sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / md / raid1.c
bloba1f3fbed91009c5aa3253109d82db8eed38a2720
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
50 /* when we get a read error on a read-only array, we redirect to another
51 * device without failing the first device, or trying to over-write to
52 * correct the read error. To keep track of bad blocks on a per-bio
53 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
55 #define IO_BLOCKED ((struct bio *)1)
56 /* When we successfully write to a known bad-block, we need to remove the
57 * bad-block marking which must be done from process context. So we record
58 * the success by setting devs[n].bio to IO_MADE_GOOD
60 #define IO_MADE_GOOD ((struct bio *)2)
62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
64 /* When there are this many requests queue to be written by
65 * the raid1 thread, we become 'congested' to provide back-pressure
66 * for writeback.
68 static int max_queued_requests = 1024;
70 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
71 sector_t bi_sector);
72 static void lower_barrier(struct r1conf *conf);
74 #define raid1_log(md, fmt, args...) \
75 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
77 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
79 struct pool_info *pi = data;
80 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
82 /* allocate a r1bio with room for raid_disks entries in the bios array */
83 return kzalloc(size, gfp_flags);
86 static void r1bio_pool_free(void *r1_bio, void *data)
88 kfree(r1_bio);
91 #define RESYNC_BLOCK_SIZE (64*1024)
92 #define RESYNC_DEPTH 32
93 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
94 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
95 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
96 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
97 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
98 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
99 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
101 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
103 struct pool_info *pi = data;
104 struct r1bio *r1_bio;
105 struct bio *bio;
106 int need_pages;
107 int i, j;
109 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
110 if (!r1_bio)
111 return NULL;
114 * Allocate bios : 1 for reading, n-1 for writing
116 for (j = pi->raid_disks ; j-- ; ) {
117 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
118 if (!bio)
119 goto out_free_bio;
120 r1_bio->bios[j] = bio;
123 * Allocate RESYNC_PAGES data pages and attach them to
124 * the first bio.
125 * If this is a user-requested check/repair, allocate
126 * RESYNC_PAGES for each bio.
128 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
129 need_pages = pi->raid_disks;
130 else
131 need_pages = 1;
132 for (j = 0; j < need_pages; j++) {
133 bio = r1_bio->bios[j];
134 bio->bi_vcnt = RESYNC_PAGES;
136 if (bio_alloc_pages(bio, gfp_flags))
137 goto out_free_pages;
139 /* If not user-requests, copy the page pointers to all bios */
140 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
141 for (i=0; i<RESYNC_PAGES ; i++)
142 for (j=1; j<pi->raid_disks; j++)
143 r1_bio->bios[j]->bi_io_vec[i].bv_page =
144 r1_bio->bios[0]->bi_io_vec[i].bv_page;
147 r1_bio->master_bio = NULL;
149 return r1_bio;
151 out_free_pages:
152 while (--j >= 0)
153 bio_free_pages(r1_bio->bios[j]);
155 out_free_bio:
156 while (++j < pi->raid_disks)
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
162 static void r1buf_pool_free(void *__r1_bio, void *data)
164 struct pool_info *pi = data;
165 int i,j;
166 struct r1bio *r1bio = __r1_bio;
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
178 r1bio_pool_free(r1bio, data);
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
183 int i;
185 for (i = 0; i < conf->raid_disks * 2; i++) {
186 struct bio **bio = r1_bio->bios + i;
187 if (!BIO_SPECIAL(*bio))
188 bio_put(*bio);
189 *bio = NULL;
193 static void free_r1bio(struct r1bio *r1_bio)
195 struct r1conf *conf = r1_bio->mddev->private;
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
201 static void put_buf(struct r1bio *r1_bio)
203 struct r1conf *conf = r1_bio->mddev->private;
204 int i;
206 for (i = 0; i < conf->raid_disks * 2; i++) {
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
212 mempool_free(r1_bio, conf->r1buf_pool);
214 lower_barrier(conf);
217 static void reschedule_retry(struct r1bio *r1_bio)
219 unsigned long flags;
220 struct mddev *mddev = r1_bio->mddev;
221 struct r1conf *conf = mddev->private;
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
225 conf->nr_queued ++;
226 spin_unlock_irqrestore(&conf->device_lock, flags);
228 wake_up(&conf->wait_barrier);
229 md_wakeup_thread(mddev->thread);
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
237 static void call_bio_endio(struct r1bio *r1_bio)
239 struct bio *bio = r1_bio->master_bio;
240 int done;
241 struct r1conf *conf = r1_bio->mddev->private;
242 sector_t start_next_window = r1_bio->start_next_window;
243 sector_t bi_sector = bio->bi_iter.bi_sector;
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
255 wake_up(&conf->wait_barrier);
256 } else
257 done = 1;
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 bio->bi_error = -EIO;
262 if (done) {
263 bio_endio(bio);
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
268 allow_barrier(conf, start_next_window, bi_sector);
272 static void raid_end_bio_io(struct r1bio *r1_bio)
274 struct bio *bio = r1_bio->master_bio;
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
283 call_bio_endio(r1_bio);
285 free_r1bio(r1_bio);
289 * Update disk head position estimator based on IRQ completion info.
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
293 struct r1conf *conf = r1_bio->mddev->private;
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
300 * Find the disk number which triggered given bio
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
304 int mirror;
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 if (r1_bio->bios[mirror] == bio)
310 break;
312 BUG_ON(mirror == raid_disks * 2);
313 update_head_pos(mirror, r1_bio);
315 return mirror;
318 static void raid1_end_read_request(struct bio *bio)
320 int uptodate = !bio->bi_error;
321 struct r1bio *r1_bio = bio->bi_private;
322 struct r1conf *conf = r1_bio->mddev->private;
323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
326 * this branch is our 'one mirror IO has finished' event handler:
328 update_head_pos(r1_bio->read_disk, r1_bio);
330 if (uptodate)
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
332 else if (test_bit(FailFast, &rdev->flags) &&
333 test_bit(R1BIO_FailFast, &r1_bio->state))
334 /* This was a fail-fast read so we definitely
335 * want to retry */
337 else {
338 /* If all other devices have failed, we want to return
339 * the error upwards rather than fail the last device.
340 * Here we redefine "uptodate" to mean "Don't want to retry"
342 unsigned long flags;
343 spin_lock_irqsave(&conf->device_lock, flags);
344 if (r1_bio->mddev->degraded == conf->raid_disks ||
345 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
346 test_bit(In_sync, &rdev->flags)))
347 uptodate = 1;
348 spin_unlock_irqrestore(&conf->device_lock, flags);
351 if (uptodate) {
352 raid_end_bio_io(r1_bio);
353 rdev_dec_pending(rdev, conf->mddev);
354 } else {
356 * oops, read error:
358 char b[BDEVNAME_SIZE];
359 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
360 mdname(conf->mddev),
361 bdevname(rdev->bdev, b),
362 (unsigned long long)r1_bio->sector);
363 set_bit(R1BIO_ReadError, &r1_bio->state);
364 reschedule_retry(r1_bio);
365 /* don't drop the reference on read_disk yet */
369 static void close_write(struct r1bio *r1_bio)
371 /* it really is the end of this request */
372 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
373 /* free extra copy of the data pages */
374 int i = r1_bio->behind_page_count;
375 while (i--)
376 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
377 kfree(r1_bio->behind_bvecs);
378 r1_bio->behind_bvecs = NULL;
380 /* clear the bitmap if all writes complete successfully */
381 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
382 r1_bio->sectors,
383 !test_bit(R1BIO_Degraded, &r1_bio->state),
384 test_bit(R1BIO_BehindIO, &r1_bio->state));
385 md_write_end(r1_bio->mddev);
388 static void r1_bio_write_done(struct r1bio *r1_bio)
390 if (!atomic_dec_and_test(&r1_bio->remaining))
391 return;
393 if (test_bit(R1BIO_WriteError, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else {
396 close_write(r1_bio);
397 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
398 reschedule_retry(r1_bio);
399 else
400 raid_end_bio_io(r1_bio);
404 static void raid1_end_write_request(struct bio *bio)
406 struct r1bio *r1_bio = bio->bi_private;
407 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
408 struct r1conf *conf = r1_bio->mddev->private;
409 struct bio *to_put = NULL;
410 int mirror = find_bio_disk(r1_bio, bio);
411 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
412 bool discard_error;
414 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
417 * 'one mirror IO has finished' event handler:
419 if (bio->bi_error && !discard_error) {
420 set_bit(WriteErrorSeen, &rdev->flags);
421 if (!test_and_set_bit(WantReplacement, &rdev->flags))
422 set_bit(MD_RECOVERY_NEEDED, &
423 conf->mddev->recovery);
425 if (test_bit(FailFast, &rdev->flags) &&
426 (bio->bi_opf & MD_FAILFAST) &&
427 /* We never try FailFast to WriteMostly devices */
428 !test_bit(WriteMostly, &rdev->flags)) {
429 md_error(r1_bio->mddev, rdev);
430 if (!test_bit(Faulty, &rdev->flags))
431 /* This is the only remaining device,
432 * We need to retry the write without
433 * FailFast
435 set_bit(R1BIO_WriteError, &r1_bio->state);
436 else {
437 /* Finished with this branch */
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
441 } else
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 } else {
445 * Set R1BIO_Uptodate in our master bio, so that we
446 * will return a good error code for to the higher
447 * levels even if IO on some other mirrored buffer
448 * fails.
450 * The 'master' represents the composite IO operation
451 * to user-side. So if something waits for IO, then it
452 * will wait for the 'master' bio.
454 sector_t first_bad;
455 int bad_sectors;
457 r1_bio->bios[mirror] = NULL;
458 to_put = bio;
460 * Do not set R1BIO_Uptodate if the current device is
461 * rebuilding or Faulty. This is because we cannot use
462 * such device for properly reading the data back (we could
463 * potentially use it, if the current write would have felt
464 * before rdev->recovery_offset, but for simplicity we don't
465 * check this here.
467 if (test_bit(In_sync, &rdev->flags) &&
468 !test_bit(Faulty, &rdev->flags))
469 set_bit(R1BIO_Uptodate, &r1_bio->state);
471 /* Maybe we can clear some bad blocks. */
472 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
473 &first_bad, &bad_sectors) && !discard_error) {
474 r1_bio->bios[mirror] = IO_MADE_GOOD;
475 set_bit(R1BIO_MadeGood, &r1_bio->state);
479 if (behind) {
480 if (test_bit(WriteMostly, &rdev->flags))
481 atomic_dec(&r1_bio->behind_remaining);
484 * In behind mode, we ACK the master bio once the I/O
485 * has safely reached all non-writemostly
486 * disks. Setting the Returned bit ensures that this
487 * gets done only once -- we don't ever want to return
488 * -EIO here, instead we'll wait
490 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
491 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
492 /* Maybe we can return now */
493 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
494 struct bio *mbio = r1_bio->master_bio;
495 pr_debug("raid1: behind end write sectors"
496 " %llu-%llu\n",
497 (unsigned long long) mbio->bi_iter.bi_sector,
498 (unsigned long long) bio_end_sector(mbio) - 1);
499 call_bio_endio(r1_bio);
503 if (r1_bio->bios[mirror] == NULL)
504 rdev_dec_pending(rdev, conf->mddev);
507 * Let's see if all mirrored write operations have finished
508 * already.
510 r1_bio_write_done(r1_bio);
512 if (to_put)
513 bio_put(to_put);
517 * This routine returns the disk from which the requested read should
518 * be done. There is a per-array 'next expected sequential IO' sector
519 * number - if this matches on the next IO then we use the last disk.
520 * There is also a per-disk 'last know head position' sector that is
521 * maintained from IRQ contexts, both the normal and the resync IO
522 * completion handlers update this position correctly. If there is no
523 * perfect sequential match then we pick the disk whose head is closest.
525 * If there are 2 mirrors in the same 2 devices, performance degrades
526 * because position is mirror, not device based.
528 * The rdev for the device selected will have nr_pending incremented.
530 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
532 const sector_t this_sector = r1_bio->sector;
533 int sectors;
534 int best_good_sectors;
535 int best_disk, best_dist_disk, best_pending_disk;
536 int has_nonrot_disk;
537 int disk;
538 sector_t best_dist;
539 unsigned int min_pending;
540 struct md_rdev *rdev;
541 int choose_first;
542 int choose_next_idle;
544 rcu_read_lock();
546 * Check if we can balance. We can balance on the whole
547 * device if no resync is going on, or below the resync window.
548 * We take the first readable disk when above the resync window.
550 retry:
551 sectors = r1_bio->sectors;
552 best_disk = -1;
553 best_dist_disk = -1;
554 best_dist = MaxSector;
555 best_pending_disk = -1;
556 min_pending = UINT_MAX;
557 best_good_sectors = 0;
558 has_nonrot_disk = 0;
559 choose_next_idle = 0;
560 clear_bit(R1BIO_FailFast, &r1_bio->state);
562 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
563 (mddev_is_clustered(conf->mddev) &&
564 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
565 this_sector + sectors)))
566 choose_first = 1;
567 else
568 choose_first = 0;
570 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
571 sector_t dist;
572 sector_t first_bad;
573 int bad_sectors;
574 unsigned int pending;
575 bool nonrot;
577 rdev = rcu_dereference(conf->mirrors[disk].rdev);
578 if (r1_bio->bios[disk] == IO_BLOCKED
579 || rdev == NULL
580 || test_bit(Faulty, &rdev->flags))
581 continue;
582 if (!test_bit(In_sync, &rdev->flags) &&
583 rdev->recovery_offset < this_sector + sectors)
584 continue;
585 if (test_bit(WriteMostly, &rdev->flags)) {
586 /* Don't balance among write-mostly, just
587 * use the first as a last resort */
588 if (best_dist_disk < 0) {
589 if (is_badblock(rdev, this_sector, sectors,
590 &first_bad, &bad_sectors)) {
591 if (first_bad <= this_sector)
592 /* Cannot use this */
593 continue;
594 best_good_sectors = first_bad - this_sector;
595 } else
596 best_good_sectors = sectors;
597 best_dist_disk = disk;
598 best_pending_disk = disk;
600 continue;
602 /* This is a reasonable device to use. It might
603 * even be best.
605 if (is_badblock(rdev, this_sector, sectors,
606 &first_bad, &bad_sectors)) {
607 if (best_dist < MaxSector)
608 /* already have a better device */
609 continue;
610 if (first_bad <= this_sector) {
611 /* cannot read here. If this is the 'primary'
612 * device, then we must not read beyond
613 * bad_sectors from another device..
615 bad_sectors -= (this_sector - first_bad);
616 if (choose_first && sectors > bad_sectors)
617 sectors = bad_sectors;
618 if (best_good_sectors > sectors)
619 best_good_sectors = sectors;
621 } else {
622 sector_t good_sectors = first_bad - this_sector;
623 if (good_sectors > best_good_sectors) {
624 best_good_sectors = good_sectors;
625 best_disk = disk;
627 if (choose_first)
628 break;
630 continue;
631 } else
632 best_good_sectors = sectors;
634 if (best_disk >= 0)
635 /* At least two disks to choose from so failfast is OK */
636 set_bit(R1BIO_FailFast, &r1_bio->state);
638 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
639 has_nonrot_disk |= nonrot;
640 pending = atomic_read(&rdev->nr_pending);
641 dist = abs(this_sector - conf->mirrors[disk].head_position);
642 if (choose_first) {
643 best_disk = disk;
644 break;
646 /* Don't change to another disk for sequential reads */
647 if (conf->mirrors[disk].next_seq_sect == this_sector
648 || dist == 0) {
649 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
650 struct raid1_info *mirror = &conf->mirrors[disk];
652 best_disk = disk;
654 * If buffered sequential IO size exceeds optimal
655 * iosize, check if there is idle disk. If yes, choose
656 * the idle disk. read_balance could already choose an
657 * idle disk before noticing it's a sequential IO in
658 * this disk. This doesn't matter because this disk
659 * will idle, next time it will be utilized after the
660 * first disk has IO size exceeds optimal iosize. In
661 * this way, iosize of the first disk will be optimal
662 * iosize at least. iosize of the second disk might be
663 * small, but not a big deal since when the second disk
664 * starts IO, the first disk is likely still busy.
666 if (nonrot && opt_iosize > 0 &&
667 mirror->seq_start != MaxSector &&
668 mirror->next_seq_sect > opt_iosize &&
669 mirror->next_seq_sect - opt_iosize >=
670 mirror->seq_start) {
671 choose_next_idle = 1;
672 continue;
674 break;
677 if (choose_next_idle)
678 continue;
680 if (min_pending > pending) {
681 min_pending = pending;
682 best_pending_disk = disk;
685 if (dist < best_dist) {
686 best_dist = dist;
687 best_dist_disk = disk;
692 * If all disks are rotational, choose the closest disk. If any disk is
693 * non-rotational, choose the disk with less pending request even the
694 * disk is rotational, which might/might not be optimal for raids with
695 * mixed ratation/non-rotational disks depending on workload.
697 if (best_disk == -1) {
698 if (has_nonrot_disk || min_pending == 0)
699 best_disk = best_pending_disk;
700 else
701 best_disk = best_dist_disk;
704 if (best_disk >= 0) {
705 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
706 if (!rdev)
707 goto retry;
708 atomic_inc(&rdev->nr_pending);
709 sectors = best_good_sectors;
711 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
712 conf->mirrors[best_disk].seq_start = this_sector;
714 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
716 rcu_read_unlock();
717 *max_sectors = sectors;
719 return best_disk;
722 static int raid1_congested(struct mddev *mddev, int bits)
724 struct r1conf *conf = mddev->private;
725 int i, ret = 0;
727 if ((bits & (1 << WB_async_congested)) &&
728 conf->pending_count >= max_queued_requests)
729 return 1;
731 rcu_read_lock();
732 for (i = 0; i < conf->raid_disks * 2; i++) {
733 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
734 if (rdev && !test_bit(Faulty, &rdev->flags)) {
735 struct request_queue *q = bdev_get_queue(rdev->bdev);
737 BUG_ON(!q);
739 /* Note the '|| 1' - when read_balance prefers
740 * non-congested targets, it can be removed
742 if ((bits & (1 << WB_async_congested)) || 1)
743 ret |= bdi_congested(&q->backing_dev_info, bits);
744 else
745 ret &= bdi_congested(&q->backing_dev_info, bits);
748 rcu_read_unlock();
749 return ret;
752 static void flush_pending_writes(struct r1conf *conf)
754 /* Any writes that have been queued but are awaiting
755 * bitmap updates get flushed here.
757 spin_lock_irq(&conf->device_lock);
759 if (conf->pending_bio_list.head) {
760 struct bio *bio;
761 bio = bio_list_get(&conf->pending_bio_list);
762 conf->pending_count = 0;
763 spin_unlock_irq(&conf->device_lock);
764 /* flush any pending bitmap writes to
765 * disk before proceeding w/ I/O */
766 bitmap_unplug(conf->mddev->bitmap);
767 wake_up(&conf->wait_barrier);
769 while (bio) { /* submit pending writes */
770 struct bio *next = bio->bi_next;
771 struct md_rdev *rdev = (void*)bio->bi_bdev;
772 bio->bi_next = NULL;
773 bio->bi_bdev = rdev->bdev;
774 if (test_bit(Faulty, &rdev->flags)) {
775 bio->bi_error = -EIO;
776 bio_endio(bio);
777 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
778 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
779 /* Just ignore it */
780 bio_endio(bio);
781 else
782 generic_make_request(bio);
783 bio = next;
785 } else
786 spin_unlock_irq(&conf->device_lock);
789 /* Barriers....
790 * Sometimes we need to suspend IO while we do something else,
791 * either some resync/recovery, or reconfigure the array.
792 * To do this we raise a 'barrier'.
793 * The 'barrier' is a counter that can be raised multiple times
794 * to count how many activities are happening which preclude
795 * normal IO.
796 * We can only raise the barrier if there is no pending IO.
797 * i.e. if nr_pending == 0.
798 * We choose only to raise the barrier if no-one is waiting for the
799 * barrier to go down. This means that as soon as an IO request
800 * is ready, no other operations which require a barrier will start
801 * until the IO request has had a chance.
803 * So: regular IO calls 'wait_barrier'. When that returns there
804 * is no backgroup IO happening, It must arrange to call
805 * allow_barrier when it has finished its IO.
806 * backgroup IO calls must call raise_barrier. Once that returns
807 * there is no normal IO happeing. It must arrange to call
808 * lower_barrier when the particular background IO completes.
810 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
812 spin_lock_irq(&conf->resync_lock);
814 /* Wait until no block IO is waiting */
815 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
816 conf->resync_lock);
818 /* block any new IO from starting */
819 conf->barrier++;
820 conf->next_resync = sector_nr;
822 /* For these conditions we must wait:
823 * A: while the array is in frozen state
824 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
825 * the max count which allowed.
826 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
827 * next resync will reach to the window which normal bios are
828 * handling.
829 * D: while there are any active requests in the current window.
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->array_frozen &&
833 conf->barrier < RESYNC_DEPTH &&
834 conf->current_window_requests == 0 &&
835 (conf->start_next_window >=
836 conf->next_resync + RESYNC_SECTORS),
837 conf->resync_lock);
839 conf->nr_pending++;
840 spin_unlock_irq(&conf->resync_lock);
843 static void lower_barrier(struct r1conf *conf)
845 unsigned long flags;
846 BUG_ON(conf->barrier <= 0);
847 spin_lock_irqsave(&conf->resync_lock, flags);
848 conf->barrier--;
849 conf->nr_pending--;
850 spin_unlock_irqrestore(&conf->resync_lock, flags);
851 wake_up(&conf->wait_barrier);
854 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
856 bool wait = false;
858 if (conf->array_frozen || !bio)
859 wait = true;
860 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
861 if ((conf->mddev->curr_resync_completed
862 >= bio_end_sector(bio)) ||
863 (conf->start_next_window + NEXT_NORMALIO_DISTANCE
864 <= bio->bi_iter.bi_sector))
865 wait = false;
866 else
867 wait = true;
870 return wait;
873 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
875 sector_t sector = 0;
877 spin_lock_irq(&conf->resync_lock);
878 if (need_to_wait_for_sync(conf, bio)) {
879 conf->nr_waiting++;
880 /* Wait for the barrier to drop.
881 * However if there are already pending
882 * requests (preventing the barrier from
883 * rising completely), and the
884 * per-process bio queue isn't empty,
885 * then don't wait, as we need to empty
886 * that queue to allow conf->start_next_window
887 * to increase.
889 raid1_log(conf->mddev, "wait barrier");
890 wait_event_lock_irq(conf->wait_barrier,
891 !conf->array_frozen &&
892 (!conf->barrier ||
893 ((conf->start_next_window <
894 conf->next_resync + RESYNC_SECTORS) &&
895 current->bio_list &&
896 !bio_list_empty(current->bio_list))),
897 conf->resync_lock);
898 conf->nr_waiting--;
901 if (bio && bio_data_dir(bio) == WRITE) {
902 if (bio->bi_iter.bi_sector >= conf->next_resync) {
903 if (conf->start_next_window == MaxSector)
904 conf->start_next_window =
905 conf->next_resync +
906 NEXT_NORMALIO_DISTANCE;
908 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
909 <= bio->bi_iter.bi_sector)
910 conf->next_window_requests++;
911 else
912 conf->current_window_requests++;
913 sector = conf->start_next_window;
917 conf->nr_pending++;
918 spin_unlock_irq(&conf->resync_lock);
919 return sector;
922 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
923 sector_t bi_sector)
925 unsigned long flags;
927 spin_lock_irqsave(&conf->resync_lock, flags);
928 conf->nr_pending--;
929 if (start_next_window) {
930 if (start_next_window == conf->start_next_window) {
931 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
932 <= bi_sector)
933 conf->next_window_requests--;
934 else
935 conf->current_window_requests--;
936 } else
937 conf->current_window_requests--;
939 if (!conf->current_window_requests) {
940 if (conf->next_window_requests) {
941 conf->current_window_requests =
942 conf->next_window_requests;
943 conf->next_window_requests = 0;
944 conf->start_next_window +=
945 NEXT_NORMALIO_DISTANCE;
946 } else
947 conf->start_next_window = MaxSector;
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
954 static void freeze_array(struct r1conf *conf, int extra)
956 /* stop syncio and normal IO and wait for everything to
957 * go quite.
958 * We wait until nr_pending match nr_queued+extra
959 * This is called in the context of one normal IO request
960 * that has failed. Thus any sync request that might be pending
961 * will be blocked by nr_pending, and we need to wait for
962 * pending IO requests to complete or be queued for re-try.
963 * Thus the number queued (nr_queued) plus this request (extra)
964 * must match the number of pending IOs (nr_pending) before
965 * we continue.
967 spin_lock_irq(&conf->resync_lock);
968 conf->array_frozen = 1;
969 raid1_log(conf->mddev, "wait freeze");
970 wait_event_lock_irq_cmd(conf->wait_barrier,
971 conf->nr_pending == conf->nr_queued+extra,
972 conf->resync_lock,
973 flush_pending_writes(conf));
974 spin_unlock_irq(&conf->resync_lock);
976 static void unfreeze_array(struct r1conf *conf)
978 /* reverse the effect of the freeze */
979 spin_lock_irq(&conf->resync_lock);
980 conf->array_frozen = 0;
981 wake_up(&conf->wait_barrier);
982 spin_unlock_irq(&conf->resync_lock);
985 /* duplicate the data pages for behind I/O
987 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
989 int i;
990 struct bio_vec *bvec;
991 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
992 GFP_NOIO);
993 if (unlikely(!bvecs))
994 return;
996 bio_for_each_segment_all(bvec, bio, i) {
997 bvecs[i] = *bvec;
998 bvecs[i].bv_page = alloc_page(GFP_NOIO);
999 if (unlikely(!bvecs[i].bv_page))
1000 goto do_sync_io;
1001 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1002 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1003 kunmap(bvecs[i].bv_page);
1004 kunmap(bvec->bv_page);
1006 r1_bio->behind_bvecs = bvecs;
1007 r1_bio->behind_page_count = bio->bi_vcnt;
1008 set_bit(R1BIO_BehindIO, &r1_bio->state);
1009 return;
1011 do_sync_io:
1012 for (i = 0; i < bio->bi_vcnt; i++)
1013 if (bvecs[i].bv_page)
1014 put_page(bvecs[i].bv_page);
1015 kfree(bvecs);
1016 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1017 bio->bi_iter.bi_size);
1020 struct raid1_plug_cb {
1021 struct blk_plug_cb cb;
1022 struct bio_list pending;
1023 int pending_cnt;
1026 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1028 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1029 cb);
1030 struct mddev *mddev = plug->cb.data;
1031 struct r1conf *conf = mddev->private;
1032 struct bio *bio;
1034 if (from_schedule || current->bio_list) {
1035 spin_lock_irq(&conf->device_lock);
1036 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1037 conf->pending_count += plug->pending_cnt;
1038 spin_unlock_irq(&conf->device_lock);
1039 wake_up(&conf->wait_barrier);
1040 md_wakeup_thread(mddev->thread);
1041 kfree(plug);
1042 return;
1045 /* we aren't scheduling, so we can do the write-out directly. */
1046 bio = bio_list_get(&plug->pending);
1047 bitmap_unplug(mddev->bitmap);
1048 wake_up(&conf->wait_barrier);
1050 while (bio) { /* submit pending writes */
1051 struct bio *next = bio->bi_next;
1052 struct md_rdev *rdev = (void*)bio->bi_bdev;
1053 bio->bi_next = NULL;
1054 bio->bi_bdev = rdev->bdev;
1055 if (test_bit(Faulty, &rdev->flags)) {
1056 bio->bi_error = -EIO;
1057 bio_endio(bio);
1058 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1059 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1060 /* Just ignore it */
1061 bio_endio(bio);
1062 else
1063 generic_make_request(bio);
1064 bio = next;
1066 kfree(plug);
1069 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1071 struct r1conf *conf = mddev->private;
1072 struct raid1_info *mirror;
1073 struct r1bio *r1_bio;
1074 struct bio *read_bio;
1075 int i, disks;
1076 struct bitmap *bitmap;
1077 unsigned long flags;
1078 const int op = bio_op(bio);
1079 const int rw = bio_data_dir(bio);
1080 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1081 const unsigned long do_flush_fua = (bio->bi_opf &
1082 (REQ_PREFLUSH | REQ_FUA));
1083 struct md_rdev *blocked_rdev;
1084 struct blk_plug_cb *cb;
1085 struct raid1_plug_cb *plug = NULL;
1086 int first_clone;
1087 int sectors_handled;
1088 int max_sectors;
1089 sector_t start_next_window;
1092 * Register the new request and wait if the reconstruction
1093 * thread has put up a bar for new requests.
1094 * Continue immediately if no resync is active currently.
1097 md_write_start(mddev, bio); /* wait on superblock update early */
1099 if (bio_data_dir(bio) == WRITE &&
1100 ((bio_end_sector(bio) > mddev->suspend_lo &&
1101 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1102 (mddev_is_clustered(mddev) &&
1103 md_cluster_ops->area_resyncing(mddev, WRITE,
1104 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1105 /* As the suspend_* range is controlled by
1106 * userspace, we want an interruptible
1107 * wait.
1109 DEFINE_WAIT(w);
1110 for (;;) {
1111 flush_signals(current);
1112 prepare_to_wait(&conf->wait_barrier,
1113 &w, TASK_INTERRUPTIBLE);
1114 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1115 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1116 (mddev_is_clustered(mddev) &&
1117 !md_cluster_ops->area_resyncing(mddev, WRITE,
1118 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1119 break;
1120 schedule();
1122 finish_wait(&conf->wait_barrier, &w);
1125 start_next_window = wait_barrier(conf, bio);
1127 bitmap = mddev->bitmap;
1130 * make_request() can abort the operation when read-ahead is being
1131 * used and no empty request is available.
1134 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1136 r1_bio->master_bio = bio;
1137 r1_bio->sectors = bio_sectors(bio);
1138 r1_bio->state = 0;
1139 r1_bio->mddev = mddev;
1140 r1_bio->sector = bio->bi_iter.bi_sector;
1142 /* We might need to issue multiple reads to different
1143 * devices if there are bad blocks around, so we keep
1144 * track of the number of reads in bio->bi_phys_segments.
1145 * If this is 0, there is only one r1_bio and no locking
1146 * will be needed when requests complete. If it is
1147 * non-zero, then it is the number of not-completed requests.
1149 bio->bi_phys_segments = 0;
1150 bio_clear_flag(bio, BIO_SEG_VALID);
1152 if (rw == READ) {
1154 * read balancing logic:
1156 int rdisk;
1158 read_again:
1159 rdisk = read_balance(conf, r1_bio, &max_sectors);
1161 if (rdisk < 0) {
1162 /* couldn't find anywhere to read from */
1163 raid_end_bio_io(r1_bio);
1164 return;
1166 mirror = conf->mirrors + rdisk;
1168 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1169 bitmap) {
1170 /* Reading from a write-mostly device must
1171 * take care not to over-take any writes
1172 * that are 'behind'
1174 raid1_log(mddev, "wait behind writes");
1175 wait_event(bitmap->behind_wait,
1176 atomic_read(&bitmap->behind_writes) == 0);
1178 r1_bio->read_disk = rdisk;
1179 r1_bio->start_next_window = 0;
1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1183 max_sectors);
1185 r1_bio->bios[rdisk] = read_bio;
1187 read_bio->bi_iter.bi_sector = r1_bio->sector +
1188 mirror->rdev->data_offset;
1189 read_bio->bi_bdev = mirror->rdev->bdev;
1190 read_bio->bi_end_io = raid1_end_read_request;
1191 bio_set_op_attrs(read_bio, op, do_sync);
1192 if (test_bit(FailFast, &mirror->rdev->flags) &&
1193 test_bit(R1BIO_FailFast, &r1_bio->state))
1194 read_bio->bi_opf |= MD_FAILFAST;
1195 read_bio->bi_private = r1_bio;
1197 if (mddev->gendisk)
1198 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1199 read_bio, disk_devt(mddev->gendisk),
1200 r1_bio->sector);
1202 if (max_sectors < r1_bio->sectors) {
1203 /* could not read all from this device, so we will
1204 * need another r1_bio.
1207 sectors_handled = (r1_bio->sector + max_sectors
1208 - bio->bi_iter.bi_sector);
1209 r1_bio->sectors = max_sectors;
1210 spin_lock_irq(&conf->device_lock);
1211 if (bio->bi_phys_segments == 0)
1212 bio->bi_phys_segments = 2;
1213 else
1214 bio->bi_phys_segments++;
1215 spin_unlock_irq(&conf->device_lock);
1216 /* Cannot call generic_make_request directly
1217 * as that will be queued in __make_request
1218 * and subsequent mempool_alloc might block waiting
1219 * for it. So hand bio over to raid1d.
1221 reschedule_retry(r1_bio);
1223 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225 r1_bio->master_bio = bio;
1226 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1227 r1_bio->state = 0;
1228 r1_bio->mddev = mddev;
1229 r1_bio->sector = bio->bi_iter.bi_sector +
1230 sectors_handled;
1231 goto read_again;
1232 } else
1233 generic_make_request(read_bio);
1234 return;
1238 * WRITE:
1240 if (conf->pending_count >= max_queued_requests) {
1241 md_wakeup_thread(mddev->thread);
1242 raid1_log(mddev, "wait queued");
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks = conf->raid_disks * 2;
1258 retry_write:
1259 r1_bio->start_next_window = start_next_window;
1260 blocked_rdev = NULL;
1261 rcu_read_lock();
1262 max_sectors = r1_bio->sectors;
1263 for (i = 0; i < disks; i++) {
1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1270 r1_bio->bios[i] = NULL;
1271 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1272 if (i < conf->raid_disks)
1273 set_bit(R1BIO_Degraded, &r1_bio->state);
1274 continue;
1277 atomic_inc(&rdev->nr_pending);
1278 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1279 sector_t first_bad;
1280 int bad_sectors;
1281 int is_bad;
1283 is_bad = is_badblock(rdev, r1_bio->sector,
1284 max_sectors,
1285 &first_bad, &bad_sectors);
1286 if (is_bad < 0) {
1287 /* mustn't write here until the bad block is
1288 * acknowledged*/
1289 set_bit(BlockedBadBlocks, &rdev->flags);
1290 blocked_rdev = rdev;
1291 break;
1293 if (is_bad && first_bad <= r1_bio->sector) {
1294 /* Cannot write here at all */
1295 bad_sectors -= (r1_bio->sector - first_bad);
1296 if (bad_sectors < max_sectors)
1297 /* mustn't write more than bad_sectors
1298 * to other devices yet
1300 max_sectors = bad_sectors;
1301 rdev_dec_pending(rdev, mddev);
1302 /* We don't set R1BIO_Degraded as that
1303 * only applies if the disk is
1304 * missing, so it might be re-added,
1305 * and we want to know to recover this
1306 * chunk.
1307 * In this case the device is here,
1308 * and the fact that this chunk is not
1309 * in-sync is recorded in the bad
1310 * block log
1312 continue;
1314 if (is_bad) {
1315 int good_sectors = first_bad - r1_bio->sector;
1316 if (good_sectors < max_sectors)
1317 max_sectors = good_sectors;
1320 r1_bio->bios[i] = bio;
1322 rcu_read_unlock();
1324 if (unlikely(blocked_rdev)) {
1325 /* Wait for this device to become unblocked */
1326 int j;
1327 sector_t old = start_next_window;
1329 for (j = 0; j < i; j++)
1330 if (r1_bio->bios[j])
1331 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1332 r1_bio->state = 0;
1333 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1334 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 start_next_window = wait_barrier(conf, bio);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
1346 goto retry_write;
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 atomic_set(&r1_bio->remaining, 1);
1364 atomic_set(&r1_bio->behind_remaining, 0);
1366 first_clone = 1;
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1392 if (r1_bio->behind_bvecs) {
1393 struct bio_vec *bvec;
1394 int j;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec, mbio, j)
1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1405 r1_bio->bios[i] = mbio;
1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
1411 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1412 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1413 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1414 conf->raid_disks - mddev->degraded > 1)
1415 mbio->bi_opf |= MD_FAILFAST;
1416 mbio->bi_private = r1_bio;
1418 atomic_inc(&r1_bio->remaining);
1420 if (mddev->gendisk)
1421 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1422 mbio, disk_devt(mddev->gendisk),
1423 r1_bio->sector);
1424 /* flush_pending_writes() needs access to the rdev so...*/
1425 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1427 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1428 if (cb)
1429 plug = container_of(cb, struct raid1_plug_cb, cb);
1430 else
1431 plug = NULL;
1432 spin_lock_irqsave(&conf->device_lock, flags);
1433 if (plug) {
1434 bio_list_add(&plug->pending, mbio);
1435 plug->pending_cnt++;
1436 } else {
1437 bio_list_add(&conf->pending_bio_list, mbio);
1438 conf->pending_count++;
1440 spin_unlock_irqrestore(&conf->device_lock, flags);
1441 if (!plug)
1442 md_wakeup_thread(mddev->thread);
1444 /* Mustn't call r1_bio_write_done before this next test,
1445 * as it could result in the bio being freed.
1447 if (sectors_handled < bio_sectors(bio)) {
1448 r1_bio_write_done(r1_bio);
1449 /* We need another r1_bio. It has already been counted
1450 * in bio->bi_phys_segments
1452 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1453 r1_bio->master_bio = bio;
1454 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1455 r1_bio->state = 0;
1456 r1_bio->mddev = mddev;
1457 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1458 goto retry_write;
1461 r1_bio_write_done(r1_bio);
1463 /* In case raid1d snuck in to freeze_array */
1464 wake_up(&conf->wait_barrier);
1467 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1469 struct r1conf *conf = mddev->private;
1470 int i;
1472 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1473 conf->raid_disks - mddev->degraded);
1474 rcu_read_lock();
1475 for (i = 0; i < conf->raid_disks; i++) {
1476 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1477 seq_printf(seq, "%s",
1478 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1480 rcu_read_unlock();
1481 seq_printf(seq, "]");
1484 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1486 char b[BDEVNAME_SIZE];
1487 struct r1conf *conf = mddev->private;
1488 unsigned long flags;
1491 * If it is not operational, then we have already marked it as dead
1492 * else if it is the last working disks, ignore the error, let the
1493 * next level up know.
1494 * else mark the drive as failed
1496 spin_lock_irqsave(&conf->device_lock, flags);
1497 if (test_bit(In_sync, &rdev->flags)
1498 && (conf->raid_disks - mddev->degraded) == 1) {
1500 * Don't fail the drive, act as though we were just a
1501 * normal single drive.
1502 * However don't try a recovery from this drive as
1503 * it is very likely to fail.
1505 conf->recovery_disabled = mddev->recovery_disabled;
1506 spin_unlock_irqrestore(&conf->device_lock, flags);
1507 return;
1509 set_bit(Blocked, &rdev->flags);
1510 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1511 mddev->degraded++;
1512 set_bit(Faulty, &rdev->flags);
1513 } else
1514 set_bit(Faulty, &rdev->flags);
1515 spin_unlock_irqrestore(&conf->device_lock, flags);
1517 * if recovery is running, make sure it aborts.
1519 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1520 set_mask_bits(&mddev->sb_flags, 0,
1521 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1522 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1523 "md/raid1:%s: Operation continuing on %d devices.\n",
1524 mdname(mddev), bdevname(rdev->bdev, b),
1525 mdname(mddev), conf->raid_disks - mddev->degraded);
1528 static void print_conf(struct r1conf *conf)
1530 int i;
1532 pr_debug("RAID1 conf printout:\n");
1533 if (!conf) {
1534 pr_debug("(!conf)\n");
1535 return;
1537 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1538 conf->raid_disks);
1540 rcu_read_lock();
1541 for (i = 0; i < conf->raid_disks; i++) {
1542 char b[BDEVNAME_SIZE];
1543 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1544 if (rdev)
1545 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1546 i, !test_bit(In_sync, &rdev->flags),
1547 !test_bit(Faulty, &rdev->flags),
1548 bdevname(rdev->bdev,b));
1550 rcu_read_unlock();
1553 static void close_sync(struct r1conf *conf)
1555 wait_barrier(conf, NULL);
1556 allow_barrier(conf, 0, 0);
1558 mempool_destroy(conf->r1buf_pool);
1559 conf->r1buf_pool = NULL;
1561 spin_lock_irq(&conf->resync_lock);
1562 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1563 conf->start_next_window = MaxSector;
1564 conf->current_window_requests +=
1565 conf->next_window_requests;
1566 conf->next_window_requests = 0;
1567 spin_unlock_irq(&conf->resync_lock);
1570 static int raid1_spare_active(struct mddev *mddev)
1572 int i;
1573 struct r1conf *conf = mddev->private;
1574 int count = 0;
1575 unsigned long flags;
1578 * Find all failed disks within the RAID1 configuration
1579 * and mark them readable.
1580 * Called under mddev lock, so rcu protection not needed.
1581 * device_lock used to avoid races with raid1_end_read_request
1582 * which expects 'In_sync' flags and ->degraded to be consistent.
1584 spin_lock_irqsave(&conf->device_lock, flags);
1585 for (i = 0; i < conf->raid_disks; i++) {
1586 struct md_rdev *rdev = conf->mirrors[i].rdev;
1587 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1588 if (repl
1589 && !test_bit(Candidate, &repl->flags)
1590 && repl->recovery_offset == MaxSector
1591 && !test_bit(Faulty, &repl->flags)
1592 && !test_and_set_bit(In_sync, &repl->flags)) {
1593 /* replacement has just become active */
1594 if (!rdev ||
1595 !test_and_clear_bit(In_sync, &rdev->flags))
1596 count++;
1597 if (rdev) {
1598 /* Replaced device not technically
1599 * faulty, but we need to be sure
1600 * it gets removed and never re-added
1602 set_bit(Faulty, &rdev->flags);
1603 sysfs_notify_dirent_safe(
1604 rdev->sysfs_state);
1607 if (rdev
1608 && rdev->recovery_offset == MaxSector
1609 && !test_bit(Faulty, &rdev->flags)
1610 && !test_and_set_bit(In_sync, &rdev->flags)) {
1611 count++;
1612 sysfs_notify_dirent_safe(rdev->sysfs_state);
1615 mddev->degraded -= count;
1616 spin_unlock_irqrestore(&conf->device_lock, flags);
1618 print_conf(conf);
1619 return count;
1622 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1624 struct r1conf *conf = mddev->private;
1625 int err = -EEXIST;
1626 int mirror = 0;
1627 struct raid1_info *p;
1628 int first = 0;
1629 int last = conf->raid_disks - 1;
1631 if (mddev->recovery_disabled == conf->recovery_disabled)
1632 return -EBUSY;
1634 if (md_integrity_add_rdev(rdev, mddev))
1635 return -ENXIO;
1637 if (rdev->raid_disk >= 0)
1638 first = last = rdev->raid_disk;
1641 * find the disk ... but prefer rdev->saved_raid_disk
1642 * if possible.
1644 if (rdev->saved_raid_disk >= 0 &&
1645 rdev->saved_raid_disk >= first &&
1646 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1647 first = last = rdev->saved_raid_disk;
1649 for (mirror = first; mirror <= last; mirror++) {
1650 p = conf->mirrors+mirror;
1651 if (!p->rdev) {
1653 if (mddev->gendisk)
1654 disk_stack_limits(mddev->gendisk, rdev->bdev,
1655 rdev->data_offset << 9);
1657 p->head_position = 0;
1658 rdev->raid_disk = mirror;
1659 err = 0;
1660 /* As all devices are equivalent, we don't need a full recovery
1661 * if this was recently any drive of the array
1663 if (rdev->saved_raid_disk < 0)
1664 conf->fullsync = 1;
1665 rcu_assign_pointer(p->rdev, rdev);
1666 break;
1668 if (test_bit(WantReplacement, &p->rdev->flags) &&
1669 p[conf->raid_disks].rdev == NULL) {
1670 /* Add this device as a replacement */
1671 clear_bit(In_sync, &rdev->flags);
1672 set_bit(Replacement, &rdev->flags);
1673 rdev->raid_disk = mirror;
1674 err = 0;
1675 conf->fullsync = 1;
1676 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1677 break;
1680 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1681 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1682 print_conf(conf);
1683 return err;
1686 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1688 struct r1conf *conf = mddev->private;
1689 int err = 0;
1690 int number = rdev->raid_disk;
1691 struct raid1_info *p = conf->mirrors + number;
1693 if (rdev != p->rdev)
1694 p = conf->mirrors + conf->raid_disks + number;
1696 print_conf(conf);
1697 if (rdev == p->rdev) {
1698 if (test_bit(In_sync, &rdev->flags) ||
1699 atomic_read(&rdev->nr_pending)) {
1700 err = -EBUSY;
1701 goto abort;
1703 /* Only remove non-faulty devices if recovery
1704 * is not possible.
1706 if (!test_bit(Faulty, &rdev->flags) &&
1707 mddev->recovery_disabled != conf->recovery_disabled &&
1708 mddev->degraded < conf->raid_disks) {
1709 err = -EBUSY;
1710 goto abort;
1712 p->rdev = NULL;
1713 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1714 synchronize_rcu();
1715 if (atomic_read(&rdev->nr_pending)) {
1716 /* lost the race, try later */
1717 err = -EBUSY;
1718 p->rdev = rdev;
1719 goto abort;
1722 if (conf->mirrors[conf->raid_disks + number].rdev) {
1723 /* We just removed a device that is being replaced.
1724 * Move down the replacement. We drain all IO before
1725 * doing this to avoid confusion.
1727 struct md_rdev *repl =
1728 conf->mirrors[conf->raid_disks + number].rdev;
1729 freeze_array(conf, 0);
1730 clear_bit(Replacement, &repl->flags);
1731 p->rdev = repl;
1732 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1733 unfreeze_array(conf);
1734 clear_bit(WantReplacement, &rdev->flags);
1735 } else
1736 clear_bit(WantReplacement, &rdev->flags);
1737 err = md_integrity_register(mddev);
1739 abort:
1741 print_conf(conf);
1742 return err;
1745 static void end_sync_read(struct bio *bio)
1747 struct r1bio *r1_bio = bio->bi_private;
1749 update_head_pos(r1_bio->read_disk, r1_bio);
1752 * we have read a block, now it needs to be re-written,
1753 * or re-read if the read failed.
1754 * We don't do much here, just schedule handling by raid1d
1756 if (!bio->bi_error)
1757 set_bit(R1BIO_Uptodate, &r1_bio->state);
1759 if (atomic_dec_and_test(&r1_bio->remaining))
1760 reschedule_retry(r1_bio);
1763 static void end_sync_write(struct bio *bio)
1765 int uptodate = !bio->bi_error;
1766 struct r1bio *r1_bio = bio->bi_private;
1767 struct mddev *mddev = r1_bio->mddev;
1768 struct r1conf *conf = mddev->private;
1769 sector_t first_bad;
1770 int bad_sectors;
1771 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1773 if (!uptodate) {
1774 sector_t sync_blocks = 0;
1775 sector_t s = r1_bio->sector;
1776 long sectors_to_go = r1_bio->sectors;
1777 /* make sure these bits doesn't get cleared. */
1778 do {
1779 bitmap_end_sync(mddev->bitmap, s,
1780 &sync_blocks, 1);
1781 s += sync_blocks;
1782 sectors_to_go -= sync_blocks;
1783 } while (sectors_to_go > 0);
1784 set_bit(WriteErrorSeen, &rdev->flags);
1785 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1786 set_bit(MD_RECOVERY_NEEDED, &
1787 mddev->recovery);
1788 set_bit(R1BIO_WriteError, &r1_bio->state);
1789 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1790 &first_bad, &bad_sectors) &&
1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1792 r1_bio->sector,
1793 r1_bio->sectors,
1794 &first_bad, &bad_sectors)
1796 set_bit(R1BIO_MadeGood, &r1_bio->state);
1798 if (atomic_dec_and_test(&r1_bio->remaining)) {
1799 int s = r1_bio->sectors;
1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801 test_bit(R1BIO_WriteError, &r1_bio->state))
1802 reschedule_retry(r1_bio);
1803 else {
1804 put_buf(r1_bio);
1805 md_done_sync(mddev, s, uptodate);
1810 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1811 int sectors, struct page *page, int rw)
1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1814 /* success */
1815 return 1;
1816 if (rw == WRITE) {
1817 set_bit(WriteErrorSeen, &rdev->flags);
1818 if (!test_and_set_bit(WantReplacement,
1819 &rdev->flags))
1820 set_bit(MD_RECOVERY_NEEDED, &
1821 rdev->mddev->recovery);
1823 /* need to record an error - either for the block or the device */
1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825 md_error(rdev->mddev, rdev);
1826 return 0;
1829 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 /* Try some synchronous reads of other devices to get
1832 * good data, much like with normal read errors. Only
1833 * read into the pages we already have so we don't
1834 * need to re-issue the read request.
1835 * We don't need to freeze the array, because being in an
1836 * active sync request, there is no normal IO, and
1837 * no overlapping syncs.
1838 * We don't need to check is_badblock() again as we
1839 * made sure that anything with a bad block in range
1840 * will have bi_end_io clear.
1842 struct mddev *mddev = r1_bio->mddev;
1843 struct r1conf *conf = mddev->private;
1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845 sector_t sect = r1_bio->sector;
1846 int sectors = r1_bio->sectors;
1847 int idx = 0;
1848 struct md_rdev *rdev;
1850 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1851 if (test_bit(FailFast, &rdev->flags)) {
1852 /* Don't try recovering from here - just fail it
1853 * ... unless it is the last working device of course */
1854 md_error(mddev, rdev);
1855 if (test_bit(Faulty, &rdev->flags))
1856 /* Don't try to read from here, but make sure
1857 * put_buf does it's thing
1859 bio->bi_end_io = end_sync_write;
1862 while(sectors) {
1863 int s = sectors;
1864 int d = r1_bio->read_disk;
1865 int success = 0;
1866 int start;
1868 if (s > (PAGE_SIZE>>9))
1869 s = PAGE_SIZE >> 9;
1870 do {
1871 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1872 /* No rcu protection needed here devices
1873 * can only be removed when no resync is
1874 * active, and resync is currently active
1876 rdev = conf->mirrors[d].rdev;
1877 if (sync_page_io(rdev, sect, s<<9,
1878 bio->bi_io_vec[idx].bv_page,
1879 REQ_OP_READ, 0, false)) {
1880 success = 1;
1881 break;
1884 d++;
1885 if (d == conf->raid_disks * 2)
1886 d = 0;
1887 } while (!success && d != r1_bio->read_disk);
1889 if (!success) {
1890 char b[BDEVNAME_SIZE];
1891 int abort = 0;
1892 /* Cannot read from anywhere, this block is lost.
1893 * Record a bad block on each device. If that doesn't
1894 * work just disable and interrupt the recovery.
1895 * Don't fail devices as that won't really help.
1897 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1898 mdname(mddev),
1899 bdevname(bio->bi_bdev, b),
1900 (unsigned long long)r1_bio->sector);
1901 for (d = 0; d < conf->raid_disks * 2; d++) {
1902 rdev = conf->mirrors[d].rdev;
1903 if (!rdev || test_bit(Faulty, &rdev->flags))
1904 continue;
1905 if (!rdev_set_badblocks(rdev, sect, s, 0))
1906 abort = 1;
1908 if (abort) {
1909 conf->recovery_disabled =
1910 mddev->recovery_disabled;
1911 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1912 md_done_sync(mddev, r1_bio->sectors, 0);
1913 put_buf(r1_bio);
1914 return 0;
1916 /* Try next page */
1917 sectors -= s;
1918 sect += s;
1919 idx++;
1920 continue;
1923 start = d;
1924 /* write it back and re-read */
1925 while (d != r1_bio->read_disk) {
1926 if (d == 0)
1927 d = conf->raid_disks * 2;
1928 d--;
1929 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930 continue;
1931 rdev = conf->mirrors[d].rdev;
1932 if (r1_sync_page_io(rdev, sect, s,
1933 bio->bi_io_vec[idx].bv_page,
1934 WRITE) == 0) {
1935 r1_bio->bios[d]->bi_end_io = NULL;
1936 rdev_dec_pending(rdev, mddev);
1939 d = start;
1940 while (d != r1_bio->read_disk) {
1941 if (d == 0)
1942 d = conf->raid_disks * 2;
1943 d--;
1944 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1945 continue;
1946 rdev = conf->mirrors[d].rdev;
1947 if (r1_sync_page_io(rdev, sect, s,
1948 bio->bi_io_vec[idx].bv_page,
1949 READ) != 0)
1950 atomic_add(s, &rdev->corrected_errors);
1952 sectors -= s;
1953 sect += s;
1954 idx ++;
1956 set_bit(R1BIO_Uptodate, &r1_bio->state);
1957 bio->bi_error = 0;
1958 return 1;
1961 static void process_checks(struct r1bio *r1_bio)
1963 /* We have read all readable devices. If we haven't
1964 * got the block, then there is no hope left.
1965 * If we have, then we want to do a comparison
1966 * and skip the write if everything is the same.
1967 * If any blocks failed to read, then we need to
1968 * attempt an over-write
1970 struct mddev *mddev = r1_bio->mddev;
1971 struct r1conf *conf = mddev->private;
1972 int primary;
1973 int i;
1974 int vcnt;
1976 /* Fix variable parts of all bios */
1977 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1978 for (i = 0; i < conf->raid_disks * 2; i++) {
1979 int j;
1980 int size;
1981 int error;
1982 struct bio *b = r1_bio->bios[i];
1983 if (b->bi_end_io != end_sync_read)
1984 continue;
1985 /* fixup the bio for reuse, but preserve errno */
1986 error = b->bi_error;
1987 bio_reset(b);
1988 b->bi_error = error;
1989 b->bi_vcnt = vcnt;
1990 b->bi_iter.bi_size = r1_bio->sectors << 9;
1991 b->bi_iter.bi_sector = r1_bio->sector +
1992 conf->mirrors[i].rdev->data_offset;
1993 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1994 b->bi_end_io = end_sync_read;
1995 b->bi_private = r1_bio;
1997 size = b->bi_iter.bi_size;
1998 for (j = 0; j < vcnt ; j++) {
1999 struct bio_vec *bi;
2000 bi = &b->bi_io_vec[j];
2001 bi->bv_offset = 0;
2002 if (size > PAGE_SIZE)
2003 bi->bv_len = PAGE_SIZE;
2004 else
2005 bi->bv_len = size;
2006 size -= PAGE_SIZE;
2009 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2010 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2011 !r1_bio->bios[primary]->bi_error) {
2012 r1_bio->bios[primary]->bi_end_io = NULL;
2013 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2014 break;
2016 r1_bio->read_disk = primary;
2017 for (i = 0; i < conf->raid_disks * 2; i++) {
2018 int j;
2019 struct bio *pbio = r1_bio->bios[primary];
2020 struct bio *sbio = r1_bio->bios[i];
2021 int error = sbio->bi_error;
2023 if (sbio->bi_end_io != end_sync_read)
2024 continue;
2025 /* Now we can 'fixup' the error value */
2026 sbio->bi_error = 0;
2028 if (!error) {
2029 for (j = vcnt; j-- ; ) {
2030 struct page *p, *s;
2031 p = pbio->bi_io_vec[j].bv_page;
2032 s = sbio->bi_io_vec[j].bv_page;
2033 if (memcmp(page_address(p),
2034 page_address(s),
2035 sbio->bi_io_vec[j].bv_len))
2036 break;
2038 } else
2039 j = 0;
2040 if (j >= 0)
2041 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2042 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2043 && !error)) {
2044 /* No need to write to this device. */
2045 sbio->bi_end_io = NULL;
2046 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2047 continue;
2050 bio_copy_data(sbio, pbio);
2054 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2056 struct r1conf *conf = mddev->private;
2057 int i;
2058 int disks = conf->raid_disks * 2;
2059 struct bio *bio, *wbio;
2061 bio = r1_bio->bios[r1_bio->read_disk];
2063 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2064 /* ouch - failed to read all of that. */
2065 if (!fix_sync_read_error(r1_bio))
2066 return;
2068 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2069 process_checks(r1_bio);
2072 * schedule writes
2074 atomic_set(&r1_bio->remaining, 1);
2075 for (i = 0; i < disks ; i++) {
2076 wbio = r1_bio->bios[i];
2077 if (wbio->bi_end_io == NULL ||
2078 (wbio->bi_end_io == end_sync_read &&
2079 (i == r1_bio->read_disk ||
2080 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2081 continue;
2083 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2084 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2085 wbio->bi_opf |= MD_FAILFAST;
2087 wbio->bi_end_io = end_sync_write;
2088 atomic_inc(&r1_bio->remaining);
2089 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2091 generic_make_request(wbio);
2094 if (atomic_dec_and_test(&r1_bio->remaining)) {
2095 /* if we're here, all write(s) have completed, so clean up */
2096 int s = r1_bio->sectors;
2097 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2098 test_bit(R1BIO_WriteError, &r1_bio->state))
2099 reschedule_retry(r1_bio);
2100 else {
2101 put_buf(r1_bio);
2102 md_done_sync(mddev, s, 1);
2108 * This is a kernel thread which:
2110 * 1. Retries failed read operations on working mirrors.
2111 * 2. Updates the raid superblock when problems encounter.
2112 * 3. Performs writes following reads for array synchronising.
2115 static void fix_read_error(struct r1conf *conf, int read_disk,
2116 sector_t sect, int sectors)
2118 struct mddev *mddev = conf->mddev;
2119 while(sectors) {
2120 int s = sectors;
2121 int d = read_disk;
2122 int success = 0;
2123 int start;
2124 struct md_rdev *rdev;
2126 if (s > (PAGE_SIZE>>9))
2127 s = PAGE_SIZE >> 9;
2129 do {
2130 sector_t first_bad;
2131 int bad_sectors;
2133 rcu_read_lock();
2134 rdev = rcu_dereference(conf->mirrors[d].rdev);
2135 if (rdev &&
2136 (test_bit(In_sync, &rdev->flags) ||
2137 (!test_bit(Faulty, &rdev->flags) &&
2138 rdev->recovery_offset >= sect + s)) &&
2139 is_badblock(rdev, sect, s,
2140 &first_bad, &bad_sectors) == 0) {
2141 atomic_inc(&rdev->nr_pending);
2142 rcu_read_unlock();
2143 if (sync_page_io(rdev, sect, s<<9,
2144 conf->tmppage, REQ_OP_READ, 0, false))
2145 success = 1;
2146 rdev_dec_pending(rdev, mddev);
2147 if (success)
2148 break;
2149 } else
2150 rcu_read_unlock();
2151 d++;
2152 if (d == conf->raid_disks * 2)
2153 d = 0;
2154 } while (!success && d != read_disk);
2156 if (!success) {
2157 /* Cannot read from anywhere - mark it bad */
2158 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2159 if (!rdev_set_badblocks(rdev, sect, s, 0))
2160 md_error(mddev, rdev);
2161 break;
2163 /* write it back and re-read */
2164 start = d;
2165 while (d != read_disk) {
2166 if (d==0)
2167 d = conf->raid_disks * 2;
2168 d--;
2169 rcu_read_lock();
2170 rdev = rcu_dereference(conf->mirrors[d].rdev);
2171 if (rdev &&
2172 !test_bit(Faulty, &rdev->flags)) {
2173 atomic_inc(&rdev->nr_pending);
2174 rcu_read_unlock();
2175 r1_sync_page_io(rdev, sect, s,
2176 conf->tmppage, WRITE);
2177 rdev_dec_pending(rdev, mddev);
2178 } else
2179 rcu_read_unlock();
2181 d = start;
2182 while (d != read_disk) {
2183 char b[BDEVNAME_SIZE];
2184 if (d==0)
2185 d = conf->raid_disks * 2;
2186 d--;
2187 rcu_read_lock();
2188 rdev = rcu_dereference(conf->mirrors[d].rdev);
2189 if (rdev &&
2190 !test_bit(Faulty, &rdev->flags)) {
2191 atomic_inc(&rdev->nr_pending);
2192 rcu_read_unlock();
2193 if (r1_sync_page_io(rdev, sect, s,
2194 conf->tmppage, READ)) {
2195 atomic_add(s, &rdev->corrected_errors);
2196 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2197 mdname(mddev), s,
2198 (unsigned long long)(sect +
2199 rdev->data_offset),
2200 bdevname(rdev->bdev, b));
2202 rdev_dec_pending(rdev, mddev);
2203 } else
2204 rcu_read_unlock();
2206 sectors -= s;
2207 sect += s;
2211 static int narrow_write_error(struct r1bio *r1_bio, int i)
2213 struct mddev *mddev = r1_bio->mddev;
2214 struct r1conf *conf = mddev->private;
2215 struct md_rdev *rdev = conf->mirrors[i].rdev;
2217 /* bio has the data to be written to device 'i' where
2218 * we just recently had a write error.
2219 * We repeatedly clone the bio and trim down to one block,
2220 * then try the write. Where the write fails we record
2221 * a bad block.
2222 * It is conceivable that the bio doesn't exactly align with
2223 * blocks. We must handle this somehow.
2225 * We currently own a reference on the rdev.
2228 int block_sectors;
2229 sector_t sector;
2230 int sectors;
2231 int sect_to_write = r1_bio->sectors;
2232 int ok = 1;
2234 if (rdev->badblocks.shift < 0)
2235 return 0;
2237 block_sectors = roundup(1 << rdev->badblocks.shift,
2238 bdev_logical_block_size(rdev->bdev) >> 9);
2239 sector = r1_bio->sector;
2240 sectors = ((sector + block_sectors)
2241 & ~(sector_t)(block_sectors - 1))
2242 - sector;
2244 while (sect_to_write) {
2245 struct bio *wbio;
2246 if (sectors > sect_to_write)
2247 sectors = sect_to_write;
2248 /* Write at 'sector' for 'sectors'*/
2250 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2251 unsigned vcnt = r1_bio->behind_page_count;
2252 struct bio_vec *vec = r1_bio->behind_bvecs;
2254 while (!vec->bv_page) {
2255 vec++;
2256 vcnt--;
2259 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2260 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2262 wbio->bi_vcnt = vcnt;
2263 } else {
2264 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2267 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2268 wbio->bi_iter.bi_sector = r1_bio->sector;
2269 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2271 bio_trim(wbio, sector - r1_bio->sector, sectors);
2272 wbio->bi_iter.bi_sector += rdev->data_offset;
2273 wbio->bi_bdev = rdev->bdev;
2275 if (submit_bio_wait(wbio) < 0)
2276 /* failure! */
2277 ok = rdev_set_badblocks(rdev, sector,
2278 sectors, 0)
2279 && ok;
2281 bio_put(wbio);
2282 sect_to_write -= sectors;
2283 sector += sectors;
2284 sectors = block_sectors;
2286 return ok;
2289 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2291 int m;
2292 int s = r1_bio->sectors;
2293 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2294 struct md_rdev *rdev = conf->mirrors[m].rdev;
2295 struct bio *bio = r1_bio->bios[m];
2296 if (bio->bi_end_io == NULL)
2297 continue;
2298 if (!bio->bi_error &&
2299 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2300 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2302 if (bio->bi_error &&
2303 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2304 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2305 md_error(conf->mddev, rdev);
2308 put_buf(r1_bio);
2309 md_done_sync(conf->mddev, s, 1);
2312 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2314 int m;
2315 bool fail = false;
2316 for (m = 0; m < conf->raid_disks * 2 ; m++)
2317 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2318 struct md_rdev *rdev = conf->mirrors[m].rdev;
2319 rdev_clear_badblocks(rdev,
2320 r1_bio->sector,
2321 r1_bio->sectors, 0);
2322 rdev_dec_pending(rdev, conf->mddev);
2323 } else if (r1_bio->bios[m] != NULL) {
2324 /* This drive got a write error. We need to
2325 * narrow down and record precise write
2326 * errors.
2328 fail = true;
2329 if (!narrow_write_error(r1_bio, m)) {
2330 md_error(conf->mddev,
2331 conf->mirrors[m].rdev);
2332 /* an I/O failed, we can't clear the bitmap */
2333 set_bit(R1BIO_Degraded, &r1_bio->state);
2335 rdev_dec_pending(conf->mirrors[m].rdev,
2336 conf->mddev);
2338 if (fail) {
2339 spin_lock_irq(&conf->device_lock);
2340 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2341 conf->nr_queued++;
2342 spin_unlock_irq(&conf->device_lock);
2343 md_wakeup_thread(conf->mddev->thread);
2344 } else {
2345 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2346 close_write(r1_bio);
2347 raid_end_bio_io(r1_bio);
2351 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2353 int disk;
2354 int max_sectors;
2355 struct mddev *mddev = conf->mddev;
2356 struct bio *bio;
2357 char b[BDEVNAME_SIZE];
2358 struct md_rdev *rdev;
2359 dev_t bio_dev;
2360 sector_t bio_sector;
2362 clear_bit(R1BIO_ReadError, &r1_bio->state);
2363 /* we got a read error. Maybe the drive is bad. Maybe just
2364 * the block and we can fix it.
2365 * We freeze all other IO, and try reading the block from
2366 * other devices. When we find one, we re-write
2367 * and check it that fixes the read error.
2368 * This is all done synchronously while the array is
2369 * frozen
2372 bio = r1_bio->bios[r1_bio->read_disk];
2373 bdevname(bio->bi_bdev, b);
2374 bio_dev = bio->bi_bdev->bd_dev;
2375 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2376 bio_put(bio);
2377 r1_bio->bios[r1_bio->read_disk] = NULL;
2379 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2380 if (mddev->ro == 0
2381 && !test_bit(FailFast, &rdev->flags)) {
2382 freeze_array(conf, 1);
2383 fix_read_error(conf, r1_bio->read_disk,
2384 r1_bio->sector, r1_bio->sectors);
2385 unfreeze_array(conf);
2386 } else {
2387 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2390 rdev_dec_pending(rdev, conf->mddev);
2392 read_more:
2393 disk = read_balance(conf, r1_bio, &max_sectors);
2394 if (disk == -1) {
2395 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2396 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2397 raid_end_bio_io(r1_bio);
2398 } else {
2399 const unsigned long do_sync
2400 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2401 r1_bio->read_disk = disk;
2402 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2403 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2404 max_sectors);
2405 r1_bio->bios[r1_bio->read_disk] = bio;
2406 rdev = conf->mirrors[disk].rdev;
2407 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2408 mdname(mddev),
2409 (unsigned long long)r1_bio->sector,
2410 bdevname(rdev->bdev, b));
2411 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2412 bio->bi_bdev = rdev->bdev;
2413 bio->bi_end_io = raid1_end_read_request;
2414 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2415 if (test_bit(FailFast, &rdev->flags) &&
2416 test_bit(R1BIO_FailFast, &r1_bio->state))
2417 bio->bi_opf |= MD_FAILFAST;
2418 bio->bi_private = r1_bio;
2419 if (max_sectors < r1_bio->sectors) {
2420 /* Drat - have to split this up more */
2421 struct bio *mbio = r1_bio->master_bio;
2422 int sectors_handled = (r1_bio->sector + max_sectors
2423 - mbio->bi_iter.bi_sector);
2424 r1_bio->sectors = max_sectors;
2425 spin_lock_irq(&conf->device_lock);
2426 if (mbio->bi_phys_segments == 0)
2427 mbio->bi_phys_segments = 2;
2428 else
2429 mbio->bi_phys_segments++;
2430 spin_unlock_irq(&conf->device_lock);
2431 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2432 bio, bio_dev, bio_sector);
2433 generic_make_request(bio);
2434 bio = NULL;
2436 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2438 r1_bio->master_bio = mbio;
2439 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2440 r1_bio->state = 0;
2441 set_bit(R1BIO_ReadError, &r1_bio->state);
2442 r1_bio->mddev = mddev;
2443 r1_bio->sector = mbio->bi_iter.bi_sector +
2444 sectors_handled;
2446 goto read_more;
2447 } else {
2448 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2449 bio, bio_dev, bio_sector);
2450 generic_make_request(bio);
2455 static void raid1d(struct md_thread *thread)
2457 struct mddev *mddev = thread->mddev;
2458 struct r1bio *r1_bio;
2459 unsigned long flags;
2460 struct r1conf *conf = mddev->private;
2461 struct list_head *head = &conf->retry_list;
2462 struct blk_plug plug;
2464 md_check_recovery(mddev);
2466 if (!list_empty_careful(&conf->bio_end_io_list) &&
2467 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2468 LIST_HEAD(tmp);
2469 spin_lock_irqsave(&conf->device_lock, flags);
2470 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2471 while (!list_empty(&conf->bio_end_io_list)) {
2472 list_move(conf->bio_end_io_list.prev, &tmp);
2473 conf->nr_queued--;
2476 spin_unlock_irqrestore(&conf->device_lock, flags);
2477 while (!list_empty(&tmp)) {
2478 r1_bio = list_first_entry(&tmp, struct r1bio,
2479 retry_list);
2480 list_del(&r1_bio->retry_list);
2481 if (mddev->degraded)
2482 set_bit(R1BIO_Degraded, &r1_bio->state);
2483 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2484 close_write(r1_bio);
2485 raid_end_bio_io(r1_bio);
2489 blk_start_plug(&plug);
2490 for (;;) {
2492 flush_pending_writes(conf);
2494 spin_lock_irqsave(&conf->device_lock, flags);
2495 if (list_empty(head)) {
2496 spin_unlock_irqrestore(&conf->device_lock, flags);
2497 break;
2499 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2500 list_del(head->prev);
2501 conf->nr_queued--;
2502 spin_unlock_irqrestore(&conf->device_lock, flags);
2504 mddev = r1_bio->mddev;
2505 conf = mddev->private;
2506 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2507 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2508 test_bit(R1BIO_WriteError, &r1_bio->state))
2509 handle_sync_write_finished(conf, r1_bio);
2510 else
2511 sync_request_write(mddev, r1_bio);
2512 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2513 test_bit(R1BIO_WriteError, &r1_bio->state))
2514 handle_write_finished(conf, r1_bio);
2515 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2516 handle_read_error(conf, r1_bio);
2517 else
2518 /* just a partial read to be scheduled from separate
2519 * context
2521 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2523 cond_resched();
2524 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2525 md_check_recovery(mddev);
2527 blk_finish_plug(&plug);
2530 static int init_resync(struct r1conf *conf)
2532 int buffs;
2534 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2535 BUG_ON(conf->r1buf_pool);
2536 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2537 conf->poolinfo);
2538 if (!conf->r1buf_pool)
2539 return -ENOMEM;
2540 conf->next_resync = 0;
2541 return 0;
2545 * perform a "sync" on one "block"
2547 * We need to make sure that no normal I/O request - particularly write
2548 * requests - conflict with active sync requests.
2550 * This is achieved by tracking pending requests and a 'barrier' concept
2551 * that can be installed to exclude normal IO requests.
2554 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2555 int *skipped)
2557 struct r1conf *conf = mddev->private;
2558 struct r1bio *r1_bio;
2559 struct bio *bio;
2560 sector_t max_sector, nr_sectors;
2561 int disk = -1;
2562 int i;
2563 int wonly = -1;
2564 int write_targets = 0, read_targets = 0;
2565 sector_t sync_blocks;
2566 int still_degraded = 0;
2567 int good_sectors = RESYNC_SECTORS;
2568 int min_bad = 0; /* number of sectors that are bad in all devices */
2570 if (!conf->r1buf_pool)
2571 if (init_resync(conf))
2572 return 0;
2574 max_sector = mddev->dev_sectors;
2575 if (sector_nr >= max_sector) {
2576 /* If we aborted, we need to abort the
2577 * sync on the 'current' bitmap chunk (there will
2578 * only be one in raid1 resync.
2579 * We can find the current addess in mddev->curr_resync
2581 if (mddev->curr_resync < max_sector) /* aborted */
2582 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2583 &sync_blocks, 1);
2584 else /* completed sync */
2585 conf->fullsync = 0;
2587 bitmap_close_sync(mddev->bitmap);
2588 close_sync(conf);
2590 if (mddev_is_clustered(mddev)) {
2591 conf->cluster_sync_low = 0;
2592 conf->cluster_sync_high = 0;
2594 return 0;
2597 if (mddev->bitmap == NULL &&
2598 mddev->recovery_cp == MaxSector &&
2599 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2600 conf->fullsync == 0) {
2601 *skipped = 1;
2602 return max_sector - sector_nr;
2604 /* before building a request, check if we can skip these blocks..
2605 * This call the bitmap_start_sync doesn't actually record anything
2607 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2608 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2609 /* We can skip this block, and probably several more */
2610 *skipped = 1;
2611 return sync_blocks;
2615 * If there is non-resync activity waiting for a turn, then let it
2616 * though before starting on this new sync request.
2618 if (conf->nr_waiting)
2619 schedule_timeout_uninterruptible(1);
2621 /* we are incrementing sector_nr below. To be safe, we check against
2622 * sector_nr + two times RESYNC_SECTORS
2625 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2626 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2627 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2629 raise_barrier(conf, sector_nr);
2631 rcu_read_lock();
2633 * If we get a correctably read error during resync or recovery,
2634 * we might want to read from a different device. So we
2635 * flag all drives that could conceivably be read from for READ,
2636 * and any others (which will be non-In_sync devices) for WRITE.
2637 * If a read fails, we try reading from something else for which READ
2638 * is OK.
2641 r1_bio->mddev = mddev;
2642 r1_bio->sector = sector_nr;
2643 r1_bio->state = 0;
2644 set_bit(R1BIO_IsSync, &r1_bio->state);
2646 for (i = 0; i < conf->raid_disks * 2; i++) {
2647 struct md_rdev *rdev;
2648 bio = r1_bio->bios[i];
2649 bio_reset(bio);
2651 rdev = rcu_dereference(conf->mirrors[i].rdev);
2652 if (rdev == NULL ||
2653 test_bit(Faulty, &rdev->flags)) {
2654 if (i < conf->raid_disks)
2655 still_degraded = 1;
2656 } else if (!test_bit(In_sync, &rdev->flags)) {
2657 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2658 bio->bi_end_io = end_sync_write;
2659 write_targets ++;
2660 } else {
2661 /* may need to read from here */
2662 sector_t first_bad = MaxSector;
2663 int bad_sectors;
2665 if (is_badblock(rdev, sector_nr, good_sectors,
2666 &first_bad, &bad_sectors)) {
2667 if (first_bad > sector_nr)
2668 good_sectors = first_bad - sector_nr;
2669 else {
2670 bad_sectors -= (sector_nr - first_bad);
2671 if (min_bad == 0 ||
2672 min_bad > bad_sectors)
2673 min_bad = bad_sectors;
2676 if (sector_nr < first_bad) {
2677 if (test_bit(WriteMostly, &rdev->flags)) {
2678 if (wonly < 0)
2679 wonly = i;
2680 } else {
2681 if (disk < 0)
2682 disk = i;
2684 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2685 bio->bi_end_io = end_sync_read;
2686 read_targets++;
2687 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2688 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2689 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2691 * The device is suitable for reading (InSync),
2692 * but has bad block(s) here. Let's try to correct them,
2693 * if we are doing resync or repair. Otherwise, leave
2694 * this device alone for this sync request.
2696 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2697 bio->bi_end_io = end_sync_write;
2698 write_targets++;
2701 if (bio->bi_end_io) {
2702 atomic_inc(&rdev->nr_pending);
2703 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2704 bio->bi_bdev = rdev->bdev;
2705 bio->bi_private = r1_bio;
2706 if (test_bit(FailFast, &rdev->flags))
2707 bio->bi_opf |= MD_FAILFAST;
2710 rcu_read_unlock();
2711 if (disk < 0)
2712 disk = wonly;
2713 r1_bio->read_disk = disk;
2715 if (read_targets == 0 && min_bad > 0) {
2716 /* These sectors are bad on all InSync devices, so we
2717 * need to mark them bad on all write targets
2719 int ok = 1;
2720 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2721 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2722 struct md_rdev *rdev = conf->mirrors[i].rdev;
2723 ok = rdev_set_badblocks(rdev, sector_nr,
2724 min_bad, 0
2725 ) && ok;
2727 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2728 *skipped = 1;
2729 put_buf(r1_bio);
2731 if (!ok) {
2732 /* Cannot record the badblocks, so need to
2733 * abort the resync.
2734 * If there are multiple read targets, could just
2735 * fail the really bad ones ???
2737 conf->recovery_disabled = mddev->recovery_disabled;
2738 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2739 return 0;
2740 } else
2741 return min_bad;
2744 if (min_bad > 0 && min_bad < good_sectors) {
2745 /* only resync enough to reach the next bad->good
2746 * transition */
2747 good_sectors = min_bad;
2750 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2751 /* extra read targets are also write targets */
2752 write_targets += read_targets-1;
2754 if (write_targets == 0 || read_targets == 0) {
2755 /* There is nowhere to write, so all non-sync
2756 * drives must be failed - so we are finished
2758 sector_t rv;
2759 if (min_bad > 0)
2760 max_sector = sector_nr + min_bad;
2761 rv = max_sector - sector_nr;
2762 *skipped = 1;
2763 put_buf(r1_bio);
2764 return rv;
2767 if (max_sector > mddev->resync_max)
2768 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2769 if (max_sector > sector_nr + good_sectors)
2770 max_sector = sector_nr + good_sectors;
2771 nr_sectors = 0;
2772 sync_blocks = 0;
2773 do {
2774 struct page *page;
2775 int len = PAGE_SIZE;
2776 if (sector_nr + (len>>9) > max_sector)
2777 len = (max_sector - sector_nr) << 9;
2778 if (len == 0)
2779 break;
2780 if (sync_blocks == 0) {
2781 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2782 &sync_blocks, still_degraded) &&
2783 !conf->fullsync &&
2784 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2785 break;
2786 if ((len >> 9) > sync_blocks)
2787 len = sync_blocks<<9;
2790 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2791 bio = r1_bio->bios[i];
2792 if (bio->bi_end_io) {
2793 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2794 if (bio_add_page(bio, page, len, 0) == 0) {
2795 /* stop here */
2796 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2797 while (i > 0) {
2798 i--;
2799 bio = r1_bio->bios[i];
2800 if (bio->bi_end_io==NULL)
2801 continue;
2802 /* remove last page from this bio */
2803 bio->bi_vcnt--;
2804 bio->bi_iter.bi_size -= len;
2805 bio_clear_flag(bio, BIO_SEG_VALID);
2807 goto bio_full;
2811 nr_sectors += len>>9;
2812 sector_nr += len>>9;
2813 sync_blocks -= (len>>9);
2814 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2815 bio_full:
2816 r1_bio->sectors = nr_sectors;
2818 if (mddev_is_clustered(mddev) &&
2819 conf->cluster_sync_high < sector_nr + nr_sectors) {
2820 conf->cluster_sync_low = mddev->curr_resync_completed;
2821 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2822 /* Send resync message */
2823 md_cluster_ops->resync_info_update(mddev,
2824 conf->cluster_sync_low,
2825 conf->cluster_sync_high);
2828 /* For a user-requested sync, we read all readable devices and do a
2829 * compare
2831 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2832 atomic_set(&r1_bio->remaining, read_targets);
2833 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2834 bio = r1_bio->bios[i];
2835 if (bio->bi_end_io == end_sync_read) {
2836 read_targets--;
2837 md_sync_acct(bio->bi_bdev, nr_sectors);
2838 if (read_targets == 1)
2839 bio->bi_opf &= ~MD_FAILFAST;
2840 generic_make_request(bio);
2843 } else {
2844 atomic_set(&r1_bio->remaining, 1);
2845 bio = r1_bio->bios[r1_bio->read_disk];
2846 md_sync_acct(bio->bi_bdev, nr_sectors);
2847 if (read_targets == 1)
2848 bio->bi_opf &= ~MD_FAILFAST;
2849 generic_make_request(bio);
2852 return nr_sectors;
2855 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2857 if (sectors)
2858 return sectors;
2860 return mddev->dev_sectors;
2863 static struct r1conf *setup_conf(struct mddev *mddev)
2865 struct r1conf *conf;
2866 int i;
2867 struct raid1_info *disk;
2868 struct md_rdev *rdev;
2869 int err = -ENOMEM;
2871 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2872 if (!conf)
2873 goto abort;
2875 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2876 * mddev->raid_disks * 2,
2877 GFP_KERNEL);
2878 if (!conf->mirrors)
2879 goto abort;
2881 conf->tmppage = alloc_page(GFP_KERNEL);
2882 if (!conf->tmppage)
2883 goto abort;
2885 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2886 if (!conf->poolinfo)
2887 goto abort;
2888 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2889 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2890 r1bio_pool_free,
2891 conf->poolinfo);
2892 if (!conf->r1bio_pool)
2893 goto abort;
2895 conf->poolinfo->mddev = mddev;
2897 err = -EINVAL;
2898 spin_lock_init(&conf->device_lock);
2899 rdev_for_each(rdev, mddev) {
2900 struct request_queue *q;
2901 int disk_idx = rdev->raid_disk;
2902 if (disk_idx >= mddev->raid_disks
2903 || disk_idx < 0)
2904 continue;
2905 if (test_bit(Replacement, &rdev->flags))
2906 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2907 else
2908 disk = conf->mirrors + disk_idx;
2910 if (disk->rdev)
2911 goto abort;
2912 disk->rdev = rdev;
2913 q = bdev_get_queue(rdev->bdev);
2915 disk->head_position = 0;
2916 disk->seq_start = MaxSector;
2918 conf->raid_disks = mddev->raid_disks;
2919 conf->mddev = mddev;
2920 INIT_LIST_HEAD(&conf->retry_list);
2921 INIT_LIST_HEAD(&conf->bio_end_io_list);
2923 spin_lock_init(&conf->resync_lock);
2924 init_waitqueue_head(&conf->wait_barrier);
2926 bio_list_init(&conf->pending_bio_list);
2927 conf->pending_count = 0;
2928 conf->recovery_disabled = mddev->recovery_disabled - 1;
2930 conf->start_next_window = MaxSector;
2931 conf->current_window_requests = conf->next_window_requests = 0;
2933 err = -EIO;
2934 for (i = 0; i < conf->raid_disks * 2; i++) {
2936 disk = conf->mirrors + i;
2938 if (i < conf->raid_disks &&
2939 disk[conf->raid_disks].rdev) {
2940 /* This slot has a replacement. */
2941 if (!disk->rdev) {
2942 /* No original, just make the replacement
2943 * a recovering spare
2945 disk->rdev =
2946 disk[conf->raid_disks].rdev;
2947 disk[conf->raid_disks].rdev = NULL;
2948 } else if (!test_bit(In_sync, &disk->rdev->flags))
2949 /* Original is not in_sync - bad */
2950 goto abort;
2953 if (!disk->rdev ||
2954 !test_bit(In_sync, &disk->rdev->flags)) {
2955 disk->head_position = 0;
2956 if (disk->rdev &&
2957 (disk->rdev->saved_raid_disk < 0))
2958 conf->fullsync = 1;
2962 err = -ENOMEM;
2963 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2964 if (!conf->thread)
2965 goto abort;
2967 return conf;
2969 abort:
2970 if (conf) {
2971 mempool_destroy(conf->r1bio_pool);
2972 kfree(conf->mirrors);
2973 safe_put_page(conf->tmppage);
2974 kfree(conf->poolinfo);
2975 kfree(conf);
2977 return ERR_PTR(err);
2980 static void raid1_free(struct mddev *mddev, void *priv);
2981 static int raid1_run(struct mddev *mddev)
2983 struct r1conf *conf;
2984 int i;
2985 struct md_rdev *rdev;
2986 int ret;
2987 bool discard_supported = false;
2989 if (mddev->level != 1) {
2990 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
2991 mdname(mddev), mddev->level);
2992 return -EIO;
2994 if (mddev->reshape_position != MaxSector) {
2995 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
2996 mdname(mddev));
2997 return -EIO;
3000 * copy the already verified devices into our private RAID1
3001 * bookkeeping area. [whatever we allocate in run(),
3002 * should be freed in raid1_free()]
3004 if (mddev->private == NULL)
3005 conf = setup_conf(mddev);
3006 else
3007 conf = mddev->private;
3009 if (IS_ERR(conf))
3010 return PTR_ERR(conf);
3012 if (mddev->queue)
3013 blk_queue_max_write_same_sectors(mddev->queue, 0);
3015 rdev_for_each(rdev, mddev) {
3016 if (!mddev->gendisk)
3017 continue;
3018 disk_stack_limits(mddev->gendisk, rdev->bdev,
3019 rdev->data_offset << 9);
3020 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3021 discard_supported = true;
3024 mddev->degraded = 0;
3025 for (i=0; i < conf->raid_disks; i++)
3026 if (conf->mirrors[i].rdev == NULL ||
3027 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3028 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3029 mddev->degraded++;
3031 if (conf->raid_disks - mddev->degraded == 1)
3032 mddev->recovery_cp = MaxSector;
3034 if (mddev->recovery_cp != MaxSector)
3035 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3036 mdname(mddev));
3037 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3038 mdname(mddev), mddev->raid_disks - mddev->degraded,
3039 mddev->raid_disks);
3042 * Ok, everything is just fine now
3044 mddev->thread = conf->thread;
3045 conf->thread = NULL;
3046 mddev->private = conf;
3047 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3049 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3051 if (mddev->queue) {
3052 if (discard_supported)
3053 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3054 mddev->queue);
3055 else
3056 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3057 mddev->queue);
3060 ret = md_integrity_register(mddev);
3061 if (ret) {
3062 md_unregister_thread(&mddev->thread);
3063 raid1_free(mddev, conf);
3065 return ret;
3068 static void raid1_free(struct mddev *mddev, void *priv)
3070 struct r1conf *conf = priv;
3072 mempool_destroy(conf->r1bio_pool);
3073 kfree(conf->mirrors);
3074 safe_put_page(conf->tmppage);
3075 kfree(conf->poolinfo);
3076 kfree(conf);
3079 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3081 /* no resync is happening, and there is enough space
3082 * on all devices, so we can resize.
3083 * We need to make sure resync covers any new space.
3084 * If the array is shrinking we should possibly wait until
3085 * any io in the removed space completes, but it hardly seems
3086 * worth it.
3088 sector_t newsize = raid1_size(mddev, sectors, 0);
3089 if (mddev->external_size &&
3090 mddev->array_sectors > newsize)
3091 return -EINVAL;
3092 if (mddev->bitmap) {
3093 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3094 if (ret)
3095 return ret;
3097 md_set_array_sectors(mddev, newsize);
3098 set_capacity(mddev->gendisk, mddev->array_sectors);
3099 revalidate_disk(mddev->gendisk);
3100 if (sectors > mddev->dev_sectors &&
3101 mddev->recovery_cp > mddev->dev_sectors) {
3102 mddev->recovery_cp = mddev->dev_sectors;
3103 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3105 mddev->dev_sectors = sectors;
3106 mddev->resync_max_sectors = sectors;
3107 return 0;
3110 static int raid1_reshape(struct mddev *mddev)
3112 /* We need to:
3113 * 1/ resize the r1bio_pool
3114 * 2/ resize conf->mirrors
3116 * We allocate a new r1bio_pool if we can.
3117 * Then raise a device barrier and wait until all IO stops.
3118 * Then resize conf->mirrors and swap in the new r1bio pool.
3120 * At the same time, we "pack" the devices so that all the missing
3121 * devices have the higher raid_disk numbers.
3123 mempool_t *newpool, *oldpool;
3124 struct pool_info *newpoolinfo;
3125 struct raid1_info *newmirrors;
3126 struct r1conf *conf = mddev->private;
3127 int cnt, raid_disks;
3128 unsigned long flags;
3129 int d, d2, err;
3131 /* Cannot change chunk_size, layout, or level */
3132 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3133 mddev->layout != mddev->new_layout ||
3134 mddev->level != mddev->new_level) {
3135 mddev->new_chunk_sectors = mddev->chunk_sectors;
3136 mddev->new_layout = mddev->layout;
3137 mddev->new_level = mddev->level;
3138 return -EINVAL;
3141 if (!mddev_is_clustered(mddev)) {
3142 err = md_allow_write(mddev);
3143 if (err)
3144 return err;
3147 raid_disks = mddev->raid_disks + mddev->delta_disks;
3149 if (raid_disks < conf->raid_disks) {
3150 cnt=0;
3151 for (d= 0; d < conf->raid_disks; d++)
3152 if (conf->mirrors[d].rdev)
3153 cnt++;
3154 if (cnt > raid_disks)
3155 return -EBUSY;
3158 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3159 if (!newpoolinfo)
3160 return -ENOMEM;
3161 newpoolinfo->mddev = mddev;
3162 newpoolinfo->raid_disks = raid_disks * 2;
3164 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3165 r1bio_pool_free, newpoolinfo);
3166 if (!newpool) {
3167 kfree(newpoolinfo);
3168 return -ENOMEM;
3170 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3171 GFP_KERNEL);
3172 if (!newmirrors) {
3173 kfree(newpoolinfo);
3174 mempool_destroy(newpool);
3175 return -ENOMEM;
3178 freeze_array(conf, 0);
3180 /* ok, everything is stopped */
3181 oldpool = conf->r1bio_pool;
3182 conf->r1bio_pool = newpool;
3184 for (d = d2 = 0; d < conf->raid_disks; d++) {
3185 struct md_rdev *rdev = conf->mirrors[d].rdev;
3186 if (rdev && rdev->raid_disk != d2) {
3187 sysfs_unlink_rdev(mddev, rdev);
3188 rdev->raid_disk = d2;
3189 sysfs_unlink_rdev(mddev, rdev);
3190 if (sysfs_link_rdev(mddev, rdev))
3191 pr_warn("md/raid1:%s: cannot register rd%d\n",
3192 mdname(mddev), rdev->raid_disk);
3194 if (rdev)
3195 newmirrors[d2++].rdev = rdev;
3197 kfree(conf->mirrors);
3198 conf->mirrors = newmirrors;
3199 kfree(conf->poolinfo);
3200 conf->poolinfo = newpoolinfo;
3202 spin_lock_irqsave(&conf->device_lock, flags);
3203 mddev->degraded += (raid_disks - conf->raid_disks);
3204 spin_unlock_irqrestore(&conf->device_lock, flags);
3205 conf->raid_disks = mddev->raid_disks = raid_disks;
3206 mddev->delta_disks = 0;
3208 unfreeze_array(conf);
3210 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3211 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3212 md_wakeup_thread(mddev->thread);
3214 mempool_destroy(oldpool);
3215 return 0;
3218 static void raid1_quiesce(struct mddev *mddev, int state)
3220 struct r1conf *conf = mddev->private;
3222 switch(state) {
3223 case 2: /* wake for suspend */
3224 wake_up(&conf->wait_barrier);
3225 break;
3226 case 1:
3227 freeze_array(conf, 0);
3228 break;
3229 case 0:
3230 unfreeze_array(conf);
3231 break;
3235 static void *raid1_takeover(struct mddev *mddev)
3237 /* raid1 can take over:
3238 * raid5 with 2 devices, any layout or chunk size
3240 if (mddev->level == 5 && mddev->raid_disks == 2) {
3241 struct r1conf *conf;
3242 mddev->new_level = 1;
3243 mddev->new_layout = 0;
3244 mddev->new_chunk_sectors = 0;
3245 conf = setup_conf(mddev);
3246 if (!IS_ERR(conf)) {
3247 /* Array must appear to be quiesced */
3248 conf->array_frozen = 1;
3249 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
3250 clear_bit(MD_JOURNAL_CLEAN, &mddev->flags);
3252 return conf;
3254 return ERR_PTR(-EINVAL);
3257 static struct md_personality raid1_personality =
3259 .name = "raid1",
3260 .level = 1,
3261 .owner = THIS_MODULE,
3262 .make_request = raid1_make_request,
3263 .run = raid1_run,
3264 .free = raid1_free,
3265 .status = raid1_status,
3266 .error_handler = raid1_error,
3267 .hot_add_disk = raid1_add_disk,
3268 .hot_remove_disk= raid1_remove_disk,
3269 .spare_active = raid1_spare_active,
3270 .sync_request = raid1_sync_request,
3271 .resize = raid1_resize,
3272 .size = raid1_size,
3273 .check_reshape = raid1_reshape,
3274 .quiesce = raid1_quiesce,
3275 .takeover = raid1_takeover,
3276 .congested = raid1_congested,
3279 static int __init raid_init(void)
3281 return register_md_personality(&raid1_personality);
3284 static void raid_exit(void)
3286 unregister_md_personality(&raid1_personality);
3289 module_init(raid_init);
3290 module_exit(raid_exit);
3291 MODULE_LICENSE("GPL");
3292 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3293 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3294 MODULE_ALIAS("md-raid1");
3295 MODULE_ALIAS("md-level-1");
3297 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);