2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
28 * metadata/data stored in disk with 4k size unit (a block) regardless
29 * underneath hardware sector size. only works with PAGE_SIZE == 4096
31 #define BLOCK_SECTORS (8)
34 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
36 * In write through mode, the reclaim runs every log->max_free_space.
37 * This can prevent the recovery scans for too long
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50 * We only need 2 bios per I/O unit to make progress, but ensure we
51 * have a few more available to not get too tight.
53 #define R5L_POOL_SIZE 4
56 * r5c journal modes of the array: write-back or write-through.
57 * write-through mode has identical behavior as existing log only
60 enum r5c_journal_mode
{
61 R5C_JOURNAL_MODE_WRITE_THROUGH
= 0,
62 R5C_JOURNAL_MODE_WRITE_BACK
= 1,
65 static char *r5c_journal_mode_str
[] = {"write-through",
68 * raid5 cache state machine
70 * With the RAID cache, each stripe works in two phases:
74 * These two phases are controlled by bit STRIPE_R5C_CACHING:
75 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
78 * When there is no journal, or the journal is in write-through mode,
79 * the stripe is always in writing-out phase.
81 * For write-back journal, the stripe is sent to caching phase on write
82 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83 * the write-out phase by clearing STRIPE_R5C_CACHING.
85 * Stripes in caching phase do not write the raid disks. Instead, all
86 * writes are committed from the log device. Therefore, a stripe in
87 * caching phase handles writes as:
88 * - write to log device
91 * Stripes in writing-out phase handle writes as:
93 * - write pending data and parity to journal
94 * - write data and parity to raid disks
95 * - return IO for pending writes
103 sector_t device_size
; /* log device size, round to
105 sector_t max_free_space
; /* reclaim run if free space is at
108 sector_t last_checkpoint
; /* log tail. where recovery scan
110 u64 last_cp_seq
; /* log tail sequence */
112 sector_t log_start
; /* log head. where new data appends */
113 u64 seq
; /* log head sequence */
115 sector_t next_checkpoint
;
117 struct mutex io_mutex
;
118 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
120 spinlock_t io_list_lock
;
121 struct list_head running_ios
; /* io_units which are still running,
122 * and have not yet been completely
123 * written to the log */
124 struct list_head io_end_ios
; /* io_units which have been completely
125 * written to the log but not yet written
127 struct list_head flushing_ios
; /* io_units which are waiting for log
129 struct list_head finished_ios
; /* io_units which settle down in log disk */
130 struct bio flush_bio
;
132 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
134 struct kmem_cache
*io_kc
;
137 mempool_t
*meta_pool
;
139 struct md_thread
*reclaim_thread
;
140 unsigned long reclaim_target
; /* number of space that need to be
141 * reclaimed. if it's 0, reclaim spaces
142 * used by io_units which are in
143 * IO_UNIT_STRIPE_END state (eg, reclaim
144 * dones't wait for specific io_unit
145 * switching to IO_UNIT_STRIPE_END
147 wait_queue_head_t iounit_wait
;
149 struct list_head no_space_stripes
; /* pending stripes, log has no space */
150 spinlock_t no_space_stripes_lock
;
152 bool need_cache_flush
;
155 enum r5c_journal_mode r5c_journal_mode
;
157 /* all stripes in r5cache, in the order of seq at sh->log_start */
158 struct list_head stripe_in_journal_list
;
160 spinlock_t stripe_in_journal_lock
;
161 atomic_t stripe_in_journal_count
;
163 /* to submit async io_units, to fulfill ordering of flush */
164 struct work_struct deferred_io_work
;
168 * an IO range starts from a meta data block and end at the next meta data
169 * block. The io unit's the meta data block tracks data/parity followed it. io
170 * unit is written to log disk with normal write, as we always flush log disk
171 * first and then start move data to raid disks, there is no requirement to
172 * write io unit with FLUSH/FUA
177 struct page
*meta_page
; /* store meta block */
178 int meta_offset
; /* current offset in meta_page */
180 struct bio
*current_bio
;/* current_bio accepting new data */
182 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
183 u64 seq
; /* seq number of the metablock */
184 sector_t log_start
; /* where the io_unit starts */
185 sector_t log_end
; /* where the io_unit ends */
186 struct list_head log_sibling
; /* log->running_ios */
187 struct list_head stripe_list
; /* stripes added to the io_unit */
191 struct bio
*split_bio
;
193 unsigned int has_flush
:1; /* include flush request */
194 unsigned int has_fua
:1; /* include fua request */
195 unsigned int has_null_flush
:1; /* include empty flush request */
197 * io isn't sent yet, flush/fua request can only be submitted till it's
198 * the first IO in running_ios list
200 unsigned int io_deferred
:1;
202 struct bio_list flush_barriers
; /* size == 0 flush bios */
205 /* r5l_io_unit state */
206 enum r5l_io_unit_state
{
207 IO_UNIT_RUNNING
= 0, /* accepting new IO */
208 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
209 * don't accepting new bio */
210 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
211 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
214 bool r5c_is_writeback(struct r5l_log
*log
)
216 return (log
!= NULL
&&
217 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
220 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
223 if (start
>= log
->device_size
)
224 start
= start
- log
->device_size
;
228 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
234 return end
+ log
->device_size
- start
;
237 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
241 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
244 return log
->device_size
> used_size
+ size
;
247 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
248 enum r5l_io_unit_state state
)
250 if (WARN_ON(io
->state
>= state
))
256 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
,
257 struct bio_list
*return_bi
)
259 struct bio
*wbi
, *wbi2
;
263 while (wbi
&& wbi
->bi_iter
.bi_sector
<
264 dev
->sector
+ STRIPE_SECTORS
) {
265 wbi2
= r5_next_bio(wbi
, dev
->sector
);
266 if (!raid5_dec_bi_active_stripes(wbi
)) {
267 md_write_end(conf
->mddev
);
268 bio_list_add(return_bi
, wbi
);
274 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
275 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
279 for (i
= sh
->disks
; i
--; ) {
280 if (sh
->dev
[i
].written
) {
281 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
282 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
],
284 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
286 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
292 /* Check whether we should flush some stripes to free up stripe cache */
293 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
297 if (!r5c_is_writeback(conf
->log
))
300 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
301 atomic_read(&conf
->r5c_cached_full_stripes
);
304 * The following condition is true for either of the following:
305 * - stripe cache pressure high:
306 * total_cached > 3/4 min_nr_stripes ||
307 * empty_inactive_list_nr > 0
308 * - stripe cache pressure moderate:
309 * total_cached > 1/2 min_nr_stripes
311 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
312 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
313 r5l_wake_reclaim(conf
->log
, 0);
317 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
318 * stripes in the cache
320 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
322 if (!r5c_is_writeback(conf
->log
))
326 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
327 * or a full stripe (chunk size / 4k stripes).
329 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
330 min(R5C_FULL_STRIPE_FLUSH_BATCH
,
331 conf
->chunk_sectors
>> STRIPE_SHIFT
))
332 r5l_wake_reclaim(conf
->log
, 0);
336 * Total log space (in sectors) needed to flush all data in cache
338 * Currently, writing-out phase automatically includes all pending writes
339 * to the same sector. So the reclaim of each stripe takes up to
340 * (conf->raid_disks + 1) pages of log space.
342 * To totally avoid deadlock due to log space, the code reserves
343 * (conf->raid_disks + 1) pages for each stripe in cache, which is not
344 * necessary in most cases.
346 * To improve this, we will need writing-out phase to be able to NOT include
347 * pending writes, which will reduce the requirement to
348 * (conf->max_degraded + 1) pages per stripe in cache.
350 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
352 struct r5l_log
*log
= conf
->log
;
354 if (!r5c_is_writeback(log
))
357 return BLOCK_SECTORS
* (conf
->raid_disks
+ 1) *
358 atomic_read(&log
->stripe_in_journal_count
);
362 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
364 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
365 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
366 * device is less than 2x of reclaim_required_space.
368 static inline void r5c_update_log_state(struct r5l_log
*log
)
370 struct r5conf
*conf
= log
->rdev
->mddev
->private;
372 sector_t reclaim_space
;
373 bool wake_reclaim
= false;
375 if (!r5c_is_writeback(log
))
378 free_space
= r5l_ring_distance(log
, log
->log_start
,
379 log
->last_checkpoint
);
380 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
381 if (free_space
< 2 * reclaim_space
)
382 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
384 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
386 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
388 if (free_space
< 3 * reclaim_space
)
389 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
391 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
394 r5l_wake_reclaim(log
, 0);
398 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
399 * This function should only be called in write-back mode.
401 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
403 struct r5conf
*conf
= sh
->raid_conf
;
404 struct r5l_log
*log
= conf
->log
;
406 BUG_ON(!r5c_is_writeback(log
));
408 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
409 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
411 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
412 atomic_inc(&conf
->preread_active_stripes
);
414 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
415 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
416 atomic_dec(&conf
->r5c_cached_partial_stripes
);
419 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
420 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
421 atomic_dec(&conf
->r5c_cached_full_stripes
);
425 static void r5c_handle_data_cached(struct stripe_head
*sh
)
429 for (i
= sh
->disks
; i
--; )
430 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
431 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
432 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
434 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
438 * this journal write must contain full parity,
439 * it may also contain some data pages
441 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
445 for (i
= sh
->disks
; i
--; )
446 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
447 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
451 * Setting proper flags after writing (or flushing) data and/or parity to the
452 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
454 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
456 struct r5l_log
*log
= sh
->raid_conf
->log
;
458 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
459 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
461 * Set R5_InJournal for parity dev[pd_idx]. This means
462 * all data AND parity in the journal. For RAID 6, it is
463 * NOT necessary to set the flag for dev[qd_idx], as the
464 * two parities are written out together.
466 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
467 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
468 r5c_handle_data_cached(sh
);
470 r5c_handle_parity_cached(sh
);
471 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
475 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
477 struct stripe_head
*sh
, *next
;
479 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
480 list_del_init(&sh
->log_list
);
482 r5c_finish_cache_stripe(sh
);
484 set_bit(STRIPE_HANDLE
, &sh
->state
);
485 raid5_release_stripe(sh
);
489 static void r5l_log_run_stripes(struct r5l_log
*log
)
491 struct r5l_io_unit
*io
, *next
;
493 assert_spin_locked(&log
->io_list_lock
);
495 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
496 /* don't change list order */
497 if (io
->state
< IO_UNIT_IO_END
)
500 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
501 r5l_io_run_stripes(io
);
505 static void r5l_move_to_end_ios(struct r5l_log
*log
)
507 struct r5l_io_unit
*io
, *next
;
509 assert_spin_locked(&log
->io_list_lock
);
511 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
512 /* don't change list order */
513 if (io
->state
< IO_UNIT_IO_END
)
515 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
519 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
520 static void r5l_log_endio(struct bio
*bio
)
522 struct r5l_io_unit
*io
= bio
->bi_private
;
523 struct r5l_io_unit
*io_deferred
;
524 struct r5l_log
*log
= io
->log
;
528 md_error(log
->rdev
->mddev
, log
->rdev
);
531 mempool_free(io
->meta_page
, log
->meta_pool
);
533 spin_lock_irqsave(&log
->io_list_lock
, flags
);
534 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
535 if (log
->need_cache_flush
)
536 r5l_move_to_end_ios(log
);
538 r5l_log_run_stripes(log
);
539 if (!list_empty(&log
->running_ios
)) {
541 * FLUSH/FUA io_unit is deferred because of ordering, now we
544 io_deferred
= list_first_entry(&log
->running_ios
,
545 struct r5l_io_unit
, log_sibling
);
546 if (io_deferred
->io_deferred
)
547 schedule_work(&log
->deferred_io_work
);
550 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
552 if (log
->need_cache_flush
)
553 md_wakeup_thread(log
->rdev
->mddev
->thread
);
555 if (io
->has_null_flush
) {
558 WARN_ON(bio_list_empty(&io
->flush_barriers
));
559 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
561 atomic_dec(&io
->pending_stripe
);
563 if (atomic_read(&io
->pending_stripe
) == 0)
564 __r5l_stripe_write_finished(io
);
568 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
572 spin_lock_irqsave(&log
->io_list_lock
, flags
);
573 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
574 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
577 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
579 io
->current_bio
->bi_opf
|= REQ_FUA
;
580 submit_bio(io
->current_bio
);
586 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
588 io
->split_bio
->bi_opf
|= REQ_FUA
;
589 submit_bio(io
->split_bio
);
592 /* deferred io_unit will be dispatched here */
593 static void r5l_submit_io_async(struct work_struct
*work
)
595 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
597 struct r5l_io_unit
*io
= NULL
;
600 spin_lock_irqsave(&log
->io_list_lock
, flags
);
601 if (!list_empty(&log
->running_ios
)) {
602 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
604 if (!io
->io_deferred
)
609 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
611 r5l_do_submit_io(log
, io
);
614 static void r5l_submit_current_io(struct r5l_log
*log
)
616 struct r5l_io_unit
*io
= log
->current_io
;
618 struct r5l_meta_block
*block
;
621 bool do_submit
= true;
626 block
= page_address(io
->meta_page
);
627 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
628 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
629 block
->checksum
= cpu_to_le32(crc
);
630 bio
= io
->current_bio
;
632 log
->current_io
= NULL
;
633 spin_lock_irqsave(&log
->io_list_lock
, flags
);
634 if (io
->has_flush
|| io
->has_fua
) {
635 if (io
!= list_first_entry(&log
->running_ios
,
636 struct r5l_io_unit
, log_sibling
)) {
641 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
643 r5l_do_submit_io(log
, io
);
646 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
648 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, log
->bs
);
650 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
651 bio
->bi_bdev
= log
->rdev
->bdev
;
652 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
657 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
659 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
661 r5c_update_log_state(log
);
663 * If we filled up the log device start from the beginning again,
664 * which will require a new bio.
666 * Note: for this to work properly the log size needs to me a multiple
669 if (log
->log_start
== 0)
670 io
->need_split_bio
= true;
672 io
->log_end
= log
->log_start
;
675 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
677 struct r5l_io_unit
*io
;
678 struct r5l_meta_block
*block
;
680 io
= mempool_alloc(log
->io_pool
, GFP_ATOMIC
);
683 memset(io
, 0, sizeof(*io
));
686 INIT_LIST_HEAD(&io
->log_sibling
);
687 INIT_LIST_HEAD(&io
->stripe_list
);
688 bio_list_init(&io
->flush_barriers
);
689 io
->state
= IO_UNIT_RUNNING
;
691 io
->meta_page
= mempool_alloc(log
->meta_pool
, GFP_NOIO
);
692 block
= page_address(io
->meta_page
);
694 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
695 block
->version
= R5LOG_VERSION
;
696 block
->seq
= cpu_to_le64(log
->seq
);
697 block
->position
= cpu_to_le64(log
->log_start
);
699 io
->log_start
= log
->log_start
;
700 io
->meta_offset
= sizeof(struct r5l_meta_block
);
701 io
->seq
= log
->seq
++;
703 io
->current_bio
= r5l_bio_alloc(log
);
704 io
->current_bio
->bi_end_io
= r5l_log_endio
;
705 io
->current_bio
->bi_private
= io
;
706 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
708 r5_reserve_log_entry(log
, io
);
710 spin_lock_irq(&log
->io_list_lock
);
711 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
712 spin_unlock_irq(&log
->io_list_lock
);
717 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
719 if (log
->current_io
&&
720 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
721 r5l_submit_current_io(log
);
723 if (!log
->current_io
) {
724 log
->current_io
= r5l_new_meta(log
);
725 if (!log
->current_io
)
732 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
734 u32 checksum1
, u32 checksum2
,
735 bool checksum2_valid
)
737 struct r5l_io_unit
*io
= log
->current_io
;
738 struct r5l_payload_data_parity
*payload
;
740 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
741 payload
->header
.type
= cpu_to_le16(type
);
742 payload
->header
.flags
= cpu_to_le16(0);
743 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
745 payload
->location
= cpu_to_le64(location
);
746 payload
->checksum
[0] = cpu_to_le32(checksum1
);
748 payload
->checksum
[1] = cpu_to_le32(checksum2
);
750 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
751 sizeof(__le32
) * (1 + !!checksum2_valid
);
754 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
756 struct r5l_io_unit
*io
= log
->current_io
;
758 if (io
->need_split_bio
) {
759 BUG_ON(io
->split_bio
);
760 io
->split_bio
= io
->current_bio
;
761 io
->current_bio
= r5l_bio_alloc(log
);
762 bio_chain(io
->current_bio
, io
->split_bio
);
763 io
->need_split_bio
= false;
766 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
769 r5_reserve_log_entry(log
, io
);
772 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
773 int data_pages
, int parity_pages
)
778 struct r5l_io_unit
*io
;
781 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
783 sizeof(struct r5l_payload_data_parity
) +
784 sizeof(__le32
) * parity_pages
;
786 ret
= r5l_get_meta(log
, meta_size
);
790 io
= log
->current_io
;
792 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
795 for (i
= 0; i
< sh
->disks
; i
++) {
796 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
797 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
799 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
801 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
802 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
805 * we need to flush journal to make sure recovery can
806 * reach the data with fua flag
810 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
811 raid5_compute_blocknr(sh
, i
, 0),
812 sh
->dev
[i
].log_checksum
, 0, false);
813 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
816 if (parity_pages
== 2) {
817 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
818 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
819 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
820 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
821 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
822 } else if (parity_pages
== 1) {
823 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
824 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
826 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
827 } else /* Just writing data, not parity, in caching phase */
828 BUG_ON(parity_pages
!= 0);
830 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
831 atomic_inc(&io
->pending_stripe
);
834 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
837 if (sh
->log_start
== MaxSector
) {
838 BUG_ON(!list_empty(&sh
->r5c
));
839 sh
->log_start
= io
->log_start
;
840 spin_lock_irq(&log
->stripe_in_journal_lock
);
841 list_add_tail(&sh
->r5c
,
842 &log
->stripe_in_journal_list
);
843 spin_unlock_irq(&log
->stripe_in_journal_lock
);
844 atomic_inc(&log
->stripe_in_journal_count
);
849 /* add stripe to no_space_stripes, and then wake up reclaim */
850 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
851 struct stripe_head
*sh
)
853 spin_lock(&log
->no_space_stripes_lock
);
854 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
855 spin_unlock(&log
->no_space_stripes_lock
);
859 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
860 * data from log to raid disks), so we shouldn't wait for reclaim here
862 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
864 struct r5conf
*conf
= sh
->raid_conf
;
866 int data_pages
, parity_pages
;
870 bool wake_reclaim
= false;
874 /* Don't support stripe batch */
875 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
876 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
877 /* the stripe is written to log, we start writing it to raid */
878 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
882 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
884 for (i
= 0; i
< sh
->disks
; i
++) {
887 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
888 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
892 /* checksum is already calculated in last run */
893 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
895 addr
= kmap_atomic(sh
->dev
[i
].page
);
896 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
900 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
901 data_pages
= write_disks
- parity_pages
;
903 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
905 * The stripe must enter state machine again to finish the write, so
908 clear_bit(STRIPE_DELAYED
, &sh
->state
);
909 atomic_inc(&sh
->count
);
911 mutex_lock(&log
->io_mutex
);
913 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
915 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
916 if (!r5l_has_free_space(log
, reserve
)) {
917 r5l_add_no_space_stripe(log
, sh
);
920 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
922 spin_lock_irq(&log
->io_list_lock
);
923 list_add_tail(&sh
->log_list
,
924 &log
->no_mem_stripes
);
925 spin_unlock_irq(&log
->io_list_lock
);
928 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
930 * log space critical, do not process stripes that are
931 * not in cache yet (sh->log_start == MaxSector).
933 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
934 sh
->log_start
== MaxSector
) {
935 r5l_add_no_space_stripe(log
, sh
);
938 } else if (!r5l_has_free_space(log
, reserve
)) {
939 if (sh
->log_start
== log
->last_checkpoint
)
942 r5l_add_no_space_stripe(log
, sh
);
944 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
946 spin_lock_irq(&log
->io_list_lock
);
947 list_add_tail(&sh
->log_list
,
948 &log
->no_mem_stripes
);
949 spin_unlock_irq(&log
->io_list_lock
);
954 mutex_unlock(&log
->io_mutex
);
956 r5l_wake_reclaim(log
, reserve
);
960 void r5l_write_stripe_run(struct r5l_log
*log
)
964 mutex_lock(&log
->io_mutex
);
965 r5l_submit_current_io(log
);
966 mutex_unlock(&log
->io_mutex
);
969 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
974 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
976 * in write through (journal only)
977 * we flush log disk cache first, then write stripe data to
978 * raid disks. So if bio is finished, the log disk cache is
979 * flushed already. The recovery guarantees we can recovery
980 * the bio from log disk, so we don't need to flush again
982 if (bio
->bi_iter
.bi_size
== 0) {
986 bio
->bi_opf
&= ~REQ_PREFLUSH
;
988 /* write back (with cache) */
989 if (bio
->bi_iter
.bi_size
== 0) {
990 mutex_lock(&log
->io_mutex
);
991 r5l_get_meta(log
, 0);
992 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
993 log
->current_io
->has_flush
= 1;
994 log
->current_io
->has_null_flush
= 1;
995 atomic_inc(&log
->current_io
->pending_stripe
);
996 r5l_submit_current_io(log
);
997 mutex_unlock(&log
->io_mutex
);
1004 /* This will run after log space is reclaimed */
1005 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1007 struct stripe_head
*sh
;
1009 spin_lock(&log
->no_space_stripes_lock
);
1010 while (!list_empty(&log
->no_space_stripes
)) {
1011 sh
= list_first_entry(&log
->no_space_stripes
,
1012 struct stripe_head
, log_list
);
1013 list_del_init(&sh
->log_list
);
1014 set_bit(STRIPE_HANDLE
, &sh
->state
);
1015 raid5_release_stripe(sh
);
1017 spin_unlock(&log
->no_space_stripes_lock
);
1021 * calculate new last_checkpoint
1022 * for write through mode, returns log->next_checkpoint
1023 * for write back, returns log_start of first sh in stripe_in_journal_list
1025 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1027 struct stripe_head
*sh
;
1028 struct r5l_log
*log
= conf
->log
;
1030 unsigned long flags
;
1032 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1033 return log
->next_checkpoint
;
1035 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1036 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1037 /* all stripes flushed */
1038 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1039 return log
->next_checkpoint
;
1041 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1042 struct stripe_head
, r5c
);
1043 new_cp
= sh
->log_start
;
1044 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1048 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1050 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1052 return r5l_ring_distance(log
, log
->last_checkpoint
,
1053 r5c_calculate_new_cp(conf
));
1056 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1058 struct stripe_head
*sh
;
1060 assert_spin_locked(&log
->io_list_lock
);
1062 if (!list_empty(&log
->no_mem_stripes
)) {
1063 sh
= list_first_entry(&log
->no_mem_stripes
,
1064 struct stripe_head
, log_list
);
1065 list_del_init(&sh
->log_list
);
1066 set_bit(STRIPE_HANDLE
, &sh
->state
);
1067 raid5_release_stripe(sh
);
1071 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1073 struct r5l_io_unit
*io
, *next
;
1076 assert_spin_locked(&log
->io_list_lock
);
1078 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1079 /* don't change list order */
1080 if (io
->state
< IO_UNIT_STRIPE_END
)
1083 log
->next_checkpoint
= io
->log_start
;
1085 list_del(&io
->log_sibling
);
1086 mempool_free(io
, log
->io_pool
);
1087 r5l_run_no_mem_stripe(log
);
1095 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1097 struct r5l_log
*log
= io
->log
;
1098 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1099 unsigned long flags
;
1101 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1102 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1104 if (!r5l_complete_finished_ios(log
)) {
1105 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1109 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1110 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1111 r5l_wake_reclaim(log
, 0);
1113 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1114 wake_up(&log
->iounit_wait
);
1117 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1119 struct r5l_io_unit
*io
;
1124 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1125 __r5l_stripe_write_finished(io
);
1128 static void r5l_log_flush_endio(struct bio
*bio
)
1130 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1132 unsigned long flags
;
1133 struct r5l_io_unit
*io
;
1136 md_error(log
->rdev
->mddev
, log
->rdev
);
1138 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1139 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1140 r5l_io_run_stripes(io
);
1141 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1142 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1146 * Starting dispatch IO to raid.
1147 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1148 * broken meta in the middle of a log causes recovery can't find meta at the
1149 * head of log. If operations require meta at the head persistent in log, we
1150 * must make sure meta before it persistent in log too. A case is:
1152 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1153 * data/parity must be persistent in log before we do the write to raid disks.
1155 * The solution is we restrictly maintain io_unit list order. In this case, we
1156 * only write stripes of an io_unit to raid disks till the io_unit is the first
1157 * one whose data/parity is in log.
1159 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1163 if (!log
|| !log
->need_cache_flush
)
1166 spin_lock_irq(&log
->io_list_lock
);
1167 /* flush bio is running */
1168 if (!list_empty(&log
->flushing_ios
)) {
1169 spin_unlock_irq(&log
->io_list_lock
);
1172 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1173 do_flush
= !list_empty(&log
->flushing_ios
);
1174 spin_unlock_irq(&log
->io_list_lock
);
1178 bio_reset(&log
->flush_bio
);
1179 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
1180 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1181 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1182 submit_bio(&log
->flush_bio
);
1185 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1186 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1189 struct block_device
*bdev
= log
->rdev
->bdev
;
1190 struct mddev
*mddev
;
1192 r5l_write_super(log
, end
);
1194 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1197 mddev
= log
->rdev
->mddev
;
1199 * Discard could zero data, so before discard we must make sure
1200 * superblock is updated to new log tail. Updating superblock (either
1201 * directly call md_update_sb() or depend on md thread) must hold
1202 * reconfig mutex. On the other hand, raid5_quiesce is called with
1203 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1204 * for all IO finish, hence waitting for reclaim thread, while reclaim
1205 * thread is calling this function and waitting for reconfig mutex. So
1206 * there is a deadlock. We workaround this issue with a trylock.
1207 * FIXME: we could miss discard if we can't take reconfig mutex
1209 set_mask_bits(&mddev
->sb_flags
, 0,
1210 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1211 if (!mddev_trylock(mddev
))
1213 md_update_sb(mddev
, 1);
1214 mddev_unlock(mddev
);
1216 /* discard IO error really doesn't matter, ignore it */
1217 if (log
->last_checkpoint
< end
) {
1218 blkdev_issue_discard(bdev
,
1219 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1220 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1222 blkdev_issue_discard(bdev
,
1223 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1224 log
->device_size
- log
->last_checkpoint
,
1226 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1232 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1233 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1235 * must hold conf->device_lock
1237 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1239 BUG_ON(list_empty(&sh
->lru
));
1240 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1241 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1244 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1245 * raid5_release_stripe() while holding conf->device_lock
1247 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1248 assert_spin_locked(&conf
->device_lock
);
1250 list_del_init(&sh
->lru
);
1251 atomic_inc(&sh
->count
);
1253 set_bit(STRIPE_HANDLE
, &sh
->state
);
1254 atomic_inc(&conf
->active_stripes
);
1255 r5c_make_stripe_write_out(sh
);
1257 raid5_release_stripe(sh
);
1261 * if num == 0, flush all full stripes
1262 * if num > 0, flush all full stripes. If less than num full stripes are
1263 * flushed, flush some partial stripes until totally num stripes are
1264 * flushed or there is no more cached stripes.
1266 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1269 struct stripe_head
*sh
, *next
;
1271 assert_spin_locked(&conf
->device_lock
);
1276 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1277 r5c_flush_stripe(conf
, sh
);
1283 list_for_each_entry_safe(sh
, next
,
1284 &conf
->r5c_partial_stripe_list
, lru
) {
1285 r5c_flush_stripe(conf
, sh
);
1291 static void r5c_do_reclaim(struct r5conf
*conf
)
1293 struct r5l_log
*log
= conf
->log
;
1294 struct stripe_head
*sh
;
1296 unsigned long flags
;
1298 int stripes_to_flush
;
1300 if (!r5c_is_writeback(log
))
1303 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1304 atomic_read(&conf
->r5c_cached_full_stripes
);
1306 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1307 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1309 * if stripe cache pressure high, flush all full stripes and
1310 * some partial stripes
1312 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1313 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1314 atomic_read(&conf
->r5c_cached_full_stripes
) >
1315 R5C_FULL_STRIPE_FLUSH_BATCH
)
1317 * if stripe cache pressure moderate, or if there is many full
1318 * stripes,flush all full stripes
1320 stripes_to_flush
= 0;
1322 /* no need to flush */
1323 stripes_to_flush
= -1;
1325 if (stripes_to_flush
>= 0) {
1326 spin_lock_irqsave(&conf
->device_lock
, flags
);
1327 r5c_flush_cache(conf
, stripes_to_flush
);
1328 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1331 /* if log space is tight, flush stripes on stripe_in_journal_list */
1332 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1333 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1334 spin_lock(&conf
->device_lock
);
1335 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1337 * stripes on stripe_in_journal_list could be in any
1338 * state of the stripe_cache state machine. In this
1339 * case, we only want to flush stripe on
1340 * r5c_cached_full/partial_stripes. The following
1341 * condition makes sure the stripe is on one of the
1344 if (!list_empty(&sh
->lru
) &&
1345 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1346 atomic_read(&sh
->count
) == 0) {
1347 r5c_flush_stripe(conf
, sh
);
1349 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1352 spin_unlock(&conf
->device_lock
);
1353 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1356 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1357 r5l_run_no_space_stripes(log
);
1359 md_wakeup_thread(conf
->mddev
->thread
);
1362 static void r5l_do_reclaim(struct r5l_log
*log
)
1364 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1365 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1366 sector_t reclaimable
;
1367 sector_t next_checkpoint
;
1370 spin_lock_irq(&log
->io_list_lock
);
1371 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1372 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1374 * move proper io_unit to reclaim list. We should not change the order.
1375 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1376 * shouldn't reuse space of an unreclaimable io_unit
1379 reclaimable
= r5l_reclaimable_space(log
);
1380 if (reclaimable
>= reclaim_target
||
1381 (list_empty(&log
->running_ios
) &&
1382 list_empty(&log
->io_end_ios
) &&
1383 list_empty(&log
->flushing_ios
) &&
1384 list_empty(&log
->finished_ios
)))
1387 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1388 wait_event_lock_irq(log
->iounit_wait
,
1389 r5l_reclaimable_space(log
) > reclaimable
,
1393 next_checkpoint
= r5c_calculate_new_cp(conf
);
1394 spin_unlock_irq(&log
->io_list_lock
);
1396 BUG_ON(reclaimable
< 0);
1398 if (reclaimable
== 0 || !write_super
)
1402 * write_super will flush cache of each raid disk. We must write super
1403 * here, because the log area might be reused soon and we don't want to
1406 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1408 mutex_lock(&log
->io_mutex
);
1409 log
->last_checkpoint
= next_checkpoint
;
1410 r5c_update_log_state(log
);
1411 mutex_unlock(&log
->io_mutex
);
1413 r5l_run_no_space_stripes(log
);
1416 static void r5l_reclaim_thread(struct md_thread
*thread
)
1418 struct mddev
*mddev
= thread
->mddev
;
1419 struct r5conf
*conf
= mddev
->private;
1420 struct r5l_log
*log
= conf
->log
;
1424 r5c_do_reclaim(conf
);
1425 r5l_do_reclaim(log
);
1428 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1430 unsigned long target
;
1431 unsigned long new = (unsigned long)space
; /* overflow in theory */
1436 target
= log
->reclaim_target
;
1439 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1440 md_wakeup_thread(log
->reclaim_thread
);
1443 void r5l_quiesce(struct r5l_log
*log
, int state
)
1445 struct mddev
*mddev
;
1446 if (!log
|| state
== 2)
1449 kthread_unpark(log
->reclaim_thread
->tsk
);
1450 else if (state
== 1) {
1451 /* make sure r5l_write_super_and_discard_space exits */
1452 mddev
= log
->rdev
->mddev
;
1453 wake_up(&mddev
->sb_wait
);
1454 kthread_park(log
->reclaim_thread
->tsk
);
1455 r5l_wake_reclaim(log
, MaxSector
);
1456 r5l_do_reclaim(log
);
1460 bool r5l_log_disk_error(struct r5conf
*conf
)
1462 struct r5l_log
*log
;
1464 /* don't allow write if journal disk is missing */
1466 log
= rcu_dereference(conf
->log
);
1469 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1471 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1476 struct r5l_recovery_ctx
{
1477 struct page
*meta_page
; /* current meta */
1478 sector_t meta_total_blocks
; /* total size of current meta and data */
1479 sector_t pos
; /* recovery position */
1480 u64 seq
; /* recovery position seq */
1481 int data_parity_stripes
; /* number of data_parity stripes */
1482 int data_only_stripes
; /* number of data_only stripes */
1483 struct list_head cached_list
;
1486 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1487 struct r5l_recovery_ctx
*ctx
)
1489 struct page
*page
= ctx
->meta_page
;
1490 struct r5l_meta_block
*mb
;
1491 u32 crc
, stored_crc
;
1493 if (!sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
, REQ_OP_READ
, 0,
1497 mb
= page_address(page
);
1498 stored_crc
= le32_to_cpu(mb
->checksum
);
1501 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1502 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1503 mb
->version
!= R5LOG_VERSION
||
1504 le64_to_cpu(mb
->position
) != ctx
->pos
)
1507 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1508 if (stored_crc
!= crc
)
1511 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1514 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1520 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1522 sector_t pos
, u64 seq
)
1524 struct r5l_meta_block
*mb
;
1526 mb
= page_address(page
);
1528 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1529 mb
->version
= R5LOG_VERSION
;
1530 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1531 mb
->seq
= cpu_to_le64(seq
);
1532 mb
->position
= cpu_to_le64(pos
);
1535 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1539 struct r5l_meta_block
*mb
;
1541 page
= alloc_page(GFP_KERNEL
);
1544 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1545 mb
= page_address(page
);
1546 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1548 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1558 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1559 * to mark valid (potentially not flushed) data in the journal.
1561 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1562 * so there should not be any mismatch here.
1564 static void r5l_recovery_load_data(struct r5l_log
*log
,
1565 struct stripe_head
*sh
,
1566 struct r5l_recovery_ctx
*ctx
,
1567 struct r5l_payload_data_parity
*payload
,
1568 sector_t log_offset
)
1570 struct mddev
*mddev
= log
->rdev
->mddev
;
1571 struct r5conf
*conf
= mddev
->private;
1574 raid5_compute_sector(conf
,
1575 le64_to_cpu(payload
->location
), 0,
1577 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1578 sh
->dev
[dd_idx
].page
, REQ_OP_READ
, 0, false);
1579 sh
->dev
[dd_idx
].log_checksum
=
1580 le32_to_cpu(payload
->checksum
[0]);
1581 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1583 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1584 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1587 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1588 struct stripe_head
*sh
,
1589 struct r5l_recovery_ctx
*ctx
,
1590 struct r5l_payload_data_parity
*payload
,
1591 sector_t log_offset
)
1593 struct mddev
*mddev
= log
->rdev
->mddev
;
1594 struct r5conf
*conf
= mddev
->private;
1596 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1597 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1598 sh
->dev
[sh
->pd_idx
].page
, REQ_OP_READ
, 0, false);
1599 sh
->dev
[sh
->pd_idx
].log_checksum
=
1600 le32_to_cpu(payload
->checksum
[0]);
1601 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1603 if (sh
->qd_idx
>= 0) {
1604 sync_page_io(log
->rdev
,
1605 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
),
1606 PAGE_SIZE
, sh
->dev
[sh
->qd_idx
].page
,
1607 REQ_OP_READ
, 0, false);
1608 sh
->dev
[sh
->qd_idx
].log_checksum
=
1609 le32_to_cpu(payload
->checksum
[1]);
1610 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1612 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1615 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1620 sh
->log_start
= MaxSector
;
1621 for (i
= sh
->disks
; i
--; )
1622 sh
->dev
[i
].flags
= 0;
1626 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1627 struct stripe_head
*sh
,
1628 struct r5l_recovery_ctx
*ctx
)
1630 struct md_rdev
*rdev
, *rrdev
;
1634 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1635 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1637 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1643 * stripes that only have parity must have been flushed
1644 * before the crash that we are now recovering from, so
1645 * there is nothing more to recovery.
1647 if (data_count
== 0)
1650 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1651 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1654 /* in case device is broken */
1656 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1658 atomic_inc(&rdev
->nr_pending
);
1660 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1661 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1663 rdev_dec_pending(rdev
, rdev
->mddev
);
1666 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1668 atomic_inc(&rrdev
->nr_pending
);
1670 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1671 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1673 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1678 ctx
->data_parity_stripes
++;
1680 r5l_recovery_reset_stripe(sh
);
1683 static struct stripe_head
*
1684 r5c_recovery_alloc_stripe(struct r5conf
*conf
,
1685 sector_t stripe_sect
,
1688 struct stripe_head
*sh
;
1690 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 1, 0);
1692 return NULL
; /* no more stripe available */
1694 r5l_recovery_reset_stripe(sh
);
1695 sh
->log_start
= log_start
;
1700 static struct stripe_head
*
1701 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1703 struct stripe_head
*sh
;
1705 list_for_each_entry(sh
, list
, lru
)
1706 if (sh
->sector
== sect
)
1712 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1713 struct r5l_recovery_ctx
*ctx
)
1715 struct stripe_head
*sh
, *next
;
1717 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1718 r5l_recovery_reset_stripe(sh
);
1719 list_del_init(&sh
->lru
);
1720 raid5_release_stripe(sh
);
1725 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1726 struct r5l_recovery_ctx
*ctx
)
1728 struct stripe_head
*sh
, *next
;
1730 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1731 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1732 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1733 list_del_init(&sh
->lru
);
1734 raid5_release_stripe(sh
);
1738 /* if matches return 0; otherwise return -EINVAL */
1740 r5l_recovery_verify_data_checksum(struct r5l_log
*log
, struct page
*page
,
1741 sector_t log_offset
, __le32 log_checksum
)
1746 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1747 page
, REQ_OP_READ
, 0, false);
1748 addr
= kmap_atomic(page
);
1749 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1750 kunmap_atomic(addr
);
1751 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1755 * before loading data to stripe cache, we need verify checksum for all data,
1756 * if there is mismatch for any data page, we drop all data in the mata block
1759 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
1760 struct r5l_recovery_ctx
*ctx
)
1762 struct mddev
*mddev
= log
->rdev
->mddev
;
1763 struct r5conf
*conf
= mddev
->private;
1764 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
1765 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
1766 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1768 struct r5l_payload_data_parity
*payload
;
1770 page
= alloc_page(GFP_KERNEL
);
1774 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1775 payload
= (void *)mb
+ mb_offset
;
1777 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1778 if (r5l_recovery_verify_data_checksum(
1779 log
, page
, log_offset
,
1780 payload
->checksum
[0]) < 0)
1782 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
) {
1783 if (r5l_recovery_verify_data_checksum(
1784 log
, page
, log_offset
,
1785 payload
->checksum
[0]) < 0)
1787 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
1788 r5l_recovery_verify_data_checksum(
1790 r5l_ring_add(log
, log_offset
,
1792 payload
->checksum
[1]) < 0)
1794 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1797 log_offset
= r5l_ring_add(log
, log_offset
,
1798 le32_to_cpu(payload
->size
));
1800 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1802 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1814 * Analyze all data/parity pages in one meta block
1817 * -EINVAL for unknown playload type
1818 * -EAGAIN for checksum mismatch of data page
1819 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1822 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
1823 struct r5l_recovery_ctx
*ctx
,
1824 struct list_head
*cached_stripe_list
)
1826 struct mddev
*mddev
= log
->rdev
->mddev
;
1827 struct r5conf
*conf
= mddev
->private;
1828 struct r5l_meta_block
*mb
;
1829 struct r5l_payload_data_parity
*payload
;
1831 sector_t log_offset
;
1832 sector_t stripe_sect
;
1833 struct stripe_head
*sh
;
1837 * for mismatch in data blocks, we will drop all data in this mb, but
1838 * we will still read next mb for other data with FLUSH flag, as
1839 * io_unit could finish out of order.
1841 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
1845 return ret
; /* -ENOMEM duo to alloc_page() failed */
1847 mb
= page_address(ctx
->meta_page
);
1848 mb_offset
= sizeof(struct r5l_meta_block
);
1849 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1851 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1854 payload
= (void *)mb
+ mb_offset
;
1855 stripe_sect
= (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) ?
1856 raid5_compute_sector(
1857 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
1859 : le64_to_cpu(payload
->location
);
1861 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
1865 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
, ctx
->pos
);
1867 * cannot get stripe from raid5_get_active_stripe
1868 * try replay some stripes
1871 r5c_recovery_replay_stripes(
1872 cached_stripe_list
, ctx
);
1873 sh
= r5c_recovery_alloc_stripe(
1874 conf
, stripe_sect
, ctx
->pos
);
1877 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1879 conf
->min_nr_stripes
* 2);
1880 raid5_set_cache_size(mddev
,
1881 conf
->min_nr_stripes
* 2);
1882 sh
= r5c_recovery_alloc_stripe(
1883 conf
, stripe_sect
, ctx
->pos
);
1886 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1890 list_add_tail(&sh
->lru
, cached_stripe_list
);
1893 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1894 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
1895 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
1896 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
1897 sh
->log_start
= ctx
->pos
;
1898 list_move_tail(&sh
->lru
, cached_stripe_list
);
1900 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
1902 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
)
1903 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
1908 log_offset
= r5l_ring_add(log
, log_offset
,
1909 le32_to_cpu(payload
->size
));
1911 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1913 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1920 * Load the stripe into cache. The stripe will be written out later by
1921 * the stripe cache state machine.
1923 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
1924 struct stripe_head
*sh
)
1929 for (i
= sh
->disks
; i
--; ) {
1931 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
1932 set_bit(R5_InJournal
, &dev
->flags
);
1933 set_bit(R5_UPTODATE
, &dev
->flags
);
1936 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
1937 atomic_inc(&log
->stripe_in_journal_count
);
1941 * Scan through the log for all to-be-flushed data
1943 * For stripes with data and parity, namely Data-Parity stripe
1944 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1946 * For stripes with only data, namely Data-Only stripe
1947 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1949 * For a stripe, if we see data after parity, we should discard all previous
1950 * data and parity for this stripe, as these data are already flushed to
1953 * At the end of the scan, we return the new journal_tail, which points to
1954 * first data-only stripe on the journal device, or next invalid meta block.
1956 static int r5c_recovery_flush_log(struct r5l_log
*log
,
1957 struct r5l_recovery_ctx
*ctx
)
1959 struct stripe_head
*sh
;
1962 /* scan through the log */
1964 if (r5l_recovery_read_meta_block(log
, ctx
))
1967 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
1970 * -EAGAIN means mismatch in data block, in this case, we still
1971 * try scan the next metablock
1973 if (ret
&& ret
!= -EAGAIN
)
1974 break; /* ret == -EINVAL or -ENOMEM */
1976 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
1979 if (ret
== -ENOMEM
) {
1980 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
1984 /* replay data-parity stripes */
1985 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
1987 /* load data-only stripes to stripe cache */
1988 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
1989 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1990 r5c_recovery_load_one_stripe(log
, sh
);
1991 ctx
->data_only_stripes
++;
1998 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1999 * log will start here. but we can't let superblock point to last valid
2000 * meta block. The log might looks like:
2001 * | meta 1| meta 2| meta 3|
2002 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2003 * superblock points to meta 1, we write a new valid meta 2n. if crash
2004 * happens again, new recovery will start from meta 1. Since meta 2n is
2005 * valid now, recovery will think meta 3 is valid, which is wrong.
2006 * The solution is we create a new meta in meta2 with its seq == meta
2007 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2008 * will not think meta 3 is a valid meta, because its seq doesn't match
2012 * Before recovery, the log looks like the following
2014 * ---------------------------------------------
2015 * | valid log | invalid log |
2016 * ---------------------------------------------
2018 * |- log->last_checkpoint
2019 * |- log->last_cp_seq
2021 * Now we scan through the log until we see invalid entry
2023 * ---------------------------------------------
2024 * | valid log | invalid log |
2025 * ---------------------------------------------
2027 * |- log->last_checkpoint |- ctx->pos
2028 * |- log->last_cp_seq |- ctx->seq
2030 * From this point, we need to increase seq number by 10 to avoid
2031 * confusing next recovery.
2033 * ---------------------------------------------
2034 * | valid log | invalid log |
2035 * ---------------------------------------------
2037 * |- log->last_checkpoint |- ctx->pos+1
2038 * |- log->last_cp_seq |- ctx->seq+10001
2040 * However, it is not safe to start the state machine yet, because data only
2041 * parities are not yet secured in RAID. To save these data only parities, we
2042 * rewrite them from seq+11.
2044 * -----------------------------------------------------------------
2045 * | valid log | data only stripes | invalid log |
2046 * -----------------------------------------------------------------
2048 * |- log->last_checkpoint |- ctx->pos+n
2049 * |- log->last_cp_seq |- ctx->seq+10000+n
2051 * If failure happens again during this process, the recovery can safe start
2052 * again from log->last_checkpoint.
2054 * Once data only stripes are rewritten to journal, we move log_tail
2056 * -----------------------------------------------------------------
2057 * | old log | data only stripes | invalid log |
2058 * -----------------------------------------------------------------
2060 * |- log->last_checkpoint |- ctx->pos+n
2061 * |- log->last_cp_seq |- ctx->seq+10000+n
2063 * Then we can safely start the state machine. If failure happens from this
2064 * point on, the recovery will start from new log->last_checkpoint.
2067 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2068 struct r5l_recovery_ctx
*ctx
)
2070 struct stripe_head
*sh
, *next
;
2071 struct mddev
*mddev
= log
->rdev
->mddev
;
2074 page
= alloc_page(GFP_KERNEL
);
2076 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2081 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2082 struct r5l_meta_block
*mb
;
2087 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2088 r5l_recovery_create_empty_meta_block(log
, page
,
2089 ctx
->pos
, ctx
->seq
);
2090 mb
= page_address(page
);
2091 offset
= le32_to_cpu(mb
->meta_size
);
2092 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2094 for (i
= sh
->disks
; i
--; ) {
2095 struct r5dev
*dev
= &sh
->dev
[i
];
2096 struct r5l_payload_data_parity
*payload
;
2099 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2100 payload
= (void *)mb
+ offset
;
2101 payload
->header
.type
= cpu_to_le16(
2102 R5LOG_PAYLOAD_DATA
);
2103 payload
->size
= BLOCK_SECTORS
;
2104 payload
->location
= cpu_to_le64(
2105 raid5_compute_blocknr(sh
, i
, 0));
2106 addr
= kmap_atomic(dev
->page
);
2107 payload
->checksum
[0] = cpu_to_le32(
2108 crc32c_le(log
->uuid_checksum
, addr
,
2110 kunmap_atomic(addr
);
2111 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2112 dev
->page
, REQ_OP_WRITE
, 0, false);
2113 write_pos
= r5l_ring_add(log
, write_pos
,
2115 offset
+= sizeof(__le32
) +
2116 sizeof(struct r5l_payload_data_parity
);
2120 mb
->meta_size
= cpu_to_le32(offset
);
2121 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2123 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2124 REQ_OP_WRITE
, REQ_FUA
, false);
2125 sh
->log_start
= ctx
->pos
;
2126 ctx
->pos
= write_pos
;
2129 list_del_init(&sh
->lru
);
2130 raid5_release_stripe(sh
);
2136 static int r5l_recovery_log(struct r5l_log
*log
)
2138 struct mddev
*mddev
= log
->rdev
->mddev
;
2139 struct r5l_recovery_ctx ctx
;
2142 struct stripe_head
*sh
;
2144 ctx
.pos
= log
->last_checkpoint
;
2145 ctx
.seq
= log
->last_cp_seq
;
2146 ctx
.meta_page
= alloc_page(GFP_KERNEL
);
2147 ctx
.data_only_stripes
= 0;
2148 ctx
.data_parity_stripes
= 0;
2149 INIT_LIST_HEAD(&ctx
.cached_list
);
2154 ret
= r5c_recovery_flush_log(log
, &ctx
);
2155 __free_page(ctx
.meta_page
);
2163 if (ctx
.data_only_stripes
== 0) {
2164 log
->next_checkpoint
= ctx
.pos
;
2165 r5l_log_write_empty_meta_block(log
, ctx
.pos
, ctx
.seq
++);
2166 ctx
.pos
= r5l_ring_add(log
, ctx
.pos
, BLOCK_SECTORS
);
2168 sh
= list_last_entry(&ctx
.cached_list
, struct stripe_head
, lru
);
2169 log
->next_checkpoint
= sh
->log_start
;
2172 if ((ctx
.data_only_stripes
== 0) && (ctx
.data_parity_stripes
== 0))
2173 pr_debug("md/raid:%s: starting from clean shutdown\n",
2176 pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2177 mdname(mddev
), ctx
.data_only_stripes
,
2178 ctx
.data_parity_stripes
);
2180 if (ctx
.data_only_stripes
> 0)
2181 if (r5c_recovery_rewrite_data_only_stripes(log
, &ctx
)) {
2182 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2188 log
->log_start
= ctx
.pos
;
2190 log
->last_checkpoint
= pos
;
2191 r5l_write_super(log
, pos
);
2195 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2197 struct mddev
*mddev
= log
->rdev
->mddev
;
2199 log
->rdev
->journal_tail
= cp
;
2200 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2203 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2205 struct r5conf
*conf
= mddev
->private;
2211 switch (conf
->log
->r5c_journal_mode
) {
2212 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2214 page
, PAGE_SIZE
, "[%s] %s\n",
2215 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2216 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2218 case R5C_JOURNAL_MODE_WRITE_BACK
:
2220 page
, PAGE_SIZE
, "%s [%s]\n",
2221 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2222 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2230 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2231 const char *page
, size_t length
)
2233 struct r5conf
*conf
= mddev
->private;
2234 struct r5l_log
*log
= conf
->log
;
2241 if (len
&& page
[len
- 1] == '\n')
2243 for (i
= 0; i
< ARRAY_SIZE(r5c_journal_mode_str
); i
++)
2244 if (strlen(r5c_journal_mode_str
[i
]) == len
&&
2245 strncmp(page
, r5c_journal_mode_str
[i
], len
) == 0) {
2249 if (val
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2250 val
> R5C_JOURNAL_MODE_WRITE_BACK
)
2253 mddev_suspend(mddev
);
2254 conf
->log
->r5c_journal_mode
= val
;
2255 mddev_resume(mddev
);
2257 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2258 mdname(mddev
), val
, r5c_journal_mode_str
[val
]);
2262 struct md_sysfs_entry
2263 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2264 r5c_journal_mode_show
, r5c_journal_mode_store
);
2267 * Try handle write operation in caching phase. This function should only
2268 * be called in write-back mode.
2270 * If all outstanding writes can be handled in caching phase, returns 0
2271 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2272 * and returns -EAGAIN
2274 int r5c_try_caching_write(struct r5conf
*conf
,
2275 struct stripe_head
*sh
,
2276 struct stripe_head_state
*s
,
2279 struct r5l_log
*log
= conf
->log
;
2284 BUG_ON(!r5c_is_writeback(log
));
2286 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2288 * There are two different scenarios here:
2289 * 1. The stripe has some data cached, and it is sent to
2290 * write-out phase for reclaim
2291 * 2. The stripe is clean, and this is the first write
2293 * For 1, return -EAGAIN, so we continue with
2294 * handle_stripe_dirtying().
2296 * For 2, set STRIPE_R5C_CACHING and continue with caching
2300 /* case 1: anything injournal or anything in written */
2301 if (s
->injournal
> 0 || s
->written
> 0)
2304 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2307 for (i
= disks
; i
--; ) {
2309 /* if non-overwrite, use writing-out phase */
2310 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2311 !test_bit(R5_InJournal
, &dev
->flags
)) {
2312 r5c_make_stripe_write_out(sh
);
2317 for (i
= disks
; i
--; ) {
2320 set_bit(R5_Wantwrite
, &dev
->flags
);
2321 set_bit(R5_Wantdrain
, &dev
->flags
);
2322 set_bit(R5_LOCKED
, &dev
->flags
);
2328 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2330 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2331 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2332 * r5c_handle_data_cached()
2334 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2341 * free extra pages (orig_page) we allocated for prexor
2343 void r5c_release_extra_page(struct stripe_head
*sh
)
2345 struct r5conf
*conf
= sh
->raid_conf
;
2347 bool using_disk_info_extra_page
;
2349 using_disk_info_extra_page
=
2350 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2352 for (i
= sh
->disks
; i
--; )
2353 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2354 struct page
*p
= sh
->dev
[i
].orig_page
;
2356 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2357 if (!using_disk_info_extra_page
)
2361 if (using_disk_info_extra_page
) {
2362 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2363 md_wakeup_thread(conf
->mddev
->thread
);
2367 void r5c_use_extra_page(struct stripe_head
*sh
)
2369 struct r5conf
*conf
= sh
->raid_conf
;
2373 for (i
= sh
->disks
; i
--; ) {
2375 if (dev
->orig_page
!= dev
->page
)
2376 put_page(dev
->orig_page
);
2377 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2382 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2383 * stripe is committed to RAID disks.
2385 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2386 struct stripe_head
*sh
,
2387 struct stripe_head_state
*s
)
2393 !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2396 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2397 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2399 if (conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2402 for (i
= sh
->disks
; i
--; ) {
2403 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2404 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2409 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2410 * We updated R5_InJournal, so we also update s->injournal.
2414 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2415 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2416 md_wakeup_thread(conf
->mddev
->thread
);
2419 wake_up(&conf
->wait_for_overlap
);
2421 if (conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2424 spin_lock_irq(&conf
->log
->stripe_in_journal_lock
);
2425 list_del_init(&sh
->r5c
);
2426 spin_unlock_irq(&conf
->log
->stripe_in_journal_lock
);
2427 sh
->log_start
= MaxSector
;
2428 atomic_dec(&conf
->log
->stripe_in_journal_count
);
2429 r5c_update_log_state(conf
->log
);
2433 r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
,
2434 struct stripe_head_state
*s
)
2436 struct r5conf
*conf
= sh
->raid_conf
;
2444 for (i
= 0; i
< sh
->disks
; i
++) {
2447 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2449 addr
= kmap_atomic(sh
->dev
[i
].page
);
2450 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2452 kunmap_atomic(addr
);
2455 WARN_ON(pages
== 0);
2458 * The stripe must enter state machine again to call endio, so
2461 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2462 atomic_inc(&sh
->count
);
2464 mutex_lock(&log
->io_mutex
);
2466 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2468 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2469 sh
->log_start
== MaxSector
)
2470 r5l_add_no_space_stripe(log
, sh
);
2471 else if (!r5l_has_free_space(log
, reserve
)) {
2472 if (sh
->log_start
== log
->last_checkpoint
)
2475 r5l_add_no_space_stripe(log
, sh
);
2477 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2479 spin_lock_irq(&log
->io_list_lock
);
2480 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2481 spin_unlock_irq(&log
->io_list_lock
);
2485 mutex_unlock(&log
->io_mutex
);
2489 static int r5l_load_log(struct r5l_log
*log
)
2491 struct md_rdev
*rdev
= log
->rdev
;
2493 struct r5l_meta_block
*mb
;
2494 sector_t cp
= log
->rdev
->journal_tail
;
2495 u32 stored_crc
, expected_crc
;
2496 bool create_super
= false;
2499 /* Make sure it's valid */
2500 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2502 page
= alloc_page(GFP_KERNEL
);
2506 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2510 mb
= page_address(page
);
2512 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2513 mb
->version
!= R5LOG_VERSION
) {
2514 create_super
= true;
2517 stored_crc
= le32_to_cpu(mb
->checksum
);
2519 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2520 if (stored_crc
!= expected_crc
) {
2521 create_super
= true;
2524 if (le64_to_cpu(mb
->position
) != cp
) {
2525 create_super
= true;
2530 log
->last_cp_seq
= prandom_u32();
2532 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
2534 * Make sure super points to correct address. Log might have
2535 * data very soon. If super hasn't correct log tail address,
2536 * recovery can't find the log
2538 r5l_write_super(log
, cp
);
2540 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
2542 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
2543 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
2544 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
2545 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
2546 log
->last_checkpoint
= cp
;
2551 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
2552 log
->seq
= log
->last_cp_seq
+ 1;
2553 log
->next_checkpoint
= cp
;
2555 ret
= r5l_recovery_log(log
);
2557 r5c_update_log_state(log
);
2564 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
2566 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
2567 struct r5l_log
*log
;
2569 if (PAGE_SIZE
!= 4096)
2573 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2574 * raid_disks r5l_payload_data_parity.
2576 * Write journal and cache does not work for very big array
2577 * (raid_disks > 203)
2579 if (sizeof(struct r5l_meta_block
) +
2580 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
2581 conf
->raid_disks
) > PAGE_SIZE
) {
2582 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2583 mdname(conf
->mddev
), conf
->raid_disks
);
2587 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
2592 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
2594 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
2595 sizeof(rdev
->mddev
->uuid
));
2597 mutex_init(&log
->io_mutex
);
2599 spin_lock_init(&log
->io_list_lock
);
2600 INIT_LIST_HEAD(&log
->running_ios
);
2601 INIT_LIST_HEAD(&log
->io_end_ios
);
2602 INIT_LIST_HEAD(&log
->flushing_ios
);
2603 INIT_LIST_HEAD(&log
->finished_ios
);
2604 bio_init(&log
->flush_bio
, NULL
, 0);
2606 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
2610 log
->io_pool
= mempool_create_slab_pool(R5L_POOL_SIZE
, log
->io_kc
);
2614 log
->bs
= bioset_create(R5L_POOL_SIZE
, 0);
2618 log
->meta_pool
= mempool_create_page_pool(R5L_POOL_SIZE
, 0);
2619 if (!log
->meta_pool
)
2622 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
2623 log
->rdev
->mddev
, "reclaim");
2624 if (!log
->reclaim_thread
)
2625 goto reclaim_thread
;
2626 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
2628 init_waitqueue_head(&log
->iounit_wait
);
2630 INIT_LIST_HEAD(&log
->no_mem_stripes
);
2632 INIT_LIST_HEAD(&log
->no_space_stripes
);
2633 spin_lock_init(&log
->no_space_stripes_lock
);
2635 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
2637 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2638 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
2639 spin_lock_init(&log
->stripe_in_journal_lock
);
2640 atomic_set(&log
->stripe_in_journal_count
, 0);
2642 if (r5l_load_log(log
))
2645 rcu_assign_pointer(conf
->log
, log
);
2646 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
2650 md_unregister_thread(&log
->reclaim_thread
);
2652 mempool_destroy(log
->meta_pool
);
2654 bioset_free(log
->bs
);
2656 mempool_destroy(log
->io_pool
);
2658 kmem_cache_destroy(log
->io_kc
);
2664 void r5l_exit_log(struct r5l_log
*log
)
2666 md_unregister_thread(&log
->reclaim_thread
);
2667 mempool_destroy(log
->meta_pool
);
2668 bioset_free(log
->bs
);
2669 mempool_destroy(log
->io_pool
);
2670 kmem_cache_destroy(log
->io_kc
);