139 r1_bio
->mddev
= mddev
;
1140 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1142 /* We might need to issue multiple reads to different
1143 * devices if there are bad blocks around, so we keep
1144 * track of the number of reads in bio->bi_phys_segments.
1145 * If this is 0, there is only one r1_bio and no locking
1146 * will be needed when requests complete. If it is
1147 * non-zero, then it is the number of not-completed requests.
1149 bio
->bi_phys_segments
= 0;
1150 bio_clear_flag(bio
, BIO_SEG_VALID
);
1154 * read balancing logic:
1159 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1162 /* couldn't find anywhere to read from */
1163 raid_end_bio_io(r1_bio
);
1166 mirror
= conf
->mirrors
+ rdisk
;
1168 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1170 /* Reading from a write-mostly device must
1171 * take care not to over-take any writes
1174 raid1_log(mddev
, "wait behind writes");
1175 wait_event(bitmap
->behind_wait
,
1176 atomic_read(&bitmap
->behind_writes
) == 0);
1178 r1_bio
->read_disk
= rdisk
;
1179 r1_bio
->start_next_window
= 0;
1181 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1182 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1185 r1_bio
->bios
[rdisk
] = read_bio
;
1187 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1188 mirror
->rdev
->data_offset
;
1189 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1190 read_bio
->bi_end_io
= raid1_end_read_request
;
1191 bio_set_op_attrs(read_bio
, op
, do_sync
);
1192 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1193 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1194 read_bio
->bi_opf
|= MD_FAILFAST
;
1195 read_bio
->bi_private
= r1_bio
;
1198 trace_block_bio_remap(bdev_get_queue(read_bio
->bi_bdev
),
1199 read_bio
, disk_devt(mddev
->gendisk
),
1202 if (max_sectors
< r1_bio
->sectors
) {
1203 /* could not read all from this device, so we will
1204 * need another r1_bio.
1207 sectors_handled
= (r1_bio
->sector
+ max_sectors
1208 - bio
->bi_iter
.bi_sector
);
1209 r1_bio
->sectors
= max_sectors
;
1210 spin_lock_irq(&conf
->device_lock
);
1211 if (bio
->bi_phys_segments
== 0)
1212 bio
->bi_phys_segments
= 2;
1214 bio
->bi_phys_segments
++;
1215 spin_unlock_irq(&conf
->device_lock
);
1216 /* Cannot call generic_make_request directly
1217 * as that will be queued in __make_request
1218 * and subsequent mempool_alloc might block waiting
1219 * for it. So hand bio over to raid1d.
1221 reschedule_retry(r1_bio
);
1223 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1225 r1_bio
->master_bio
= bio
;
1226 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1228 r1_bio
->mddev
= mddev
;
1229 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1233 generic_make_request(read_bio
);
1240 if (conf
->pending_count
>= max_queued_requests
) {
1241 md_wakeup_thread(mddev
->thread
);
1242 raid1_log(mddev
, "wait queued");
1243 wait_event(conf
->wait_barrier
,
1244 conf
->pending_count
< max_queued_requests
);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks
= conf
->raid_disks
* 2;
1259 r1_bio
->start_next_window
= start_next_window
;
1260 blocked_rdev
= NULL
;
1262 max_sectors
= r1_bio
->sectors
;
1263 for (i
= 0; i
< disks
; i
++) {
1264 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1265 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1266 atomic_inc(&rdev
->nr_pending
);
1267 blocked_rdev
= rdev
;
1270 r1_bio
->bios
[i
] = NULL
;
1271 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1272 if (i
< conf
->raid_disks
)
1273 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1277 atomic_inc(&rdev
->nr_pending
);
1278 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1283 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1285 &first_bad
, &bad_sectors
);
1287 /* mustn't write here until the bad block is
1289 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1290 blocked_rdev
= rdev
;
1293 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1294 /* Cannot write here at all */
1295 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1296 if (bad_sectors
< max_sectors
)
1297 /* mustn't write more than bad_sectors
1298 * to other devices yet
1300 max_sectors
= bad_sectors
;
1301 rdev_dec_pending(rdev
, mddev
);
1302 /* We don't set R1BIO_Degraded as that
1303 * only applies if the disk is
1304 * missing, so it might be re-added,
1305 * and we want to know to recover this
1307 * In this case the device is here,
1308 * and the fact that this chunk is not
1309 * in-sync is recorded in the bad
1315 int good_sectors
= first_bad
- r1_bio
->sector
;
1316 if (good_sectors
< max_sectors
)
1317 max_sectors
= good_sectors
;
1320 r1_bio
->bios
[i
] = bio
;
1324 if (unlikely(blocked_rdev
)) {
1325 /* Wait for this device to become unblocked */
1327 sector_t old
= start_next_window
;
1329 for (j
= 0; j
< i
; j
++)
1330 if (r1_bio
->bios
[j
])
1331 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1333 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1334 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1335 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1336 start_next_window
= wait_barrier(conf
, bio
);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio
->bi_phys_segments
&& old
&&
1342 old
!= start_next_window
)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf
->wait_barrier
,
1345 bio
->bi_phys_segments
== 1);
1349 if (max_sectors
< r1_bio
->sectors
) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio
->sectors
= max_sectors
;
1354 spin_lock_irq(&conf
->device_lock
);
1355 if (bio
->bi_phys_segments
== 0)
1356 bio
->bi_phys_segments
= 2;
1358 bio
->bi_phys_segments
++;
1359 spin_unlock_irq(&conf
->device_lock
);
1361 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1363 atomic_set(&r1_bio
->remaining
, 1);
1364 atomic_set(&r1_bio
->behind_remaining
, 0);
1367 for (i
= 0; i
< disks
; i
++) {
1369 if (!r1_bio
->bios
[i
])
1372 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1373 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1381 (atomic_read(&bitmap
->behind_writes
)
1382 < mddev
->bitmap_info
.max_write_behind
) &&
1383 !waitqueue_active(&bitmap
->behind_wait
))
1384 alloc_behind_pages(mbio
, r1_bio
);
1386 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1388 test_bit(R1BIO_BehindIO
,
1392 if (r1_bio
->behind_bvecs
) {
1393 struct bio_vec
*bvec
;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec
, mbio
, j
)
1400 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1401 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1402 atomic_inc(&r1_bio
->behind_remaining
);
1405 r1_bio
->bios
[i
] = mbio
;
1407 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1408 conf
->mirrors
[i
].rdev
->data_offset
);
1409 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1410 mbio
->bi_end_io
= raid1_end_write_request
;
1411 bio_set_op_attrs(mbio
, op
, do_flush_fua
| do_sync
);
1412 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1413 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1414 conf
->raid_disks
- mddev
->degraded
> 1)
1415 mbio
->bi_opf
|= MD_FAILFAST
;
1416 mbio
->bi_private
= r1_bio
;
1418 atomic_inc(&r1_bio
->remaining
);
1421 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1422 mbio
, disk_devt(mddev
->gendisk
),
1424 /* flush_pending_writes() needs access to the rdev so...*/
1425 mbio
->bi_bdev
= (void*)conf
->mirrors
[i
].rdev
;
1427 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1429 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1432 spin_lock_irqsave(&conf
->device_lock
, flags
);
1434 bio_list_add(&plug
->pending
, mbio
);
1435 plug
->pending_cnt
++;
1437 bio_list_add(&conf
->pending_bio_list
, mbio
);
1438 conf
->pending_count
++;
1440 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1442 md_wakeup_thread(mddev
->thread
);
1444 /* Mustn't call r1_bio_write_done before this next test,
1445 * as it could result in the bio being freed.
1447 if (sectors_handled
< bio_sectors(bio
)) {
1448 r1_bio_write_done(r1_bio
);
1449 /* We need another r1_bio. It has already been counted
1450 * in bio->bi_phys_segments
1452 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1453 r1_bio
->master_bio
= bio
;
1454 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1456 r1_bio
->mddev
= mddev
;
1457 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1461 r1_bio_write_done(r1_bio
);
1463 /* In case raid1d snuck in to freeze_array */
1464 wake_up(&conf
->wait_barrier
);
1467 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1469 struct r1conf
*conf
= mddev
->private;
1472 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1473 conf
->raid_disks
- mddev
->degraded
);
1475 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1476 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1477 seq_printf(seq
, "%s",
1478 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1481 seq_printf(seq
, "]");
1484 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1486 char b
[BDEVNAME_SIZE
];
1487 struct r1conf
*conf
= mddev
->private;
1488 unsigned long flags
;
1491 * If it is not operational, then we have already marked it as dead
1492 * else if it is the last working disks, ignore the error, let the
1493 * next level up know.
1494 * else mark the drive as failed
1496 spin_lock_irqsave(&conf
->device_lock
, flags
);
1497 if (test_bit(In_sync
, &rdev
->flags
)
1498 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1500 * Don't fail the drive, act as though we were just a
1501 * normal single drive.
1502 * However don't try a recovery from this drive as
1503 * it is very likely to fail.
1505 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1506 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1509 set_bit(Blocked
, &rdev
->flags
);
1510 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1512 set_bit(Faulty
, &rdev
->flags
);
1514 set_bit(Faulty
, &rdev
->flags
);
1515 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1517 * if recovery is running, make sure it aborts.
1519 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1520 set_mask_bits(&mddev
->sb_flags
, 0,
1521 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1522 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1523 "md/raid1:%s: Operation continuing on %d devices.\n",
1524 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1525 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1528 static void print_conf(struct r1conf
*conf
)
1532 pr_debug("RAID1 conf printout:\n");
1534 pr_debug("(!conf)\n");
1537 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1541 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1542 char b
[BDEVNAME_SIZE
];
1543 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1545 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1546 i
, !test_bit(In_sync
, &rdev
->flags
),
1547 !test_bit(Faulty
, &rdev
->flags
),
1548 bdevname(rdev
->bdev
,b
));
1553 static void close_sync(struct r1conf
*conf
)
1555 wait_barrier(conf
, NULL
);
1556 allow_barrier(conf
, 0, 0);
1558 mempool_destroy(conf
->r1buf_pool
);
1559 conf
->r1buf_pool
= NULL
;
1561 spin_lock_irq(&conf
->resync_lock
);
1562 conf
->next_resync
= MaxSector
- 2 * NEXT_NORMALIO_DISTANCE
;
1563 conf
->start_next_window
= MaxSector
;
1564 conf
->current_window_requests
+=
1565 conf
->next_window_requests
;
1566 conf
->next_window_requests
= 0;
1567 spin_unlock_irq(&conf
->resync_lock
);
1570 static int raid1_spare_active(struct mddev
*mddev
)
1573 struct r1conf
*conf
= mddev
->private;
1575 unsigned long flags
;
1578 * Find all failed disks within the RAID1 configuration
1579 * and mark them readable.
1580 * Called under mddev lock, so rcu protection not needed.
1581 * device_lock used to avoid races with raid1_end_read_request
1582 * which expects 'In_sync' flags and ->degraded to be consistent.
1584 spin_lock_irqsave(&conf
->device_lock
, flags
);
1585 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1586 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1587 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1589 && !test_bit(Candidate
, &repl
->flags
)
1590 && repl
->recovery_offset
== MaxSector
1591 && !test_bit(Faulty
, &repl
->flags
)
1592 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1593 /* replacement has just become active */
1595 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1598 /* Replaced device not technically
1599 * faulty, but we need to be sure
1600 * it gets removed and never re-added
1602 set_bit(Faulty
, &rdev
->flags
);
1603 sysfs_notify_dirent_safe(
1608 && rdev
->recovery_offset
== MaxSector
1609 && !test_bit(Faulty
, &rdev
->flags
)
1610 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1612 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1615 mddev
->degraded
-= count
;
1616 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1622 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1624 struct r1conf
*conf
= mddev
->private;
1627 struct raid1_info
*p
;
1629 int last
= conf
->raid_disks
- 1;
1631 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1634 if (md_integrity_add_rdev(rdev
, mddev
))
1637 if (rdev
->raid_disk
>= 0)
1638 first
= last
= rdev
->raid_disk
;
1641 * find the disk ... but prefer rdev->saved_raid_disk
1644 if (rdev
->saved_raid_disk
>= 0 &&
1645 rdev
->saved_raid_disk
>= first
&&
1646 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1647 first
= last
= rdev
->saved_raid_disk
;
1649 for (mirror
= first
; mirror
<= last
; mirror
++) {
1650 p
= conf
->mirrors
+mirror
;
1654 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1655 rdev
->data_offset
<< 9);
1657 p
->head_position
= 0;
1658 rdev
->raid_disk
= mirror
;
1660 /* As all devices are equivalent, we don't need a full recovery
1661 * if this was recently any drive of the array
1663 if (rdev
->saved_raid_disk
< 0)
1665 rcu_assign_pointer(p
->rdev
, rdev
);
1668 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1669 p
[conf
->raid_disks
].rdev
== NULL
) {
1670 /* Add this device as a replacement */
1671 clear_bit(In_sync
, &rdev
->flags
);
1672 set_bit(Replacement
, &rdev
->flags
);
1673 rdev
->raid_disk
= mirror
;
1676 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1680 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1681 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1686 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1688 struct r1conf
*conf
= mddev
->private;
1690 int number
= rdev
->raid_disk
;
1691 struct raid1_info
*p
= conf
->mirrors
+ number
;
1693 if (rdev
!= p
->rdev
)
1694 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1697 if (rdev
== p
->rdev
) {
1698 if (test_bit(In_sync
, &rdev
->flags
) ||
1699 atomic_read(&rdev
->nr_pending
)) {
1703 /* Only remove non-faulty devices if recovery
1706 if (!test_bit(Faulty
, &rdev
->flags
) &&
1707 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1708 mddev
->degraded
< conf
->raid_disks
) {
1713 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1715 if (atomic_read(&rdev
->nr_pending
)) {
1716 /* lost the race, try later */
1722 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1723 /* We just removed a device that is being replaced.
1724 * Move down the replacement. We drain all IO before
1725 * doing this to avoid confusion.
1727 struct md_rdev
*repl
=
1728 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1729 freeze_array(conf
, 0);
1730 clear_bit(Replacement
, &repl
->flags
);
1732 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1733 unfreeze_array(conf
);
1734 clear_bit(WantReplacement
, &rdev
->flags
);
1736 clear_bit(WantReplacement
, &rdev
->flags
);
1737 err
= md_integrity_register(mddev
);
1745 static void end_sync_read(struct bio
*bio
)
1747 struct r1bio
*r1_bio
= bio
->bi_private
;
1749 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1752 * we have read a block, now it needs to be re-written,
1753 * or re-read if the read failed.
1754 * We don't do much here, just schedule handling by raid1d
1757 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1759 if (atomic_dec_and_test(&r1_bio
->remaining
))
1760 reschedule_retry(r1_bio
);
1763 static void end_sync_write(struct bio
*bio
)
1765 int uptodate
= !bio
->bi_error
;
1766 struct r1bio
*r1_bio
= bio
->bi_private
;
1767 struct mddev
*mddev
= r1_bio
->mddev
;
1768 struct r1conf
*conf
= mddev
->private;
1771 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1774 sector_t sync_blocks
= 0;
1775 sector_t s
= r1_bio
->sector
;
1776 long sectors_to_go
= r1_bio
->sectors
;
1777 /* make sure these bits doesn't get cleared. */
1779 bitmap_end_sync(mddev
->bitmap
, s
,
1782 sectors_to_go
-= sync_blocks
;
1783 } while (sectors_to_go
> 0);
1784 set_bit(WriteErrorSeen
, &rdev
->flags
);
1785 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1786 set_bit(MD_RECOVERY_NEEDED
, &
1788 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1789 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1790 &first_bad
, &bad_sectors
) &&
1791 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1794 &first_bad
, &bad_sectors
)
1796 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1798 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1799 int s
= r1_bio
->sectors
;
1800 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1801 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1802 reschedule_retry(r1_bio
);
1805 md_done_sync(mddev
, s
, uptodate
);
1810 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1811 int sectors
, struct page
*page
, int rw
)
1813 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1817 set_bit(WriteErrorSeen
, &rdev
->flags
);
1818 if (!test_and_set_bit(WantReplacement
,
1820 set_bit(MD_RECOVERY_NEEDED
, &
1821 rdev
->mddev
->recovery
);
1823 /* need to record an error - either for the block or the device */
1824 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1825 md_error(rdev
->mddev
, rdev
);
1829 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1831 /* Try some synchronous reads of other devices to get
1832 * good data, much like with normal read errors. Only
1833 * read into the pages we already have so we don't
1834 * need to re-issue the read request.
1835 * We don't need to freeze the array, because being in an
1836 * active sync request, there is no normal IO, and
1837 * no overlapping syncs.
1838 * We don't need to check is_badblock() again as we
1839 * made sure that anything with a bad block in range
1840 * will have bi_end_io clear.
1842 struct mddev
*mddev
= r1_bio
->mddev
;
1843 struct r1conf
*conf
= mddev
->private;
1844 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1845 sector_t sect
= r1_bio
->sector
;
1846 int sectors
= r1_bio
->sectors
;
1848 struct md_rdev
*rdev
;
1850 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1851 if (test_bit(FailFast
, &rdev
->flags
)) {
1852 /* Don't try recovering from here - just fail it
1853 * ... unless it is the last working device of course */
1854 md_error(mddev
, rdev
);
1855 if (test_bit(Faulty
, &rdev
->flags
))
1856 /* Don't try to read from here, but make sure
1857 * put_buf does it's thing
1859 bio
->bi_end_io
= end_sync_write
;
1864 int d
= r1_bio
->read_disk
;
1868 if (s
> (PAGE_SIZE
>>9))
1871 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1872 /* No rcu protection needed here devices
1873 * can only be removed when no resync is
1874 * active, and resync is currently active
1876 rdev
= conf
->mirrors
[d
].rdev
;
1877 if (sync_page_io(rdev
, sect
, s
<<9,
1878 bio
->bi_io_vec
[idx
].bv_page
,
1879 REQ_OP_READ
, 0, false)) {
1885 if (d
== conf
->raid_disks
* 2)
1887 } while (!success
&& d
!= r1_bio
->read_disk
);
1890 char b
[BDEVNAME_SIZE
];
1892 /* Cannot read from anywhere, this block is lost.
1893 * Record a bad block on each device. If that doesn't
1894 * work just disable and interrupt the recovery.
1895 * Don't fail devices as that won't really help.
1897 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1899 bdevname(bio
->bi_bdev
, b
),
1900 (unsigned long long)r1_bio
->sector
);
1901 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1902 rdev
= conf
->mirrors
[d
].rdev
;
1903 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1905 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1909 conf
->recovery_disabled
=
1910 mddev
->recovery_disabled
;
1911 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1912 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1924 /* write it back and re-read */
1925 while (d
!= r1_bio
->read_disk
) {
1927 d
= conf
->raid_disks
* 2;
1929 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1931 rdev
= conf
->mirrors
[d
].rdev
;
1932 if (r1_sync_page_io(rdev
, sect
, s
,
1933 bio
->bi_io_vec
[idx
].bv_page
,
1935 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1936 rdev_dec_pending(rdev
, mddev
);
1940 while (d
!= r1_bio
->read_disk
) {
1942 d
= conf
->raid_disks
* 2;
1944 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1946 rdev
= conf
->mirrors
[d
].rdev
;
1947 if (r1_sync_page_io(rdev
, sect
, s
,
1948 bio
->bi_io_vec
[idx
].bv_page
,
1950 atomic_add(s
, &rdev
->corrected_errors
);
1956 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1961 static void process_checks(struct r1bio
*r1_bio
)
1963 /* We have read all readable devices. If we haven't
1964 * got the block, then there is no hope left.
1965 * If we have, then we want to do a comparison
1966 * and skip the write if everything is the same.
1967 * If any blocks failed to read, then we need to
1968 * attempt an over-write
1970 struct mddev
*mddev
= r1_bio
->mddev
;
1971 struct r1conf
*conf
= mddev
->private;
1976 /* Fix variable parts of all bios */
1977 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1978 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1982 struct bio
*b
= r1_bio
->bios
[i
];
1983 if (b
->bi_end_io
!= end_sync_read
)
1985 /* fixup the bio for reuse, but preserve errno */
1986 error
= b
->bi_error
;
1988 b
->bi_error
= error
;
1990 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1991 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1992 conf
->mirrors
[i
].rdev
->data_offset
;
1993 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1994 b
->bi_end_io
= end_sync_read
;
1995 b
->bi_private
= r1_bio
;
1997 size
= b
->bi_iter
.bi_size
;
1998 for (j
= 0; j
< vcnt
; j
++) {
2000 bi
= &b
->bi_io_vec
[j
];
2002 if (size
> PAGE_SIZE
)
2003 bi
->bv_len
= PAGE_SIZE
;
2009 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2010 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2011 !r1_bio
->bios
[primary
]->bi_error
) {
2012 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2013 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2016 r1_bio
->read_disk
= primary
;
2017 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2019 struct bio
*pbio
= r1_bio
->bios
[primary
];
2020 struct bio
*sbio
= r1_bio
->bios
[i
];
2021 int error
= sbio
->bi_error
;
2023 if (sbio
->bi_end_io
!= end_sync_read
)
2025 /* Now we can 'fixup' the error value */
2029 for (j
= vcnt
; j
-- ; ) {
2031 p
= pbio
->bi_io_vec
[j
].bv_page
;
2032 s
= sbio
->bi_io_vec
[j
].bv_page
;
2033 if (memcmp(page_address(p
),
2035 sbio
->bi_io_vec
[j
].bv_len
))
2041 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2042 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2044 /* No need to write to this device. */
2045 sbio
->bi_end_io
= NULL
;
2046 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2050 bio_copy_data(sbio
, pbio
);
2054 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2056 struct r1conf
*conf
= mddev
->private;
2058 int disks
= conf
->raid_disks
* 2;
2059 struct bio
*bio
, *wbio
;
2061 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2063 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2064 /* ouch - failed to read all of that. */
2065 if (!fix_sync_read_error(r1_bio
))
2068 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2069 process_checks(r1_bio
);
2074 atomic_set(&r1_bio
->remaining
, 1);
2075 for (i
= 0; i
< disks
; i
++) {
2076 wbio
= r1_bio
->bios
[i
];
2077 if (wbio
->bi_end_io
== NULL
||
2078 (wbio
->bi_end_io
== end_sync_read
&&
2079 (i
== r1_bio
->read_disk
||
2080 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2083 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2084 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2085 wbio
->bi_opf
|= MD_FAILFAST
;
2087 wbio
->bi_end_io
= end_sync_write
;
2088 atomic_inc(&r1_bio
->remaining
);
2089 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2091 generic_make_request(wbio
);
2094 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2095 /* if we're here, all write(s) have completed, so clean up */
2096 int s
= r1_bio
->sectors
;
2097 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2098 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2099 reschedule_retry(r1_bio
);
2102 md_done_sync(mddev
, s
, 1);
2108 * This is a kernel thread which:
2110 * 1. Retries failed read operations on working mirrors.
2111 * 2. Updates the raid superblock when problems encounter.
2112 * 3. Performs writes following reads for array synchronising.
2115 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2116 sector_t sect
, int sectors
)
2118 struct mddev
*mddev
= conf
->mddev
;
2124 struct md_rdev
*rdev
;
2126 if (s
> (PAGE_SIZE
>>9))
2134 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2136 (test_bit(In_sync
, &rdev
->flags
) ||
2137 (!test_bit(Faulty
, &rdev
->flags
) &&
2138 rdev
->recovery_offset
>= sect
+ s
)) &&
2139 is_badblock(rdev
, sect
, s
,
2140 &first_bad
, &bad_sectors
) == 0) {
2141 atomic_inc(&rdev
->nr_pending
);
2143 if (sync_page_io(rdev
, sect
, s
<<9,
2144 conf
->tmppage
, REQ_OP_READ
, 0, false))
2146 rdev_dec_pending(rdev
, mddev
);
2152 if (d
== conf
->raid_disks
* 2)
2154 } while (!success
&& d
!= read_disk
);
2157 /* Cannot read from anywhere - mark it bad */
2158 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2159 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2160 md_error(mddev
, rdev
);
2163 /* write it back and re-read */
2165 while (d
!= read_disk
) {
2167 d
= conf
->raid_disks
* 2;
2170 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2172 !test_bit(Faulty
, &rdev
->flags
)) {
2173 atomic_inc(&rdev
->nr_pending
);
2175 r1_sync_page_io(rdev
, sect
, s
,
2176 conf
->tmppage
, WRITE
);
2177 rdev_dec_pending(rdev
, mddev
);
2182 while (d
!= read_disk
) {
2183 char b
[BDEVNAME_SIZE
];
2185 d
= conf
->raid_disks
* 2;
2188 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2190 !test_bit(Faulty
, &rdev
->flags
)) {
2191 atomic_inc(&rdev
->nr_pending
);
2193 if (r1_sync_page_io(rdev
, sect
, s
,
2194 conf
->tmppage
, READ
)) {
2195 atomic_add(s
, &rdev
->corrected_errors
);
2196 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2198 (unsigned long long)(sect
+
2200 bdevname(rdev
->bdev
, b
));
2202 rdev_dec_pending(rdev
, mddev
);
2211 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2213 struct mddev
*mddev
= r1_bio
->mddev
;
2214 struct r1conf
*conf
= mddev
->private;
2215 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2217 /* bio has the data to be written to device 'i' where
2218 * we just recently had a write error.
2219 * We repeatedly clone the bio and trim down to one block,
2220 * then try the write. Where the write fails we record
2222 * It is conceivable that the bio doesn't exactly align with
2223 * blocks. We must handle this somehow.
2225 * We currently own a reference on the rdev.
2231 int sect_to_write
= r1_bio
->sectors
;
2234 if (rdev
->badblocks
.shift
< 0)
2237 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2238 bdev_logical_block_size(rdev
->bdev
) >> 9);
2239 sector
= r1_bio
->sector
;
2240 sectors
= ((sector
+ block_sectors
)
2241 & ~(sector_t
)(block_sectors
- 1))
2244 while (sect_to_write
) {
2246 if (sectors
> sect_to_write
)
2247 sectors
= sect_to_write
;
2248 /* Write at 'sector' for 'sectors'*/
2250 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2251 unsigned vcnt
= r1_bio
->behind_page_count
;
2252 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2254 while (!vec
->bv_page
) {
2259 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2260 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2262 wbio
->bi_vcnt
= vcnt
;
2264 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2267 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2268 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2269 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2271 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2272 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2273 wbio
->bi_bdev
= rdev
->bdev
;
2275 if (submit_bio_wait(wbio
) < 0)
2277 ok
= rdev_set_badblocks(rdev
, sector
,
2282 sect_to_write
-= sectors
;
2284 sectors
= block_sectors
;
2289 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2292 int s
= r1_bio
->sectors
;
2293 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2294 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2295 struct bio
*bio
= r1_bio
->bios
[m
];
2296 if (bio
->bi_end_io
== NULL
)
2298 if (!bio
->bi_error
&&
2299 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2300 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2302 if (bio
->bi_error
&&
2303 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2304 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2305 md_error(conf
->mddev
, rdev
);
2309 md_done_sync(conf
->mddev
, s
, 1);
2312 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2316 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2317 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2318 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2319 rdev_clear_badblocks(rdev
,
2321 r1_bio
->sectors
, 0);
2322 rdev_dec_pending(rdev
, conf
->mddev
);
2323 } else if (r1_bio
->bios
[m
] != NULL
) {
2324 /* This drive got a write error. We need to
2325 * narrow down and record precise write
2329 if (!narrow_write_error(r1_bio
, m
)) {
2330 md_error(conf
->mddev
,
2331 conf
->mirrors
[m
].rdev
);
2332 /* an I/O failed, we can't clear the bitmap */
2333 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2335 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2339 spin_lock_irq(&conf
->device_lock
);
2340 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2342 spin_unlock_irq(&conf
->device_lock
);
2343 md_wakeup_thread(conf
->mddev
->thread
);
2345 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2346 close_write(r1_bio
);
2347 raid_end_bio_io(r1_bio
);
2351 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2355 struct mddev
*mddev
= conf
->mddev
;
2357 char b
[BDEVNAME_SIZE
];
2358 struct md_rdev
*rdev
;
2360 sector_t bio_sector
;
2362 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2363 /* we got a read error. Maybe the drive is bad. Maybe just
2364 * the block and we can fix it.
2365 * We freeze all other IO, and try reading the block from
2366 * other devices. When we find one, we re-write
2367 * and check it that fixes the read error.
2368 * This is all done synchronously while the array is
2372 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2373 bdevname(bio
->bi_bdev
, b
);
2374 bio_dev
= bio
->bi_bdev
->bd_dev
;
2375 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2377 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2379 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2381 && !test_bit(FailFast
, &rdev
->flags
)) {
2382 freeze_array(conf
, 1);
2383 fix_read_error(conf
, r1_bio
->read_disk
,
2384 r1_bio
->sector
, r1_bio
->sectors
);
2385 unfreeze_array(conf
);
2387 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2390 rdev_dec_pending(rdev
, conf
->mddev
);
2393 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2395 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2396 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2397 raid_end_bio_io(r1_bio
);
2399 const unsigned long do_sync
2400 = r1_bio
->master_bio
->bi_opf
& REQ_SYNC
;
2401 r1_bio
->read_disk
= disk
;
2402 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2403 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2405 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2406 rdev
= conf
->mirrors
[disk
].rdev
;
2407 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2409 (unsigned long long)r1_bio
->sector
,
2410 bdevname(rdev
->bdev
, b
));
2411 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2412 bio
->bi_bdev
= rdev
->bdev
;
2413 bio
->bi_end_io
= raid1_end_read_request
;
2414 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2415 if (test_bit(FailFast
, &rdev
->flags
) &&
2416 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
2417 bio
->bi_opf
|= MD_FAILFAST
;
2418 bio
->bi_private
= r1_bio
;
2419 if (max_sectors
< r1_bio
->sectors
) {
2420 /* Drat - have to split this up more */
2421 struct bio
*mbio
= r1_bio
->master_bio
;
2422 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2423 - mbio
->bi_iter
.bi_sector
);
2424 r1_bio
->sectors
= max_sectors
;
2425 spin_lock_irq(&conf
->device_lock
);
2426 if (mbio
->bi_phys_segments
== 0)
2427 mbio
->bi_phys_segments
= 2;
2429 mbio
->bi_phys_segments
++;
2430 spin_unlock_irq(&conf
->device_lock
);
2431 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2432 bio
, bio_dev
, bio_sector
);
2433 generic_make_request(bio
);
2436 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2438 r1_bio
->master_bio
= mbio
;
2439 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2441 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2442 r1_bio
->mddev
= mddev
;
2443 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2448 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2449 bio
, bio_dev
, bio_sector
);
2450 generic_make_request(bio
);
2455 static void raid1d(struct md_thread
*thread
)
2457 struct mddev
*mddev
= thread
->mddev
;
2458 struct r1bio
*r1_bio
;
2459 unsigned long flags
;
2460 struct r1conf
*conf
= mddev
->private;
2461 struct list_head
*head
= &conf
->retry_list
;
2462 struct blk_plug plug
;
2464 md_check_recovery(mddev
);
2466 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2467 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2469 spin_lock_irqsave(&conf
->device_lock
, flags
);
2470 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2471 while (!list_empty(&conf
->bio_end_io_list
)) {
2472 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2476 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2477 while (!list_empty(&tmp
)) {
2478 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2480 list_del(&r1_bio
->retry_list
);
2481 if (mddev
->degraded
)
2482 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2483 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2484 close_write(r1_bio
);
2485 raid_end_bio_io(r1_bio
);
2489 blk_start_plug(&plug
);
2492 flush_pending_writes(conf
);
2494 spin_lock_irqsave(&conf
->device_lock
, flags
);
2495 if (list_empty(head
)) {
2496 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2499 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2500 list_del(head
->prev
);
2502 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2504 mddev
= r1_bio
->mddev
;
2505 conf
= mddev
->private;
2506 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2507 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2508 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2509 handle_sync_write_finished(conf
, r1_bio
);
2511 sync_request_write(mddev
, r1_bio
);
2512 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2513 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2514 handle_write_finished(conf
, r1_bio
);
2515 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2516 handle_read_error(conf
, r1_bio
);
2518 /* just a partial read to be scheduled from separate
2521 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2524 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2525 md_check_recovery(mddev
);
2527 blk_finish_plug(&plug
);
2530 static int init_resync(struct r1conf
*conf
)
2534 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2535 BUG_ON(conf
->r1buf_pool
);
2536 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2538 if (!conf
->r1buf_pool
)
2540 conf
->next_resync
= 0;
2545 * perform a "sync" on one "block"
2547 * We need to make sure that no normal I/O request - particularly write
2548 * requests - conflict with active sync requests.
2550 * This is achieved by tracking pending requests and a 'barrier' concept
2551 * that can be installed to exclude normal IO requests.
2554 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2557 struct r1conf
*conf
= mddev
->private;
2558 struct r1bio
*r1_bio
;
2560 sector_t max_sector
, nr_sectors
;
2564 int write_targets
= 0, read_targets
= 0;
2565 sector_t sync_blocks
;
2566 int still_degraded
= 0;
2567 int good_sectors
= RESYNC_SECTORS
;
2568 int min_bad
= 0; /* number of sectors that are bad in all devices */
2570 if (!conf
->r1buf_pool
)
2571 if (init_resync(conf
))
2574 max_sector
= mddev
->dev_sectors
;
2575 if (sector_nr
>= max_sector
) {
2576 /* If we aborted, we need to abort the
2577 * sync on the 'current' bitmap chunk (there will
2578 * only be one in raid1 resync.
2579 * We can find the current addess in mddev->curr_resync
2581 if (mddev
->curr_resync
< max_sector
) /* aborted */
2582 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2584 else /* completed sync */
2587 bitmap_close_sync(mddev
->bitmap
);
2590 if (mddev_is_clustered(mddev
)) {
2591 conf
->cluster_sync_low
= 0;
2592 conf
->cluster_sync_high
= 0;
2597 if (mddev
->bitmap
== NULL
&&
2598 mddev
->recovery_cp
== MaxSector
&&
2599 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2600 conf
->fullsync
== 0) {
2602 return max_sector
- sector_nr
;
2604 /* before building a request, check if we can skip these blocks..
2605 * This call the bitmap_start_sync doesn't actually record anything
2607 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2608 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2609 /* We can skip this block, and probably several more */
2615 * If there is non-resync activity waiting for a turn, then let it
2616 * though before starting on this new sync request.
2618 if (conf
->nr_waiting
)
2619 schedule_timeout_uninterruptible(1);
2621 /* we are incrementing sector_nr below. To be safe, we check against
2622 * sector_nr + two times RESYNC_SECTORS
2625 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2626 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2627 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2629 raise_barrier(conf
, sector_nr
);
2633 * If we get a correctably read error during resync or recovery,
2634 * we might want to read from a different device. So we
2635 * flag all drives that could conceivably be read from for READ,
2636 * and any others (which will be non-In_sync devices) for WRITE.
2637 * If a read fails, we try reading from something else for which READ
2641 r1_bio
->mddev
= mddev
;
2642 r1_bio
->sector
= sector_nr
;
2644 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2646 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2647 struct md_rdev
*rdev
;
2648 bio
= r1_bio
->bios
[i
];
2651 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2653 test_bit(Faulty
, &rdev
->flags
)) {
2654 if (i
< conf
->raid_disks
)
2656 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2657 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2658 bio
->bi_end_io
= end_sync_write
;
2661 /* may need to read from here */
2662 sector_t first_bad
= MaxSector
;
2665 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2666 &first_bad
, &bad_sectors
)) {
2667 if (first_bad
> sector_nr
)
2668 good_sectors
= first_bad
- sector_nr
;
2670 bad_sectors
-= (sector_nr
- first_bad
);
2672 min_bad
> bad_sectors
)
2673 min_bad
= bad_sectors
;
2676 if (sector_nr
< first_bad
) {
2677 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2684 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2685 bio
->bi_end_io
= end_sync_read
;
2687 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2688 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2689 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2691 * The device is suitable for reading (InSync),
2692 * but has bad block(s) here. Let's try to correct them,
2693 * if we are doing resync or repair. Otherwise, leave
2694 * this device alone for this sync request.
2696 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2697 bio
->bi_end_io
= end_sync_write
;
2701 if (bio
->bi_end_io
) {
2702 atomic_inc(&rdev
->nr_pending
);
2703 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2704 bio
->bi_bdev
= rdev
->bdev
;
2705 bio
->bi_private
= r1_bio
;
2706 if (test_bit(FailFast
, &rdev
->flags
))
2707 bio
->bi_opf
|= MD_FAILFAST
;
2713 r1_bio
->read_disk
= disk
;
2715 if (read_targets
== 0 && min_bad
> 0) {
2716 /* These sectors are bad on all InSync devices, so we
2717 * need to mark them bad on all write targets
2720 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2721 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2722 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2723 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2727 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2732 /* Cannot record the badblocks, so need to
2734 * If there are multiple read targets, could just
2735 * fail the really bad ones ???
2737 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2738 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2744 if (min_bad
> 0 && min_bad
< good_sectors
) {
2745 /* only resync enough to reach the next bad->good
2747 good_sectors
= min_bad
;
2750 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2751 /* extra read targets are also write targets */
2752 write_targets
+= read_targets
-1;
2754 if (write_targets
== 0 || read_targets
== 0) {
2755 /* There is nowhere to write, so all non-sync
2756 * drives must be failed - so we are finished
2760 max_sector
= sector_nr
+ min_bad
;
2761 rv
= max_sector
- sector_nr
;
2767 if (max_sector
> mddev
->resync_max
)
2768 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2769 if (max_sector
> sector_nr
+ good_sectors
)
2770 max_sector
= sector_nr
+ good_sectors
;
2775 int len
= PAGE_SIZE
;
2776 if (sector_nr
+ (len
>>9) > max_sector
)
2777 len
= (max_sector
- sector_nr
) << 9;
2780 if (sync_blocks
== 0) {
2781 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2782 &sync_blocks
, still_degraded
) &&
2784 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2786 if ((len
>> 9) > sync_blocks
)
2787 len
= sync_blocks
<<9;
2790 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2791 bio
= r1_bio
->bios
[i
];
2792 if (bio
->bi_end_io
) {
2793 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2794 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2796 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2799 bio
= r1_bio
->bios
[i
];
2800 if (bio
->bi_end_io
==NULL
)
2802 /* remove last page from this bio */
2804 bio
->bi_iter
.bi_size
-= len
;
2805 bio_clear_flag(bio
, BIO_SEG_VALID
);
2811 nr_sectors
+= len
>>9;
2812 sector_nr
+= len
>>9;
2813 sync_blocks
-= (len
>>9);
2814 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2816 r1_bio
->sectors
= nr_sectors
;
2818 if (mddev_is_clustered(mddev
) &&
2819 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2820 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2821 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2822 /* Send resync message */
2823 md_cluster_ops
->resync_info_update(mddev
,
2824 conf
->cluster_sync_low
,
2825 conf
->cluster_sync_high
);
2828 /* For a user-requested sync, we read all readable devices and do a
2831 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2832 atomic_set(&r1_bio
->remaining
, read_targets
);
2833 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2834 bio
= r1_bio
->bios
[i
];
2835 if (bio
->bi_end_io
== end_sync_read
) {
2837 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2838 if (read_targets
== 1)
2839 bio
->bi_opf
&= ~MD_FAILFAST
;
2840 generic_make_request(bio
);
2844 atomic_set(&r1_bio
->remaining
, 1);
2845 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2846 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2847 if (read_targets
== 1)
2848 bio
->bi_opf
&= ~MD_FAILFAST
;
2849 generic_make_request(bio
);
2855 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2860 return mddev
->dev_sectors
;
2863 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2865 struct r1conf
*conf
;
2867 struct raid1_info
*disk
;
2868 struct md_rdev
*rdev
;
2871 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2875 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2876 * mddev
->raid_disks
* 2,
2881 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2885 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2886 if (!conf
->poolinfo
)
2888 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2889 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2892 if (!conf
->r1bio_pool
)
2895 conf
->poolinfo
->mddev
= mddev
;
2898 spin_lock_init(&conf
->device_lock
);
2899 rdev_for_each(rdev
, mddev
) {
2900 struct request_queue
*q
;
2901 int disk_idx
= rdev
->raid_disk
;
2902 if (disk_idx
>= mddev
->raid_disks
2905 if (test_bit(Replacement
, &rdev
->flags
))
2906 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2908 disk
= conf
->mirrors
+ disk_idx
;
2913 q
= bdev_get_queue(rdev
->bdev
);
2915 disk
->head_position
= 0;
2916 disk
->seq_start
= MaxSector
;
2918 conf
->raid_disks
= mddev
->raid_disks
;
2919 conf
->mddev
= mddev
;
2920 INIT_LIST_HEAD(&conf
->retry_list
);
2921 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2923 spin_lock_init(&conf
->resync_lock
);
2924 init_waitqueue_head(&conf
->wait_barrier
);
2926 bio_list_init(&conf
->pending_bio_list
);
2927 conf
->pending_count
= 0;
2928 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2930 conf
->start_next_window
= MaxSector
;
2931 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2934 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2936 disk
= conf
->mirrors
+ i
;
2938 if (i
< conf
->raid_disks
&&
2939 disk
[conf
->raid_disks
].rdev
) {
2940 /* This slot has a replacement. */
2942 /* No original, just make the replacement
2943 * a recovering spare
2946 disk
[conf
->raid_disks
].rdev
;
2947 disk
[conf
->raid_disks
].rdev
= NULL
;
2948 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2949 /* Original is not in_sync - bad */
2954 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2955 disk
->head_position
= 0;
2957 (disk
->rdev
->saved_raid_disk
< 0))
2963 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2971 mempool_destroy(conf
->r1bio_pool
);
2972 kfree(conf
->mirrors
);
2973 safe_put_page(conf
->tmppage
);
2974 kfree(conf
->poolinfo
);
2977 return ERR_PTR(err
);
2980 static void raid1_free(struct mddev
*mddev
, void *priv
);
2981 static int raid1_run(struct mddev
*mddev
)
2983 struct r1conf
*conf
;
2985 struct md_rdev
*rdev
;
2987 bool discard_supported
= false;
2989 if (mddev
->level
!= 1) {
2990 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
2991 mdname(mddev
), mddev
->level
);
2994 if (mddev
->reshape_position
!= MaxSector
) {
2995 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3000 * copy the already verified devices into our private RAID1
3001 * bookkeeping area. [whatever we allocate in run(),
3002 * should be freed in raid1_free()]
3004 if (mddev
->private == NULL
)
3005 conf
= setup_conf(mddev
);
3007 conf
= mddev
->private;
3010 return PTR_ERR(conf
);
3013 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3015 rdev_for_each(rdev
, mddev
) {
3016 if (!mddev
->gendisk
)
3018 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3019 rdev
->data_offset
<< 9);
3020 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3021 discard_supported
= true;
3024 mddev
->degraded
= 0;
3025 for (i
=0; i
< conf
->raid_disks
; i
++)
3026 if (conf
->mirrors
[i
].rdev
== NULL
||
3027 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3028 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3031 if (conf
->raid_disks
- mddev
->degraded
== 1)
3032 mddev
->recovery_cp
= MaxSector
;
3034 if (mddev
->recovery_cp
!= MaxSector
)
3035 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3037 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3038 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3042 * Ok, everything is just fine now
3044 mddev
->thread
= conf
->thread
;
3045 conf
->thread
= NULL
;
3046 mddev
->private = conf
;
3047 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3049 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3052 if (discard_supported
)
3053 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3056 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3060 ret
= md_integrity_register(mddev
);
3062 md_unregister_thread(&mddev
->thread
);
3063 raid1_free(mddev
, conf
);
3068 static void raid1_free(struct mddev
*mddev
, void *priv
)
3070 struct r1conf
*conf
= priv
;
3072 mempool_destroy(conf
->r1bio_pool
);
3073 kfree(conf
->mirrors
);
3074 safe_put_page(conf
->tmppage
);
3075 kfree(conf
->poolinfo
);
3079 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3081 /* no resync is happening, and there is enough space
3082 * on all devices, so we can resize.
3083 * We need to make sure resync covers any new space.
3084 * If the array is shrinking we should possibly wait until
3085 * any io in the removed space completes, but it hardly seems
3088 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3089 if (mddev
->external_size
&&
3090 mddev
->array_sectors
> newsize
)
3092 if (mddev
->bitmap
) {
3093 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3097 md_set_array_sectors(mddev
, newsize
);
3098 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3099 revalidate_disk(mddev
->gendisk
);
3100 if (sectors
> mddev
->dev_sectors
&&
3101 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3102 mddev
->recovery_cp
= mddev
->dev_sectors
;
3103 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3105 mddev
->dev_sectors
= sectors
;
3106 mddev
->resync_max_sectors
= sectors
;
3110 static int raid1_reshape(struct mddev
*mddev
)
3113 * 1/ resize the r1bio_pool
3114 * 2/ resize conf->mirrors
3116 * We allocate a new r1bio_pool if we can.
3117 * Then raise a device barrier and wait until all IO stops.
3118 * Then resize conf->mirrors and swap in the new r1bio pool.
3120 * At the same time, we "pack" the devices so that all the missing
3121 * devices have the higher raid_disk numbers.
3123 mempool_t
*newpool
, *oldpool
;
3124 struct pool_info
*newpoolinfo
;
3125 struct raid1_info
*newmirrors
;
3126 struct r1conf
*conf
= mddev
->private;
3127 int cnt
, raid_disks
;
3128 unsigned long flags
;
3131 /* Cannot change chunk_size, layout, or level */
3132 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3133 mddev
->layout
!= mddev
->new_layout
||
3134 mddev
->level
!= mddev
->new_level
) {
3135 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3136 mddev
->new_layout
= mddev
->layout
;
3137 mddev
->new_level
= mddev
->level
;
3141 if (!mddev_is_clustered(mddev
)) {
3142 err
= md_allow_write(mddev
);
3147 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3149 if (raid_disks
< conf
->raid_disks
) {
3151 for (d
= 0; d
< conf
->raid_disks
; d
++)
3152 if (conf
->mirrors
[d
].rdev
)
3154 if (cnt
> raid_disks
)
3158 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3161 newpoolinfo
->mddev
= mddev
;
3162 newpoolinfo
->raid_disks
= raid_disks
* 2;
3164 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3165 r1bio_pool_free
, newpoolinfo
);
3170 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3174 mempool_destroy(newpool
);
3178 freeze_array(conf
, 0);
3180 /* ok, everything is stopped */
3181 oldpool
= conf
->r1bio_pool
;
3182 conf
->r1bio_pool
= newpool
;
3184 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3185 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3186 if (rdev
&& rdev
->raid_disk
!= d2
) {
3187 sysfs_unlink_rdev(mddev
, rdev
);
3188 rdev
->raid_disk
= d2
;
3189 sysfs_unlink_rdev(mddev
, rdev
);
3190 if (sysfs_link_rdev(mddev
, rdev
))
3191 pr_warn("md/raid1:%s: cannot register rd%d\n",
3192 mdname(mddev
), rdev
->raid_disk
);
3195 newmirrors
[d2
++].rdev
= rdev
;
3197 kfree(conf
->mirrors
);
3198 conf
->mirrors
= newmirrors
;
3199 kfree(conf
->poolinfo
);
3200 conf
->poolinfo
= newpoolinfo
;
3202 spin_lock_irqsave(&conf
->device_lock
, flags
);
3203 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3204 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3205 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3206 mddev
->delta_disks
= 0;
3208 unfreeze_array(conf
);
3210 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3211 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3212 md_wakeup_thread(mddev
->thread
);
3214 mempool_destroy(oldpool
);
3218 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3220 struct r1conf
*conf
= mddev
->private;
3223 case 2: /* wake for suspend */
3224 wake_up(&conf
->wait_barrier
);
3227 freeze_array(conf
, 0);
3230 unfreeze_array(conf
);
3235 static void *raid1_takeover(struct mddev
*mddev
)
3237 /* raid1 can take over:
3238 * raid5 with 2 devices, any layout or chunk size
3240 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3241 struct r1conf
*conf
;
3242 mddev
->new_level
= 1;
3243 mddev
->new_layout
= 0;
3244 mddev
->new_chunk_sectors
= 0;
3245 conf
= setup_conf(mddev
);
3246 if (!IS_ERR(conf
)) {
3247 /* Array must appear to be quiesced */
3248 conf
->array_frozen
= 1;
3249 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
3250 clear_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
3254 return ERR_PTR(-EINVAL
);
3257 static struct md_personality raid1_personality
=
3261 .owner
= THIS_MODULE
,
3262 .make_request
= raid1_make_request
,
3265 .status
= raid1_status
,
3266 .error_handler
= raid1_error
,
3267 .hot_add_disk
= raid1_add_disk
,
3268 .hot_remove_disk
= raid1_remove_disk
,
3269 .spare_active
= raid1_spare_active
,
3270 .sync_request
= raid1_sync_request
,
3271 .resize
= raid1_resize
,
3273 .check_reshape
= raid1_reshape
,
3274 .quiesce
= raid1_quiesce
,
3275 .takeover
= raid1_takeover
,
3276 .congested
= raid1_congested
,
3279 static int __init
raid_init(void)
3281 return register_md_personality(&raid1_personality
);
3284 static void raid_exit(void)
3286 unregister_md_personality(&raid1_personality
);
3289 module_init(raid_init
);
3290 module_exit(raid_exit
);
3291 MODULE_LICENSE("GPL");
3292 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3293 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3294 MODULE_ALIAS("md-raid1");
3295 MODULE_ALIAS("md-level-1");
3297 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);