2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
74 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
76 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
77 return &conf
->stripe_hashtbl
[hash
];
80 static inline int stripe_hash_locks_hash(sector_t sect
)
82 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
85 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
87 spin_lock_irq(conf
->hash_locks
+ hash
);
88 spin_lock(&conf
->device_lock
);
91 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
93 spin_unlock(&conf
->device_lock
);
94 spin_unlock_irq(conf
->hash_locks
+ hash
);
97 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
101 spin_lock(conf
->hash_locks
);
102 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
103 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
104 spin_lock(&conf
->device_lock
);
107 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
110 spin_unlock(&conf
->device_lock
);
111 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
112 spin_unlock(conf
->hash_locks
+ i
- 1);
116 /* Find first data disk in a raid6 stripe */
117 static inline int raid6_d0(struct stripe_head
*sh
)
120 /* ddf always start from first device */
122 /* md starts just after Q block */
123 if (sh
->qd_idx
== sh
->disks
- 1)
126 return sh
->qd_idx
+ 1;
128 static inline int raid6_next_disk(int disk
, int raid_disks
)
131 return (disk
< raid_disks
) ? disk
: 0;
134 /* When walking through the disks in a raid5, starting at raid6_d0,
135 * We need to map each disk to a 'slot', where the data disks are slot
136 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
137 * is raid_disks-1. This help does that mapping.
139 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
140 int *count
, int syndrome_disks
)
146 if (idx
== sh
->pd_idx
)
147 return syndrome_disks
;
148 if (idx
== sh
->qd_idx
)
149 return syndrome_disks
+ 1;
155 static void return_io(struct bio_list
*return_bi
)
158 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
159 bi
->bi_iter
.bi_size
= 0;
160 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
166 static void print_raid5_conf (struct r5conf
*conf
);
168 static int stripe_operations_active(struct stripe_head
*sh
)
170 return sh
->check_state
|| sh
->reconstruct_state
||
171 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
172 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
175 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 list_add_tail(&sh
->lru
, &group
->handle_list
);
191 group
->stripes_cnt
++;
195 if (conf
->worker_cnt_per_group
== 0) {
196 md_wakeup_thread(conf
->mddev
->thread
);
200 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
202 group
->workers
[0].working
= true;
203 /* at least one worker should run to avoid race */
204 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
206 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
207 /* wakeup more workers */
208 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
209 if (group
->workers
[i
].working
== false) {
210 group
->workers
[i
].working
= true;
211 queue_work_on(sh
->cpu
, raid5_wq
,
212 &group
->workers
[i
].work
);
218 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
219 struct list_head
*temp_inactive_list
)
222 int injournal
= 0; /* number of date pages with R5_InJournal */
224 BUG_ON(!list_empty(&sh
->lru
));
225 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
227 if (r5c_is_writeback(conf
->log
))
228 for (i
= sh
->disks
; i
--; )
229 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
232 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
233 * data in journal, so they are not released to cached lists
235 if (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
236 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0) {
237 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
238 r5c_make_stripe_write_out(sh
);
239 set_bit(STRIPE_HANDLE
, &sh
->state
);
242 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
243 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
244 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
245 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
246 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
247 sh
->bm_seq
- conf
->seq_write
> 0)
248 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
250 clear_bit(STRIPE_DELAYED
, &sh
->state
);
251 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
252 if (conf
->worker_cnt_per_group
== 0) {
253 list_add_tail(&sh
->lru
, &conf
->handle_list
);
255 raid5_wakeup_stripe_thread(sh
);
259 md_wakeup_thread(conf
->mddev
->thread
);
261 BUG_ON(stripe_operations_active(sh
));
262 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
263 if (atomic_dec_return(&conf
->preread_active_stripes
)
265 md_wakeup_thread(conf
->mddev
->thread
);
266 atomic_dec(&conf
->active_stripes
);
267 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
268 if (!r5c_is_writeback(conf
->log
))
269 list_add_tail(&sh
->lru
, temp_inactive_list
);
271 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
273 list_add_tail(&sh
->lru
, temp_inactive_list
);
274 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
276 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
277 atomic_inc(&conf
->r5c_cached_full_stripes
);
278 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
279 atomic_dec(&conf
->r5c_cached_partial_stripes
);
280 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
281 r5c_check_cached_full_stripe(conf
);
284 if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE
,
286 atomic_inc(&conf
->r5c_cached_partial_stripes
);
287 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
294 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
295 struct list_head
*temp_inactive_list
)
297 if (atomic_dec_and_test(&sh
->count
))
298 do_release_stripe(conf
, sh
, temp_inactive_list
);
302 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
304 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
305 * given time. Adding stripes only takes device lock, while deleting stripes
306 * only takes hash lock.
308 static void release_inactive_stripe_list(struct r5conf
*conf
,
309 struct list_head
*temp_inactive_list
,
313 bool do_wakeup
= false;
316 if (hash
== NR_STRIPE_HASH_LOCKS
) {
317 size
= NR_STRIPE_HASH_LOCKS
;
318 hash
= NR_STRIPE_HASH_LOCKS
- 1;
322 struct list_head
*list
= &temp_inactive_list
[size
- 1];
325 * We don't hold any lock here yet, raid5_get_active_stripe() might
326 * remove stripes from the list
328 if (!list_empty_careful(list
)) {
329 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
330 if (list_empty(conf
->inactive_list
+ hash
) &&
332 atomic_dec(&conf
->empty_inactive_list_nr
);
333 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
335 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
342 wake_up(&conf
->wait_for_stripe
);
343 if (atomic_read(&conf
->active_stripes
) == 0)
344 wake_up(&conf
->wait_for_quiescent
);
345 if (conf
->retry_read_aligned
)
346 md_wakeup_thread(conf
->mddev
->thread
);
350 /* should hold conf->device_lock already */
351 static int release_stripe_list(struct r5conf
*conf
,
352 struct list_head
*temp_inactive_list
)
354 struct stripe_head
*sh
;
356 struct llist_node
*head
;
358 head
= llist_del_all(&conf
->released_stripes
);
359 head
= llist_reverse_order(head
);
363 sh
= llist_entry(head
, struct stripe_head
, release_list
);
364 head
= llist_next(head
);
365 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
369 * Don't worry the bit is set here, because if the bit is set
370 * again, the count is always > 1. This is true for
371 * STRIPE_ON_UNPLUG_LIST bit too.
373 hash
= sh
->hash_lock_index
;
374 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
381 void raid5_release_stripe(struct stripe_head
*sh
)
383 struct r5conf
*conf
= sh
->raid_conf
;
385 struct list_head list
;
389 /* Avoid release_list until the last reference.
391 if (atomic_add_unless(&sh
->count
, -1, 1))
394 if (unlikely(!conf
->mddev
->thread
) ||
395 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
397 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
399 md_wakeup_thread(conf
->mddev
->thread
);
402 local_irq_save(flags
);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
405 INIT_LIST_HEAD(&list
);
406 hash
= sh
->hash_lock_index
;
407 do_release_stripe(conf
, sh
, &list
);
408 spin_unlock(&conf
->device_lock
);
409 release_inactive_stripe_list(conf
, &list
, hash
);
411 local_irq_restore(flags
);
414 static inline void remove_hash(struct stripe_head
*sh
)
416 pr_debug("remove_hash(), stripe %llu\n",
417 (unsigned long long)sh
->sector
);
419 hlist_del_init(&sh
->hash
);
422 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
424 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
426 pr_debug("insert_hash(), stripe %llu\n",
427 (unsigned long long)sh
->sector
);
429 hlist_add_head(&sh
->hash
, hp
);
432 /* find an idle stripe, make sure it is unhashed, and return it. */
433 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
435 struct stripe_head
*sh
= NULL
;
436 struct list_head
*first
;
438 if (list_empty(conf
->inactive_list
+ hash
))
440 first
= (conf
->inactive_list
+ hash
)->next
;
441 sh
= list_entry(first
, struct stripe_head
, lru
);
442 list_del_init(first
);
444 atomic_inc(&conf
->active_stripes
);
445 BUG_ON(hash
!= sh
->hash_lock_index
);
446 if (list_empty(conf
->inactive_list
+ hash
))
447 atomic_inc(&conf
->empty_inactive_list_nr
);
452 static void shrink_buffers(struct stripe_head
*sh
)
456 int num
= sh
->raid_conf
->pool_size
;
458 for (i
= 0; i
< num
; i
++) {
459 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
463 sh
->dev
[i
].page
= NULL
;
468 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
471 int num
= sh
->raid_conf
->pool_size
;
473 for (i
= 0; i
< num
; i
++) {
476 if (!(page
= alloc_page(gfp
))) {
479 sh
->dev
[i
].page
= page
;
480 sh
->dev
[i
].orig_page
= page
;
485 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
486 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
487 struct stripe_head
*sh
);
489 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
491 struct r5conf
*conf
= sh
->raid_conf
;
494 BUG_ON(atomic_read(&sh
->count
) != 0);
495 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
496 BUG_ON(stripe_operations_active(sh
));
497 BUG_ON(sh
->batch_head
);
499 pr_debug("init_stripe called, stripe %llu\n",
500 (unsigned long long)sector
);
502 seq
= read_seqcount_begin(&conf
->gen_lock
);
503 sh
->generation
= conf
->generation
- previous
;
504 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
506 stripe_set_idx(sector
, conf
, previous
, sh
);
509 for (i
= sh
->disks
; i
--; ) {
510 struct r5dev
*dev
= &sh
->dev
[i
];
512 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
513 test_bit(R5_LOCKED
, &dev
->flags
)) {
514 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
515 (unsigned long long)sh
->sector
, i
, dev
->toread
,
516 dev
->read
, dev
->towrite
, dev
->written
,
517 test_bit(R5_LOCKED
, &dev
->flags
));
521 raid5_build_block(sh
, i
, previous
);
523 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
525 sh
->overwrite_disks
= 0;
526 insert_hash(conf
, sh
);
527 sh
->cpu
= smp_processor_id();
528 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
531 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
534 struct stripe_head
*sh
;
536 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
537 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
538 if (sh
->sector
== sector
&& sh
->generation
== generation
)
540 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
545 * Need to check if array has failed when deciding whether to:
547 * - remove non-faulty devices
550 * This determination is simple when no reshape is happening.
551 * However if there is a reshape, we need to carefully check
552 * both the before and after sections.
553 * This is because some failed devices may only affect one
554 * of the two sections, and some non-in_sync devices may
555 * be insync in the section most affected by failed devices.
557 static int calc_degraded(struct r5conf
*conf
)
559 int degraded
, degraded2
;
564 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
565 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
566 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
567 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
568 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
570 else if (test_bit(In_sync
, &rdev
->flags
))
573 /* not in-sync or faulty.
574 * If the reshape increases the number of devices,
575 * this is being recovered by the reshape, so
576 * this 'previous' section is not in_sync.
577 * If the number of devices is being reduced however,
578 * the device can only be part of the array if
579 * we are reverting a reshape, so this section will
582 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
586 if (conf
->raid_disks
== conf
->previous_raid_disks
)
590 for (i
= 0; i
< conf
->raid_disks
; i
++) {
591 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
592 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
593 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
594 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
596 else if (test_bit(In_sync
, &rdev
->flags
))
599 /* not in-sync or faulty.
600 * If reshape increases the number of devices, this
601 * section has already been recovered, else it
602 * almost certainly hasn't.
604 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
608 if (degraded2
> degraded
)
613 static int has_failed(struct r5conf
*conf
)
617 if (conf
->mddev
->reshape_position
== MaxSector
)
618 return conf
->mddev
->degraded
> conf
->max_degraded
;
620 degraded
= calc_degraded(conf
);
621 if (degraded
> conf
->max_degraded
)
627 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
628 int previous
, int noblock
, int noquiesce
)
630 struct stripe_head
*sh
;
631 int hash
= stripe_hash_locks_hash(sector
);
632 int inc_empty_inactive_list_flag
;
634 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
636 spin_lock_irq(conf
->hash_locks
+ hash
);
639 wait_event_lock_irq(conf
->wait_for_quiescent
,
640 conf
->quiesce
== 0 || noquiesce
,
641 *(conf
->hash_locks
+ hash
));
642 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
644 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
645 sh
= get_free_stripe(conf
, hash
);
646 if (!sh
&& !test_bit(R5_DID_ALLOC
,
648 set_bit(R5_ALLOC_MORE
,
651 if (noblock
&& sh
== NULL
)
654 r5c_check_stripe_cache_usage(conf
);
656 set_bit(R5_INACTIVE_BLOCKED
,
658 r5l_wake_reclaim(conf
->log
, 0);
660 conf
->wait_for_stripe
,
661 !list_empty(conf
->inactive_list
+ hash
) &&
662 (atomic_read(&conf
->active_stripes
)
663 < (conf
->max_nr_stripes
* 3 / 4)
664 || !test_bit(R5_INACTIVE_BLOCKED
,
665 &conf
->cache_state
)),
666 *(conf
->hash_locks
+ hash
));
667 clear_bit(R5_INACTIVE_BLOCKED
,
670 init_stripe(sh
, sector
, previous
);
671 atomic_inc(&sh
->count
);
673 } else if (!atomic_inc_not_zero(&sh
->count
)) {
674 spin_lock(&conf
->device_lock
);
675 if (!atomic_read(&sh
->count
)) {
676 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
677 atomic_inc(&conf
->active_stripes
);
678 BUG_ON(list_empty(&sh
->lru
) &&
679 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
680 inc_empty_inactive_list_flag
= 0;
681 if (!list_empty(conf
->inactive_list
+ hash
))
682 inc_empty_inactive_list_flag
= 1;
683 list_del_init(&sh
->lru
);
684 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
685 atomic_inc(&conf
->empty_inactive_list_nr
);
687 sh
->group
->stripes_cnt
--;
691 atomic_inc(&sh
->count
);
692 spin_unlock(&conf
->device_lock
);
694 } while (sh
== NULL
);
696 spin_unlock_irq(conf
->hash_locks
+ hash
);
700 static bool is_full_stripe_write(struct stripe_head
*sh
)
702 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
703 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
706 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
710 spin_lock(&sh2
->stripe_lock
);
711 spin_lock_nested(&sh1
->stripe_lock
, 1);
713 spin_lock(&sh1
->stripe_lock
);
714 spin_lock_nested(&sh2
->stripe_lock
, 1);
718 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
720 spin_unlock(&sh1
->stripe_lock
);
721 spin_unlock(&sh2
->stripe_lock
);
725 /* Only freshly new full stripe normal write stripe can be added to a batch list */
726 static bool stripe_can_batch(struct stripe_head
*sh
)
728 struct r5conf
*conf
= sh
->raid_conf
;
732 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
733 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
734 is_full_stripe_write(sh
);
737 /* we only do back search */
738 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
740 struct stripe_head
*head
;
741 sector_t head_sector
, tmp_sec
;
744 int inc_empty_inactive_list_flag
;
746 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
747 tmp_sec
= sh
->sector
;
748 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
750 head_sector
= sh
->sector
- STRIPE_SECTORS
;
752 hash
= stripe_hash_locks_hash(head_sector
);
753 spin_lock_irq(conf
->hash_locks
+ hash
);
754 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
755 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
756 spin_lock(&conf
->device_lock
);
757 if (!atomic_read(&head
->count
)) {
758 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
759 atomic_inc(&conf
->active_stripes
);
760 BUG_ON(list_empty(&head
->lru
) &&
761 !test_bit(STRIPE_EXPANDING
, &head
->state
));
762 inc_empty_inactive_list_flag
= 0;
763 if (!list_empty(conf
->inactive_list
+ hash
))
764 inc_empty_inactive_list_flag
= 1;
765 list_del_init(&head
->lru
);
766 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
767 atomic_inc(&conf
->empty_inactive_list_nr
);
769 head
->group
->stripes_cnt
--;
773 atomic_inc(&head
->count
);
774 spin_unlock(&conf
->device_lock
);
776 spin_unlock_irq(conf
->hash_locks
+ hash
);
780 if (!stripe_can_batch(head
))
783 lock_two_stripes(head
, sh
);
784 /* clear_batch_ready clear the flag */
785 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
792 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
794 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
795 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
798 if (head
->batch_head
) {
799 spin_lock(&head
->batch_head
->batch_lock
);
800 /* This batch list is already running */
801 if (!stripe_can_batch(head
)) {
802 spin_unlock(&head
->batch_head
->batch_lock
);
807 * at this point, head's BATCH_READY could be cleared, but we
808 * can still add the stripe to batch list
810 list_add(&sh
->batch_list
, &head
->batch_list
);
811 spin_unlock(&head
->batch_head
->batch_lock
);
813 sh
->batch_head
= head
->batch_head
;
815 head
->batch_head
= head
;
816 sh
->batch_head
= head
->batch_head
;
817 spin_lock(&head
->batch_lock
);
818 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
819 spin_unlock(&head
->batch_lock
);
822 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
823 if (atomic_dec_return(&conf
->preread_active_stripes
)
825 md_wakeup_thread(conf
->mddev
->thread
);
827 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
828 int seq
= sh
->bm_seq
;
829 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
830 sh
->batch_head
->bm_seq
> seq
)
831 seq
= sh
->batch_head
->bm_seq
;
832 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
833 sh
->batch_head
->bm_seq
= seq
;
836 atomic_inc(&sh
->count
);
838 unlock_two_stripes(head
, sh
);
840 raid5_release_stripe(head
);
843 /* Determine if 'data_offset' or 'new_data_offset' should be used
844 * in this stripe_head.
846 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
848 sector_t progress
= conf
->reshape_progress
;
849 /* Need a memory barrier to make sure we see the value
850 * of conf->generation, or ->data_offset that was set before
851 * reshape_progress was updated.
854 if (progress
== MaxSector
)
856 if (sh
->generation
== conf
->generation
- 1)
858 /* We are in a reshape, and this is a new-generation stripe,
859 * so use new_data_offset.
865 raid5_end_read_request(struct bio
*bi
);
867 raid5_end_write_request(struct bio
*bi
);
869 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
871 struct r5conf
*conf
= sh
->raid_conf
;
872 int i
, disks
= sh
->disks
;
873 struct stripe_head
*head_sh
= sh
;
877 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
878 /* writing out phase */
879 if (s
->waiting_extra_page
)
881 if (r5l_write_stripe(conf
->log
, sh
) == 0)
883 } else { /* caching phase */
884 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
)) {
885 r5c_cache_data(conf
->log
, sh
, s
);
890 for (i
= disks
; i
--; ) {
891 int op
, op_flags
= 0;
892 int replace_only
= 0;
893 struct bio
*bi
, *rbi
;
894 struct md_rdev
*rdev
, *rrdev
= NULL
;
897 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
899 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
901 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
903 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
905 else if (test_and_clear_bit(R5_WantReplace
,
906 &sh
->dev
[i
].flags
)) {
911 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
912 op_flags
|= REQ_SYNC
;
915 bi
= &sh
->dev
[i
].req
;
916 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
919 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
920 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
921 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
926 if (op_is_write(op
)) {
930 /* We raced and saw duplicates */
933 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
938 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
941 atomic_inc(&rdev
->nr_pending
);
942 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
945 atomic_inc(&rrdev
->nr_pending
);
948 /* We have already checked bad blocks for reads. Now
949 * need to check for writes. We never accept write errors
950 * on the replacement, so we don't to check rrdev.
952 while (op_is_write(op
) && rdev
&&
953 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
956 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
957 &first_bad
, &bad_sectors
);
962 set_bit(BlockedBadBlocks
, &rdev
->flags
);
963 if (!conf
->mddev
->external
&&
964 conf
->mddev
->sb_flags
) {
965 /* It is very unlikely, but we might
966 * still need to write out the
967 * bad block log - better give it
969 md_check_recovery(conf
->mddev
);
972 * Because md_wait_for_blocked_rdev
973 * will dec nr_pending, we must
974 * increment it first.
976 atomic_inc(&rdev
->nr_pending
);
977 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
979 /* Acknowledged bad block - skip the write */
980 rdev_dec_pending(rdev
, conf
->mddev
);
986 if (s
->syncing
|| s
->expanding
|| s
->expanded
988 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
990 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
992 bi
->bi_bdev
= rdev
->bdev
;
993 bio_set_op_attrs(bi
, op
, op_flags
);
994 bi
->bi_end_io
= op_is_write(op
)
995 ? raid5_end_write_request
996 : raid5_end_read_request
;
999 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1000 __func__
, (unsigned long long)sh
->sector
,
1002 atomic_inc(&sh
->count
);
1004 atomic_inc(&head_sh
->count
);
1005 if (use_new_offset(conf
, sh
))
1006 bi
->bi_iter
.bi_sector
= (sh
->sector
1007 + rdev
->new_data_offset
);
1009 bi
->bi_iter
.bi_sector
= (sh
->sector
1010 + rdev
->data_offset
);
1011 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1012 bi
->bi_opf
|= REQ_NOMERGE
;
1014 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1015 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1016 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1018 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1019 bi
->bi_io_vec
[0].bv_offset
= 0;
1020 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1022 * If this is discard request, set bi_vcnt 0. We don't
1023 * want to confuse SCSI because SCSI will replace payload
1025 if (op
== REQ_OP_DISCARD
)
1028 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1030 if (conf
->mddev
->gendisk
)
1031 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1032 bi
, disk_devt(conf
->mddev
->gendisk
),
1034 generic_make_request(bi
);
1037 if (s
->syncing
|| s
->expanding
|| s
->expanded
1039 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1041 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1043 rbi
->bi_bdev
= rrdev
->bdev
;
1044 bio_set_op_attrs(rbi
, op
, op_flags
);
1045 BUG_ON(!op_is_write(op
));
1046 rbi
->bi_end_io
= raid5_end_write_request
;
1047 rbi
->bi_private
= sh
;
1049 pr_debug("%s: for %llu schedule op %d on "
1050 "replacement disc %d\n",
1051 __func__
, (unsigned long long)sh
->sector
,
1053 atomic_inc(&sh
->count
);
1055 atomic_inc(&head_sh
->count
);
1056 if (use_new_offset(conf
, sh
))
1057 rbi
->bi_iter
.bi_sector
= (sh
->sector
1058 + rrdev
->new_data_offset
);
1060 rbi
->bi_iter
.bi_sector
= (sh
->sector
1061 + rrdev
->data_offset
);
1062 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1063 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1064 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1066 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1067 rbi
->bi_io_vec
[0].bv_offset
= 0;
1068 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1070 * If this is discard request, set bi_vcnt 0. We don't
1071 * want to confuse SCSI because SCSI will replace payload
1073 if (op
== REQ_OP_DISCARD
)
1075 if (conf
->mddev
->gendisk
)
1076 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1077 rbi
, disk_devt(conf
->mddev
->gendisk
),
1079 generic_make_request(rbi
);
1081 if (!rdev
&& !rrdev
) {
1082 if (op_is_write(op
))
1083 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1084 pr_debug("skip op %d on disc %d for sector %llu\n",
1085 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1086 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1087 set_bit(STRIPE_HANDLE
, &sh
->state
);
1090 if (!head_sh
->batch_head
)
1092 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1099 static struct dma_async_tx_descriptor
*
1100 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1101 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1102 struct stripe_head
*sh
, int no_skipcopy
)
1105 struct bvec_iter iter
;
1106 struct page
*bio_page
;
1108 struct async_submit_ctl submit
;
1109 enum async_tx_flags flags
= 0;
1111 if (bio
->bi_iter
.bi_sector
>= sector
)
1112 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1114 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1117 flags
|= ASYNC_TX_FENCE
;
1118 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1120 bio_for_each_segment(bvl
, bio
, iter
) {
1121 int len
= bvl
.bv_len
;
1125 if (page_offset
< 0) {
1126 b_offset
= -page_offset
;
1127 page_offset
+= b_offset
;
1131 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1132 clen
= STRIPE_SIZE
- page_offset
;
1137 b_offset
+= bvl
.bv_offset
;
1138 bio_page
= bvl
.bv_page
;
1140 if (sh
->raid_conf
->skip_copy
&&
1141 b_offset
== 0 && page_offset
== 0 &&
1142 clen
== STRIPE_SIZE
&&
1146 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1147 b_offset
, clen
, &submit
);
1149 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1150 page_offset
, clen
, &submit
);
1152 /* chain the operations */
1153 submit
.depend_tx
= tx
;
1155 if (clen
< len
) /* hit end of page */
1163 static void ops_complete_biofill(void *stripe_head_ref
)
1165 struct stripe_head
*sh
= stripe_head_ref
;
1166 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1169 pr_debug("%s: stripe %llu\n", __func__
,
1170 (unsigned long long)sh
->sector
);
1172 /* clear completed biofills */
1173 for (i
= sh
->disks
; i
--; ) {
1174 struct r5dev
*dev
= &sh
->dev
[i
];
1176 /* acknowledge completion of a biofill operation */
1177 /* and check if we need to reply to a read request,
1178 * new R5_Wantfill requests are held off until
1179 * !STRIPE_BIOFILL_RUN
1181 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1182 struct bio
*rbi
, *rbi2
;
1187 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1188 dev
->sector
+ STRIPE_SECTORS
) {
1189 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1190 if (!raid5_dec_bi_active_stripes(rbi
))
1191 bio_list_add(&return_bi
, rbi
);
1196 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1198 return_io(&return_bi
);
1200 set_bit(STRIPE_HANDLE
, &sh
->state
);
1201 raid5_release_stripe(sh
);
1204 static void ops_run_biofill(struct stripe_head
*sh
)
1206 struct dma_async_tx_descriptor
*tx
= NULL
;
1207 struct async_submit_ctl submit
;
1210 BUG_ON(sh
->batch_head
);
1211 pr_debug("%s: stripe %llu\n", __func__
,
1212 (unsigned long long)sh
->sector
);
1214 for (i
= sh
->disks
; i
--; ) {
1215 struct r5dev
*dev
= &sh
->dev
[i
];
1216 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1218 spin_lock_irq(&sh
->stripe_lock
);
1219 dev
->read
= rbi
= dev
->toread
;
1221 spin_unlock_irq(&sh
->stripe_lock
);
1222 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1223 dev
->sector
+ STRIPE_SECTORS
) {
1224 tx
= async_copy_data(0, rbi
, &dev
->page
,
1225 dev
->sector
, tx
, sh
, 0);
1226 rbi
= r5_next_bio(rbi
, dev
->sector
);
1231 atomic_inc(&sh
->count
);
1232 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1233 async_trigger_callback(&submit
);
1236 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1243 tgt
= &sh
->dev
[target
];
1244 set_bit(R5_UPTODATE
, &tgt
->flags
);
1245 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1246 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1249 static void ops_complete_compute(void *stripe_head_ref
)
1251 struct stripe_head
*sh
= stripe_head_ref
;
1253 pr_debug("%s: stripe %llu\n", __func__
,
1254 (unsigned long long)sh
->sector
);
1256 /* mark the computed target(s) as uptodate */
1257 mark_target_uptodate(sh
, sh
->ops
.target
);
1258 mark_target_uptodate(sh
, sh
->ops
.target2
);
1260 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1261 if (sh
->check_state
== check_state_compute_run
)
1262 sh
->check_state
= check_state_compute_result
;
1263 set_bit(STRIPE_HANDLE
, &sh
->state
);
1264 raid5_release_stripe(sh
);
1267 /* return a pointer to the address conversion region of the scribble buffer */
1268 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1269 struct raid5_percpu
*percpu
, int i
)
1273 addr
= flex_array_get(percpu
->scribble
, i
);
1274 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1282 addr
= flex_array_get(percpu
->scribble
, i
);
1286 static struct dma_async_tx_descriptor
*
1287 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1289 int disks
= sh
->disks
;
1290 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1291 int target
= sh
->ops
.target
;
1292 struct r5dev
*tgt
= &sh
->dev
[target
];
1293 struct page
*xor_dest
= tgt
->page
;
1295 struct dma_async_tx_descriptor
*tx
;
1296 struct async_submit_ctl submit
;
1299 BUG_ON(sh
->batch_head
);
1301 pr_debug("%s: stripe %llu block: %d\n",
1302 __func__
, (unsigned long long)sh
->sector
, target
);
1303 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1305 for (i
= disks
; i
--; )
1307 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1309 atomic_inc(&sh
->count
);
1311 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1312 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1313 if (unlikely(count
== 1))
1314 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1316 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1321 /* set_syndrome_sources - populate source buffers for gen_syndrome
1322 * @srcs - (struct page *) array of size sh->disks
1323 * @sh - stripe_head to parse
1325 * Populates srcs in proper layout order for the stripe and returns the
1326 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1327 * destination buffer is recorded in srcs[count] and the Q destination
1328 * is recorded in srcs[count+1]].
1330 static int set_syndrome_sources(struct page
**srcs
,
1331 struct stripe_head
*sh
,
1334 int disks
= sh
->disks
;
1335 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1336 int d0_idx
= raid6_d0(sh
);
1340 for (i
= 0; i
< disks
; i
++)
1346 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1347 struct r5dev
*dev
= &sh
->dev
[i
];
1349 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1350 (srctype
== SYNDROME_SRC_ALL
) ||
1351 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1352 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1353 test_bit(R5_InJournal
, &dev
->flags
))) ||
1354 (srctype
== SYNDROME_SRC_WRITTEN
&&
1356 if (test_bit(R5_InJournal
, &dev
->flags
))
1357 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1359 srcs
[slot
] = sh
->dev
[i
].page
;
1361 i
= raid6_next_disk(i
, disks
);
1362 } while (i
!= d0_idx
);
1364 return syndrome_disks
;
1367 static struct dma_async_tx_descriptor
*
1368 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1370 int disks
= sh
->disks
;
1371 struct page
**blocks
= to_addr_page(percpu
, 0);
1373 int qd_idx
= sh
->qd_idx
;
1374 struct dma_async_tx_descriptor
*tx
;
1375 struct async_submit_ctl submit
;
1381 BUG_ON(sh
->batch_head
);
1382 if (sh
->ops
.target
< 0)
1383 target
= sh
->ops
.target2
;
1384 else if (sh
->ops
.target2
< 0)
1385 target
= sh
->ops
.target
;
1387 /* we should only have one valid target */
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__
, (unsigned long long)sh
->sector
, target
);
1393 tgt
= &sh
->dev
[target
];
1394 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1397 atomic_inc(&sh
->count
);
1399 if (target
== qd_idx
) {
1400 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1401 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1402 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1403 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1404 ops_complete_compute
, sh
,
1405 to_addr_conv(sh
, percpu
, 0));
1406 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1408 /* Compute any data- or p-drive using XOR */
1410 for (i
= disks
; i
-- ; ) {
1411 if (i
== target
|| i
== qd_idx
)
1413 blocks
[count
++] = sh
->dev
[i
].page
;
1416 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1417 NULL
, ops_complete_compute
, sh
,
1418 to_addr_conv(sh
, percpu
, 0));
1419 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1425 static struct dma_async_tx_descriptor
*
1426 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1428 int i
, count
, disks
= sh
->disks
;
1429 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1430 int d0_idx
= raid6_d0(sh
);
1431 int faila
= -1, failb
= -1;
1432 int target
= sh
->ops
.target
;
1433 int target2
= sh
->ops
.target2
;
1434 struct r5dev
*tgt
= &sh
->dev
[target
];
1435 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1436 struct dma_async_tx_descriptor
*tx
;
1437 struct page
**blocks
= to_addr_page(percpu
, 0);
1438 struct async_submit_ctl submit
;
1440 BUG_ON(sh
->batch_head
);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1443 BUG_ON(target
< 0 || target2
< 0);
1444 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1445 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1450 for (i
= 0; i
< disks
; i
++)
1455 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1457 blocks
[slot
] = sh
->dev
[i
].page
;
1463 i
= raid6_next_disk(i
, disks
);
1464 } while (i
!= d0_idx
);
1466 BUG_ON(faila
== failb
);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1472 atomic_inc(&sh
->count
);
1474 if (failb
== syndrome_disks
+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila
== syndrome_disks
) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1479 ops_complete_compute
, sh
,
1480 to_addr_conv(sh
, percpu
, 0));
1481 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1482 STRIPE_SIZE
, &submit
);
1486 int qd_idx
= sh
->qd_idx
;
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target
== qd_idx
)
1490 data_target
= target2
;
1492 data_target
= target
;
1495 for (i
= disks
; i
-- ; ) {
1496 if (i
== data_target
|| i
== qd_idx
)
1498 blocks
[count
++] = sh
->dev
[i
].page
;
1500 dest
= sh
->dev
[data_target
].page
;
1501 init_async_submit(&submit
,
1502 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1504 to_addr_conv(sh
, percpu
, 0));
1505 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1508 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1509 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1510 ops_complete_compute
, sh
,
1511 to_addr_conv(sh
, percpu
, 0));
1512 return async_gen_syndrome(blocks
, 0, count
+2,
1513 STRIPE_SIZE
, &submit
);
1516 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1517 ops_complete_compute
, sh
,
1518 to_addr_conv(sh
, percpu
, 0));
1519 if (failb
== syndrome_disks
) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks
+2,
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks
+2,
1527 STRIPE_SIZE
, faila
, failb
,
1533 static void ops_complete_prexor(void *stripe_head_ref
)
1535 struct stripe_head
*sh
= stripe_head_ref
;
1537 pr_debug("%s: stripe %llu\n", __func__
,
1538 (unsigned long long)sh
->sector
);
1540 if (r5c_is_writeback(sh
->raid_conf
->log
))
1542 * raid5-cache write back uses orig_page during prexor.
1543 * After prexor, it is time to free orig_page
1545 r5c_release_extra_page(sh
);
1548 static struct dma_async_tx_descriptor
*
1549 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1550 struct dma_async_tx_descriptor
*tx
)
1552 int disks
= sh
->disks
;
1553 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1554 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1555 struct async_submit_ctl submit
;
1557 /* existing parity data subtracted */
1558 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1560 BUG_ON(sh
->batch_head
);
1561 pr_debug("%s: stripe %llu\n", __func__
,
1562 (unsigned long long)sh
->sector
);
1564 for (i
= disks
; i
--; ) {
1565 struct r5dev
*dev
= &sh
->dev
[i
];
1566 /* Only process blocks that are known to be uptodate */
1567 if (test_bit(R5_InJournal
, &dev
->flags
))
1568 xor_srcs
[count
++] = dev
->orig_page
;
1569 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1570 xor_srcs
[count
++] = dev
->page
;
1573 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1574 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1575 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1580 static struct dma_async_tx_descriptor
*
1581 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1582 struct dma_async_tx_descriptor
*tx
)
1584 struct page
**blocks
= to_addr_page(percpu
, 0);
1586 struct async_submit_ctl submit
;
1588 pr_debug("%s: stripe %llu\n", __func__
,
1589 (unsigned long long)sh
->sector
);
1591 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1593 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1594 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1595 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1600 static struct dma_async_tx_descriptor
*
1601 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1603 struct r5conf
*conf
= sh
->raid_conf
;
1604 int disks
= sh
->disks
;
1606 struct stripe_head
*head_sh
= sh
;
1608 pr_debug("%s: stripe %llu\n", __func__
,
1609 (unsigned long long)sh
->sector
);
1611 for (i
= disks
; i
--; ) {
1616 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1622 * clear R5_InJournal, so when rewriting a page in
1623 * journal, it is not skipped by r5l_log_stripe()
1625 clear_bit(R5_InJournal
, &dev
->flags
);
1626 spin_lock_irq(&sh
->stripe_lock
);
1627 chosen
= dev
->towrite
;
1628 dev
->towrite
= NULL
;
1629 sh
->overwrite_disks
= 0;
1630 BUG_ON(dev
->written
);
1631 wbi
= dev
->written
= chosen
;
1632 spin_unlock_irq(&sh
->stripe_lock
);
1633 WARN_ON(dev
->page
!= dev
->orig_page
);
1635 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1636 dev
->sector
+ STRIPE_SECTORS
) {
1637 if (wbi
->bi_opf
& REQ_FUA
)
1638 set_bit(R5_WantFUA
, &dev
->flags
);
1639 if (wbi
->bi_opf
& REQ_SYNC
)
1640 set_bit(R5_SyncIO
, &dev
->flags
);
1641 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1642 set_bit(R5_Discard
, &dev
->flags
);
1644 tx
= async_copy_data(1, wbi
, &dev
->page
,
1645 dev
->sector
, tx
, sh
,
1646 r5c_is_writeback(conf
->log
));
1647 if (dev
->page
!= dev
->orig_page
&&
1648 !r5c_is_writeback(conf
->log
)) {
1649 set_bit(R5_SkipCopy
, &dev
->flags
);
1650 clear_bit(R5_UPTODATE
, &dev
->flags
);
1651 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1654 wbi
= r5_next_bio(wbi
, dev
->sector
);
1657 if (head_sh
->batch_head
) {
1658 sh
= list_first_entry(&sh
->batch_list
,
1671 static void ops_complete_reconstruct(void *stripe_head_ref
)
1673 struct stripe_head
*sh
= stripe_head_ref
;
1674 int disks
= sh
->disks
;
1675 int pd_idx
= sh
->pd_idx
;
1676 int qd_idx
= sh
->qd_idx
;
1678 bool fua
= false, sync
= false, discard
= false;
1680 pr_debug("%s: stripe %llu\n", __func__
,
1681 (unsigned long long)sh
->sector
);
1683 for (i
= disks
; i
--; ) {
1684 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1685 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1686 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1689 for (i
= disks
; i
--; ) {
1690 struct r5dev
*dev
= &sh
->dev
[i
];
1692 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1693 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1694 set_bit(R5_UPTODATE
, &dev
->flags
);
1696 set_bit(R5_WantFUA
, &dev
->flags
);
1698 set_bit(R5_SyncIO
, &dev
->flags
);
1702 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1703 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1704 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1705 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1707 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1708 sh
->reconstruct_state
= reconstruct_state_result
;
1711 set_bit(STRIPE_HANDLE
, &sh
->state
);
1712 raid5_release_stripe(sh
);
1716 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1717 struct dma_async_tx_descriptor
*tx
)
1719 int disks
= sh
->disks
;
1720 struct page
**xor_srcs
;
1721 struct async_submit_ctl submit
;
1722 int count
, pd_idx
= sh
->pd_idx
, i
;
1723 struct page
*xor_dest
;
1725 unsigned long flags
;
1727 struct stripe_head
*head_sh
= sh
;
1730 pr_debug("%s: stripe %llu\n", __func__
,
1731 (unsigned long long)sh
->sector
);
1733 for (i
= 0; i
< sh
->disks
; i
++) {
1736 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1739 if (i
>= sh
->disks
) {
1740 atomic_inc(&sh
->count
);
1741 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1742 ops_complete_reconstruct(sh
);
1747 xor_srcs
= to_addr_page(percpu
, j
);
1748 /* check if prexor is active which means only process blocks
1749 * that are part of a read-modify-write (written)
1751 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1753 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1754 for (i
= disks
; i
--; ) {
1755 struct r5dev
*dev
= &sh
->dev
[i
];
1756 if (head_sh
->dev
[i
].written
||
1757 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1758 xor_srcs
[count
++] = dev
->page
;
1761 xor_dest
= sh
->dev
[pd_idx
].page
;
1762 for (i
= disks
; i
--; ) {
1763 struct r5dev
*dev
= &sh
->dev
[i
];
1765 xor_srcs
[count
++] = dev
->page
;
1769 /* 1/ if we prexor'd then the dest is reused as a source
1770 * 2/ if we did not prexor then we are redoing the parity
1771 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1772 * for the synchronous xor case
1774 last_stripe
= !head_sh
->batch_head
||
1775 list_first_entry(&sh
->batch_list
,
1776 struct stripe_head
, batch_list
) == head_sh
;
1778 flags
= ASYNC_TX_ACK
|
1779 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1781 atomic_inc(&head_sh
->count
);
1782 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1783 to_addr_conv(sh
, percpu
, j
));
1785 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1786 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1787 to_addr_conv(sh
, percpu
, j
));
1790 if (unlikely(count
== 1))
1791 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1793 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1796 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1803 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1804 struct dma_async_tx_descriptor
*tx
)
1806 struct async_submit_ctl submit
;
1807 struct page
**blocks
;
1808 int count
, i
, j
= 0;
1809 struct stripe_head
*head_sh
= sh
;
1812 unsigned long txflags
;
1814 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1816 for (i
= 0; i
< sh
->disks
; i
++) {
1817 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1819 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1822 if (i
>= sh
->disks
) {
1823 atomic_inc(&sh
->count
);
1824 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1825 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1826 ops_complete_reconstruct(sh
);
1831 blocks
= to_addr_page(percpu
, j
);
1833 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1834 synflags
= SYNDROME_SRC_WRITTEN
;
1835 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1837 synflags
= SYNDROME_SRC_ALL
;
1838 txflags
= ASYNC_TX_ACK
;
1841 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1842 last_stripe
= !head_sh
->batch_head
||
1843 list_first_entry(&sh
->batch_list
,
1844 struct stripe_head
, batch_list
) == head_sh
;
1847 atomic_inc(&head_sh
->count
);
1848 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1849 head_sh
, to_addr_conv(sh
, percpu
, j
));
1851 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1852 to_addr_conv(sh
, percpu
, j
));
1853 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1856 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1862 static void ops_complete_check(void *stripe_head_ref
)
1864 struct stripe_head
*sh
= stripe_head_ref
;
1866 pr_debug("%s: stripe %llu\n", __func__
,
1867 (unsigned long long)sh
->sector
);
1869 sh
->check_state
= check_state_check_result
;
1870 set_bit(STRIPE_HANDLE
, &sh
->state
);
1871 raid5_release_stripe(sh
);
1874 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1876 int disks
= sh
->disks
;
1877 int pd_idx
= sh
->pd_idx
;
1878 int qd_idx
= sh
->qd_idx
;
1879 struct page
*xor_dest
;
1880 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1881 struct dma_async_tx_descriptor
*tx
;
1882 struct async_submit_ctl submit
;
1886 pr_debug("%s: stripe %llu\n", __func__
,
1887 (unsigned long long)sh
->sector
);
1889 BUG_ON(sh
->batch_head
);
1891 xor_dest
= sh
->dev
[pd_idx
].page
;
1892 xor_srcs
[count
++] = xor_dest
;
1893 for (i
= disks
; i
--; ) {
1894 if (i
== pd_idx
|| i
== qd_idx
)
1896 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1899 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1900 to_addr_conv(sh
, percpu
, 0));
1901 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1902 &sh
->ops
.zero_sum_result
, &submit
);
1904 atomic_inc(&sh
->count
);
1905 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1906 tx
= async_trigger_callback(&submit
);
1909 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1911 struct page
**srcs
= to_addr_page(percpu
, 0);
1912 struct async_submit_ctl submit
;
1915 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1916 (unsigned long long)sh
->sector
, checkp
);
1918 BUG_ON(sh
->batch_head
);
1919 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1923 atomic_inc(&sh
->count
);
1924 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1925 sh
, to_addr_conv(sh
, percpu
, 0));
1926 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1927 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1930 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1932 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1933 struct dma_async_tx_descriptor
*tx
= NULL
;
1934 struct r5conf
*conf
= sh
->raid_conf
;
1935 int level
= conf
->level
;
1936 struct raid5_percpu
*percpu
;
1940 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1941 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1942 ops_run_biofill(sh
);
1946 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1948 tx
= ops_run_compute5(sh
, percpu
);
1950 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1951 tx
= ops_run_compute6_1(sh
, percpu
);
1953 tx
= ops_run_compute6_2(sh
, percpu
);
1955 /* terminate the chain if reconstruct is not set to be run */
1956 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1960 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1962 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1964 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1967 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1968 tx
= ops_run_biodrain(sh
, tx
);
1972 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1974 ops_run_reconstruct5(sh
, percpu
, tx
);
1976 ops_run_reconstruct6(sh
, percpu
, tx
);
1979 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1980 if (sh
->check_state
== check_state_run
)
1981 ops_run_check_p(sh
, percpu
);
1982 else if (sh
->check_state
== check_state_run_q
)
1983 ops_run_check_pq(sh
, percpu
, 0);
1984 else if (sh
->check_state
== check_state_run_pq
)
1985 ops_run_check_pq(sh
, percpu
, 1);
1990 if (overlap_clear
&& !sh
->batch_head
)
1991 for (i
= disks
; i
--; ) {
1992 struct r5dev
*dev
= &sh
->dev
[i
];
1993 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1994 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1999 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2002 struct stripe_head
*sh
;
2005 sh
= kmem_cache_zalloc(sc
, gfp
);
2007 spin_lock_init(&sh
->stripe_lock
);
2008 spin_lock_init(&sh
->batch_lock
);
2009 INIT_LIST_HEAD(&sh
->batch_list
);
2010 INIT_LIST_HEAD(&sh
->lru
);
2011 INIT_LIST_HEAD(&sh
->r5c
);
2012 INIT_LIST_HEAD(&sh
->log_list
);
2013 atomic_set(&sh
->count
, 1);
2014 sh
->log_start
= MaxSector
;
2015 for (i
= 0; i
< disks
; i
++) {
2016 struct r5dev
*dev
= &sh
->dev
[i
];
2018 bio_init(&dev
->req
, &dev
->vec
, 1);
2019 bio_init(&dev
->rreq
, &dev
->rvec
, 1);
2024 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2026 struct stripe_head
*sh
;
2028 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
);
2032 sh
->raid_conf
= conf
;
2034 if (grow_buffers(sh
, gfp
)) {
2036 kmem_cache_free(conf
->slab_cache
, sh
);
2039 sh
->hash_lock_index
=
2040 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2041 /* we just created an active stripe so... */
2042 atomic_inc(&conf
->active_stripes
);
2044 raid5_release_stripe(sh
);
2045 conf
->max_nr_stripes
++;
2049 static int grow_stripes(struct r5conf
*conf
, int num
)
2051 struct kmem_cache
*sc
;
2052 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2054 if (conf
->mddev
->gendisk
)
2055 sprintf(conf
->cache_name
[0],
2056 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2058 sprintf(conf
->cache_name
[0],
2059 "raid%d-%p", conf
->level
, conf
->mddev
);
2060 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2062 conf
->active_name
= 0;
2063 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2064 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2068 conf
->slab_cache
= sc
;
2069 conf
->pool_size
= devs
;
2071 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2078 * scribble_len - return the required size of the scribble region
2079 * @num - total number of disks in the array
2081 * The size must be enough to contain:
2082 * 1/ a struct page pointer for each device in the array +2
2083 * 2/ room to convert each entry in (1) to its corresponding dma
2084 * (dma_map_page()) or page (page_address()) address.
2086 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2087 * calculate over all devices (not just the data blocks), using zeros in place
2088 * of the P and Q blocks.
2090 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2092 struct flex_array
*ret
;
2095 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2096 ret
= flex_array_alloc(len
, cnt
, flags
);
2099 /* always prealloc all elements, so no locking is required */
2100 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2101 flex_array_free(ret
);
2107 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2113 * Never shrink. And mddev_suspend() could deadlock if this is called
2114 * from raid5d. In that case, scribble_disks and scribble_sectors
2115 * should equal to new_disks and new_sectors
2117 if (conf
->scribble_disks
>= new_disks
&&
2118 conf
->scribble_sectors
>= new_sectors
)
2120 mddev_suspend(conf
->mddev
);
2122 for_each_present_cpu(cpu
) {
2123 struct raid5_percpu
*percpu
;
2124 struct flex_array
*scribble
;
2126 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2127 scribble
= scribble_alloc(new_disks
,
2128 new_sectors
/ STRIPE_SECTORS
,
2132 flex_array_free(percpu
->scribble
);
2133 percpu
->scribble
= scribble
;
2140 mddev_resume(conf
->mddev
);
2142 conf
->scribble_disks
= new_disks
;
2143 conf
->scribble_sectors
= new_sectors
;
2148 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2150 /* Make all the stripes able to hold 'newsize' devices.
2151 * New slots in each stripe get 'page' set to a new page.
2153 * This happens in stages:
2154 * 1/ create a new kmem_cache and allocate the required number of
2156 * 2/ gather all the old stripe_heads and transfer the pages across
2157 * to the new stripe_heads. This will have the side effect of
2158 * freezing the array as once all stripe_heads have been collected,
2159 * no IO will be possible. Old stripe heads are freed once their
2160 * pages have been transferred over, and the old kmem_cache is
2161 * freed when all stripes are done.
2162 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2163 * we simple return a failre status - no need to clean anything up.
2164 * 4/ allocate new pages for the new slots in the new stripe_heads.
2165 * If this fails, we don't bother trying the shrink the
2166 * stripe_heads down again, we just leave them as they are.
2167 * As each stripe_head is processed the new one is released into
2170 * Once step2 is started, we cannot afford to wait for a write,
2171 * so we use GFP_NOIO allocations.
2173 struct stripe_head
*osh
, *nsh
;
2174 LIST_HEAD(newstripes
);
2175 struct disk_info
*ndisks
;
2177 struct kmem_cache
*sc
;
2181 if (newsize
<= conf
->pool_size
)
2182 return 0; /* never bother to shrink */
2184 err
= md_allow_write(conf
->mddev
);
2189 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2190 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2195 /* Need to ensure auto-resizing doesn't interfere */
2196 mutex_lock(&conf
->cache_size_mutex
);
2198 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2199 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
);
2203 nsh
->raid_conf
= conf
;
2204 list_add(&nsh
->lru
, &newstripes
);
2207 /* didn't get enough, give up */
2208 while (!list_empty(&newstripes
)) {
2209 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2210 list_del(&nsh
->lru
);
2211 kmem_cache_free(sc
, nsh
);
2213 kmem_cache_destroy(sc
);
2214 mutex_unlock(&conf
->cache_size_mutex
);
2217 /* Step 2 - Must use GFP_NOIO now.
2218 * OK, we have enough stripes, start collecting inactive
2219 * stripes and copying them over
2223 list_for_each_entry(nsh
, &newstripes
, lru
) {
2224 lock_device_hash_lock(conf
, hash
);
2225 wait_event_cmd(conf
->wait_for_stripe
,
2226 !list_empty(conf
->inactive_list
+ hash
),
2227 unlock_device_hash_lock(conf
, hash
),
2228 lock_device_hash_lock(conf
, hash
));
2229 osh
= get_free_stripe(conf
, hash
);
2230 unlock_device_hash_lock(conf
, hash
);
2232 for(i
=0; i
<conf
->pool_size
; i
++) {
2233 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2234 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2236 nsh
->hash_lock_index
= hash
;
2237 kmem_cache_free(conf
->slab_cache
, osh
);
2239 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2240 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2245 kmem_cache_destroy(conf
->slab_cache
);
2248 * At this point, we are holding all the stripes so the array
2249 * is completely stalled, so now is a good time to resize
2250 * conf->disks and the scribble region
2252 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2254 for (i
= 0; i
< conf
->pool_size
; i
++)
2255 ndisks
[i
] = conf
->disks
[i
];
2257 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2258 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2259 if (!ndisks
[i
].extra_page
)
2264 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2265 if (ndisks
[i
].extra_page
)
2266 put_page(ndisks
[i
].extra_page
);
2270 conf
->disks
= ndisks
;
2275 mutex_unlock(&conf
->cache_size_mutex
);
2276 /* Step 4, return new stripes to service */
2277 while(!list_empty(&newstripes
)) {
2278 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2279 list_del_init(&nsh
->lru
);
2281 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2282 if (nsh
->dev
[i
].page
== NULL
) {
2283 struct page
*p
= alloc_page(GFP_NOIO
);
2284 nsh
->dev
[i
].page
= p
;
2285 nsh
->dev
[i
].orig_page
= p
;
2289 raid5_release_stripe(nsh
);
2291 /* critical section pass, GFP_NOIO no longer needed */
2293 conf
->slab_cache
= sc
;
2294 conf
->active_name
= 1-conf
->active_name
;
2296 conf
->pool_size
= newsize
;
2300 static int drop_one_stripe(struct r5conf
*conf
)
2302 struct stripe_head
*sh
;
2303 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2305 spin_lock_irq(conf
->hash_locks
+ hash
);
2306 sh
= get_free_stripe(conf
, hash
);
2307 spin_unlock_irq(conf
->hash_locks
+ hash
);
2310 BUG_ON(atomic_read(&sh
->count
));
2312 kmem_cache_free(conf
->slab_cache
, sh
);
2313 atomic_dec(&conf
->active_stripes
);
2314 conf
->max_nr_stripes
--;
2318 static void shrink_stripes(struct r5conf
*conf
)
2320 while (conf
->max_nr_stripes
&&
2321 drop_one_stripe(conf
))
2324 kmem_cache_destroy(conf
->slab_cache
);
2325 conf
->slab_cache
= NULL
;
2328 static void raid5_end_read_request(struct bio
* bi
)
2330 struct stripe_head
*sh
= bi
->bi_private
;
2331 struct r5conf
*conf
= sh
->raid_conf
;
2332 int disks
= sh
->disks
, i
;
2333 char b
[BDEVNAME_SIZE
];
2334 struct md_rdev
*rdev
= NULL
;
2337 for (i
=0 ; i
<disks
; i
++)
2338 if (bi
== &sh
->dev
[i
].req
)
2341 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2342 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2349 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2350 /* If replacement finished while this request was outstanding,
2351 * 'replacement' might be NULL already.
2352 * In that case it moved down to 'rdev'.
2353 * rdev is not removed until all requests are finished.
2355 rdev
= conf
->disks
[i
].replacement
;
2357 rdev
= conf
->disks
[i
].rdev
;
2359 if (use_new_offset(conf
, sh
))
2360 s
= sh
->sector
+ rdev
->new_data_offset
;
2362 s
= sh
->sector
+ rdev
->data_offset
;
2363 if (!bi
->bi_error
) {
2364 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2365 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2366 /* Note that this cannot happen on a
2367 * replacement device. We just fail those on
2370 pr_info_ratelimited(
2371 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2372 mdname(conf
->mddev
), STRIPE_SECTORS
,
2373 (unsigned long long)s
,
2374 bdevname(rdev
->bdev
, b
));
2375 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2376 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2377 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2378 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2379 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2381 if (atomic_read(&rdev
->read_errors
))
2382 atomic_set(&rdev
->read_errors
, 0);
2384 const char *bdn
= bdevname(rdev
->bdev
, b
);
2388 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2389 atomic_inc(&rdev
->read_errors
);
2390 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2391 pr_warn_ratelimited(
2392 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2393 mdname(conf
->mddev
),
2394 (unsigned long long)s
,
2396 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2398 pr_warn_ratelimited(
2399 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2400 mdname(conf
->mddev
),
2401 (unsigned long long)s
,
2403 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2406 pr_warn_ratelimited(
2407 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2408 mdname(conf
->mddev
),
2409 (unsigned long long)s
,
2411 } else if (atomic_read(&rdev
->read_errors
)
2412 > conf
->max_nr_stripes
)
2413 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2414 mdname(conf
->mddev
), bdn
);
2417 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2418 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2421 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2422 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2423 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2425 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2427 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2428 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2430 && test_bit(In_sync
, &rdev
->flags
)
2431 && rdev_set_badblocks(
2432 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2433 md_error(conf
->mddev
, rdev
);
2436 rdev_dec_pending(rdev
, conf
->mddev
);
2438 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2439 set_bit(STRIPE_HANDLE
, &sh
->state
);
2440 raid5_release_stripe(sh
);
2443 static void raid5_end_write_request(struct bio
*bi
)
2445 struct stripe_head
*sh
= bi
->bi_private
;
2446 struct r5conf
*conf
= sh
->raid_conf
;
2447 int disks
= sh
->disks
, i
;
2448 struct md_rdev
*uninitialized_var(rdev
);
2451 int replacement
= 0;
2453 for (i
= 0 ; i
< disks
; i
++) {
2454 if (bi
== &sh
->dev
[i
].req
) {
2455 rdev
= conf
->disks
[i
].rdev
;
2458 if (bi
== &sh
->dev
[i
].rreq
) {
2459 rdev
= conf
->disks
[i
].replacement
;
2463 /* rdev was removed and 'replacement'
2464 * replaced it. rdev is not removed
2465 * until all requests are finished.
2467 rdev
= conf
->disks
[i
].rdev
;
2471 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2472 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2482 md_error(conf
->mddev
, rdev
);
2483 else if (is_badblock(rdev
, sh
->sector
,
2485 &first_bad
, &bad_sectors
))
2486 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2489 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2490 set_bit(WriteErrorSeen
, &rdev
->flags
);
2491 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2492 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2493 set_bit(MD_RECOVERY_NEEDED
,
2494 &rdev
->mddev
->recovery
);
2495 } else if (is_badblock(rdev
, sh
->sector
,
2497 &first_bad
, &bad_sectors
)) {
2498 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2499 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2500 /* That was a successful write so make
2501 * sure it looks like we already did
2504 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2507 rdev_dec_pending(rdev
, conf
->mddev
);
2509 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2510 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2513 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2514 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2515 set_bit(STRIPE_HANDLE
, &sh
->state
);
2516 raid5_release_stripe(sh
);
2518 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2519 raid5_release_stripe(sh
->batch_head
);
2522 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2524 struct r5dev
*dev
= &sh
->dev
[i
];
2527 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2530 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2532 char b
[BDEVNAME_SIZE
];
2533 struct r5conf
*conf
= mddev
->private;
2534 unsigned long flags
;
2535 pr_debug("raid456: error called\n");
2537 spin_lock_irqsave(&conf
->device_lock
, flags
);
2538 clear_bit(In_sync
, &rdev
->flags
);
2539 mddev
->degraded
= calc_degraded(conf
);
2540 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2541 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2543 set_bit(Blocked
, &rdev
->flags
);
2544 set_bit(Faulty
, &rdev
->flags
);
2545 set_mask_bits(&mddev
->sb_flags
, 0,
2546 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2547 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2548 "md/raid:%s: Operation continuing on %d devices.\n",
2550 bdevname(rdev
->bdev
, b
),
2552 conf
->raid_disks
- mddev
->degraded
);
2556 * Input: a 'big' sector number,
2557 * Output: index of the data and parity disk, and the sector # in them.
2559 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2560 int previous
, int *dd_idx
,
2561 struct stripe_head
*sh
)
2563 sector_t stripe
, stripe2
;
2564 sector_t chunk_number
;
2565 unsigned int chunk_offset
;
2568 sector_t new_sector
;
2569 int algorithm
= previous
? conf
->prev_algo
2571 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2572 : conf
->chunk_sectors
;
2573 int raid_disks
= previous
? conf
->previous_raid_disks
2575 int data_disks
= raid_disks
- conf
->max_degraded
;
2577 /* First compute the information on this sector */
2580 * Compute the chunk number and the sector offset inside the chunk
2582 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2583 chunk_number
= r_sector
;
2586 * Compute the stripe number
2588 stripe
= chunk_number
;
2589 *dd_idx
= sector_div(stripe
, data_disks
);
2592 * Select the parity disk based on the user selected algorithm.
2594 pd_idx
= qd_idx
= -1;
2595 switch(conf
->level
) {
2597 pd_idx
= data_disks
;
2600 switch (algorithm
) {
2601 case ALGORITHM_LEFT_ASYMMETRIC
:
2602 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2603 if (*dd_idx
>= pd_idx
)
2606 case ALGORITHM_RIGHT_ASYMMETRIC
:
2607 pd_idx
= sector_div(stripe2
, raid_disks
);
2608 if (*dd_idx
>= pd_idx
)
2611 case ALGORITHM_LEFT_SYMMETRIC
:
2612 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2613 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2615 case ALGORITHM_RIGHT_SYMMETRIC
:
2616 pd_idx
= sector_div(stripe2
, raid_disks
);
2617 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2619 case ALGORITHM_PARITY_0
:
2623 case ALGORITHM_PARITY_N
:
2624 pd_idx
= data_disks
;
2632 switch (algorithm
) {
2633 case ALGORITHM_LEFT_ASYMMETRIC
:
2634 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2635 qd_idx
= pd_idx
+ 1;
2636 if (pd_idx
== raid_disks
-1) {
2637 (*dd_idx
)++; /* Q D D D P */
2639 } else if (*dd_idx
>= pd_idx
)
2640 (*dd_idx
) += 2; /* D D P Q D */
2642 case ALGORITHM_RIGHT_ASYMMETRIC
:
2643 pd_idx
= sector_div(stripe2
, raid_disks
);
2644 qd_idx
= pd_idx
+ 1;
2645 if (pd_idx
== raid_disks
-1) {
2646 (*dd_idx
)++; /* Q D D D P */
2648 } else if (*dd_idx
>= pd_idx
)
2649 (*dd_idx
) += 2; /* D D P Q D */
2651 case ALGORITHM_LEFT_SYMMETRIC
:
2652 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2653 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2654 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2656 case ALGORITHM_RIGHT_SYMMETRIC
:
2657 pd_idx
= sector_div(stripe2
, raid_disks
);
2658 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2659 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2662 case ALGORITHM_PARITY_0
:
2667 case ALGORITHM_PARITY_N
:
2668 pd_idx
= data_disks
;
2669 qd_idx
= data_disks
+ 1;
2672 case ALGORITHM_ROTATING_ZERO_RESTART
:
2673 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2674 * of blocks for computing Q is different.
2676 pd_idx
= sector_div(stripe2
, raid_disks
);
2677 qd_idx
= pd_idx
+ 1;
2678 if (pd_idx
== raid_disks
-1) {
2679 (*dd_idx
)++; /* Q D D D P */
2681 } else if (*dd_idx
>= pd_idx
)
2682 (*dd_idx
) += 2; /* D D P Q D */
2686 case ALGORITHM_ROTATING_N_RESTART
:
2687 /* Same a left_asymmetric, by first stripe is
2688 * D D D P Q rather than
2692 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2693 qd_idx
= pd_idx
+ 1;
2694 if (pd_idx
== raid_disks
-1) {
2695 (*dd_idx
)++; /* Q D D D P */
2697 } else if (*dd_idx
>= pd_idx
)
2698 (*dd_idx
) += 2; /* D D P Q D */
2702 case ALGORITHM_ROTATING_N_CONTINUE
:
2703 /* Same as left_symmetric but Q is before P */
2704 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2705 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2706 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2710 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2711 /* RAID5 left_asymmetric, with Q on last device */
2712 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2713 if (*dd_idx
>= pd_idx
)
2715 qd_idx
= raid_disks
- 1;
2718 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2719 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2720 if (*dd_idx
>= pd_idx
)
2722 qd_idx
= raid_disks
- 1;
2725 case ALGORITHM_LEFT_SYMMETRIC_6
:
2726 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2727 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2728 qd_idx
= raid_disks
- 1;
2731 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2732 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2733 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2734 qd_idx
= raid_disks
- 1;
2737 case ALGORITHM_PARITY_0_6
:
2740 qd_idx
= raid_disks
- 1;
2750 sh
->pd_idx
= pd_idx
;
2751 sh
->qd_idx
= qd_idx
;
2752 sh
->ddf_layout
= ddf_layout
;
2755 * Finally, compute the new sector number
2757 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2761 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2763 struct r5conf
*conf
= sh
->raid_conf
;
2764 int raid_disks
= sh
->disks
;
2765 int data_disks
= raid_disks
- conf
->max_degraded
;
2766 sector_t new_sector
= sh
->sector
, check
;
2767 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2768 : conf
->chunk_sectors
;
2769 int algorithm
= previous
? conf
->prev_algo
2773 sector_t chunk_number
;
2774 int dummy1
, dd_idx
= i
;
2776 struct stripe_head sh2
;
2778 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2779 stripe
= new_sector
;
2781 if (i
== sh
->pd_idx
)
2783 switch(conf
->level
) {
2786 switch (algorithm
) {
2787 case ALGORITHM_LEFT_ASYMMETRIC
:
2788 case ALGORITHM_RIGHT_ASYMMETRIC
:
2792 case ALGORITHM_LEFT_SYMMETRIC
:
2793 case ALGORITHM_RIGHT_SYMMETRIC
:
2796 i
-= (sh
->pd_idx
+ 1);
2798 case ALGORITHM_PARITY_0
:
2801 case ALGORITHM_PARITY_N
:
2808 if (i
== sh
->qd_idx
)
2809 return 0; /* It is the Q disk */
2810 switch (algorithm
) {
2811 case ALGORITHM_LEFT_ASYMMETRIC
:
2812 case ALGORITHM_RIGHT_ASYMMETRIC
:
2813 case ALGORITHM_ROTATING_ZERO_RESTART
:
2814 case ALGORITHM_ROTATING_N_RESTART
:
2815 if (sh
->pd_idx
== raid_disks
-1)
2816 i
--; /* Q D D D P */
2817 else if (i
> sh
->pd_idx
)
2818 i
-= 2; /* D D P Q D */
2820 case ALGORITHM_LEFT_SYMMETRIC
:
2821 case ALGORITHM_RIGHT_SYMMETRIC
:
2822 if (sh
->pd_idx
== raid_disks
-1)
2823 i
--; /* Q D D D P */
2828 i
-= (sh
->pd_idx
+ 2);
2831 case ALGORITHM_PARITY_0
:
2834 case ALGORITHM_PARITY_N
:
2836 case ALGORITHM_ROTATING_N_CONTINUE
:
2837 /* Like left_symmetric, but P is before Q */
2838 if (sh
->pd_idx
== 0)
2839 i
--; /* P D D D Q */
2844 i
-= (sh
->pd_idx
+ 1);
2847 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2848 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2852 case ALGORITHM_LEFT_SYMMETRIC_6
:
2853 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2855 i
+= data_disks
+ 1;
2856 i
-= (sh
->pd_idx
+ 1);
2858 case ALGORITHM_PARITY_0_6
:
2867 chunk_number
= stripe
* data_disks
+ i
;
2868 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2870 check
= raid5_compute_sector(conf
, r_sector
,
2871 previous
, &dummy1
, &sh2
);
2872 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2873 || sh2
.qd_idx
!= sh
->qd_idx
) {
2874 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2875 mdname(conf
->mddev
));
2882 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2883 int rcw
, int expand
)
2885 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2886 struct r5conf
*conf
= sh
->raid_conf
;
2887 int level
= conf
->level
;
2891 * In some cases, handle_stripe_dirtying initially decided to
2892 * run rmw and allocates extra page for prexor. However, rcw is
2893 * cheaper later on. We need to free the extra page now,
2894 * because we won't be able to do that in ops_complete_prexor().
2896 r5c_release_extra_page(sh
);
2898 for (i
= disks
; i
--; ) {
2899 struct r5dev
*dev
= &sh
->dev
[i
];
2902 set_bit(R5_LOCKED
, &dev
->flags
);
2903 set_bit(R5_Wantdrain
, &dev
->flags
);
2905 clear_bit(R5_UPTODATE
, &dev
->flags
);
2907 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
2908 set_bit(R5_LOCKED
, &dev
->flags
);
2912 /* if we are not expanding this is a proper write request, and
2913 * there will be bios with new data to be drained into the
2918 /* False alarm, nothing to do */
2920 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2921 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2923 sh
->reconstruct_state
= reconstruct_state_run
;
2925 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2927 if (s
->locked
+ conf
->max_degraded
== disks
)
2928 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2929 atomic_inc(&conf
->pending_full_writes
);
2931 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2932 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2933 BUG_ON(level
== 6 &&
2934 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2935 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2937 for (i
= disks
; i
--; ) {
2938 struct r5dev
*dev
= &sh
->dev
[i
];
2939 if (i
== pd_idx
|| i
== qd_idx
)
2943 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2944 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2945 set_bit(R5_Wantdrain
, &dev
->flags
);
2946 set_bit(R5_LOCKED
, &dev
->flags
);
2947 clear_bit(R5_UPTODATE
, &dev
->flags
);
2949 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
2950 set_bit(R5_LOCKED
, &dev
->flags
);
2955 /* False alarm - nothing to do */
2957 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2958 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2959 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2960 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2963 /* keep the parity disk(s) locked while asynchronous operations
2966 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2967 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2971 int qd_idx
= sh
->qd_idx
;
2972 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2974 set_bit(R5_LOCKED
, &dev
->flags
);
2975 clear_bit(R5_UPTODATE
, &dev
->flags
);
2979 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2980 __func__
, (unsigned long long)sh
->sector
,
2981 s
->locked
, s
->ops_request
);
2985 * Each stripe/dev can have one or more bion attached.
2986 * toread/towrite point to the first in a chain.
2987 * The bi_next chain must be in order.
2989 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2990 int forwrite
, int previous
)
2993 struct r5conf
*conf
= sh
->raid_conf
;
2996 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2997 (unsigned long long)bi
->bi_iter
.bi_sector
,
2998 (unsigned long long)sh
->sector
);
3001 * If several bio share a stripe. The bio bi_phys_segments acts as a
3002 * reference count to avoid race. The reference count should already be
3003 * increased before this function is called (for example, in
3004 * raid5_make_request()), so other bio sharing this stripe will not free the
3005 * stripe. If a stripe is owned by one stripe, the stripe lock will
3008 spin_lock_irq(&sh
->stripe_lock
);
3009 /* Don't allow new IO added to stripes in batch list */
3013 bip
= &sh
->dev
[dd_idx
].towrite
;
3017 bip
= &sh
->dev
[dd_idx
].toread
;
3018 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3019 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3021 bip
= & (*bip
)->bi_next
;
3023 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3026 if (!forwrite
|| previous
)
3027 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3029 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3033 raid5_inc_bi_active_stripes(bi
);
3036 /* check if page is covered */
3037 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3038 for (bi
=sh
->dev
[dd_idx
].towrite
;
3039 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3040 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3041 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3042 if (bio_end_sector(bi
) >= sector
)
3043 sector
= bio_end_sector(bi
);
3045 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3046 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3047 sh
->overwrite_disks
++;
3050 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3051 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3052 (unsigned long long)sh
->sector
, dd_idx
);
3054 if (conf
->mddev
->bitmap
&& firstwrite
) {
3055 /* Cannot hold spinlock over bitmap_startwrite,
3056 * but must ensure this isn't added to a batch until
3057 * we have added to the bitmap and set bm_seq.
3058 * So set STRIPE_BITMAP_PENDING to prevent
3060 * If multiple add_stripe_bio() calls race here they
3061 * much all set STRIPE_BITMAP_PENDING. So only the first one
3062 * to complete "bitmap_startwrite" gets to set
3063 * STRIPE_BIT_DELAY. This is important as once a stripe
3064 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3067 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3068 spin_unlock_irq(&sh
->stripe_lock
);
3069 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3071 spin_lock_irq(&sh
->stripe_lock
);
3072 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3073 if (!sh
->batch_head
) {
3074 sh
->bm_seq
= conf
->seq_flush
+1;
3075 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3078 spin_unlock_irq(&sh
->stripe_lock
);
3080 if (stripe_can_batch(sh
))
3081 stripe_add_to_batch_list(conf
, sh
);
3085 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3086 spin_unlock_irq(&sh
->stripe_lock
);
3090 static void end_reshape(struct r5conf
*conf
);
3092 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3093 struct stripe_head
*sh
)
3095 int sectors_per_chunk
=
3096 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3098 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3099 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3101 raid5_compute_sector(conf
,
3102 stripe
* (disks
- conf
->max_degraded
)
3103 *sectors_per_chunk
+ chunk_offset
,
3109 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3110 struct stripe_head_state
*s
, int disks
,
3111 struct bio_list
*return_bi
)
3114 BUG_ON(sh
->batch_head
);
3115 for (i
= disks
; i
--; ) {
3119 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3120 struct md_rdev
*rdev
;
3122 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3123 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3124 !test_bit(Faulty
, &rdev
->flags
))
3125 atomic_inc(&rdev
->nr_pending
);
3130 if (!rdev_set_badblocks(
3134 md_error(conf
->mddev
, rdev
);
3135 rdev_dec_pending(rdev
, conf
->mddev
);
3138 spin_lock_irq(&sh
->stripe_lock
);
3139 /* fail all writes first */
3140 bi
= sh
->dev
[i
].towrite
;
3141 sh
->dev
[i
].towrite
= NULL
;
3142 sh
->overwrite_disks
= 0;
3143 spin_unlock_irq(&sh
->stripe_lock
);
3147 r5l_stripe_write_finished(sh
);
3149 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3150 wake_up(&conf
->wait_for_overlap
);
3152 while (bi
&& bi
->bi_iter
.bi_sector
<
3153 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3154 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3156 bi
->bi_error
= -EIO
;
3157 if (!raid5_dec_bi_active_stripes(bi
)) {
3158 md_write_end(conf
->mddev
);
3159 bio_list_add(return_bi
, bi
);
3164 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3165 STRIPE_SECTORS
, 0, 0);
3167 /* and fail all 'written' */
3168 bi
= sh
->dev
[i
].written
;
3169 sh
->dev
[i
].written
= NULL
;
3170 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3171 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3172 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3175 if (bi
) bitmap_end
= 1;
3176 while (bi
&& bi
->bi_iter
.bi_sector
<
3177 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3178 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3180 bi
->bi_error
= -EIO
;
3181 if (!raid5_dec_bi_active_stripes(bi
)) {
3182 md_write_end(conf
->mddev
);
3183 bio_list_add(return_bi
, bi
);
3188 /* fail any reads if this device is non-operational and
3189 * the data has not reached the cache yet.
3191 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3192 s
->failed
> conf
->max_degraded
&&
3193 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3194 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3195 spin_lock_irq(&sh
->stripe_lock
);
3196 bi
= sh
->dev
[i
].toread
;
3197 sh
->dev
[i
].toread
= NULL
;
3198 spin_unlock_irq(&sh
->stripe_lock
);
3199 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3200 wake_up(&conf
->wait_for_overlap
);
3203 while (bi
&& bi
->bi_iter
.bi_sector
<
3204 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3205 struct bio
*nextbi
=
3206 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3208 bi
->bi_error
= -EIO
;
3209 if (!raid5_dec_bi_active_stripes(bi
))
3210 bio_list_add(return_bi
, bi
);
3215 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3216 STRIPE_SECTORS
, 0, 0);
3217 /* If we were in the middle of a write the parity block might
3218 * still be locked - so just clear all R5_LOCKED flags
3220 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3225 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3226 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3227 md_wakeup_thread(conf
->mddev
->thread
);
3231 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3232 struct stripe_head_state
*s
)
3237 BUG_ON(sh
->batch_head
);
3238 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3239 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3240 wake_up(&conf
->wait_for_overlap
);
3243 /* There is nothing more to do for sync/check/repair.
3244 * Don't even need to abort as that is handled elsewhere
3245 * if needed, and not always wanted e.g. if there is a known
3247 * For recover/replace we need to record a bad block on all
3248 * non-sync devices, or abort the recovery
3250 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3251 /* During recovery devices cannot be removed, so
3252 * locking and refcounting of rdevs is not needed
3255 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3256 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3258 && !test_bit(Faulty
, &rdev
->flags
)
3259 && !test_bit(In_sync
, &rdev
->flags
)
3260 && !rdev_set_badblocks(rdev
, sh
->sector
,
3263 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3265 && !test_bit(Faulty
, &rdev
->flags
)
3266 && !test_bit(In_sync
, &rdev
->flags
)
3267 && !rdev_set_badblocks(rdev
, sh
->sector
,
3273 conf
->recovery_disabled
=
3274 conf
->mddev
->recovery_disabled
;
3276 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3279 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3281 struct md_rdev
*rdev
;
3285 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3287 && !test_bit(Faulty
, &rdev
->flags
)
3288 && !test_bit(In_sync
, &rdev
->flags
)
3289 && (rdev
->recovery_offset
<= sh
->sector
3290 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3296 /* fetch_block - checks the given member device to see if its data needs
3297 * to be read or computed to satisfy a request.
3299 * Returns 1 when no more member devices need to be checked, otherwise returns
3300 * 0 to tell the loop in handle_stripe_fill to continue
3303 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3304 int disk_idx
, int disks
)
3306 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3307 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3308 &sh
->dev
[s
->failed_num
[1]] };
3312 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3313 test_bit(R5_UPTODATE
, &dev
->flags
))
3314 /* No point reading this as we already have it or have
3315 * decided to get it.
3320 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3321 /* We need this block to directly satisfy a request */
3324 if (s
->syncing
|| s
->expanding
||
3325 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3326 /* When syncing, or expanding we read everything.
3327 * When replacing, we need the replaced block.
3331 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3332 (s
->failed
>= 2 && fdev
[1]->toread
))
3333 /* If we want to read from a failed device, then
3334 * we need to actually read every other device.
3338 /* Sometimes neither read-modify-write nor reconstruct-write
3339 * cycles can work. In those cases we read every block we
3340 * can. Then the parity-update is certain to have enough to
3342 * This can only be a problem when we need to write something,
3343 * and some device has failed. If either of those tests
3344 * fail we need look no further.
3346 if (!s
->failed
|| !s
->to_write
)
3349 if (test_bit(R5_Insync
, &dev
->flags
) &&
3350 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3351 /* Pre-reads at not permitted until after short delay
3352 * to gather multiple requests. However if this
3353 * device is no Insync, the block could only be be computed
3354 * and there is no need to delay that.
3358 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3359 if (fdev
[i
]->towrite
&&
3360 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3361 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3362 /* If we have a partial write to a failed
3363 * device, then we will need to reconstruct
3364 * the content of that device, so all other
3365 * devices must be read.
3370 /* If we are forced to do a reconstruct-write, either because
3371 * the current RAID6 implementation only supports that, or
3372 * or because parity cannot be trusted and we are currently
3373 * recovering it, there is extra need to be careful.
3374 * If one of the devices that we would need to read, because
3375 * it is not being overwritten (and maybe not written at all)
3376 * is missing/faulty, then we need to read everything we can.
3378 if (sh
->raid_conf
->level
!= 6 &&
3379 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3380 /* reconstruct-write isn't being forced */
3382 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3383 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3384 s
->failed_num
[i
] != sh
->qd_idx
&&
3385 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3386 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3393 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3394 int disk_idx
, int disks
)
3396 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3398 /* is the data in this block needed, and can we get it? */
3399 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3400 /* we would like to get this block, possibly by computing it,
3401 * otherwise read it if the backing disk is insync
3403 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3404 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3405 BUG_ON(sh
->batch_head
);
3406 if ((s
->uptodate
== disks
- 1) &&
3407 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3408 disk_idx
== s
->failed_num
[1]))) {
3409 /* have disk failed, and we're requested to fetch it;
3412 pr_debug("Computing stripe %llu block %d\n",
3413 (unsigned long long)sh
->sector
, disk_idx
);
3414 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3415 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3416 set_bit(R5_Wantcompute
, &dev
->flags
);
3417 sh
->ops
.target
= disk_idx
;
3418 sh
->ops
.target2
= -1; /* no 2nd target */
3420 /* Careful: from this point on 'uptodate' is in the eye
3421 * of raid_run_ops which services 'compute' operations
3422 * before writes. R5_Wantcompute flags a block that will
3423 * be R5_UPTODATE by the time it is needed for a
3424 * subsequent operation.
3428 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3429 /* Computing 2-failure is *very* expensive; only
3430 * do it if failed >= 2
3433 for (other
= disks
; other
--; ) {
3434 if (other
== disk_idx
)
3436 if (!test_bit(R5_UPTODATE
,
3437 &sh
->dev
[other
].flags
))
3441 pr_debug("Computing stripe %llu blocks %d,%d\n",
3442 (unsigned long long)sh
->sector
,
3444 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3445 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3446 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3447 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3448 sh
->ops
.target
= disk_idx
;
3449 sh
->ops
.target2
= other
;
3453 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3454 set_bit(R5_LOCKED
, &dev
->flags
);
3455 set_bit(R5_Wantread
, &dev
->flags
);
3457 pr_debug("Reading block %d (sync=%d)\n",
3458 disk_idx
, s
->syncing
);
3466 * handle_stripe_fill - read or compute data to satisfy pending requests.
3468 static void handle_stripe_fill(struct stripe_head
*sh
,
3469 struct stripe_head_state
*s
,
3474 /* look for blocks to read/compute, skip this if a compute
3475 * is already in flight, or if the stripe contents are in the
3476 * midst of changing due to a write
3478 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3479 !sh
->reconstruct_state
)
3480 for (i
= disks
; i
--; )
3481 if (fetch_block(sh
, s
, i
, disks
))
3483 set_bit(STRIPE_HANDLE
, &sh
->state
);
3486 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3487 unsigned long handle_flags
);
3488 /* handle_stripe_clean_event
3489 * any written block on an uptodate or failed drive can be returned.
3490 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3491 * never LOCKED, so we don't need to test 'failed' directly.
3493 static void handle_stripe_clean_event(struct r5conf
*conf
,
3494 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3498 int discard_pending
= 0;
3499 struct stripe_head
*head_sh
= sh
;
3500 bool do_endio
= false;
3502 for (i
= disks
; i
--; )
3503 if (sh
->dev
[i
].written
) {
3505 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3506 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3507 test_bit(R5_Discard
, &dev
->flags
) ||
3508 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3509 /* We can return any write requests */
3510 struct bio
*wbi
, *wbi2
;
3511 pr_debug("Return write for disc %d\n", i
);
3512 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3513 clear_bit(R5_UPTODATE
, &dev
->flags
);
3514 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3515 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3520 dev
->page
= dev
->orig_page
;
3522 dev
->written
= NULL
;
3523 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3524 dev
->sector
+ STRIPE_SECTORS
) {
3525 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3526 if (!raid5_dec_bi_active_stripes(wbi
)) {
3527 md_write_end(conf
->mddev
);
3528 bio_list_add(return_bi
, wbi
);
3532 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3534 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3536 if (head_sh
->batch_head
) {
3537 sh
= list_first_entry(&sh
->batch_list
,
3540 if (sh
!= head_sh
) {
3547 } else if (test_bit(R5_Discard
, &dev
->flags
))
3548 discard_pending
= 1;
3551 r5l_stripe_write_finished(sh
);
3553 if (!discard_pending
&&
3554 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3556 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3557 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3558 if (sh
->qd_idx
>= 0) {
3559 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3560 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3562 /* now that discard is done we can proceed with any sync */
3563 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3565 * SCSI discard will change some bio fields and the stripe has
3566 * no updated data, so remove it from hash list and the stripe
3567 * will be reinitialized
3570 hash
= sh
->hash_lock_index
;
3571 spin_lock_irq(conf
->hash_locks
+ hash
);
3573 spin_unlock_irq(conf
->hash_locks
+ hash
);
3574 if (head_sh
->batch_head
) {
3575 sh
= list_first_entry(&sh
->batch_list
,
3576 struct stripe_head
, batch_list
);
3582 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3583 set_bit(STRIPE_HANDLE
, &sh
->state
);
3587 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3588 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3589 md_wakeup_thread(conf
->mddev
->thread
);
3591 if (head_sh
->batch_head
&& do_endio
)
3592 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3595 static int handle_stripe_dirtying(struct r5conf
*conf
,
3596 struct stripe_head
*sh
,
3597 struct stripe_head_state
*s
,
3600 int rmw
= 0, rcw
= 0, i
;
3601 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3603 /* Check whether resync is now happening or should start.
3604 * If yes, then the array is dirty (after unclean shutdown or
3605 * initial creation), so parity in some stripes might be inconsistent.
3606 * In this case, we need to always do reconstruct-write, to ensure
3607 * that in case of drive failure or read-error correction, we
3608 * generate correct data from the parity.
3610 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3611 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3613 /* Calculate the real rcw later - for now make it
3614 * look like rcw is cheaper
3617 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3618 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3619 (unsigned long long)sh
->sector
);
3620 } else for (i
= disks
; i
--; ) {
3621 /* would I have to read this buffer for read_modify_write */
3622 struct r5dev
*dev
= &sh
->dev
[i
];
3623 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3624 test_bit(R5_InJournal
, &dev
->flags
)) &&
3625 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3626 !((test_bit(R5_UPTODATE
, &dev
->flags
) &&
3627 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3628 dev
->page
!= dev
->orig_page
)) ||
3629 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3630 if (test_bit(R5_Insync
, &dev
->flags
))
3633 rmw
+= 2*disks
; /* cannot read it */
3635 /* Would I have to read this buffer for reconstruct_write */
3636 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3637 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3638 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3639 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3640 test_bit(R5_InJournal
, &dev
->flags
) ||
3641 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3642 if (test_bit(R5_Insync
, &dev
->flags
))
3649 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3650 (unsigned long long)sh
->sector
, rmw
, rcw
);
3651 set_bit(STRIPE_HANDLE
, &sh
->state
);
3652 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3653 /* prefer read-modify-write, but need to get some data */
3654 if (conf
->mddev
->queue
)
3655 blk_add_trace_msg(conf
->mddev
->queue
,
3656 "raid5 rmw %llu %d",
3657 (unsigned long long)sh
->sector
, rmw
);
3658 for (i
= disks
; i
--; ) {
3659 struct r5dev
*dev
= &sh
->dev
[i
];
3660 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3661 dev
->page
== dev
->orig_page
&&
3662 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3663 /* alloc page for prexor */
3664 struct page
*p
= alloc_page(GFP_NOIO
);
3672 * alloc_page() failed, try use
3673 * disk_info->extra_page
3675 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
3676 &conf
->cache_state
)) {
3677 r5c_use_extra_page(sh
);
3681 /* extra_page in use, add to delayed_list */
3682 set_bit(STRIPE_DELAYED
, &sh
->state
);
3683 s
->waiting_extra_page
= 1;
3688 for (i
= disks
; i
--; ) {
3689 struct r5dev
*dev
= &sh
->dev
[i
];
3690 if ((dev
->towrite
||
3691 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3692 test_bit(R5_InJournal
, &dev
->flags
)) &&
3693 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3694 !((test_bit(R5_UPTODATE
, &dev
->flags
) &&
3695 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3696 dev
->page
!= dev
->orig_page
)) ||
3697 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3698 test_bit(R5_Insync
, &dev
->flags
)) {
3699 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3701 pr_debug("Read_old block %d for r-m-w\n",
3703 set_bit(R5_LOCKED
, &dev
->flags
);
3704 set_bit(R5_Wantread
, &dev
->flags
);
3707 set_bit(STRIPE_DELAYED
, &sh
->state
);
3708 set_bit(STRIPE_HANDLE
, &sh
->state
);
3713 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3714 /* want reconstruct write, but need to get some data */
3717 for (i
= disks
; i
--; ) {
3718 struct r5dev
*dev
= &sh
->dev
[i
];
3719 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3720 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3721 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3722 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3723 test_bit(R5_InJournal
, &dev
->flags
) ||
3724 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3726 if (test_bit(R5_Insync
, &dev
->flags
) &&
3727 test_bit(STRIPE_PREREAD_ACTIVE
,
3729 pr_debug("Read_old block "
3730 "%d for Reconstruct\n", i
);
3731 set_bit(R5_LOCKED
, &dev
->flags
);
3732 set_bit(R5_Wantread
, &dev
->flags
);
3736 set_bit(STRIPE_DELAYED
, &sh
->state
);
3737 set_bit(STRIPE_HANDLE
, &sh
->state
);
3741 if (rcw
&& conf
->mddev
->queue
)
3742 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3743 (unsigned long long)sh
->sector
,
3744 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3747 if (rcw
> disks
&& rmw
> disks
&&
3748 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3749 set_bit(STRIPE_DELAYED
, &sh
->state
);
3751 /* now if nothing is locked, and if we have enough data,
3752 * we can start a write request
3754 /* since handle_stripe can be called at any time we need to handle the
3755 * case where a compute block operation has been submitted and then a
3756 * subsequent call wants to start a write request. raid_run_ops only
3757 * handles the case where compute block and reconstruct are requested
3758 * simultaneously. If this is not the case then new writes need to be
3759 * held off until the compute completes.
3761 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3762 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3763 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3764 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3768 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3769 struct stripe_head_state
*s
, int disks
)
3771 struct r5dev
*dev
= NULL
;
3773 BUG_ON(sh
->batch_head
);
3774 set_bit(STRIPE_HANDLE
, &sh
->state
);
3776 switch (sh
->check_state
) {
3777 case check_state_idle
:
3778 /* start a new check operation if there are no failures */
3779 if (s
->failed
== 0) {
3780 BUG_ON(s
->uptodate
!= disks
);
3781 sh
->check_state
= check_state_run
;
3782 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3783 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3787 dev
= &sh
->dev
[s
->failed_num
[0]];
3789 case check_state_compute_result
:
3790 sh
->check_state
= check_state_idle
;
3792 dev
= &sh
->dev
[sh
->pd_idx
];
3794 /* check that a write has not made the stripe insync */
3795 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3798 /* either failed parity check, or recovery is happening */
3799 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3800 BUG_ON(s
->uptodate
!= disks
);
3802 set_bit(R5_LOCKED
, &dev
->flags
);
3804 set_bit(R5_Wantwrite
, &dev
->flags
);
3806 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3807 set_bit(STRIPE_INSYNC
, &sh
->state
);
3809 case check_state_run
:
3810 break; /* we will be called again upon completion */
3811 case check_state_check_result
:
3812 sh
->check_state
= check_state_idle
;
3814 /* if a failure occurred during the check operation, leave
3815 * STRIPE_INSYNC not set and let the stripe be handled again
3820 /* handle a successful check operation, if parity is correct
3821 * we are done. Otherwise update the mismatch count and repair
3822 * parity if !MD_RECOVERY_CHECK
3824 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3825 /* parity is correct (on disc,
3826 * not in buffer any more)
3828 set_bit(STRIPE_INSYNC
, &sh
->state
);
3830 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3831 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3832 /* don't try to repair!! */
3833 set_bit(STRIPE_INSYNC
, &sh
->state
);
3835 sh
->check_state
= check_state_compute_run
;
3836 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3837 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3838 set_bit(R5_Wantcompute
,
3839 &sh
->dev
[sh
->pd_idx
].flags
);
3840 sh
->ops
.target
= sh
->pd_idx
;
3841 sh
->ops
.target2
= -1;
3846 case check_state_compute_run
:
3849 pr_err("%s: unknown check_state: %d sector: %llu\n",
3850 __func__
, sh
->check_state
,
3851 (unsigned long long) sh
->sector
);
3856 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3857 struct stripe_head_state
*s
,
3860 int pd_idx
= sh
->pd_idx
;
3861 int qd_idx
= sh
->qd_idx
;
3864 BUG_ON(sh
->batch_head
);
3865 set_bit(STRIPE_HANDLE
, &sh
->state
);
3867 BUG_ON(s
->failed
> 2);
3869 /* Want to check and possibly repair P and Q.
3870 * However there could be one 'failed' device, in which
3871 * case we can only check one of them, possibly using the
3872 * other to generate missing data
3875 switch (sh
->check_state
) {
3876 case check_state_idle
:
3877 /* start a new check operation if there are < 2 failures */
3878 if (s
->failed
== s
->q_failed
) {
3879 /* The only possible failed device holds Q, so it
3880 * makes sense to check P (If anything else were failed,
3881 * we would have used P to recreate it).
3883 sh
->check_state
= check_state_run
;
3885 if (!s
->q_failed
&& s
->failed
< 2) {
3886 /* Q is not failed, and we didn't use it to generate
3887 * anything, so it makes sense to check it
3889 if (sh
->check_state
== check_state_run
)
3890 sh
->check_state
= check_state_run_pq
;
3892 sh
->check_state
= check_state_run_q
;
3895 /* discard potentially stale zero_sum_result */
3896 sh
->ops
.zero_sum_result
= 0;
3898 if (sh
->check_state
== check_state_run
) {
3899 /* async_xor_zero_sum destroys the contents of P */
3900 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3903 if (sh
->check_state
>= check_state_run
&&
3904 sh
->check_state
<= check_state_run_pq
) {
3905 /* async_syndrome_zero_sum preserves P and Q, so
3906 * no need to mark them !uptodate here
3908 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3912 /* we have 2-disk failure */
3913 BUG_ON(s
->failed
!= 2);
3915 case check_state_compute_result
:
3916 sh
->check_state
= check_state_idle
;
3918 /* check that a write has not made the stripe insync */
3919 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3922 /* now write out any block on a failed drive,
3923 * or P or Q if they were recomputed
3925 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3926 if (s
->failed
== 2) {
3927 dev
= &sh
->dev
[s
->failed_num
[1]];
3929 set_bit(R5_LOCKED
, &dev
->flags
);
3930 set_bit(R5_Wantwrite
, &dev
->flags
);
3932 if (s
->failed
>= 1) {
3933 dev
= &sh
->dev
[s
->failed_num
[0]];
3935 set_bit(R5_LOCKED
, &dev
->flags
);
3936 set_bit(R5_Wantwrite
, &dev
->flags
);
3938 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3939 dev
= &sh
->dev
[pd_idx
];
3941 set_bit(R5_LOCKED
, &dev
->flags
);
3942 set_bit(R5_Wantwrite
, &dev
->flags
);
3944 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3945 dev
= &sh
->dev
[qd_idx
];
3947 set_bit(R5_LOCKED
, &dev
->flags
);
3948 set_bit(R5_Wantwrite
, &dev
->flags
);
3950 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3952 set_bit(STRIPE_INSYNC
, &sh
->state
);
3954 case check_state_run
:
3955 case check_state_run_q
:
3956 case check_state_run_pq
:
3957 break; /* we will be called again upon completion */
3958 case check_state_check_result
:
3959 sh
->check_state
= check_state_idle
;
3961 /* handle a successful check operation, if parity is correct
3962 * we are done. Otherwise update the mismatch count and repair
3963 * parity if !MD_RECOVERY_CHECK
3965 if (sh
->ops
.zero_sum_result
== 0) {
3966 /* both parities are correct */
3968 set_bit(STRIPE_INSYNC
, &sh
->state
);
3970 /* in contrast to the raid5 case we can validate
3971 * parity, but still have a failure to write
3974 sh
->check_state
= check_state_compute_result
;
3975 /* Returning at this point means that we may go
3976 * off and bring p and/or q uptodate again so
3977 * we make sure to check zero_sum_result again
3978 * to verify if p or q need writeback
3982 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3983 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3984 /* don't try to repair!! */
3985 set_bit(STRIPE_INSYNC
, &sh
->state
);
3987 int *target
= &sh
->ops
.target
;
3989 sh
->ops
.target
= -1;
3990 sh
->ops
.target2
= -1;
3991 sh
->check_state
= check_state_compute_run
;
3992 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3993 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3994 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3995 set_bit(R5_Wantcompute
,
3996 &sh
->dev
[pd_idx
].flags
);
3998 target
= &sh
->ops
.target2
;
4001 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4002 set_bit(R5_Wantcompute
,
4003 &sh
->dev
[qd_idx
].flags
);
4010 case check_state_compute_run
:
4013 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4014 __func__
, sh
->check_state
,
4015 (unsigned long long) sh
->sector
);
4020 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4024 /* We have read all the blocks in this stripe and now we need to
4025 * copy some of them into a target stripe for expand.
4027 struct dma_async_tx_descriptor
*tx
= NULL
;
4028 BUG_ON(sh
->batch_head
);
4029 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4030 for (i
= 0; i
< sh
->disks
; i
++)
4031 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4033 struct stripe_head
*sh2
;
4034 struct async_submit_ctl submit
;
4036 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4037 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4039 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4041 /* so far only the early blocks of this stripe
4042 * have been requested. When later blocks
4043 * get requested, we will try again
4046 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4047 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4048 /* must have already done this block */
4049 raid5_release_stripe(sh2
);
4053 /* place all the copies on one channel */
4054 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4055 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4056 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4059 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4060 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4061 for (j
= 0; j
< conf
->raid_disks
; j
++)
4062 if (j
!= sh2
->pd_idx
&&
4064 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4066 if (j
== conf
->raid_disks
) {
4067 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4068 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4070 raid5_release_stripe(sh2
);
4073 /* done submitting copies, wait for them to complete */
4074 async_tx_quiesce(&tx
);
4078 * handle_stripe - do things to a stripe.
4080 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4081 * state of various bits to see what needs to be done.
4083 * return some read requests which now have data
4084 * return some write requests which are safely on storage
4085 * schedule a read on some buffers
4086 * schedule a write of some buffers
4087 * return confirmation of parity correctness
4091 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4093 struct r5conf
*conf
= sh
->raid_conf
;
4094 int disks
= sh
->disks
;
4097 int do_recovery
= 0;
4099 memset(s
, 0, sizeof(*s
));
4101 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4102 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4103 s
->failed_num
[0] = -1;
4104 s
->failed_num
[1] = -1;
4105 s
->log_failed
= r5l_log_disk_error(conf
);
4107 /* Now to look around and see what can be done */
4109 for (i
=disks
; i
--; ) {
4110 struct md_rdev
*rdev
;
4117 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4119 dev
->toread
, dev
->towrite
, dev
->written
);
4120 /* maybe we can reply to a read
4122 * new wantfill requests are only permitted while
4123 * ops_complete_biofill is guaranteed to be inactive
4125 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4126 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4127 set_bit(R5_Wantfill
, &dev
->flags
);
4129 /* now count some things */
4130 if (test_bit(R5_LOCKED
, &dev
->flags
))
4132 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4134 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4136 BUG_ON(s
->compute
> 2);
4139 if (test_bit(R5_Wantfill
, &dev
->flags
))
4141 else if (dev
->toread
)
4145 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4150 /* Prefer to use the replacement for reads, but only
4151 * if it is recovered enough and has no bad blocks.
4153 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4154 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4155 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4156 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4157 &first_bad
, &bad_sectors
))
4158 set_bit(R5_ReadRepl
, &dev
->flags
);
4160 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4161 set_bit(R5_NeedReplace
, &dev
->flags
);
4163 clear_bit(R5_NeedReplace
, &dev
->flags
);
4164 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4165 clear_bit(R5_ReadRepl
, &dev
->flags
);
4167 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4170 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4171 &first_bad
, &bad_sectors
);
4172 if (s
->blocked_rdev
== NULL
4173 && (test_bit(Blocked
, &rdev
->flags
)
4176 set_bit(BlockedBadBlocks
,
4178 s
->blocked_rdev
= rdev
;
4179 atomic_inc(&rdev
->nr_pending
);
4182 clear_bit(R5_Insync
, &dev
->flags
);
4186 /* also not in-sync */
4187 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4188 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4189 /* treat as in-sync, but with a read error
4190 * which we can now try to correct
4192 set_bit(R5_Insync
, &dev
->flags
);
4193 set_bit(R5_ReadError
, &dev
->flags
);
4195 } else if (test_bit(In_sync
, &rdev
->flags
))
4196 set_bit(R5_Insync
, &dev
->flags
);
4197 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4198 /* in sync if before recovery_offset */
4199 set_bit(R5_Insync
, &dev
->flags
);
4200 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4201 test_bit(R5_Expanded
, &dev
->flags
))
4202 /* If we've reshaped into here, we assume it is Insync.
4203 * We will shortly update recovery_offset to make
4206 set_bit(R5_Insync
, &dev
->flags
);
4208 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4209 /* This flag does not apply to '.replacement'
4210 * only to .rdev, so make sure to check that*/
4211 struct md_rdev
*rdev2
= rcu_dereference(
4212 conf
->disks
[i
].rdev
);
4214 clear_bit(R5_Insync
, &dev
->flags
);
4215 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4216 s
->handle_bad_blocks
= 1;
4217 atomic_inc(&rdev2
->nr_pending
);
4219 clear_bit(R5_WriteError
, &dev
->flags
);
4221 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4222 /* This flag does not apply to '.replacement'
4223 * only to .rdev, so make sure to check that*/
4224 struct md_rdev
*rdev2
= rcu_dereference(
4225 conf
->disks
[i
].rdev
);
4226 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4227 s
->handle_bad_blocks
= 1;
4228 atomic_inc(&rdev2
->nr_pending
);
4230 clear_bit(R5_MadeGood
, &dev
->flags
);
4232 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4233 struct md_rdev
*rdev2
= rcu_dereference(
4234 conf
->disks
[i
].replacement
);
4235 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4236 s
->handle_bad_blocks
= 1;
4237 atomic_inc(&rdev2
->nr_pending
);
4239 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4241 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4242 /* The ReadError flag will just be confusing now */
4243 clear_bit(R5_ReadError
, &dev
->flags
);
4244 clear_bit(R5_ReWrite
, &dev
->flags
);
4246 if (test_bit(R5_ReadError
, &dev
->flags
))
4247 clear_bit(R5_Insync
, &dev
->flags
);
4248 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4250 s
->failed_num
[s
->failed
] = i
;
4252 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4256 if (test_bit(R5_InJournal
, &dev
->flags
))
4258 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4261 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4262 /* If there is a failed device being replaced,
4263 * we must be recovering.
4264 * else if we are after recovery_cp, we must be syncing
4265 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4266 * else we can only be replacing
4267 * sync and recovery both need to read all devices, and so
4268 * use the same flag.
4271 sh
->sector
>= conf
->mddev
->recovery_cp
||
4272 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4280 static int clear_batch_ready(struct stripe_head
*sh
)
4282 /* Return '1' if this is a member of batch, or
4283 * '0' if it is a lone stripe or a head which can now be
4286 struct stripe_head
*tmp
;
4287 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4288 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4289 spin_lock(&sh
->stripe_lock
);
4290 if (!sh
->batch_head
) {
4291 spin_unlock(&sh
->stripe_lock
);
4296 * this stripe could be added to a batch list before we check
4297 * BATCH_READY, skips it
4299 if (sh
->batch_head
!= sh
) {
4300 spin_unlock(&sh
->stripe_lock
);
4303 spin_lock(&sh
->batch_lock
);
4304 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4305 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4306 spin_unlock(&sh
->batch_lock
);
4307 spin_unlock(&sh
->stripe_lock
);
4310 * BATCH_READY is cleared, no new stripes can be added.
4311 * batch_list can be accessed without lock
4316 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4317 unsigned long handle_flags
)
4319 struct stripe_head
*sh
, *next
;
4323 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4325 list_del_init(&sh
->batch_list
);
4327 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4328 (1 << STRIPE_SYNCING
) |
4329 (1 << STRIPE_REPLACED
) |
4330 (1 << STRIPE_DELAYED
) |
4331 (1 << STRIPE_BIT_DELAY
) |
4332 (1 << STRIPE_FULL_WRITE
) |
4333 (1 << STRIPE_BIOFILL_RUN
) |
4334 (1 << STRIPE_COMPUTE_RUN
) |
4335 (1 << STRIPE_OPS_REQ_PENDING
) |
4336 (1 << STRIPE_DISCARD
) |
4337 (1 << STRIPE_BATCH_READY
) |
4338 (1 << STRIPE_BATCH_ERR
) |
4339 (1 << STRIPE_BITMAP_PENDING
)),
4340 "stripe state: %lx\n", sh
->state
);
4341 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4342 (1 << STRIPE_REPLACED
)),
4343 "head stripe state: %lx\n", head_sh
->state
);
4345 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4346 (1 << STRIPE_PREREAD_ACTIVE
) |
4347 (1 << STRIPE_DEGRADED
)),
4348 head_sh
->state
& (1 << STRIPE_INSYNC
));
4350 sh
->check_state
= head_sh
->check_state
;
4351 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4352 for (i
= 0; i
< sh
->disks
; i
++) {
4353 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4355 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4356 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4358 spin_lock_irq(&sh
->stripe_lock
);
4359 sh
->batch_head
= NULL
;
4360 spin_unlock_irq(&sh
->stripe_lock
);
4361 if (handle_flags
== 0 ||
4362 sh
->state
& handle_flags
)
4363 set_bit(STRIPE_HANDLE
, &sh
->state
);
4364 raid5_release_stripe(sh
);
4366 spin_lock_irq(&head_sh
->stripe_lock
);
4367 head_sh
->batch_head
= NULL
;
4368 spin_unlock_irq(&head_sh
->stripe_lock
);
4369 for (i
= 0; i
< head_sh
->disks
; i
++)
4370 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4372 if (head_sh
->state
& handle_flags
)
4373 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4376 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4379 static void handle_stripe(struct stripe_head
*sh
)
4381 struct stripe_head_state s
;
4382 struct r5conf
*conf
= sh
->raid_conf
;
4385 int disks
= sh
->disks
;
4386 struct r5dev
*pdev
, *qdev
;
4388 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4389 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4390 /* already being handled, ensure it gets handled
4391 * again when current action finishes */
4392 set_bit(STRIPE_HANDLE
, &sh
->state
);
4396 if (clear_batch_ready(sh
) ) {
4397 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4401 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4402 break_stripe_batch_list(sh
, 0);
4404 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4405 spin_lock(&sh
->stripe_lock
);
4406 /* Cannot process 'sync' concurrently with 'discard' */
4407 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4408 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4409 set_bit(STRIPE_SYNCING
, &sh
->state
);
4410 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4411 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4413 spin_unlock(&sh
->stripe_lock
);
4415 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4417 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4418 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4419 (unsigned long long)sh
->sector
, sh
->state
,
4420 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4421 sh
->check_state
, sh
->reconstruct_state
);
4423 analyse_stripe(sh
, &s
);
4425 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4428 if (s
.handle_bad_blocks
) {
4429 set_bit(STRIPE_HANDLE
, &sh
->state
);
4433 if (unlikely(s
.blocked_rdev
)) {
4434 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4435 s
.replacing
|| s
.to_write
|| s
.written
) {
4436 set_bit(STRIPE_HANDLE
, &sh
->state
);
4439 /* There is nothing for the blocked_rdev to block */
4440 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4441 s
.blocked_rdev
= NULL
;
4444 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4445 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4446 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4449 pr_debug("locked=%d uptodate=%d to_read=%d"
4450 " to_write=%d failed=%d failed_num=%d,%d\n",
4451 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4452 s
.failed_num
[0], s
.failed_num
[1]);
4453 /* check if the array has lost more than max_degraded devices and,
4454 * if so, some requests might need to be failed.
4456 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4457 sh
->check_state
= 0;
4458 sh
->reconstruct_state
= 0;
4459 break_stripe_batch_list(sh
, 0);
4460 if (s
.to_read
+s
.to_write
+s
.written
)
4461 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4462 if (s
.syncing
+ s
.replacing
)
4463 handle_failed_sync(conf
, sh
, &s
);
4466 /* Now we check to see if any write operations have recently
4470 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4472 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4473 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4474 sh
->reconstruct_state
= reconstruct_state_idle
;
4476 /* All the 'written' buffers and the parity block are ready to
4477 * be written back to disk
4479 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4480 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4481 BUG_ON(sh
->qd_idx
>= 0 &&
4482 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4483 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4484 for (i
= disks
; i
--; ) {
4485 struct r5dev
*dev
= &sh
->dev
[i
];
4486 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4487 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4488 dev
->written
|| test_bit(R5_InJournal
,
4490 pr_debug("Writing block %d\n", i
);
4491 set_bit(R5_Wantwrite
, &dev
->flags
);
4496 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4497 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4499 set_bit(STRIPE_INSYNC
, &sh
->state
);
4502 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4503 s
.dec_preread_active
= 1;
4507 * might be able to return some write requests if the parity blocks
4508 * are safe, or on a failed drive
4510 pdev
= &sh
->dev
[sh
->pd_idx
];
4511 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4512 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4513 qdev
= &sh
->dev
[sh
->qd_idx
];
4514 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4515 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4519 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4520 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4521 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4522 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4523 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4524 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4525 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4526 test_bit(R5_Discard
, &qdev
->flags
))))))
4527 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4530 r5c_handle_cached_data_endio(conf
, sh
, disks
, &s
.return_bi
);
4531 r5l_stripe_write_finished(sh
);
4533 /* Now we might consider reading some blocks, either to check/generate
4534 * parity, or to satisfy requests
4535 * or to load a block that is being partially written.
4537 if (s
.to_read
|| s
.non_overwrite
4538 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4539 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4542 handle_stripe_fill(sh
, &s
, disks
);
4545 * When the stripe finishes full journal write cycle (write to journal
4546 * and raid disk), this is the clean up procedure so it is ready for
4549 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4552 * Now to consider new write requests, cache write back and what else,
4553 * if anything should be read. We do not handle new writes when:
4554 * 1/ A 'write' operation (copy+xor) is already in flight.
4555 * 2/ A 'check' operation is in flight, as it may clobber the parity
4557 * 3/ A r5c cache log write is in flight.
4560 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4561 if (!r5c_is_writeback(conf
->log
)) {
4563 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4564 } else { /* write back cache */
4567 /* First, try handle writes in caching phase */
4569 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4572 * If caching phase failed: ret == -EAGAIN
4574 * stripe under reclaim: !caching && injournal
4576 * fall back to handle_stripe_dirtying()
4578 if (ret
== -EAGAIN
||
4579 /* stripe under reclaim: !caching && injournal */
4580 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4582 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
4590 /* maybe we need to check and possibly fix the parity for this stripe
4591 * Any reads will already have been scheduled, so we just see if enough
4592 * data is available. The parity check is held off while parity
4593 * dependent operations are in flight.
4595 if (sh
->check_state
||
4596 (s
.syncing
&& s
.locked
== 0 &&
4597 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4598 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4599 if (conf
->level
== 6)
4600 handle_parity_checks6(conf
, sh
, &s
, disks
);
4602 handle_parity_checks5(conf
, sh
, &s
, disks
);
4605 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4606 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4607 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4608 /* Write out to replacement devices where possible */
4609 for (i
= 0; i
< conf
->raid_disks
; i
++)
4610 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4611 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4612 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4613 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4617 set_bit(STRIPE_INSYNC
, &sh
->state
);
4618 set_bit(STRIPE_REPLACED
, &sh
->state
);
4620 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4621 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4622 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4623 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4624 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4625 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4626 wake_up(&conf
->wait_for_overlap
);
4629 /* If the failed drives are just a ReadError, then we might need
4630 * to progress the repair/check process
4632 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4633 for (i
= 0; i
< s
.failed
; i
++) {
4634 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4635 if (test_bit(R5_ReadError
, &dev
->flags
)
4636 && !test_bit(R5_LOCKED
, &dev
->flags
)
4637 && test_bit(R5_UPTODATE
, &dev
->flags
)
4639 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4640 set_bit(R5_Wantwrite
, &dev
->flags
);
4641 set_bit(R5_ReWrite
, &dev
->flags
);
4642 set_bit(R5_LOCKED
, &dev
->flags
);
4645 /* let's read it back */
4646 set_bit(R5_Wantread
, &dev
->flags
);
4647 set_bit(R5_LOCKED
, &dev
->flags
);
4653 /* Finish reconstruct operations initiated by the expansion process */
4654 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4655 struct stripe_head
*sh_src
4656 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4657 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4658 /* sh cannot be written until sh_src has been read.
4659 * so arrange for sh to be delayed a little
4661 set_bit(STRIPE_DELAYED
, &sh
->state
);
4662 set_bit(STRIPE_HANDLE
, &sh
->state
);
4663 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4665 atomic_inc(&conf
->preread_active_stripes
);
4666 raid5_release_stripe(sh_src
);
4670 raid5_release_stripe(sh_src
);
4672 sh
->reconstruct_state
= reconstruct_state_idle
;
4673 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4674 for (i
= conf
->raid_disks
; i
--; ) {
4675 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4676 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4681 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4682 !sh
->reconstruct_state
) {
4683 /* Need to write out all blocks after computing parity */
4684 sh
->disks
= conf
->raid_disks
;
4685 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4686 schedule_reconstruction(sh
, &s
, 1, 1);
4687 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4688 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4689 atomic_dec(&conf
->reshape_stripes
);
4690 wake_up(&conf
->wait_for_overlap
);
4691 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4694 if (s
.expanding
&& s
.locked
== 0 &&
4695 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4696 handle_stripe_expansion(conf
, sh
);
4699 /* wait for this device to become unblocked */
4700 if (unlikely(s
.blocked_rdev
)) {
4701 if (conf
->mddev
->external
)
4702 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4705 /* Internal metadata will immediately
4706 * be written by raid5d, so we don't
4707 * need to wait here.
4709 rdev_dec_pending(s
.blocked_rdev
,
4713 if (s
.handle_bad_blocks
)
4714 for (i
= disks
; i
--; ) {
4715 struct md_rdev
*rdev
;
4716 struct r5dev
*dev
= &sh
->dev
[i
];
4717 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4718 /* We own a safe reference to the rdev */
4719 rdev
= conf
->disks
[i
].rdev
;
4720 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4722 md_error(conf
->mddev
, rdev
);
4723 rdev_dec_pending(rdev
, conf
->mddev
);
4725 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4726 rdev
= conf
->disks
[i
].rdev
;
4727 rdev_clear_badblocks(rdev
, sh
->sector
,
4729 rdev_dec_pending(rdev
, conf
->mddev
);
4731 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4732 rdev
= conf
->disks
[i
].replacement
;
4734 /* rdev have been moved down */
4735 rdev
= conf
->disks
[i
].rdev
;
4736 rdev_clear_badblocks(rdev
, sh
->sector
,
4738 rdev_dec_pending(rdev
, conf
->mddev
);
4743 raid_run_ops(sh
, s
.ops_request
);
4747 if (s
.dec_preread_active
) {
4748 /* We delay this until after ops_run_io so that if make_request
4749 * is waiting on a flush, it won't continue until the writes
4750 * have actually been submitted.
4752 atomic_dec(&conf
->preread_active_stripes
);
4753 if (atomic_read(&conf
->preread_active_stripes
) <
4755 md_wakeup_thread(conf
->mddev
->thread
);
4758 if (!bio_list_empty(&s
.return_bi
)) {
4759 if (test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4760 spin_lock_irq(&conf
->device_lock
);
4761 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4762 spin_unlock_irq(&conf
->device_lock
);
4763 md_wakeup_thread(conf
->mddev
->thread
);
4765 return_io(&s
.return_bi
);
4768 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4771 static void raid5_activate_delayed(struct r5conf
*conf
)
4773 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4774 while (!list_empty(&conf
->delayed_list
)) {
4775 struct list_head
*l
= conf
->delayed_list
.next
;
4776 struct stripe_head
*sh
;
4777 sh
= list_entry(l
, struct stripe_head
, lru
);
4779 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4780 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4781 atomic_inc(&conf
->preread_active_stripes
);
4782 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4783 raid5_wakeup_stripe_thread(sh
);
4788 static void activate_bit_delay(struct r5conf
*conf
,
4789 struct list_head
*temp_inactive_list
)
4791 /* device_lock is held */
4792 struct list_head head
;
4793 list_add(&head
, &conf
->bitmap_list
);
4794 list_del_init(&conf
->bitmap_list
);
4795 while (!list_empty(&head
)) {
4796 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4798 list_del_init(&sh
->lru
);
4799 atomic_inc(&sh
->count
);
4800 hash
= sh
->hash_lock_index
;
4801 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4805 static int raid5_congested(struct mddev
*mddev
, int bits
)
4807 struct r5conf
*conf
= mddev
->private;
4809 /* No difference between reads and writes. Just check
4810 * how busy the stripe_cache is
4813 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4816 /* Also checks whether there is pressure on r5cache log space */
4817 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
4821 if (atomic_read(&conf
->empty_inactive_list_nr
))
4827 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4829 struct r5conf
*conf
= mddev
->private;
4830 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4831 unsigned int chunk_sectors
;
4832 unsigned int bio_sectors
= bio_sectors(bio
);
4834 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4835 return chunk_sectors
>=
4836 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4840 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4841 * later sampled by raid5d.
4843 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4845 unsigned long flags
;
4847 spin_lock_irqsave(&conf
->device_lock
, flags
);
4849 bi
->bi_next
= conf
->retry_read_aligned_list
;
4850 conf
->retry_read_aligned_list
= bi
;
4852 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4853 md_wakeup_thread(conf
->mddev
->thread
);
4856 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4860 bi
= conf
->retry_read_aligned
;
4862 conf
->retry_read_aligned
= NULL
;
4865 bi
= conf
->retry_read_aligned_list
;
4867 conf
->retry_read_aligned_list
= bi
->bi_next
;
4870 * this sets the active strip count to 1 and the processed
4871 * strip count to zero (upper 8 bits)
4873 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4880 * The "raid5_align_endio" should check if the read succeeded and if it
4881 * did, call bio_endio on the original bio (having bio_put the new bio
4883 * If the read failed..
4885 static void raid5_align_endio(struct bio
*bi
)
4887 struct bio
* raid_bi
= bi
->bi_private
;
4888 struct mddev
*mddev
;
4889 struct r5conf
*conf
;
4890 struct md_rdev
*rdev
;
4891 int error
= bi
->bi_error
;
4895 rdev
= (void*)raid_bi
->bi_next
;
4896 raid_bi
->bi_next
= NULL
;
4897 mddev
= rdev
->mddev
;
4898 conf
= mddev
->private;
4900 rdev_dec_pending(rdev
, conf
->mddev
);
4903 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4906 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4907 wake_up(&conf
->wait_for_quiescent
);
4911 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4913 add_bio_to_retry(raid_bi
, conf
);
4916 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4918 struct r5conf
*conf
= mddev
->private;
4920 struct bio
* align_bi
;
4921 struct md_rdev
*rdev
;
4922 sector_t end_sector
;
4924 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4925 pr_debug("%s: non aligned\n", __func__
);
4929 * use bio_clone_mddev to make a copy of the bio
4931 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4935 * set bi_end_io to a new function, and set bi_private to the
4938 align_bi
->bi_end_io
= raid5_align_endio
;
4939 align_bi
->bi_private
= raid_bio
;
4943 align_bi
->bi_iter
.bi_sector
=
4944 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4947 end_sector
= bio_end_sector(align_bi
);
4949 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4950 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4951 rdev
->recovery_offset
< end_sector
) {
4952 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4954 (test_bit(Faulty
, &rdev
->flags
) ||
4955 !(test_bit(In_sync
, &rdev
->flags
) ||
4956 rdev
->recovery_offset
>= end_sector
)))
4963 atomic_inc(&rdev
->nr_pending
);
4965 raid_bio
->bi_next
= (void*)rdev
;
4966 align_bi
->bi_bdev
= rdev
->bdev
;
4967 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4969 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4970 bio_sectors(align_bi
),
4971 &first_bad
, &bad_sectors
)) {
4973 rdev_dec_pending(rdev
, mddev
);
4977 /* No reshape active, so we can trust rdev->data_offset */
4978 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4980 spin_lock_irq(&conf
->device_lock
);
4981 wait_event_lock_irq(conf
->wait_for_quiescent
,
4984 atomic_inc(&conf
->active_aligned_reads
);
4985 spin_unlock_irq(&conf
->device_lock
);
4988 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4989 align_bi
, disk_devt(mddev
->gendisk
),
4990 raid_bio
->bi_iter
.bi_sector
);
4991 generic_make_request(align_bi
);
5000 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5005 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5006 unsigned chunk_sects
= mddev
->chunk_sectors
;
5007 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5009 if (sectors
< bio_sectors(raid_bio
)) {
5010 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
5011 bio_chain(split
, raid_bio
);
5015 if (!raid5_read_one_chunk(mddev
, split
)) {
5016 if (split
!= raid_bio
)
5017 generic_make_request(raid_bio
);
5020 } while (split
!= raid_bio
);
5025 /* __get_priority_stripe - get the next stripe to process
5027 * Full stripe writes are allowed to pass preread active stripes up until
5028 * the bypass_threshold is exceeded. In general the bypass_count
5029 * increments when the handle_list is handled before the hold_list; however, it
5030 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5031 * stripe with in flight i/o. The bypass_count will be reset when the
5032 * head of the hold_list has changed, i.e. the head was promoted to the
5035 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5037 struct stripe_head
*sh
= NULL
, *tmp
;
5038 struct list_head
*handle_list
= NULL
;
5039 struct r5worker_group
*wg
= NULL
;
5041 if (conf
->worker_cnt_per_group
== 0) {
5042 handle_list
= &conf
->handle_list
;
5043 } else if (group
!= ANY_GROUP
) {
5044 handle_list
= &conf
->worker_groups
[group
].handle_list
;
5045 wg
= &conf
->worker_groups
[group
];
5048 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5049 handle_list
= &conf
->worker_groups
[i
].handle_list
;
5050 wg
= &conf
->worker_groups
[i
];
5051 if (!list_empty(handle_list
))
5056 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5058 list_empty(handle_list
) ? "empty" : "busy",
5059 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5060 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5062 if (!list_empty(handle_list
)) {
5063 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5065 if (list_empty(&conf
->hold_list
))
5066 conf
->bypass_count
= 0;
5067 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5068 if (conf
->hold_list
.next
== conf
->last_hold
)
5069 conf
->bypass_count
++;
5071 conf
->last_hold
= conf
->hold_list
.next
;
5072 conf
->bypass_count
-= conf
->bypass_threshold
;
5073 if (conf
->bypass_count
< 0)
5074 conf
->bypass_count
= 0;
5077 } else if (!list_empty(&conf
->hold_list
) &&
5078 ((conf
->bypass_threshold
&&
5079 conf
->bypass_count
> conf
->bypass_threshold
) ||
5080 atomic_read(&conf
->pending_full_writes
) == 0)) {
5082 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5083 if (conf
->worker_cnt_per_group
== 0 ||
5084 group
== ANY_GROUP
||
5085 !cpu_online(tmp
->cpu
) ||
5086 cpu_to_group(tmp
->cpu
) == group
) {
5093 conf
->bypass_count
-= conf
->bypass_threshold
;
5094 if (conf
->bypass_count
< 0)
5095 conf
->bypass_count
= 0;
5107 list_del_init(&sh
->lru
);
5108 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5112 struct raid5_plug_cb
{
5113 struct blk_plug_cb cb
;
5114 struct list_head list
;
5115 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5118 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5120 struct raid5_plug_cb
*cb
= container_of(
5121 blk_cb
, struct raid5_plug_cb
, cb
);
5122 struct stripe_head
*sh
;
5123 struct mddev
*mddev
= cb
->cb
.data
;
5124 struct r5conf
*conf
= mddev
->private;
5128 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5129 spin_lock_irq(&conf
->device_lock
);
5130 while (!list_empty(&cb
->list
)) {
5131 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5132 list_del_init(&sh
->lru
);
5134 * avoid race release_stripe_plug() sees
5135 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5136 * is still in our list
5138 smp_mb__before_atomic();
5139 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5141 * STRIPE_ON_RELEASE_LIST could be set here. In that
5142 * case, the count is always > 1 here
5144 hash
= sh
->hash_lock_index
;
5145 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5148 spin_unlock_irq(&conf
->device_lock
);
5150 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5151 NR_STRIPE_HASH_LOCKS
);
5153 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5157 static void release_stripe_plug(struct mddev
*mddev
,
5158 struct stripe_head
*sh
)
5160 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5161 raid5_unplug
, mddev
,
5162 sizeof(struct raid5_plug_cb
));
5163 struct raid5_plug_cb
*cb
;
5166 raid5_release_stripe(sh
);
5170 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5172 if (cb
->list
.next
== NULL
) {
5174 INIT_LIST_HEAD(&cb
->list
);
5175 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5176 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5179 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5180 list_add_tail(&sh
->lru
, &cb
->list
);
5182 raid5_release_stripe(sh
);
5185 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5187 struct r5conf
*conf
= mddev
->private;
5188 sector_t logical_sector
, last_sector
;
5189 struct stripe_head
*sh
;
5193 if (mddev
->reshape_position
!= MaxSector
)
5194 /* Skip discard while reshape is happening */
5197 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5198 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5201 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5203 stripe_sectors
= conf
->chunk_sectors
*
5204 (conf
->raid_disks
- conf
->max_degraded
);
5205 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5207 sector_div(last_sector
, stripe_sectors
);
5209 logical_sector
*= conf
->chunk_sectors
;
5210 last_sector
*= conf
->chunk_sectors
;
5212 for (; logical_sector
< last_sector
;
5213 logical_sector
+= STRIPE_SECTORS
) {
5217 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5218 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5219 TASK_UNINTERRUPTIBLE
);
5220 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5221 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5222 raid5_release_stripe(sh
);
5226 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5227 spin_lock_irq(&sh
->stripe_lock
);
5228 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5229 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5231 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5232 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5233 spin_unlock_irq(&sh
->stripe_lock
);
5234 raid5_release_stripe(sh
);
5239 set_bit(STRIPE_DISCARD
, &sh
->state
);
5240 finish_wait(&conf
->wait_for_overlap
, &w
);
5241 sh
->overwrite_disks
= 0;
5242 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5243 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5245 sh
->dev
[d
].towrite
= bi
;
5246 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5247 raid5_inc_bi_active_stripes(bi
);
5248 sh
->overwrite_disks
++;
5250 spin_unlock_irq(&sh
->stripe_lock
);
5251 if (conf
->mddev
->bitmap
) {
5253 d
< conf
->raid_disks
- conf
->max_degraded
;
5255 bitmap_startwrite(mddev
->bitmap
,
5259 sh
->bm_seq
= conf
->seq_flush
+ 1;
5260 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5263 set_bit(STRIPE_HANDLE
, &sh
->state
);
5264 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5265 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5266 atomic_inc(&conf
->preread_active_stripes
);
5267 release_stripe_plug(mddev
, sh
);
5270 remaining
= raid5_dec_bi_active_stripes(bi
);
5271 if (remaining
== 0) {
5272 md_write_end(mddev
);
5277 static void raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5279 struct r5conf
*conf
= mddev
->private;
5281 sector_t new_sector
;
5282 sector_t logical_sector
, last_sector
;
5283 struct stripe_head
*sh
;
5284 const int rw
= bio_data_dir(bi
);
5288 bool do_flush
= false;
5290 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5291 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5295 if (ret
== -ENODEV
) {
5296 md_flush_request(mddev
, bi
);
5299 /* ret == -EAGAIN, fallback */
5301 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5302 * we need to flush journal device
5304 do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
5307 md_write_start(mddev
, bi
);
5310 * If array is degraded, better not do chunk aligned read because
5311 * later we might have to read it again in order to reconstruct
5312 * data on failed drives.
5314 if (rw
== READ
&& mddev
->degraded
== 0 &&
5315 !r5c_is_writeback(conf
->log
) &&
5316 mddev
->reshape_position
== MaxSector
) {
5317 bi
= chunk_aligned_read(mddev
, bi
);
5322 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5323 make_discard_request(mddev
, bi
);
5327 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5328 last_sector
= bio_end_sector(bi
);
5330 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5332 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5333 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5339 seq
= read_seqcount_begin(&conf
->gen_lock
);
5342 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5343 TASK_UNINTERRUPTIBLE
);
5344 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5345 /* spinlock is needed as reshape_progress may be
5346 * 64bit on a 32bit platform, and so it might be
5347 * possible to see a half-updated value
5348 * Of course reshape_progress could change after
5349 * the lock is dropped, so once we get a reference
5350 * to the stripe that we think it is, we will have
5353 spin_lock_irq(&conf
->device_lock
);
5354 if (mddev
->reshape_backwards
5355 ? logical_sector
< conf
->reshape_progress
5356 : logical_sector
>= conf
->reshape_progress
) {
5359 if (mddev
->reshape_backwards
5360 ? logical_sector
< conf
->reshape_safe
5361 : logical_sector
>= conf
->reshape_safe
) {
5362 spin_unlock_irq(&conf
->device_lock
);
5368 spin_unlock_irq(&conf
->device_lock
);
5371 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5374 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5375 (unsigned long long)new_sector
,
5376 (unsigned long long)logical_sector
);
5378 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5379 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5381 if (unlikely(previous
)) {
5382 /* expansion might have moved on while waiting for a
5383 * stripe, so we must do the range check again.
5384 * Expansion could still move past after this
5385 * test, but as we are holding a reference to
5386 * 'sh', we know that if that happens,
5387 * STRIPE_EXPANDING will get set and the expansion
5388 * won't proceed until we finish with the stripe.
5391 spin_lock_irq(&conf
->device_lock
);
5392 if (mddev
->reshape_backwards
5393 ? logical_sector
>= conf
->reshape_progress
5394 : logical_sector
< conf
->reshape_progress
)
5395 /* mismatch, need to try again */
5397 spin_unlock_irq(&conf
->device_lock
);
5399 raid5_release_stripe(sh
);
5405 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5406 /* Might have got the wrong stripe_head
5409 raid5_release_stripe(sh
);
5414 logical_sector
>= mddev
->suspend_lo
&&
5415 logical_sector
< mddev
->suspend_hi
) {
5416 raid5_release_stripe(sh
);
5417 /* As the suspend_* range is controlled by
5418 * userspace, we want an interruptible
5421 flush_signals(current
);
5422 prepare_to_wait(&conf
->wait_for_overlap
,
5423 &w
, TASK_INTERRUPTIBLE
);
5424 if (logical_sector
>= mddev
->suspend_lo
&&
5425 logical_sector
< mddev
->suspend_hi
) {
5432 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5433 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5434 /* Stripe is busy expanding or
5435 * add failed due to overlap. Flush everything
5438 md_wakeup_thread(mddev
->thread
);
5439 raid5_release_stripe(sh
);
5445 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
5446 /* we only need flush for one stripe */
5450 set_bit(STRIPE_HANDLE
, &sh
->state
);
5451 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5452 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5453 (bi
->bi_opf
& REQ_SYNC
) &&
5454 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5455 atomic_inc(&conf
->preread_active_stripes
);
5456 release_stripe_plug(mddev
, sh
);
5458 /* cannot get stripe for read-ahead, just give-up */
5459 bi
->bi_error
= -EIO
;
5463 finish_wait(&conf
->wait_for_overlap
, &w
);
5465 remaining
= raid5_dec_bi_active_stripes(bi
);
5466 if (remaining
== 0) {
5469 md_write_end(mddev
);
5471 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5477 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5479 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5481 /* reshaping is quite different to recovery/resync so it is
5482 * handled quite separately ... here.
5484 * On each call to sync_request, we gather one chunk worth of
5485 * destination stripes and flag them as expanding.
5486 * Then we find all the source stripes and request reads.
5487 * As the reads complete, handle_stripe will copy the data
5488 * into the destination stripe and release that stripe.
5490 struct r5conf
*conf
= mddev
->private;
5491 struct stripe_head
*sh
;
5492 sector_t first_sector
, last_sector
;
5493 int raid_disks
= conf
->previous_raid_disks
;
5494 int data_disks
= raid_disks
- conf
->max_degraded
;
5495 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5498 sector_t writepos
, readpos
, safepos
;
5499 sector_t stripe_addr
;
5500 int reshape_sectors
;
5501 struct list_head stripes
;
5504 if (sector_nr
== 0) {
5505 /* If restarting in the middle, skip the initial sectors */
5506 if (mddev
->reshape_backwards
&&
5507 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5508 sector_nr
= raid5_size(mddev
, 0, 0)
5509 - conf
->reshape_progress
;
5510 } else if (mddev
->reshape_backwards
&&
5511 conf
->reshape_progress
== MaxSector
) {
5512 /* shouldn't happen, but just in case, finish up.*/
5513 sector_nr
= MaxSector
;
5514 } else if (!mddev
->reshape_backwards
&&
5515 conf
->reshape_progress
> 0)
5516 sector_nr
= conf
->reshape_progress
;
5517 sector_div(sector_nr
, new_data_disks
);
5519 mddev
->curr_resync_completed
= sector_nr
;
5520 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5527 /* We need to process a full chunk at a time.
5528 * If old and new chunk sizes differ, we need to process the
5532 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5534 /* We update the metadata at least every 10 seconds, or when
5535 * the data about to be copied would over-write the source of
5536 * the data at the front of the range. i.e. one new_stripe
5537 * along from reshape_progress new_maps to after where
5538 * reshape_safe old_maps to
5540 writepos
= conf
->reshape_progress
;
5541 sector_div(writepos
, new_data_disks
);
5542 readpos
= conf
->reshape_progress
;
5543 sector_div(readpos
, data_disks
);
5544 safepos
= conf
->reshape_safe
;
5545 sector_div(safepos
, data_disks
);
5546 if (mddev
->reshape_backwards
) {
5547 BUG_ON(writepos
< reshape_sectors
);
5548 writepos
-= reshape_sectors
;
5549 readpos
+= reshape_sectors
;
5550 safepos
+= reshape_sectors
;
5552 writepos
+= reshape_sectors
;
5553 /* readpos and safepos are worst-case calculations.
5554 * A negative number is overly pessimistic, and causes
5555 * obvious problems for unsigned storage. So clip to 0.
5557 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5558 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5561 /* Having calculated the 'writepos' possibly use it
5562 * to set 'stripe_addr' which is where we will write to.
5564 if (mddev
->reshape_backwards
) {
5565 BUG_ON(conf
->reshape_progress
== 0);
5566 stripe_addr
= writepos
;
5567 BUG_ON((mddev
->dev_sectors
&
5568 ~((sector_t
)reshape_sectors
- 1))
5569 - reshape_sectors
- stripe_addr
5572 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5573 stripe_addr
= sector_nr
;
5576 /* 'writepos' is the most advanced device address we might write.
5577 * 'readpos' is the least advanced device address we might read.
5578 * 'safepos' is the least address recorded in the metadata as having
5580 * If there is a min_offset_diff, these are adjusted either by
5581 * increasing the safepos/readpos if diff is negative, or
5582 * increasing writepos if diff is positive.
5583 * If 'readpos' is then behind 'writepos', there is no way that we can
5584 * ensure safety in the face of a crash - that must be done by userspace
5585 * making a backup of the data. So in that case there is no particular
5586 * rush to update metadata.
5587 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5588 * update the metadata to advance 'safepos' to match 'readpos' so that
5589 * we can be safe in the event of a crash.
5590 * So we insist on updating metadata if safepos is behind writepos and
5591 * readpos is beyond writepos.
5592 * In any case, update the metadata every 10 seconds.
5593 * Maybe that number should be configurable, but I'm not sure it is
5594 * worth it.... maybe it could be a multiple of safemode_delay???
5596 if (conf
->min_offset_diff
< 0) {
5597 safepos
+= -conf
->min_offset_diff
;
5598 readpos
+= -conf
->min_offset_diff
;
5600 writepos
+= conf
->min_offset_diff
;
5602 if ((mddev
->reshape_backwards
5603 ? (safepos
> writepos
&& readpos
< writepos
)
5604 : (safepos
< writepos
&& readpos
> writepos
)) ||
5605 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5606 /* Cannot proceed until we've updated the superblock... */
5607 wait_event(conf
->wait_for_overlap
,
5608 atomic_read(&conf
->reshape_stripes
)==0
5609 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5610 if (atomic_read(&conf
->reshape_stripes
) != 0)
5612 mddev
->reshape_position
= conf
->reshape_progress
;
5613 mddev
->curr_resync_completed
= sector_nr
;
5614 conf
->reshape_checkpoint
= jiffies
;
5615 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5616 md_wakeup_thread(mddev
->thread
);
5617 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
5618 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5619 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5621 spin_lock_irq(&conf
->device_lock
);
5622 conf
->reshape_safe
= mddev
->reshape_position
;
5623 spin_unlock_irq(&conf
->device_lock
);
5624 wake_up(&conf
->wait_for_overlap
);
5625 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5628 INIT_LIST_HEAD(&stripes
);
5629 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5631 int skipped_disk
= 0;
5632 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5633 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5634 atomic_inc(&conf
->reshape_stripes
);
5635 /* If any of this stripe is beyond the end of the old
5636 * array, then we need to zero those blocks
5638 for (j
=sh
->disks
; j
--;) {
5640 if (j
== sh
->pd_idx
)
5642 if (conf
->level
== 6 &&
5645 s
= raid5_compute_blocknr(sh
, j
, 0);
5646 if (s
< raid5_size(mddev
, 0, 0)) {
5650 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5651 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5652 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5654 if (!skipped_disk
) {
5655 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5656 set_bit(STRIPE_HANDLE
, &sh
->state
);
5658 list_add(&sh
->lru
, &stripes
);
5660 spin_lock_irq(&conf
->device_lock
);
5661 if (mddev
->reshape_backwards
)
5662 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5664 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5665 spin_unlock_irq(&conf
->device_lock
);
5666 /* Ok, those stripe are ready. We can start scheduling
5667 * reads on the source stripes.
5668 * The source stripes are determined by mapping the first and last
5669 * block on the destination stripes.
5672 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5675 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5676 * new_data_disks
- 1),
5678 if (last_sector
>= mddev
->dev_sectors
)
5679 last_sector
= mddev
->dev_sectors
- 1;
5680 while (first_sector
<= last_sector
) {
5681 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5682 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5683 set_bit(STRIPE_HANDLE
, &sh
->state
);
5684 raid5_release_stripe(sh
);
5685 first_sector
+= STRIPE_SECTORS
;
5687 /* Now that the sources are clearly marked, we can release
5688 * the destination stripes
5690 while (!list_empty(&stripes
)) {
5691 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5692 list_del_init(&sh
->lru
);
5693 raid5_release_stripe(sh
);
5695 /* If this takes us to the resync_max point where we have to pause,
5696 * then we need to write out the superblock.
5698 sector_nr
+= reshape_sectors
;
5699 retn
= reshape_sectors
;
5701 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5702 (sector_nr
- mddev
->curr_resync_completed
) * 2
5703 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5704 /* Cannot proceed until we've updated the superblock... */
5705 wait_event(conf
->wait_for_overlap
,
5706 atomic_read(&conf
->reshape_stripes
) == 0
5707 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5708 if (atomic_read(&conf
->reshape_stripes
) != 0)
5710 mddev
->reshape_position
= conf
->reshape_progress
;
5711 mddev
->curr_resync_completed
= sector_nr
;
5712 conf
->reshape_checkpoint
= jiffies
;
5713 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5714 md_wakeup_thread(mddev
->thread
);
5715 wait_event(mddev
->sb_wait
,
5716 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
5717 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5718 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5720 spin_lock_irq(&conf
->device_lock
);
5721 conf
->reshape_safe
= mddev
->reshape_position
;
5722 spin_unlock_irq(&conf
->device_lock
);
5723 wake_up(&conf
->wait_for_overlap
);
5724 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5730 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
5733 struct r5conf
*conf
= mddev
->private;
5734 struct stripe_head
*sh
;
5735 sector_t max_sector
= mddev
->dev_sectors
;
5736 sector_t sync_blocks
;
5737 int still_degraded
= 0;
5740 if (sector_nr
>= max_sector
) {
5741 /* just being told to finish up .. nothing much to do */
5743 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5748 if (mddev
->curr_resync
< max_sector
) /* aborted */
5749 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5751 else /* completed sync */
5753 bitmap_close_sync(mddev
->bitmap
);
5758 /* Allow raid5_quiesce to complete */
5759 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5761 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5762 return reshape_request(mddev
, sector_nr
, skipped
);
5764 /* No need to check resync_max as we never do more than one
5765 * stripe, and as resync_max will always be on a chunk boundary,
5766 * if the check in md_do_sync didn't fire, there is no chance
5767 * of overstepping resync_max here
5770 /* if there is too many failed drives and we are trying
5771 * to resync, then assert that we are finished, because there is
5772 * nothing we can do.
5774 if (mddev
->degraded
>= conf
->max_degraded
&&
5775 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5776 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5780 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5782 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5783 sync_blocks
>= STRIPE_SECTORS
) {
5784 /* we can skip this block, and probably more */
5785 sync_blocks
/= STRIPE_SECTORS
;
5787 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5790 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5792 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5794 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5795 /* make sure we don't swamp the stripe cache if someone else
5796 * is trying to get access
5798 schedule_timeout_uninterruptible(1);
5800 /* Need to check if array will still be degraded after recovery/resync
5801 * Note in case of > 1 drive failures it's possible we're rebuilding
5802 * one drive while leaving another faulty drive in array.
5805 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5806 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5808 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5813 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5815 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5816 set_bit(STRIPE_HANDLE
, &sh
->state
);
5818 raid5_release_stripe(sh
);
5820 return STRIPE_SECTORS
;
5823 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5825 /* We may not be able to submit a whole bio at once as there
5826 * may not be enough stripe_heads available.
5827 * We cannot pre-allocate enough stripe_heads as we may need
5828 * more than exist in the cache (if we allow ever large chunks).
5829 * So we do one stripe head at a time and record in
5830 * ->bi_hw_segments how many have been done.
5832 * We *know* that this entire raid_bio is in one chunk, so
5833 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5835 struct stripe_head
*sh
;
5837 sector_t sector
, logical_sector
, last_sector
;
5842 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5843 ~((sector_t
)STRIPE_SECTORS
-1);
5844 sector
= raid5_compute_sector(conf
, logical_sector
,
5846 last_sector
= bio_end_sector(raid_bio
);
5848 for (; logical_sector
< last_sector
;
5849 logical_sector
+= STRIPE_SECTORS
,
5850 sector
+= STRIPE_SECTORS
,
5853 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5854 /* already done this stripe */
5857 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5860 /* failed to get a stripe - must wait */
5861 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5862 conf
->retry_read_aligned
= raid_bio
;
5866 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5867 raid5_release_stripe(sh
);
5868 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5869 conf
->retry_read_aligned
= raid_bio
;
5873 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5875 raid5_release_stripe(sh
);
5878 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5879 if (remaining
== 0) {
5880 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5882 bio_endio(raid_bio
);
5884 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5885 wake_up(&conf
->wait_for_quiescent
);
5889 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5890 struct r5worker
*worker
,
5891 struct list_head
*temp_inactive_list
)
5893 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5894 int i
, batch_size
= 0, hash
;
5895 bool release_inactive
= false;
5897 while (batch_size
< MAX_STRIPE_BATCH
&&
5898 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5899 batch
[batch_size
++] = sh
;
5901 if (batch_size
== 0) {
5902 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5903 if (!list_empty(temp_inactive_list
+ i
))
5905 if (i
== NR_STRIPE_HASH_LOCKS
) {
5906 spin_unlock_irq(&conf
->device_lock
);
5907 r5l_flush_stripe_to_raid(conf
->log
);
5908 spin_lock_irq(&conf
->device_lock
);
5911 release_inactive
= true;
5913 spin_unlock_irq(&conf
->device_lock
);
5915 release_inactive_stripe_list(conf
, temp_inactive_list
,
5916 NR_STRIPE_HASH_LOCKS
);
5918 r5l_flush_stripe_to_raid(conf
->log
);
5919 if (release_inactive
) {
5920 spin_lock_irq(&conf
->device_lock
);
5924 for (i
= 0; i
< batch_size
; i
++)
5925 handle_stripe(batch
[i
]);
5926 r5l_write_stripe_run(conf
->log
);
5930 spin_lock_irq(&conf
->device_lock
);
5931 for (i
= 0; i
< batch_size
; i
++) {
5932 hash
= batch
[i
]->hash_lock_index
;
5933 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5938 static void raid5_do_work(struct work_struct
*work
)
5940 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5941 struct r5worker_group
*group
= worker
->group
;
5942 struct r5conf
*conf
= group
->conf
;
5943 int group_id
= group
- conf
->worker_groups
;
5945 struct blk_plug plug
;
5947 pr_debug("+++ raid5worker active\n");
5949 blk_start_plug(&plug
);
5951 spin_lock_irq(&conf
->device_lock
);
5953 int batch_size
, released
;
5955 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5957 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5958 worker
->temp_inactive_list
);
5959 worker
->working
= false;
5960 if (!batch_size
&& !released
)
5962 handled
+= batch_size
;
5964 pr_debug("%d stripes handled\n", handled
);
5966 spin_unlock_irq(&conf
->device_lock
);
5967 blk_finish_plug(&plug
);
5969 pr_debug("--- raid5worker inactive\n");
5973 * This is our raid5 kernel thread.
5975 * We scan the hash table for stripes which can be handled now.
5976 * During the scan, completed stripes are saved for us by the interrupt
5977 * handler, so that they will not have to wait for our next wakeup.
5979 static void raid5d(struct md_thread
*thread
)
5981 struct mddev
*mddev
= thread
->mddev
;
5982 struct r5conf
*conf
= mddev
->private;
5984 struct blk_plug plug
;
5986 pr_debug("+++ raid5d active\n");
5988 md_check_recovery(mddev
);
5990 if (!bio_list_empty(&conf
->return_bi
) &&
5991 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
5992 struct bio_list tmp
= BIO_EMPTY_LIST
;
5993 spin_lock_irq(&conf
->device_lock
);
5994 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
5995 bio_list_merge(&tmp
, &conf
->return_bi
);
5996 bio_list_init(&conf
->return_bi
);
5998 spin_unlock_irq(&conf
->device_lock
);
6002 blk_start_plug(&plug
);
6004 spin_lock_irq(&conf
->device_lock
);
6007 int batch_size
, released
;
6009 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6011 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6014 !list_empty(&conf
->bitmap_list
)) {
6015 /* Now is a good time to flush some bitmap updates */
6017 spin_unlock_irq(&conf
->device_lock
);
6018 bitmap_unplug(mddev
->bitmap
);
6019 spin_lock_irq(&conf
->device_lock
);
6020 conf
->seq_write
= conf
->seq_flush
;
6021 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6023 raid5_activate_delayed(conf
);
6025 while ((bio
= remove_bio_from_retry(conf
))) {
6027 spin_unlock_irq(&conf
->device_lock
);
6028 ok
= retry_aligned_read(conf
, bio
);
6029 spin_lock_irq(&conf
->device_lock
);
6035 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6036 conf
->temp_inactive_list
);
6037 if (!batch_size
&& !released
)
6039 handled
+= batch_size
;
6041 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6042 spin_unlock_irq(&conf
->device_lock
);
6043 md_check_recovery(mddev
);
6044 spin_lock_irq(&conf
->device_lock
);
6047 pr_debug("%d stripes handled\n", handled
);
6049 spin_unlock_irq(&conf
->device_lock
);
6050 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6051 mutex_trylock(&conf
->cache_size_mutex
)) {
6052 grow_one_stripe(conf
, __GFP_NOWARN
);
6053 /* Set flag even if allocation failed. This helps
6054 * slow down allocation requests when mem is short
6056 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6057 mutex_unlock(&conf
->cache_size_mutex
);
6060 r5l_flush_stripe_to_raid(conf
->log
);
6062 async_tx_issue_pending_all();
6063 blk_finish_plug(&plug
);
6065 pr_debug("--- raid5d inactive\n");
6069 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6071 struct r5conf
*conf
;
6073 spin_lock(&mddev
->lock
);
6074 conf
= mddev
->private;
6076 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6077 spin_unlock(&mddev
->lock
);
6082 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6084 struct r5conf
*conf
= mddev
->private;
6087 if (size
<= 16 || size
> 32768)
6090 conf
->min_nr_stripes
= size
;
6091 mutex_lock(&conf
->cache_size_mutex
);
6092 while (size
< conf
->max_nr_stripes
&&
6093 drop_one_stripe(conf
))
6095 mutex_unlock(&conf
->cache_size_mutex
);
6098 err
= md_allow_write(mddev
);
6102 mutex_lock(&conf
->cache_size_mutex
);
6103 while (size
> conf
->max_nr_stripes
)
6104 if (!grow_one_stripe(conf
, GFP_KERNEL
))
6106 mutex_unlock(&conf
->cache_size_mutex
);
6110 EXPORT_SYMBOL(raid5_set_cache_size
);
6113 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6115 struct r5conf
*conf
;
6119 if (len
>= PAGE_SIZE
)
6121 if (kstrtoul(page
, 10, &new))
6123 err
= mddev_lock(mddev
);
6126 conf
= mddev
->private;
6130 err
= raid5_set_cache_size(mddev
, new);
6131 mddev_unlock(mddev
);
6136 static struct md_sysfs_entry
6137 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6138 raid5_show_stripe_cache_size
,
6139 raid5_store_stripe_cache_size
);
6142 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6144 struct r5conf
*conf
= mddev
->private;
6146 return sprintf(page
, "%d\n", conf
->rmw_level
);
6152 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6154 struct r5conf
*conf
= mddev
->private;
6160 if (len
>= PAGE_SIZE
)
6163 if (kstrtoul(page
, 10, &new))
6166 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6169 if (new != PARITY_DISABLE_RMW
&&
6170 new != PARITY_ENABLE_RMW
&&
6171 new != PARITY_PREFER_RMW
)
6174 conf
->rmw_level
= new;
6178 static struct md_sysfs_entry
6179 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6180 raid5_show_rmw_level
,
6181 raid5_store_rmw_level
);
6185 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6187 struct r5conf
*conf
;
6189 spin_lock(&mddev
->lock
);
6190 conf
= mddev
->private;
6192 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6193 spin_unlock(&mddev
->lock
);
6198 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6200 struct r5conf
*conf
;
6204 if (len
>= PAGE_SIZE
)
6206 if (kstrtoul(page
, 10, &new))
6209 err
= mddev_lock(mddev
);
6212 conf
= mddev
->private;
6215 else if (new > conf
->min_nr_stripes
)
6218 conf
->bypass_threshold
= new;
6219 mddev_unlock(mddev
);
6223 static struct md_sysfs_entry
6224 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6226 raid5_show_preread_threshold
,
6227 raid5_store_preread_threshold
);
6230 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6232 struct r5conf
*conf
;
6234 spin_lock(&mddev
->lock
);
6235 conf
= mddev
->private;
6237 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6238 spin_unlock(&mddev
->lock
);
6243 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6245 struct r5conf
*conf
;
6249 if (len
>= PAGE_SIZE
)
6251 if (kstrtoul(page
, 10, &new))
6255 err
= mddev_lock(mddev
);
6258 conf
= mddev
->private;
6261 else if (new != conf
->skip_copy
) {
6262 mddev_suspend(mddev
);
6263 conf
->skip_copy
= new;
6265 mddev
->queue
->backing_dev_info
.capabilities
|=
6266 BDI_CAP_STABLE_WRITES
;
6268 mddev
->queue
->backing_dev_info
.capabilities
&=
6269 ~BDI_CAP_STABLE_WRITES
;
6270 mddev_resume(mddev
);
6272 mddev_unlock(mddev
);
6276 static struct md_sysfs_entry
6277 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6278 raid5_show_skip_copy
,
6279 raid5_store_skip_copy
);
6282 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6284 struct r5conf
*conf
= mddev
->private;
6286 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6291 static struct md_sysfs_entry
6292 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6295 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6297 struct r5conf
*conf
;
6299 spin_lock(&mddev
->lock
);
6300 conf
= mddev
->private;
6302 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6303 spin_unlock(&mddev
->lock
);
6307 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6309 int *worker_cnt_per_group
,
6310 struct r5worker_group
**worker_groups
);
6312 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6314 struct r5conf
*conf
;
6317 struct r5worker_group
*new_groups
, *old_groups
;
6318 int group_cnt
, worker_cnt_per_group
;
6320 if (len
>= PAGE_SIZE
)
6322 if (kstrtoul(page
, 10, &new))
6325 err
= mddev_lock(mddev
);
6328 conf
= mddev
->private;
6331 else if (new != conf
->worker_cnt_per_group
) {
6332 mddev_suspend(mddev
);
6334 old_groups
= conf
->worker_groups
;
6336 flush_workqueue(raid5_wq
);
6338 err
= alloc_thread_groups(conf
, new,
6339 &group_cnt
, &worker_cnt_per_group
,
6342 spin_lock_irq(&conf
->device_lock
);
6343 conf
->group_cnt
= group_cnt
;
6344 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6345 conf
->worker_groups
= new_groups
;
6346 spin_unlock_irq(&conf
->device_lock
);
6349 kfree(old_groups
[0].workers
);
6352 mddev_resume(mddev
);
6354 mddev_unlock(mddev
);
6359 static struct md_sysfs_entry
6360 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6361 raid5_show_group_thread_cnt
,
6362 raid5_store_group_thread_cnt
);
6364 static struct attribute
*raid5_attrs
[] = {
6365 &raid5_stripecache_size
.attr
,
6366 &raid5_stripecache_active
.attr
,
6367 &raid5_preread_bypass_threshold
.attr
,
6368 &raid5_group_thread_cnt
.attr
,
6369 &raid5_skip_copy
.attr
,
6370 &raid5_rmw_level
.attr
,
6371 &r5c_journal_mode
.attr
,
6374 static struct attribute_group raid5_attrs_group
= {
6376 .attrs
= raid5_attrs
,
6379 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6381 int *worker_cnt_per_group
,
6382 struct r5worker_group
**worker_groups
)
6386 struct r5worker
*workers
;
6388 *worker_cnt_per_group
= cnt
;
6391 *worker_groups
= NULL
;
6394 *group_cnt
= num_possible_nodes();
6395 size
= sizeof(struct r5worker
) * cnt
;
6396 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6397 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6398 *group_cnt
, GFP_NOIO
);
6399 if (!*worker_groups
|| !workers
) {
6401 kfree(*worker_groups
);
6405 for (i
= 0; i
< *group_cnt
; i
++) {
6406 struct r5worker_group
*group
;
6408 group
= &(*worker_groups
)[i
];
6409 INIT_LIST_HEAD(&group
->handle_list
);
6411 group
->workers
= workers
+ i
* cnt
;
6413 for (j
= 0; j
< cnt
; j
++) {
6414 struct r5worker
*worker
= group
->workers
+ j
;
6415 worker
->group
= group
;
6416 INIT_WORK(&worker
->work
, raid5_do_work
);
6418 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6419 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6426 static void free_thread_groups(struct r5conf
*conf
)
6428 if (conf
->worker_groups
)
6429 kfree(conf
->worker_groups
[0].workers
);
6430 kfree(conf
->worker_groups
);
6431 conf
->worker_groups
= NULL
;
6435 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6437 struct r5conf
*conf
= mddev
->private;
6440 sectors
= mddev
->dev_sectors
;
6442 /* size is defined by the smallest of previous and new size */
6443 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6445 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6446 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6447 return sectors
* (raid_disks
- conf
->max_degraded
);
6450 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6452 safe_put_page(percpu
->spare_page
);
6453 if (percpu
->scribble
)
6454 flex_array_free(percpu
->scribble
);
6455 percpu
->spare_page
= NULL
;
6456 percpu
->scribble
= NULL
;
6459 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6461 if (conf
->level
== 6 && !percpu
->spare_page
)
6462 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6463 if (!percpu
->scribble
)
6464 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6465 conf
->previous_raid_disks
),
6466 max(conf
->chunk_sectors
,
6467 conf
->prev_chunk_sectors
)
6471 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6472 free_scratch_buffer(conf
, percpu
);
6479 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6481 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6483 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6487 static void raid5_free_percpu(struct r5conf
*conf
)
6492 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6493 free_percpu(conf
->percpu
);
6496 static void free_conf(struct r5conf
*conf
)
6501 r5l_exit_log(conf
->log
);
6502 if (conf
->shrinker
.nr_deferred
)
6503 unregister_shrinker(&conf
->shrinker
);
6505 free_thread_groups(conf
);
6506 shrink_stripes(conf
);
6507 raid5_free_percpu(conf
);
6508 for (i
= 0; i
< conf
->pool_size
; i
++)
6509 if (conf
->disks
[i
].extra_page
)
6510 put_page(conf
->disks
[i
].extra_page
);
6512 kfree(conf
->stripe_hashtbl
);
6516 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6518 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6519 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6521 if (alloc_scratch_buffer(conf
, percpu
)) {
6522 pr_warn("%s: failed memory allocation for cpu%u\n",
6529 static int raid5_alloc_percpu(struct r5conf
*conf
)
6533 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6537 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6539 conf
->scribble_disks
= max(conf
->raid_disks
,
6540 conf
->previous_raid_disks
);
6541 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6542 conf
->prev_chunk_sectors
);
6547 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6548 struct shrink_control
*sc
)
6550 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6551 unsigned long ret
= SHRINK_STOP
;
6553 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6555 while (ret
< sc
->nr_to_scan
&&
6556 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6557 if (drop_one_stripe(conf
) == 0) {
6563 mutex_unlock(&conf
->cache_size_mutex
);
6568 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6569 struct shrink_control
*sc
)
6571 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6573 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6574 /* unlikely, but not impossible */
6576 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6579 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6581 struct r5conf
*conf
;
6582 int raid_disk
, memory
, max_disks
;
6583 struct md_rdev
*rdev
;
6584 struct disk_info
*disk
;
6587 int group_cnt
, worker_cnt_per_group
;
6588 struct r5worker_group
*new_group
;
6590 if (mddev
->new_level
!= 5
6591 && mddev
->new_level
!= 4
6592 && mddev
->new_level
!= 6) {
6593 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6594 mdname(mddev
), mddev
->new_level
);
6595 return ERR_PTR(-EIO
);
6597 if ((mddev
->new_level
== 5
6598 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6599 (mddev
->new_level
== 6
6600 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6601 pr_warn("md/raid:%s: layout %d not supported\n",
6602 mdname(mddev
), mddev
->new_layout
);
6603 return ERR_PTR(-EIO
);
6605 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6606 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6607 mdname(mddev
), mddev
->raid_disks
);
6608 return ERR_PTR(-EINVAL
);
6611 if (!mddev
->new_chunk_sectors
||
6612 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6613 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6614 pr_warn("md/raid:%s: invalid chunk size %d\n",
6615 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6616 return ERR_PTR(-EINVAL
);
6619 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6622 /* Don't enable multi-threading by default*/
6623 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6625 conf
->group_cnt
= group_cnt
;
6626 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6627 conf
->worker_groups
= new_group
;
6630 spin_lock_init(&conf
->device_lock
);
6631 seqcount_init(&conf
->gen_lock
);
6632 mutex_init(&conf
->cache_size_mutex
);
6633 init_waitqueue_head(&conf
->wait_for_quiescent
);
6634 init_waitqueue_head(&conf
->wait_for_stripe
);
6635 init_waitqueue_head(&conf
->wait_for_overlap
);
6636 INIT_LIST_HEAD(&conf
->handle_list
);
6637 INIT_LIST_HEAD(&conf
->hold_list
);
6638 INIT_LIST_HEAD(&conf
->delayed_list
);
6639 INIT_LIST_HEAD(&conf
->bitmap_list
);
6640 bio_list_init(&conf
->return_bi
);
6641 init_llist_head(&conf
->released_stripes
);
6642 atomic_set(&conf
->active_stripes
, 0);
6643 atomic_set(&conf
->preread_active_stripes
, 0);
6644 atomic_set(&conf
->active_aligned_reads
, 0);
6645 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6646 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6648 conf
->raid_disks
= mddev
->raid_disks
;
6649 if (mddev
->reshape_position
== MaxSector
)
6650 conf
->previous_raid_disks
= mddev
->raid_disks
;
6652 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6653 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6655 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6661 for (i
= 0; i
< max_disks
; i
++) {
6662 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
6663 if (!conf
->disks
[i
].extra_page
)
6667 conf
->mddev
= mddev
;
6669 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6672 /* We init hash_locks[0] separately to that it can be used
6673 * as the reference lock in the spin_lock_nest_lock() call
6674 * in lock_all_device_hash_locks_irq in order to convince
6675 * lockdep that we know what we are doing.
6677 spin_lock_init(conf
->hash_locks
);
6678 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6679 spin_lock_init(conf
->hash_locks
+ i
);
6681 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6682 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6684 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6685 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6687 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
6688 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
6689 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
6690 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
6692 conf
->level
= mddev
->new_level
;
6693 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6694 if (raid5_alloc_percpu(conf
) != 0)
6697 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6699 rdev_for_each(rdev
, mddev
) {
6700 raid_disk
= rdev
->raid_disk
;
6701 if (raid_disk
>= max_disks
6702 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6704 disk
= conf
->disks
+ raid_disk
;
6706 if (test_bit(Replacement
, &rdev
->flags
)) {
6707 if (disk
->replacement
)
6709 disk
->replacement
= rdev
;
6716 if (test_bit(In_sync
, &rdev
->flags
)) {
6717 char b
[BDEVNAME_SIZE
];
6718 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6719 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6720 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6721 /* Cannot rely on bitmap to complete recovery */
6725 conf
->level
= mddev
->new_level
;
6726 if (conf
->level
== 6) {
6727 conf
->max_degraded
= 2;
6728 if (raid6_call
.xor_syndrome
)
6729 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6731 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6733 conf
->max_degraded
= 1;
6734 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6736 conf
->algorithm
= mddev
->new_layout
;
6737 conf
->reshape_progress
= mddev
->reshape_position
;
6738 if (conf
->reshape_progress
!= MaxSector
) {
6739 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6740 conf
->prev_algo
= mddev
->layout
;
6742 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6743 conf
->prev_algo
= conf
->algorithm
;
6746 conf
->min_nr_stripes
= NR_STRIPES
;
6747 if (mddev
->reshape_position
!= MaxSector
) {
6748 int stripes
= max_t(int,
6749 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
6750 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
6751 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
6752 if (conf
->min_nr_stripes
!= NR_STRIPES
)
6753 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6754 mdname(mddev
), conf
->min_nr_stripes
);
6756 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6757 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6758 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6759 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6760 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6761 mdname(mddev
), memory
);
6764 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
6766 * Losing a stripe head costs more than the time to refill it,
6767 * it reduces the queue depth and so can hurt throughput.
6768 * So set it rather large, scaled by number of devices.
6770 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6771 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6772 conf
->shrinker
.count_objects
= raid5_cache_count
;
6773 conf
->shrinker
.batch
= 128;
6774 conf
->shrinker
.flags
= 0;
6775 if (register_shrinker(&conf
->shrinker
)) {
6776 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6781 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6782 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6783 if (!conf
->thread
) {
6784 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6794 return ERR_PTR(-EIO
);
6796 return ERR_PTR(-ENOMEM
);
6799 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6802 case ALGORITHM_PARITY_0
:
6803 if (raid_disk
< max_degraded
)
6806 case ALGORITHM_PARITY_N
:
6807 if (raid_disk
>= raid_disks
- max_degraded
)
6810 case ALGORITHM_PARITY_0_6
:
6811 if (raid_disk
== 0 ||
6812 raid_disk
== raid_disks
- 1)
6815 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6816 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6817 case ALGORITHM_LEFT_SYMMETRIC_6
:
6818 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6819 if (raid_disk
== raid_disks
- 1)
6825 static int raid5_run(struct mddev
*mddev
)
6827 struct r5conf
*conf
;
6828 int working_disks
= 0;
6829 int dirty_parity_disks
= 0;
6830 struct md_rdev
*rdev
;
6831 struct md_rdev
*journal_dev
= NULL
;
6832 sector_t reshape_offset
= 0;
6834 long long min_offset_diff
= 0;
6837 if (mddev
->recovery_cp
!= MaxSector
)
6838 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6841 rdev_for_each(rdev
, mddev
) {
6844 if (test_bit(Journal
, &rdev
->flags
)) {
6848 if (rdev
->raid_disk
< 0)
6850 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6852 min_offset_diff
= diff
;
6854 } else if (mddev
->reshape_backwards
&&
6855 diff
< min_offset_diff
)
6856 min_offset_diff
= diff
;
6857 else if (!mddev
->reshape_backwards
&&
6858 diff
> min_offset_diff
)
6859 min_offset_diff
= diff
;
6862 if (mddev
->reshape_position
!= MaxSector
) {
6863 /* Check that we can continue the reshape.
6864 * Difficulties arise if the stripe we would write to
6865 * next is at or after the stripe we would read from next.
6866 * For a reshape that changes the number of devices, this
6867 * is only possible for a very short time, and mdadm makes
6868 * sure that time appears to have past before assembling
6869 * the array. So we fail if that time hasn't passed.
6870 * For a reshape that keeps the number of devices the same
6871 * mdadm must be monitoring the reshape can keeping the
6872 * critical areas read-only and backed up. It will start
6873 * the array in read-only mode, so we check for that.
6875 sector_t here_new
, here_old
;
6877 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6882 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6887 if (mddev
->new_level
!= mddev
->level
) {
6888 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6892 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6893 /* reshape_position must be on a new-stripe boundary, and one
6894 * further up in new geometry must map after here in old
6896 * If the chunk sizes are different, then as we perform reshape
6897 * in units of the largest of the two, reshape_position needs
6898 * be a multiple of the largest chunk size times new data disks.
6900 here_new
= mddev
->reshape_position
;
6901 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6902 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6903 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6904 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6908 reshape_offset
= here_new
* chunk_sectors
;
6909 /* here_new is the stripe we will write to */
6910 here_old
= mddev
->reshape_position
;
6911 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6912 /* here_old is the first stripe that we might need to read
6914 if (mddev
->delta_disks
== 0) {
6915 /* We cannot be sure it is safe to start an in-place
6916 * reshape. It is only safe if user-space is monitoring
6917 * and taking constant backups.
6918 * mdadm always starts a situation like this in
6919 * readonly mode so it can take control before
6920 * allowing any writes. So just check for that.
6922 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6923 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6924 /* not really in-place - so OK */;
6925 else if (mddev
->ro
== 0) {
6926 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6930 } else if (mddev
->reshape_backwards
6931 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6932 here_old
* chunk_sectors
)
6933 : (here_new
* chunk_sectors
>=
6934 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6935 /* Reading from the same stripe as writing to - bad */
6936 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
6940 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
6941 /* OK, we should be able to continue; */
6943 BUG_ON(mddev
->level
!= mddev
->new_level
);
6944 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6945 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6946 BUG_ON(mddev
->delta_disks
!= 0);
6949 if (mddev
->private == NULL
)
6950 conf
= setup_conf(mddev
);
6952 conf
= mddev
->private;
6955 return PTR_ERR(conf
);
6957 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
6959 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
6962 set_disk_ro(mddev
->gendisk
, 1);
6963 } else if (mddev
->recovery_cp
== MaxSector
)
6964 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
6967 conf
->min_offset_diff
= min_offset_diff
;
6968 mddev
->thread
= conf
->thread
;
6969 conf
->thread
= NULL
;
6970 mddev
->private = conf
;
6972 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6974 rdev
= conf
->disks
[i
].rdev
;
6975 if (!rdev
&& conf
->disks
[i
].replacement
) {
6976 /* The replacement is all we have yet */
6977 rdev
= conf
->disks
[i
].replacement
;
6978 conf
->disks
[i
].replacement
= NULL
;
6979 clear_bit(Replacement
, &rdev
->flags
);
6980 conf
->disks
[i
].rdev
= rdev
;
6984 if (conf
->disks
[i
].replacement
&&
6985 conf
->reshape_progress
!= MaxSector
) {
6986 /* replacements and reshape simply do not mix. */
6987 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
6990 if (test_bit(In_sync
, &rdev
->flags
)) {
6994 /* This disc is not fully in-sync. However if it
6995 * just stored parity (beyond the recovery_offset),
6996 * when we don't need to be concerned about the
6997 * array being dirty.
6998 * When reshape goes 'backwards', we never have
6999 * partially completed devices, so we only need
7000 * to worry about reshape going forwards.
7002 /* Hack because v0.91 doesn't store recovery_offset properly. */
7003 if (mddev
->major_version
== 0 &&
7004 mddev
->minor_version
> 90)
7005 rdev
->recovery_offset
= reshape_offset
;
7007 if (rdev
->recovery_offset
< reshape_offset
) {
7008 /* We need to check old and new layout */
7009 if (!only_parity(rdev
->raid_disk
,
7012 conf
->max_degraded
))
7015 if (!only_parity(rdev
->raid_disk
,
7017 conf
->previous_raid_disks
,
7018 conf
->max_degraded
))
7020 dirty_parity_disks
++;
7024 * 0 for a fully functional array, 1 or 2 for a degraded array.
7026 mddev
->degraded
= calc_degraded(conf
);
7028 if (has_failed(conf
)) {
7029 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7030 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7034 /* device size must be a multiple of chunk size */
7035 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
7036 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7038 if (mddev
->degraded
> dirty_parity_disks
&&
7039 mddev
->recovery_cp
!= MaxSector
) {
7040 if (mddev
->ok_start_degraded
)
7041 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7044 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7050 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7051 mdname(mddev
), conf
->level
,
7052 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
7055 print_raid5_conf(conf
);
7057 if (conf
->reshape_progress
!= MaxSector
) {
7058 conf
->reshape_safe
= conf
->reshape_progress
;
7059 atomic_set(&conf
->reshape_stripes
, 0);
7060 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7061 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7062 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7063 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7064 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7068 /* Ok, everything is just fine now */
7069 if (mddev
->to_remove
== &raid5_attrs_group
)
7070 mddev
->to_remove
= NULL
;
7071 else if (mddev
->kobj
.sd
&&
7072 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7073 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7075 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7079 bool discard_supported
= true;
7080 /* read-ahead size must cover two whole stripes, which
7081 * is 2 * (datadisks) * chunksize where 'n' is the
7082 * number of raid devices
7084 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7085 int stripe
= data_disks
*
7086 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7087 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7088 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7090 chunk_size
= mddev
->chunk_sectors
<< 9;
7091 blk_queue_io_min(mddev
->queue
, chunk_size
);
7092 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7093 (conf
->raid_disks
- conf
->max_degraded
));
7094 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7096 * We can only discard a whole stripe. It doesn't make sense to
7097 * discard data disk but write parity disk
7099 stripe
= stripe
* PAGE_SIZE
;
7100 /* Round up to power of 2, as discard handling
7101 * currently assumes that */
7102 while ((stripe
-1) & stripe
)
7103 stripe
= (stripe
| (stripe
-1)) + 1;
7104 mddev
->queue
->limits
.discard_alignment
= stripe
;
7105 mddev
->queue
->limits
.discard_granularity
= stripe
;
7108 * We use 16-bit counter of active stripes in bi_phys_segments
7109 * (minus one for over-loaded initialization)
7111 blk_queue_max_hw_sectors(mddev
->queue
, 0xfffe * STRIPE_SECTORS
);
7112 blk_queue_max_discard_sectors(mddev
->queue
,
7113 0xfffe * STRIPE_SECTORS
);
7116 * unaligned part of discard request will be ignored, so can't
7117 * guarantee discard_zeroes_data
7119 mddev
->queue
->limits
.discard_zeroes_data
= 0;
7121 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7123 rdev_for_each(rdev
, mddev
) {
7124 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7125 rdev
->data_offset
<< 9);
7126 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7127 rdev
->new_data_offset
<< 9);
7129 * discard_zeroes_data is required, otherwise data
7130 * could be lost. Consider a scenario: discard a stripe
7131 * (the stripe could be inconsistent if
7132 * discard_zeroes_data is 0); write one disk of the
7133 * stripe (the stripe could be inconsistent again
7134 * depending on which disks are used to calculate
7135 * parity); the disk is broken; The stripe data of this
7138 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7139 !bdev_get_queue(rdev
->bdev
)->
7140 limits
.discard_zeroes_data
)
7141 discard_supported
= false;
7142 /* Unfortunately, discard_zeroes_data is not currently
7143 * a guarantee - just a hint. So we only allow DISCARD
7144 * if the sysadmin has confirmed that only safe devices
7145 * are in use by setting a module parameter.
7147 if (!devices_handle_discard_safely
) {
7148 if (discard_supported
) {
7149 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7150 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7152 discard_supported
= false;
7156 if (discard_supported
&&
7157 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7158 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7159 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7162 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7165 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7169 char b
[BDEVNAME_SIZE
];
7171 pr_debug("md/raid:%s: using device %s as journal\n",
7172 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7173 if (r5l_init_log(conf
, journal_dev
))
7179 md_unregister_thread(&mddev
->thread
);
7180 print_raid5_conf(conf
);
7182 mddev
->private = NULL
;
7183 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7187 static void raid5_free(struct mddev
*mddev
, void *priv
)
7189 struct r5conf
*conf
= priv
;
7192 mddev
->to_remove
= &raid5_attrs_group
;
7195 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7197 struct r5conf
*conf
= mddev
->private;
7200 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7201 conf
->chunk_sectors
/ 2, mddev
->layout
);
7202 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7204 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7205 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7206 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7209 seq_printf (seq
, "]");
7212 static void print_raid5_conf (struct r5conf
*conf
)
7215 struct disk_info
*tmp
;
7217 pr_debug("RAID conf printout:\n");
7219 pr_debug("(conf==NULL)\n");
7222 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7224 conf
->raid_disks
- conf
->mddev
->degraded
);
7226 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7227 char b
[BDEVNAME_SIZE
];
7228 tmp
= conf
->disks
+ i
;
7230 pr_debug(" disk %d, o:%d, dev:%s\n",
7231 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7232 bdevname(tmp
->rdev
->bdev
, b
));
7236 static int raid5_spare_active(struct mddev
*mddev
)
7239 struct r5conf
*conf
= mddev
->private;
7240 struct disk_info
*tmp
;
7242 unsigned long flags
;
7244 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7245 tmp
= conf
->disks
+ i
;
7246 if (tmp
->replacement
7247 && tmp
->replacement
->recovery_offset
== MaxSector
7248 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7249 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7250 /* Replacement has just become active. */
7252 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7255 /* Replaced device not technically faulty,
7256 * but we need to be sure it gets removed
7257 * and never re-added.
7259 set_bit(Faulty
, &tmp
->rdev
->flags
);
7260 sysfs_notify_dirent_safe(
7261 tmp
->rdev
->sysfs_state
);
7263 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7264 } else if (tmp
->rdev
7265 && tmp
->rdev
->recovery_offset
== MaxSector
7266 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7267 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7269 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7272 spin_lock_irqsave(&conf
->device_lock
, flags
);
7273 mddev
->degraded
= calc_degraded(conf
);
7274 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7275 print_raid5_conf(conf
);
7279 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7281 struct r5conf
*conf
= mddev
->private;
7283 int number
= rdev
->raid_disk
;
7284 struct md_rdev
**rdevp
;
7285 struct disk_info
*p
= conf
->disks
+ number
;
7287 print_raid5_conf(conf
);
7288 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7289 struct r5l_log
*log
;
7291 * we can't wait pending write here, as this is called in
7292 * raid5d, wait will deadlock.
7294 if (atomic_read(&mddev
->writes_pending
))
7302 if (rdev
== p
->rdev
)
7304 else if (rdev
== p
->replacement
)
7305 rdevp
= &p
->replacement
;
7309 if (number
>= conf
->raid_disks
&&
7310 conf
->reshape_progress
== MaxSector
)
7311 clear_bit(In_sync
, &rdev
->flags
);
7313 if (test_bit(In_sync
, &rdev
->flags
) ||
7314 atomic_read(&rdev
->nr_pending
)) {
7318 /* Only remove non-faulty devices if recovery
7321 if (!test_bit(Faulty
, &rdev
->flags
) &&
7322 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7323 !has_failed(conf
) &&
7324 (!p
->replacement
|| p
->replacement
== rdev
) &&
7325 number
< conf
->raid_disks
) {
7330 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7332 if (atomic_read(&rdev
->nr_pending
)) {
7333 /* lost the race, try later */
7338 if (p
->replacement
) {
7339 /* We must have just cleared 'rdev' */
7340 p
->rdev
= p
->replacement
;
7341 clear_bit(Replacement
, &p
->replacement
->flags
);
7342 smp_mb(); /* Make sure other CPUs may see both as identical
7343 * but will never see neither - if they are careful
7345 p
->replacement
= NULL
;
7346 clear_bit(WantReplacement
, &rdev
->flags
);
7348 /* We might have just removed the Replacement as faulty-
7349 * clear the bit just in case
7351 clear_bit(WantReplacement
, &rdev
->flags
);
7354 print_raid5_conf(conf
);
7358 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7360 struct r5conf
*conf
= mddev
->private;
7363 struct disk_info
*p
;
7365 int last
= conf
->raid_disks
- 1;
7367 if (test_bit(Journal
, &rdev
->flags
)) {
7368 char b
[BDEVNAME_SIZE
];
7372 rdev
->raid_disk
= 0;
7374 * The array is in readonly mode if journal is missing, so no
7375 * write requests running. We should be safe
7377 r5l_init_log(conf
, rdev
);
7378 pr_debug("md/raid:%s: using device %s as journal\n",
7379 mdname(mddev
), bdevname(rdev
->bdev
, b
));
7382 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7385 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7386 /* no point adding a device */
7389 if (rdev
->raid_disk
>= 0)
7390 first
= last
= rdev
->raid_disk
;
7393 * find the disk ... but prefer rdev->saved_raid_disk
7396 if (rdev
->saved_raid_disk
>= 0 &&
7397 rdev
->saved_raid_disk
>= first
&&
7398 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7399 first
= rdev
->saved_raid_disk
;
7401 for (disk
= first
; disk
<= last
; disk
++) {
7402 p
= conf
->disks
+ disk
;
7403 if (p
->rdev
== NULL
) {
7404 clear_bit(In_sync
, &rdev
->flags
);
7405 rdev
->raid_disk
= disk
;
7407 if (rdev
->saved_raid_disk
!= disk
)
7409 rcu_assign_pointer(p
->rdev
, rdev
);
7413 for (disk
= first
; disk
<= last
; disk
++) {
7414 p
= conf
->disks
+ disk
;
7415 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7416 p
->replacement
== NULL
) {
7417 clear_bit(In_sync
, &rdev
->flags
);
7418 set_bit(Replacement
, &rdev
->flags
);
7419 rdev
->raid_disk
= disk
;
7422 rcu_assign_pointer(p
->replacement
, rdev
);
7427 print_raid5_conf(conf
);
7431 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7433 /* no resync is happening, and there is enough space
7434 * on all devices, so we can resize.
7435 * We need to make sure resync covers any new space.
7436 * If the array is shrinking we should possibly wait until
7437 * any io in the removed space completes, but it hardly seems
7441 struct r5conf
*conf
= mddev
->private;
7445 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7446 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7447 if (mddev
->external_size
&&
7448 mddev
->array_sectors
> newsize
)
7450 if (mddev
->bitmap
) {
7451 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7455 md_set_array_sectors(mddev
, newsize
);
7456 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7457 revalidate_disk(mddev
->gendisk
);
7458 if (sectors
> mddev
->dev_sectors
&&
7459 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7460 mddev
->recovery_cp
= mddev
->dev_sectors
;
7461 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7463 mddev
->dev_sectors
= sectors
;
7464 mddev
->resync_max_sectors
= sectors
;
7468 static int check_stripe_cache(struct mddev
*mddev
)
7470 /* Can only proceed if there are plenty of stripe_heads.
7471 * We need a minimum of one full stripe,, and for sensible progress
7472 * it is best to have about 4 times that.
7473 * If we require 4 times, then the default 256 4K stripe_heads will
7474 * allow for chunk sizes up to 256K, which is probably OK.
7475 * If the chunk size is greater, user-space should request more
7476 * stripe_heads first.
7478 struct r5conf
*conf
= mddev
->private;
7479 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7480 > conf
->min_nr_stripes
||
7481 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7482 > conf
->min_nr_stripes
) {
7483 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7485 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7492 static int check_reshape(struct mddev
*mddev
)
7494 struct r5conf
*conf
= mddev
->private;
7498 if (mddev
->delta_disks
== 0 &&
7499 mddev
->new_layout
== mddev
->layout
&&
7500 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7501 return 0; /* nothing to do */
7502 if (has_failed(conf
))
7504 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7505 /* We might be able to shrink, but the devices must
7506 * be made bigger first.
7507 * For raid6, 4 is the minimum size.
7508 * Otherwise 2 is the minimum
7511 if (mddev
->level
== 6)
7513 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7517 if (!check_stripe_cache(mddev
))
7520 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7521 mddev
->delta_disks
> 0)
7522 if (resize_chunks(conf
,
7523 conf
->previous_raid_disks
7524 + max(0, mddev
->delta_disks
),
7525 max(mddev
->new_chunk_sectors
,
7526 mddev
->chunk_sectors
)
7529 return resize_stripes(conf
, (conf
->previous_raid_disks
7530 + mddev
->delta_disks
));
7533 static int raid5_start_reshape(struct mddev
*mddev
)
7535 struct r5conf
*conf
= mddev
->private;
7536 struct md_rdev
*rdev
;
7538 unsigned long flags
;
7540 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7543 if (!check_stripe_cache(mddev
))
7546 if (has_failed(conf
))
7549 rdev_for_each(rdev
, mddev
) {
7550 if (!test_bit(In_sync
, &rdev
->flags
)
7551 && !test_bit(Faulty
, &rdev
->flags
))
7555 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7556 /* Not enough devices even to make a degraded array
7561 /* Refuse to reduce size of the array. Any reductions in
7562 * array size must be through explicit setting of array_size
7565 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7566 < mddev
->array_sectors
) {
7567 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7572 atomic_set(&conf
->reshape_stripes
, 0);
7573 spin_lock_irq(&conf
->device_lock
);
7574 write_seqcount_begin(&conf
->gen_lock
);
7575 conf
->previous_raid_disks
= conf
->raid_disks
;
7576 conf
->raid_disks
+= mddev
->delta_disks
;
7577 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7578 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7579 conf
->prev_algo
= conf
->algorithm
;
7580 conf
->algorithm
= mddev
->new_layout
;
7582 /* Code that selects data_offset needs to see the generation update
7583 * if reshape_progress has been set - so a memory barrier needed.
7586 if (mddev
->reshape_backwards
)
7587 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7589 conf
->reshape_progress
= 0;
7590 conf
->reshape_safe
= conf
->reshape_progress
;
7591 write_seqcount_end(&conf
->gen_lock
);
7592 spin_unlock_irq(&conf
->device_lock
);
7594 /* Now make sure any requests that proceeded on the assumption
7595 * the reshape wasn't running - like Discard or Read - have
7598 mddev_suspend(mddev
);
7599 mddev_resume(mddev
);
7601 /* Add some new drives, as many as will fit.
7602 * We know there are enough to make the newly sized array work.
7603 * Don't add devices if we are reducing the number of
7604 * devices in the array. This is because it is not possible
7605 * to correctly record the "partially reconstructed" state of
7606 * such devices during the reshape and confusion could result.
7608 if (mddev
->delta_disks
>= 0) {
7609 rdev_for_each(rdev
, mddev
)
7610 if (rdev
->raid_disk
< 0 &&
7611 !test_bit(Faulty
, &rdev
->flags
)) {
7612 if (raid5_add_disk(mddev
, rdev
) == 0) {
7614 >= conf
->previous_raid_disks
)
7615 set_bit(In_sync
, &rdev
->flags
);
7617 rdev
->recovery_offset
= 0;
7619 if (sysfs_link_rdev(mddev
, rdev
))
7620 /* Failure here is OK */;
7622 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7623 && !test_bit(Faulty
, &rdev
->flags
)) {
7624 /* This is a spare that was manually added */
7625 set_bit(In_sync
, &rdev
->flags
);
7628 /* When a reshape changes the number of devices,
7629 * ->degraded is measured against the larger of the
7630 * pre and post number of devices.
7632 spin_lock_irqsave(&conf
->device_lock
, flags
);
7633 mddev
->degraded
= calc_degraded(conf
);
7634 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7636 mddev
->raid_disks
= conf
->raid_disks
;
7637 mddev
->reshape_position
= conf
->reshape_progress
;
7638 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7640 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7641 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7642 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7643 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7644 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7645 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7647 if (!mddev
->sync_thread
) {
7648 mddev
->recovery
= 0;
7649 spin_lock_irq(&conf
->device_lock
);
7650 write_seqcount_begin(&conf
->gen_lock
);
7651 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7652 mddev
->new_chunk_sectors
=
7653 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7654 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7655 rdev_for_each(rdev
, mddev
)
7656 rdev
->new_data_offset
= rdev
->data_offset
;
7658 conf
->generation
--;
7659 conf
->reshape_progress
= MaxSector
;
7660 mddev
->reshape_position
= MaxSector
;
7661 write_seqcount_end(&conf
->gen_lock
);
7662 spin_unlock_irq(&conf
->device_lock
);
7665 conf
->reshape_checkpoint
= jiffies
;
7666 md_wakeup_thread(mddev
->sync_thread
);
7667 md_new_event(mddev
);
7671 /* This is called from the reshape thread and should make any
7672 * changes needed in 'conf'
7674 static void end_reshape(struct r5conf
*conf
)
7677 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7678 struct md_rdev
*rdev
;
7680 spin_lock_irq(&conf
->device_lock
);
7681 conf
->previous_raid_disks
= conf
->raid_disks
;
7682 rdev_for_each(rdev
, conf
->mddev
)
7683 rdev
->data_offset
= rdev
->new_data_offset
;
7685 conf
->reshape_progress
= MaxSector
;
7686 conf
->mddev
->reshape_position
= MaxSector
;
7687 spin_unlock_irq(&conf
->device_lock
);
7688 wake_up(&conf
->wait_for_overlap
);
7690 /* read-ahead size must cover two whole stripes, which is
7691 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7693 if (conf
->mddev
->queue
) {
7694 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7695 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7697 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7698 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7703 /* This is called from the raid5d thread with mddev_lock held.
7704 * It makes config changes to the device.
7706 static void raid5_finish_reshape(struct mddev
*mddev
)
7708 struct r5conf
*conf
= mddev
->private;
7710 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7712 if (mddev
->delta_disks
> 0) {
7713 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7715 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7716 revalidate_disk(mddev
->gendisk
);
7720 spin_lock_irq(&conf
->device_lock
);
7721 mddev
->degraded
= calc_degraded(conf
);
7722 spin_unlock_irq(&conf
->device_lock
);
7723 for (d
= conf
->raid_disks
;
7724 d
< conf
->raid_disks
- mddev
->delta_disks
;
7726 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7728 clear_bit(In_sync
, &rdev
->flags
);
7729 rdev
= conf
->disks
[d
].replacement
;
7731 clear_bit(In_sync
, &rdev
->flags
);
7734 mddev
->layout
= conf
->algorithm
;
7735 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7736 mddev
->reshape_position
= MaxSector
;
7737 mddev
->delta_disks
= 0;
7738 mddev
->reshape_backwards
= 0;
7742 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7744 struct r5conf
*conf
= mddev
->private;
7747 case 2: /* resume for a suspend */
7748 wake_up(&conf
->wait_for_overlap
);
7751 case 1: /* stop all writes */
7752 lock_all_device_hash_locks_irq(conf
);
7753 /* '2' tells resync/reshape to pause so that all
7754 * active stripes can drain
7756 r5c_flush_cache(conf
, INT_MAX
);
7758 wait_event_cmd(conf
->wait_for_quiescent
,
7759 atomic_read(&conf
->active_stripes
) == 0 &&
7760 atomic_read(&conf
->active_aligned_reads
) == 0,
7761 unlock_all_device_hash_locks_irq(conf
),
7762 lock_all_device_hash_locks_irq(conf
));
7764 unlock_all_device_hash_locks_irq(conf
);
7765 /* allow reshape to continue */
7766 wake_up(&conf
->wait_for_overlap
);
7769 case 0: /* re-enable writes */
7770 lock_all_device_hash_locks_irq(conf
);
7772 wake_up(&conf
->wait_for_quiescent
);
7773 wake_up(&conf
->wait_for_overlap
);
7774 unlock_all_device_hash_locks_irq(conf
);
7777 r5l_quiesce(conf
->log
, state
);
7780 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7782 struct r0conf
*raid0_conf
= mddev
->private;
7785 /* for raid0 takeover only one zone is supported */
7786 if (raid0_conf
->nr_strip_zones
> 1) {
7787 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7789 return ERR_PTR(-EINVAL
);
7792 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7793 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7794 mddev
->dev_sectors
= sectors
;
7795 mddev
->new_level
= level
;
7796 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7797 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7798 mddev
->raid_disks
+= 1;
7799 mddev
->delta_disks
= 1;
7800 /* make sure it will be not marked as dirty */
7801 mddev
->recovery_cp
= MaxSector
;
7803 return setup_conf(mddev
);
7806 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7811 if (mddev
->raid_disks
!= 2 ||
7812 mddev
->degraded
> 1)
7813 return ERR_PTR(-EINVAL
);
7815 /* Should check if there are write-behind devices? */
7817 chunksect
= 64*2; /* 64K by default */
7819 /* The array must be an exact multiple of chunksize */
7820 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7823 if ((chunksect
<<9) < STRIPE_SIZE
)
7824 /* array size does not allow a suitable chunk size */
7825 return ERR_PTR(-EINVAL
);
7827 mddev
->new_level
= 5;
7828 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7829 mddev
->new_chunk_sectors
= chunksect
;
7831 ret
= setup_conf(mddev
);
7832 if (!IS_ERR_VALUE(ret
))
7833 clear_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
7837 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7841 switch (mddev
->layout
) {
7842 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7843 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7845 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7846 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7848 case ALGORITHM_LEFT_SYMMETRIC_6
:
7849 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7851 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7852 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7854 case ALGORITHM_PARITY_0_6
:
7855 new_layout
= ALGORITHM_PARITY_0
;
7857 case ALGORITHM_PARITY_N
:
7858 new_layout
= ALGORITHM_PARITY_N
;
7861 return ERR_PTR(-EINVAL
);
7863 mddev
->new_level
= 5;
7864 mddev
->new_layout
= new_layout
;
7865 mddev
->delta_disks
= -1;
7866 mddev
->raid_disks
-= 1;
7867 return setup_conf(mddev
);
7870 static int raid5_check_reshape(struct mddev
*mddev
)
7872 /* For a 2-drive array, the layout and chunk size can be changed
7873 * immediately as not restriping is needed.
7874 * For larger arrays we record the new value - after validation
7875 * to be used by a reshape pass.
7877 struct r5conf
*conf
= mddev
->private;
7878 int new_chunk
= mddev
->new_chunk_sectors
;
7880 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7882 if (new_chunk
> 0) {
7883 if (!is_power_of_2(new_chunk
))
7885 if (new_chunk
< (PAGE_SIZE
>>9))
7887 if (mddev
->array_sectors
& (new_chunk
-1))
7888 /* not factor of array size */
7892 /* They look valid */
7894 if (mddev
->raid_disks
== 2) {
7895 /* can make the change immediately */
7896 if (mddev
->new_layout
>= 0) {
7897 conf
->algorithm
= mddev
->new_layout
;
7898 mddev
->layout
= mddev
->new_layout
;
7900 if (new_chunk
> 0) {
7901 conf
->chunk_sectors
= new_chunk
;
7902 mddev
->chunk_sectors
= new_chunk
;
7904 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7905 md_wakeup_thread(mddev
->thread
);
7907 return check_reshape(mddev
);
7910 static int raid6_check_reshape(struct mddev
*mddev
)
7912 int new_chunk
= mddev
->new_chunk_sectors
;
7914 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7916 if (new_chunk
> 0) {
7917 if (!is_power_of_2(new_chunk
))
7919 if (new_chunk
< (PAGE_SIZE
>> 9))
7921 if (mddev
->array_sectors
& (new_chunk
-1))
7922 /* not factor of array size */
7926 /* They look valid */
7927 return check_reshape(mddev
);
7930 static void *raid5_takeover(struct mddev
*mddev
)
7932 /* raid5 can take over:
7933 * raid0 - if there is only one strip zone - make it a raid4 layout
7934 * raid1 - if there are two drives. We need to know the chunk size
7935 * raid4 - trivial - just use a raid4 layout.
7936 * raid6 - Providing it is a *_6 layout
7938 if (mddev
->level
== 0)
7939 return raid45_takeover_raid0(mddev
, 5);
7940 if (mddev
->level
== 1)
7941 return raid5_takeover_raid1(mddev
);
7942 if (mddev
->level
== 4) {
7943 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7944 mddev
->new_level
= 5;
7945 return setup_conf(mddev
);
7947 if (mddev
->level
== 6)
7948 return raid5_takeover_raid6(mddev
);
7950 return ERR_PTR(-EINVAL
);
7953 static void *raid4_takeover(struct mddev
*mddev
)
7955 /* raid4 can take over:
7956 * raid0 - if there is only one strip zone
7957 * raid5 - if layout is right
7959 if (mddev
->level
== 0)
7960 return raid45_takeover_raid0(mddev
, 4);
7961 if (mddev
->level
== 5 &&
7962 mddev
->layout
== ALGORITHM_PARITY_N
) {
7963 mddev
->new_layout
= 0;
7964 mddev
->new_level
= 4;
7965 return setup_conf(mddev
);
7967 return ERR_PTR(-EINVAL
);
7970 static struct md_personality raid5_personality
;
7972 static void *raid6_takeover(struct mddev
*mddev
)
7974 /* Currently can only take over a raid5. We map the
7975 * personality to an equivalent raid6 personality
7976 * with the Q block at the end.
7980 if (mddev
->pers
!= &raid5_personality
)
7981 return ERR_PTR(-EINVAL
);
7982 if (mddev
->degraded
> 1)
7983 return ERR_PTR(-EINVAL
);
7984 if (mddev
->raid_disks
> 253)
7985 return ERR_PTR(-EINVAL
);
7986 if (mddev
->raid_disks
< 3)
7987 return ERR_PTR(-EINVAL
);
7989 switch (mddev
->layout
) {
7990 case ALGORITHM_LEFT_ASYMMETRIC
:
7991 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7993 case ALGORITHM_RIGHT_ASYMMETRIC
:
7994 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7996 case ALGORITHM_LEFT_SYMMETRIC
:
7997 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7999 case ALGORITHM_RIGHT_SYMMETRIC
:
8000 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8002 case ALGORITHM_PARITY_0
:
8003 new_layout
= ALGORITHM_PARITY_0_6
;
8005 case ALGORITHM_PARITY_N
:
8006 new_layout
= ALGORITHM_PARITY_N
;
8009 return ERR_PTR(-EINVAL
);
8011 mddev
->new_level
= 6;
8012 mddev
->new_layout
= new_layout
;
8013 mddev
->delta_disks
= 1;
8014 mddev
->raid_disks
+= 1;
8015 return setup_conf(mddev
);
8018 static struct md_personality raid6_personality
=
8022 .owner
= THIS_MODULE
,
8023 .make_request
= raid5_make_request
,
8026 .status
= raid5_status
,
8027 .error_handler
= raid5_error
,
8028 .hot_add_disk
= raid5_add_disk
,
8029 .hot_remove_disk
= raid5_remove_disk
,
8030 .spare_active
= raid5_spare_active
,
8031 .sync_request
= raid5_sync_request
,
8032 .resize
= raid5_resize
,
8034 .check_reshape
= raid6_check_reshape
,
8035 .start_reshape
= raid5_start_reshape
,
8036 .finish_reshape
= raid5_finish_reshape
,
8037 .quiesce
= raid5_quiesce
,
8038 .takeover
= raid6_takeover
,
8039 .congested
= raid5_congested
,
8041 static struct md_personality raid5_personality
=
8045 .owner
= THIS_MODULE
,
8046 .make_request
= raid5_make_request
,
8049 .status
= raid5_status
,
8050 .error_handler
= raid5_error
,
8051 .hot_add_disk
= raid5_add_disk
,
8052 .hot_remove_disk
= raid5_remove_disk
,
8053 .spare_active
= raid5_spare_active
,
8054 .sync_request
= raid5_sync_request
,
8055 .resize
= raid5_resize
,
8057 .check_reshape
= raid5_check_reshape
,
8058 .start_reshape
= raid5_start_reshape
,
8059 .finish_reshape
= raid5_finish_reshape
,
8060 .quiesce
= raid5_quiesce
,
8061 .takeover
= raid5_takeover
,
8062 .congested
= raid5_congested
,
8065 static struct md_personality raid4_personality
=
8069 .owner
= THIS_MODULE
,
8070 .make_request
= raid5_make_request
,
8073 .status
= raid5_status
,
8074 .error_handler
= raid5_error
,
8075 .hot_add_disk
= raid5_add_disk
,
8076 .hot_remove_disk
= raid5_remove_disk
,
8077 .spare_active
= raid5_spare_active
,
8078 .sync_request
= raid5_sync_request
,
8079 .resize
= raid5_resize
,
8081 .check_reshape
= raid5_check_reshape
,
8082 .start_reshape
= raid5_start_reshape
,
8083 .finish_reshape
= raid5_finish_reshape
,
8084 .quiesce
= raid5_quiesce
,
8085 .takeover
= raid4_takeover
,
8086 .congested
= raid5_congested
,
8089 static int __init
raid5_init(void)
8093 raid5_wq
= alloc_workqueue("raid5wq",
8094 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8098 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8100 raid456_cpu_up_prepare
,
8103 destroy_workqueue(raid5_wq
);
8106 register_md_personality(&raid6_personality
);
8107 register_md_personality(&raid5_personality
);
8108 register_md_personality(&raid4_personality
);
8112 static void raid5_exit(void)
8114 unregister_md_personality(&raid6_personality
);
8115 unregister_md_personality(&raid5_personality
);
8116 unregister_md_personality(&raid4_personality
);
8117 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8118 destroy_workqueue(raid5_wq
);
8121 module_init(raid5_init
);
8122 module_exit(raid5_exit
);
8123 MODULE_LICENSE("GPL");
8124 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8125 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8126 MODULE_ALIAS("md-raid5");
8127 MODULE_ALIAS("md-raid4");
8128 MODULE_ALIAS("md-level-5");
8129 MODULE_ALIAS("md-level-4");
8130 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8131 MODULE_ALIAS("md-raid6");
8132 MODULE_ALIAS("md-level-6");
8134 /* This used to be two separate modules, they were: */
8135 MODULE_ALIAS("raid5");
8136 MODULE_ALIAS("raid6");