sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / media / cec / cec-adap.c
blob0ea4efb3de6683ee2dca71b3b7e20bc7f5f1e761
1 /*
2 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
31 #include "cec-priv.h"
33 static int cec_report_features(struct cec_adapter *adap, unsigned int la_idx);
34 static int cec_report_phys_addr(struct cec_adapter *adap, unsigned int la_idx);
37 * 400 ms is the time it takes for one 16 byte message to be
38 * transferred and 5 is the maximum number of retries. Add
39 * another 100 ms as a margin. So if the transmit doesn't
40 * finish before that time something is really wrong and we
41 * have to time out.
43 * This is a sign that something it really wrong and a warning
44 * will be issued.
46 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
48 #define call_op(adap, op, arg...) \
49 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
51 #define call_void_op(adap, op, arg...) \
52 do { \
53 if (adap->ops->op) \
54 adap->ops->op(adap, ## arg); \
55 } while (0)
57 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
59 int i;
61 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
62 if (adap->log_addrs.log_addr[i] == log_addr)
63 return i;
64 return -1;
67 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
69 int i = cec_log_addr2idx(adap, log_addr);
71 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
75 * Queue a new event for this filehandle. If ts == 0, then set it
76 * to the current time.
78 * The two events that are currently defined do not need to keep track
79 * of intermediate events, so no actual queue of events is needed,
80 * instead just store the latest state and the total number of lost
81 * messages.
83 * Should new events be added in the future that require intermediate
84 * results to be queued as well, then a proper queue data structure is
85 * required. But until then, just keep it simple.
87 void cec_queue_event_fh(struct cec_fh *fh,
88 const struct cec_event *new_ev, u64 ts)
90 struct cec_event *ev = &fh->events[new_ev->event - 1];
92 if (ts == 0)
93 ts = ktime_get_ns();
95 mutex_lock(&fh->lock);
96 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
97 fh->pending_events & (1 << new_ev->event)) {
99 * If there is already a lost_msgs event, then just
100 * update the lost_msgs count. This effectively
101 * merges the old and new events into one.
103 ev->lost_msgs.lost_msgs += new_ev->lost_msgs.lost_msgs;
104 goto unlock;
108 * Intermediate states are not interesting, so just
109 * overwrite any older event.
111 *ev = *new_ev;
112 ev->ts = ts;
113 fh->pending_events |= 1 << new_ev->event;
115 unlock:
116 mutex_unlock(&fh->lock);
117 wake_up_interruptible(&fh->wait);
120 /* Queue a new event for all open filehandles. */
121 static void cec_queue_event(struct cec_adapter *adap,
122 const struct cec_event *ev)
124 u64 ts = ktime_get_ns();
125 struct cec_fh *fh;
127 mutex_lock(&adap->devnode.lock);
128 list_for_each_entry(fh, &adap->devnode.fhs, list)
129 cec_queue_event_fh(fh, ev, ts);
130 mutex_unlock(&adap->devnode.lock);
134 * Queue a new message for this filehandle. If there is no more room
135 * in the queue, then send the LOST_MSGS event instead.
137 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
139 static const struct cec_event ev_lost_msg = {
140 .ts = 0,
141 .event = CEC_EVENT_LOST_MSGS,
142 .flags = 0,
144 .lost_msgs.lost_msgs = 1,
147 struct cec_msg_entry *entry;
149 mutex_lock(&fh->lock);
150 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
151 if (!entry)
152 goto lost_msgs;
154 entry->msg = *msg;
155 /* Add new msg at the end of the queue */
156 list_add_tail(&entry->list, &fh->msgs);
159 * if the queue now has more than CEC_MAX_MSG_RX_QUEUE_SZ
160 * messages, drop the oldest one and send a lost message event.
162 if (fh->queued_msgs == CEC_MAX_MSG_RX_QUEUE_SZ) {
163 list_del(&entry->list);
164 goto lost_msgs;
166 fh->queued_msgs++;
167 mutex_unlock(&fh->lock);
168 wake_up_interruptible(&fh->wait);
169 return;
171 lost_msgs:
172 mutex_unlock(&fh->lock);
173 cec_queue_event_fh(fh, &ev_lost_msg, 0);
177 * Queue the message for those filehandles that are in monitor mode.
178 * If valid_la is true (this message is for us or was sent by us),
179 * then pass it on to any monitoring filehandle. If this message
180 * isn't for us or from us, then only give it to filehandles that
181 * are in MONITOR_ALL mode.
183 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
184 * set and the CEC adapter was placed in 'monitor all' mode.
186 static void cec_queue_msg_monitor(struct cec_adapter *adap,
187 const struct cec_msg *msg,
188 bool valid_la)
190 struct cec_fh *fh;
191 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
192 CEC_MODE_MONITOR_ALL;
194 mutex_lock(&adap->devnode.lock);
195 list_for_each_entry(fh, &adap->devnode.fhs, list) {
196 if (fh->mode_follower >= monitor_mode)
197 cec_queue_msg_fh(fh, msg);
199 mutex_unlock(&adap->devnode.lock);
203 * Queue the message for follower filehandles.
205 static void cec_queue_msg_followers(struct cec_adapter *adap,
206 const struct cec_msg *msg)
208 struct cec_fh *fh;
210 mutex_lock(&adap->devnode.lock);
211 list_for_each_entry(fh, &adap->devnode.fhs, list) {
212 if (fh->mode_follower == CEC_MODE_FOLLOWER)
213 cec_queue_msg_fh(fh, msg);
215 mutex_unlock(&adap->devnode.lock);
218 /* Notify userspace of an adapter state change. */
219 static void cec_post_state_event(struct cec_adapter *adap)
221 struct cec_event ev = {
222 .event = CEC_EVENT_STATE_CHANGE,
225 ev.state_change.phys_addr = adap->phys_addr;
226 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
227 cec_queue_event(adap, &ev);
231 * A CEC transmit (and a possible wait for reply) completed.
232 * If this was in blocking mode, then complete it, otherwise
233 * queue the message for userspace to dequeue later.
235 * This function is called with adap->lock held.
237 static void cec_data_completed(struct cec_data *data)
240 * Delete this transmit from the filehandle's xfer_list since
241 * we're done with it.
243 * Note that if the filehandle is closed before this transmit
244 * finished, then the release() function will set data->fh to NULL.
245 * Without that we would be referring to a closed filehandle.
247 if (data->fh)
248 list_del(&data->xfer_list);
250 if (data->blocking) {
252 * Someone is blocking so mark the message as completed
253 * and call complete.
255 data->completed = true;
256 complete(&data->c);
257 } else {
259 * No blocking, so just queue the message if needed and
260 * free the memory.
262 if (data->fh)
263 cec_queue_msg_fh(data->fh, &data->msg);
264 kfree(data);
269 * A pending CEC transmit needs to be cancelled, either because the CEC
270 * adapter is disabled or the transmit takes an impossibly long time to
271 * finish.
273 * This function is called with adap->lock held.
275 static void cec_data_cancel(struct cec_data *data)
278 * It's either the current transmit, or it is a pending
279 * transmit. Take the appropriate action to clear it.
281 if (data->adap->transmitting == data) {
282 data->adap->transmitting = NULL;
283 } else {
284 list_del_init(&data->list);
285 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
286 data->adap->transmit_queue_sz--;
289 /* Mark it as an error */
290 data->msg.tx_ts = ktime_get_ns();
291 data->msg.tx_status = CEC_TX_STATUS_ERROR |
292 CEC_TX_STATUS_MAX_RETRIES;
293 data->attempts = 0;
294 data->msg.tx_error_cnt = 1;
295 /* Queue transmitted message for monitoring purposes */
296 cec_queue_msg_monitor(data->adap, &data->msg, 1);
298 cec_data_completed(data);
302 * Main CEC state machine
304 * Wait until the thread should be stopped, or we are not transmitting and
305 * a new transmit message is queued up, in which case we start transmitting
306 * that message. When the adapter finished transmitting the message it will
307 * call cec_transmit_done().
309 * If the adapter is disabled, then remove all queued messages instead.
311 * If the current transmit times out, then cancel that transmit.
313 int cec_thread_func(void *_adap)
315 struct cec_adapter *adap = _adap;
317 for (;;) {
318 unsigned int signal_free_time;
319 struct cec_data *data;
320 bool timeout = false;
321 u8 attempts;
323 if (adap->transmitting) {
324 int err;
327 * We are transmitting a message, so add a timeout
328 * to prevent the state machine to get stuck waiting
329 * for this message to finalize and add a check to
330 * see if the adapter is disabled in which case the
331 * transmit should be canceled.
333 err = wait_event_interruptible_timeout(adap->kthread_waitq,
334 kthread_should_stop() ||
335 (!adap->is_configured && !adap->is_configuring) ||
336 (!adap->transmitting &&
337 !list_empty(&adap->transmit_queue)),
338 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
339 timeout = err == 0;
340 } else {
341 /* Otherwise we just wait for something to happen. */
342 wait_event_interruptible(adap->kthread_waitq,
343 kthread_should_stop() ||
344 (!adap->transmitting &&
345 !list_empty(&adap->transmit_queue)));
348 mutex_lock(&adap->lock);
350 if ((!adap->is_configured && !adap->is_configuring) ||
351 kthread_should_stop()) {
353 * If the adapter is disabled, or we're asked to stop,
354 * then cancel any pending transmits.
356 while (!list_empty(&adap->transmit_queue)) {
357 data = list_first_entry(&adap->transmit_queue,
358 struct cec_data, list);
359 cec_data_cancel(data);
361 if (adap->transmitting)
362 cec_data_cancel(adap->transmitting);
365 * Cancel the pending timeout work. We have to unlock
366 * the mutex when flushing the work since
367 * cec_wait_timeout() will take it. This is OK since
368 * no new entries can be added to wait_queue as long
369 * as adap->transmitting is NULL, which it is due to
370 * the cec_data_cancel() above.
372 while (!list_empty(&adap->wait_queue)) {
373 data = list_first_entry(&adap->wait_queue,
374 struct cec_data, list);
376 if (!cancel_delayed_work(&data->work)) {
377 mutex_unlock(&adap->lock);
378 flush_scheduled_work();
379 mutex_lock(&adap->lock);
381 cec_data_cancel(data);
383 goto unlock;
386 if (adap->transmitting && timeout) {
388 * If we timeout, then log that. This really shouldn't
389 * happen and is an indication of a faulty CEC adapter
390 * driver, or the CEC bus is in some weird state.
392 dprintk(0, "message %*ph timed out!\n",
393 adap->transmitting->msg.len,
394 adap->transmitting->msg.msg);
395 /* Just give up on this. */
396 cec_data_cancel(adap->transmitting);
397 goto unlock;
401 * If we are still transmitting, or there is nothing new to
402 * transmit, then just continue waiting.
404 if (adap->transmitting || list_empty(&adap->transmit_queue))
405 goto unlock;
407 /* Get a new message to transmit */
408 data = list_first_entry(&adap->transmit_queue,
409 struct cec_data, list);
410 list_del_init(&data->list);
411 adap->transmit_queue_sz--;
412 /* Make this the current transmitting message */
413 adap->transmitting = data;
416 * Suggested number of attempts as per the CEC 2.0 spec:
417 * 4 attempts is the default, except for 'secondary poll
418 * messages', i.e. poll messages not sent during the adapter
419 * configuration phase when it allocates logical addresses.
421 if (data->msg.len == 1 && adap->is_configured)
422 attempts = 2;
423 else
424 attempts = 4;
426 /* Set the suggested signal free time */
427 if (data->attempts) {
428 /* should be >= 3 data bit periods for a retry */
429 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
430 } else if (data->new_initiator) {
431 /* should be >= 5 data bit periods for new initiator */
432 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
433 } else {
435 * should be >= 7 data bit periods for sending another
436 * frame immediately after another.
438 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
440 if (data->attempts == 0)
441 data->attempts = attempts;
443 /* Tell the adapter to transmit, cancel on error */
444 if (adap->ops->adap_transmit(adap, data->attempts,
445 signal_free_time, &data->msg))
446 cec_data_cancel(data);
448 unlock:
449 mutex_unlock(&adap->lock);
451 if (kthread_should_stop())
452 break;
454 return 0;
458 * Called by the CEC adapter if a transmit finished.
460 void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt,
461 u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt)
463 struct cec_data *data;
464 struct cec_msg *msg;
465 u64 ts = ktime_get_ns();
467 dprintk(2, "cec_transmit_done %02x\n", status);
468 mutex_lock(&adap->lock);
469 data = adap->transmitting;
470 if (!data) {
472 * This can happen if a transmit was issued and the cable is
473 * unplugged while the transmit is ongoing. Ignore this
474 * transmit in that case.
476 dprintk(1, "cec_transmit_done without an ongoing transmit!\n");
477 goto unlock;
480 msg = &data->msg;
482 /* Drivers must fill in the status! */
483 WARN_ON(status == 0);
484 msg->tx_ts = ts;
485 msg->tx_status |= status;
486 msg->tx_arb_lost_cnt += arb_lost_cnt;
487 msg->tx_nack_cnt += nack_cnt;
488 msg->tx_low_drive_cnt += low_drive_cnt;
489 msg->tx_error_cnt += error_cnt;
491 /* Mark that we're done with this transmit */
492 adap->transmitting = NULL;
495 * If there are still retry attempts left and there was an error and
496 * the hardware didn't signal that it retried itself (by setting
497 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
499 if (data->attempts > 1 &&
500 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
501 /* Retry this message */
502 data->attempts--;
503 /* Add the message in front of the transmit queue */
504 list_add(&data->list, &adap->transmit_queue);
505 adap->transmit_queue_sz++;
506 goto wake_thread;
509 data->attempts = 0;
511 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
512 if (!(status & CEC_TX_STATUS_OK))
513 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
515 /* Queue transmitted message for monitoring purposes */
516 cec_queue_msg_monitor(adap, msg, 1);
518 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
519 msg->timeout) {
521 * Queue the message into the wait queue if we want to wait
522 * for a reply.
524 list_add_tail(&data->list, &adap->wait_queue);
525 schedule_delayed_work(&data->work,
526 msecs_to_jiffies(msg->timeout));
527 } else {
528 /* Otherwise we're done */
529 cec_data_completed(data);
532 wake_thread:
534 * Wake up the main thread to see if another message is ready
535 * for transmitting or to retry the current message.
537 wake_up_interruptible(&adap->kthread_waitq);
538 unlock:
539 mutex_unlock(&adap->lock);
541 EXPORT_SYMBOL_GPL(cec_transmit_done);
544 * Called when waiting for a reply times out.
546 static void cec_wait_timeout(struct work_struct *work)
548 struct cec_data *data = container_of(work, struct cec_data, work.work);
549 struct cec_adapter *adap = data->adap;
551 mutex_lock(&adap->lock);
553 * Sanity check in case the timeout and the arrival of the message
554 * happened at the same time.
556 if (list_empty(&data->list))
557 goto unlock;
559 /* Mark the message as timed out */
560 list_del_init(&data->list);
561 data->msg.rx_ts = ktime_get_ns();
562 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
563 cec_data_completed(data);
564 unlock:
565 mutex_unlock(&adap->lock);
569 * Transmit a message. The fh argument may be NULL if the transmit is not
570 * associated with a specific filehandle.
572 * This function is called with adap->lock held.
574 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
575 struct cec_fh *fh, bool block)
577 struct cec_data *data;
578 u8 last_initiator = 0xff;
579 unsigned int timeout;
580 int res = 0;
582 msg->rx_ts = 0;
583 msg->tx_ts = 0;
584 msg->rx_status = 0;
585 msg->tx_status = 0;
586 msg->tx_arb_lost_cnt = 0;
587 msg->tx_nack_cnt = 0;
588 msg->tx_low_drive_cnt = 0;
589 msg->tx_error_cnt = 0;
590 msg->sequence = ++adap->sequence;
591 if (!msg->sequence)
592 msg->sequence = ++adap->sequence;
594 if (msg->reply && msg->timeout == 0) {
595 /* Make sure the timeout isn't 0. */
596 msg->timeout = 1000;
598 if (msg->timeout)
599 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
600 else
601 msg->flags = 0;
603 /* Sanity checks */
604 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
605 dprintk(1, "cec_transmit_msg: invalid length %d\n", msg->len);
606 return -EINVAL;
608 if (msg->timeout && msg->len == 1) {
609 dprintk(1, "cec_transmit_msg: can't reply for poll msg\n");
610 return -EINVAL;
612 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
613 if (msg->len == 1) {
614 if (cec_msg_initiator(msg) != 0xf ||
615 cec_msg_destination(msg) == 0xf) {
616 dprintk(1, "cec_transmit_msg: invalid poll message\n");
617 return -EINVAL;
619 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
621 * If the destination is a logical address our adapter
622 * has already claimed, then just NACK this.
623 * It depends on the hardware what it will do with a
624 * POLL to itself (some OK this), so it is just as
625 * easy to handle it here so the behavior will be
626 * consistent.
628 msg->tx_ts = ktime_get_ns();
629 msg->tx_status = CEC_TX_STATUS_NACK |
630 CEC_TX_STATUS_MAX_RETRIES;
631 msg->tx_nack_cnt = 1;
632 return 0;
635 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
636 cec_has_log_addr(adap, cec_msg_destination(msg))) {
637 dprintk(1, "cec_transmit_msg: destination is the adapter itself\n");
638 return -EINVAL;
640 if (cec_msg_initiator(msg) != 0xf &&
641 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
642 dprintk(1, "cec_transmit_msg: initiator has unknown logical address %d\n",
643 cec_msg_initiator(msg));
644 return -EINVAL;
646 if (!adap->is_configured && !adap->is_configuring)
647 return -ENONET;
649 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ)
650 return -EBUSY;
652 data = kzalloc(sizeof(*data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
656 if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
657 msg->msg[2] = adap->phys_addr >> 8;
658 msg->msg[3] = adap->phys_addr & 0xff;
661 if (msg->timeout)
662 dprintk(2, "cec_transmit_msg: %*ph (wait for 0x%02x%s)\n",
663 msg->len, msg->msg, msg->reply, !block ? ", nb" : "");
664 else
665 dprintk(2, "cec_transmit_msg: %*ph%s\n",
666 msg->len, msg->msg, !block ? " (nb)" : "");
668 data->msg = *msg;
669 data->fh = fh;
670 data->adap = adap;
671 data->blocking = block;
674 * Determine if this message follows a message from the same
675 * initiator. Needed to determine the free signal time later on.
677 if (msg->len > 1) {
678 if (!(list_empty(&adap->transmit_queue))) {
679 const struct cec_data *last;
681 last = list_last_entry(&adap->transmit_queue,
682 const struct cec_data, list);
683 last_initiator = cec_msg_initiator(&last->msg);
684 } else if (adap->transmitting) {
685 last_initiator =
686 cec_msg_initiator(&adap->transmitting->msg);
689 data->new_initiator = last_initiator != cec_msg_initiator(msg);
690 init_completion(&data->c);
691 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
693 if (fh)
694 list_add_tail(&data->xfer_list, &fh->xfer_list);
695 list_add_tail(&data->list, &adap->transmit_queue);
696 adap->transmit_queue_sz++;
697 if (!adap->transmitting)
698 wake_up_interruptible(&adap->kthread_waitq);
700 /* All done if we don't need to block waiting for completion */
701 if (!block)
702 return 0;
705 * If we don't get a completion before this time something is really
706 * wrong and we time out.
708 timeout = CEC_XFER_TIMEOUT_MS;
709 /* Add the requested timeout if we have to wait for a reply as well */
710 if (msg->timeout)
711 timeout += msg->timeout;
714 * Release the lock and wait, retake the lock afterwards.
716 mutex_unlock(&adap->lock);
717 res = wait_for_completion_killable_timeout(&data->c,
718 msecs_to_jiffies(timeout));
719 mutex_lock(&adap->lock);
721 if (data->completed) {
722 /* The transmit completed (possibly with an error) */
723 *msg = data->msg;
724 kfree(data);
725 return 0;
728 * The wait for completion timed out or was interrupted, so mark this
729 * as non-blocking and disconnect from the filehandle since it is
730 * still 'in flight'. When it finally completes it will just drop the
731 * result silently.
733 data->blocking = false;
734 if (data->fh)
735 list_del(&data->xfer_list);
736 data->fh = NULL;
738 if (res == 0) { /* timed out */
739 /* Check if the reply or the transmit failed */
740 if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
741 msg->rx_status = CEC_RX_STATUS_TIMEOUT;
742 else
743 msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
745 return res > 0 ? 0 : res;
748 /* Helper function to be used by drivers and this framework. */
749 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
750 bool block)
752 int ret;
754 mutex_lock(&adap->lock);
755 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
756 mutex_unlock(&adap->lock);
757 return ret;
759 EXPORT_SYMBOL_GPL(cec_transmit_msg);
762 * I don't like forward references but without this the low-level
763 * cec_received_msg() function would come after a bunch of high-level
764 * CEC protocol handling functions. That was very confusing.
766 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
767 bool is_reply);
769 #define DIRECTED 0x80
770 #define BCAST1_4 0x40
771 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
772 #define BCAST (BCAST1_4 | BCAST2_0)
773 #define BOTH (BCAST | DIRECTED)
776 * Specify minimum length and whether the message is directed, broadcast
777 * or both. Messages that do not match the criteria are ignored as per
778 * the CEC specification.
780 static const u8 cec_msg_size[256] = {
781 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
782 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
783 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
784 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
785 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
786 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
787 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
788 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
789 [CEC_MSG_STANDBY] = 2 | BOTH,
790 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
791 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
792 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
793 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
794 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
795 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
796 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
797 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
798 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
799 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
800 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
801 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
802 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
803 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
804 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
805 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
806 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
807 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
808 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
809 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
810 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
811 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
812 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
813 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
814 [CEC_MSG_PLAY] = 3 | DIRECTED,
815 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
816 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
817 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
818 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
819 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
820 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
821 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
822 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
823 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
824 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
825 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
826 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
827 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
828 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
829 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
830 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
831 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
832 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
833 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
834 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
835 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
836 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
837 [CEC_MSG_ABORT] = 2 | DIRECTED,
838 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
839 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
840 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
841 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
842 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
843 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
844 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
845 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
846 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
847 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
848 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
849 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
850 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
851 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
852 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
853 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
854 [CEC_MSG_REPORT_CURRENT_LATENCY] = 7 | BCAST,
855 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
858 /* Called by the CEC adapter if a message is received */
859 void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg)
861 struct cec_data *data;
862 u8 msg_init = cec_msg_initiator(msg);
863 u8 msg_dest = cec_msg_destination(msg);
864 u8 cmd = msg->msg[1];
865 bool is_reply = false;
866 bool valid_la = true;
867 u8 min_len = 0;
869 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
870 return;
873 * Some CEC adapters will receive the messages that they transmitted.
874 * This test filters out those messages by checking if we are the
875 * initiator, and just returning in that case.
877 * Note that this won't work if this is an Unregistered device.
879 * It is bad practice if the hardware receives the message that it
880 * transmitted and luckily most CEC adapters behave correctly in this
881 * respect.
883 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
884 cec_has_log_addr(adap, msg_init))
885 return;
887 msg->rx_ts = ktime_get_ns();
888 msg->rx_status = CEC_RX_STATUS_OK;
889 msg->sequence = msg->reply = msg->timeout = 0;
890 msg->tx_status = 0;
891 msg->tx_ts = 0;
892 msg->tx_arb_lost_cnt = 0;
893 msg->tx_nack_cnt = 0;
894 msg->tx_low_drive_cnt = 0;
895 msg->tx_error_cnt = 0;
896 msg->flags = 0;
897 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
899 mutex_lock(&adap->lock);
900 dprintk(2, "cec_received_msg: %*ph\n", msg->len, msg->msg);
902 /* Check if this message was for us (directed or broadcast). */
903 if (!cec_msg_is_broadcast(msg))
904 valid_la = cec_has_log_addr(adap, msg_dest);
907 * Check if the length is not too short or if the message is a
908 * broadcast message where a directed message was expected or
909 * vice versa. If so, then the message has to be ignored (according
910 * to section CEC 7.3 and CEC 12.2).
912 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
913 u8 dir_fl = cec_msg_size[cmd] & BOTH;
915 min_len = cec_msg_size[cmd] & 0x1f;
916 if (msg->len < min_len)
917 valid_la = false;
918 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
919 valid_la = false;
920 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
921 valid_la = false;
922 else if (cec_msg_is_broadcast(msg) &&
923 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
924 !(dir_fl & BCAST2_0))
925 valid_la = false;
927 if (valid_la && min_len) {
928 /* These messages have special length requirements */
929 switch (cmd) {
930 case CEC_MSG_TIMER_STATUS:
931 if (msg->msg[2] & 0x10) {
932 switch (msg->msg[2] & 0xf) {
933 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
934 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
935 if (msg->len < 5)
936 valid_la = false;
937 break;
939 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
940 if (msg->len < 5)
941 valid_la = false;
943 break;
944 case CEC_MSG_RECORD_ON:
945 switch (msg->msg[2]) {
946 case CEC_OP_RECORD_SRC_OWN:
947 break;
948 case CEC_OP_RECORD_SRC_DIGITAL:
949 if (msg->len < 10)
950 valid_la = false;
951 break;
952 case CEC_OP_RECORD_SRC_ANALOG:
953 if (msg->len < 7)
954 valid_la = false;
955 break;
956 case CEC_OP_RECORD_SRC_EXT_PLUG:
957 if (msg->len < 4)
958 valid_la = false;
959 break;
960 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
961 if (msg->len < 5)
962 valid_la = false;
963 break;
965 break;
969 /* It's a valid message and not a poll or CDC message */
970 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
971 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
973 /* The aborted command is in msg[2] */
974 if (abort)
975 cmd = msg->msg[2];
978 * Walk over all transmitted messages that are waiting for a
979 * reply.
981 list_for_each_entry(data, &adap->wait_queue, list) {
982 struct cec_msg *dst = &data->msg;
985 * The *only* CEC message that has two possible replies
986 * is CEC_MSG_INITIATE_ARC.
987 * In this case allow either of the two replies.
989 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
990 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
991 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
992 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
993 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
994 dst->reply = cmd;
996 /* Does the command match? */
997 if ((abort && cmd != dst->msg[1]) ||
998 (!abort && cmd != dst->reply))
999 continue;
1001 /* Does the addressing match? */
1002 if (msg_init != cec_msg_destination(dst) &&
1003 !cec_msg_is_broadcast(dst))
1004 continue;
1006 /* We got a reply */
1007 memcpy(dst->msg, msg->msg, msg->len);
1008 dst->len = msg->len;
1009 dst->rx_ts = msg->rx_ts;
1010 dst->rx_status = msg->rx_status;
1011 if (abort)
1012 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1013 msg->flags = dst->flags;
1014 /* Remove it from the wait_queue */
1015 list_del_init(&data->list);
1017 /* Cancel the pending timeout work */
1018 if (!cancel_delayed_work(&data->work)) {
1019 mutex_unlock(&adap->lock);
1020 flush_scheduled_work();
1021 mutex_lock(&adap->lock);
1024 * Mark this as a reply, provided someone is still
1025 * waiting for the answer.
1027 if (data->fh)
1028 is_reply = true;
1029 cec_data_completed(data);
1030 break;
1033 mutex_unlock(&adap->lock);
1035 /* Pass the message on to any monitoring filehandles */
1036 cec_queue_msg_monitor(adap, msg, valid_la);
1038 /* We're done if it is not for us or a poll message */
1039 if (!valid_la || msg->len <= 1)
1040 return;
1042 if (adap->log_addrs.log_addr_mask == 0)
1043 return;
1046 * Process the message on the protocol level. If is_reply is true,
1047 * then cec_receive_notify() won't pass on the reply to the listener(s)
1048 * since that was already done by cec_data_completed() above.
1050 cec_receive_notify(adap, msg, is_reply);
1052 EXPORT_SYMBOL_GPL(cec_received_msg);
1054 /* Logical Address Handling */
1057 * Attempt to claim a specific logical address.
1059 * This function is called with adap->lock held.
1061 static int cec_config_log_addr(struct cec_adapter *adap,
1062 unsigned int idx,
1063 unsigned int log_addr)
1065 struct cec_log_addrs *las = &adap->log_addrs;
1066 struct cec_msg msg = { };
1067 int err;
1069 if (cec_has_log_addr(adap, log_addr))
1070 return 0;
1072 /* Send poll message */
1073 msg.len = 1;
1074 msg.msg[0] = 0xf0 | log_addr;
1075 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1078 * While trying to poll the physical address was reset
1079 * and the adapter was unconfigured, so bail out.
1081 if (!adap->is_configuring)
1082 return -EINTR;
1084 if (err)
1085 return err;
1087 if (msg.tx_status & CEC_TX_STATUS_OK)
1088 return 0;
1091 * Message not acknowledged, so this logical
1092 * address is free to use.
1094 err = adap->ops->adap_log_addr(adap, log_addr);
1095 if (err)
1096 return err;
1098 las->log_addr[idx] = log_addr;
1099 las->log_addr_mask |= 1 << log_addr;
1100 adap->phys_addrs[log_addr] = adap->phys_addr;
1102 dprintk(2, "claimed addr %d (%d)\n", log_addr,
1103 las->primary_device_type[idx]);
1104 return 1;
1108 * Unconfigure the adapter: clear all logical addresses and send
1109 * the state changed event.
1111 * This function is called with adap->lock held.
1113 static void cec_adap_unconfigure(struct cec_adapter *adap)
1115 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1116 adap->log_addrs.log_addr_mask = 0;
1117 adap->is_configuring = false;
1118 adap->is_configured = false;
1119 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1120 wake_up_interruptible(&adap->kthread_waitq);
1121 cec_post_state_event(adap);
1125 * Attempt to claim the required logical addresses.
1127 static int cec_config_thread_func(void *arg)
1129 /* The various LAs for each type of device */
1130 static const u8 tv_log_addrs[] = {
1131 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1132 CEC_LOG_ADDR_INVALID
1134 static const u8 record_log_addrs[] = {
1135 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1136 CEC_LOG_ADDR_RECORD_3,
1137 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1138 CEC_LOG_ADDR_INVALID
1140 static const u8 tuner_log_addrs[] = {
1141 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1142 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1143 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1144 CEC_LOG_ADDR_INVALID
1146 static const u8 playback_log_addrs[] = {
1147 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1148 CEC_LOG_ADDR_PLAYBACK_3,
1149 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1150 CEC_LOG_ADDR_INVALID
1152 static const u8 audiosystem_log_addrs[] = {
1153 CEC_LOG_ADDR_AUDIOSYSTEM,
1154 CEC_LOG_ADDR_INVALID
1156 static const u8 specific_use_log_addrs[] = {
1157 CEC_LOG_ADDR_SPECIFIC,
1158 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1159 CEC_LOG_ADDR_INVALID
1161 static const u8 *type2addrs[6] = {
1162 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1163 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1164 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1165 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1166 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1167 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1169 static const u16 type2mask[] = {
1170 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1171 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1172 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1173 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1174 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1175 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1177 struct cec_adapter *adap = arg;
1178 struct cec_log_addrs *las = &adap->log_addrs;
1179 int err;
1180 int i, j;
1182 mutex_lock(&adap->lock);
1183 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1184 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1185 las->log_addr_mask = 0;
1187 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1188 goto configured;
1190 for (i = 0; i < las->num_log_addrs; i++) {
1191 unsigned int type = las->log_addr_type[i];
1192 const u8 *la_list;
1193 u8 last_la;
1196 * The TV functionality can only map to physical address 0.
1197 * For any other address, try the Specific functionality
1198 * instead as per the spec.
1200 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1201 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1203 la_list = type2addrs[type];
1204 last_la = las->log_addr[i];
1205 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1206 if (last_la == CEC_LOG_ADDR_INVALID ||
1207 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1208 !(last_la & type2mask[type]))
1209 last_la = la_list[0];
1211 err = cec_config_log_addr(adap, i, last_la);
1212 if (err > 0) /* Reused last LA */
1213 continue;
1215 if (err < 0)
1216 goto unconfigure;
1218 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1219 /* Tried this one already, skip it */
1220 if (la_list[j] == last_la)
1221 continue;
1222 /* The backup addresses are CEC 2.0 specific */
1223 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1224 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1225 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1226 continue;
1228 err = cec_config_log_addr(adap, i, la_list[j]);
1229 if (err == 0) /* LA is in use */
1230 continue;
1231 if (err < 0)
1232 goto unconfigure;
1233 /* Done, claimed an LA */
1234 break;
1237 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1238 dprintk(1, "could not claim LA %d\n", i);
1241 if (adap->log_addrs.log_addr_mask == 0 &&
1242 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1243 goto unconfigure;
1245 configured:
1246 if (adap->log_addrs.log_addr_mask == 0) {
1247 /* Fall back to unregistered */
1248 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1249 las->log_addr_mask = 1 << las->log_addr[0];
1250 for (i = 1; i < las->num_log_addrs; i++)
1251 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1253 adap->is_configured = true;
1254 adap->is_configuring = false;
1255 cec_post_state_event(adap);
1256 mutex_unlock(&adap->lock);
1258 for (i = 0; i < las->num_log_addrs; i++) {
1259 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1260 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1261 continue;
1264 * Report Features must come first according
1265 * to CEC 2.0
1267 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED)
1268 cec_report_features(adap, i);
1269 cec_report_phys_addr(adap, i);
1271 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1272 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1273 mutex_lock(&adap->lock);
1274 adap->kthread_config = NULL;
1275 mutex_unlock(&adap->lock);
1276 complete(&adap->config_completion);
1277 return 0;
1279 unconfigure:
1280 for (i = 0; i < las->num_log_addrs; i++)
1281 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1282 cec_adap_unconfigure(adap);
1283 adap->kthread_config = NULL;
1284 mutex_unlock(&adap->lock);
1285 complete(&adap->config_completion);
1286 return 0;
1290 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1291 * logical addresses.
1293 * This function is called with adap->lock held.
1295 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1297 if (WARN_ON(adap->is_configuring || adap->is_configured))
1298 return;
1300 init_completion(&adap->config_completion);
1302 /* Ready to kick off the thread */
1303 adap->is_configuring = true;
1304 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1305 "ceccfg-%s", adap->name);
1306 if (IS_ERR(adap->kthread_config)) {
1307 adap->kthread_config = NULL;
1308 } else if (block) {
1309 mutex_unlock(&adap->lock);
1310 wait_for_completion(&adap->config_completion);
1311 mutex_lock(&adap->lock);
1315 /* Set a new physical address and send an event notifying userspace of this.
1317 * This function is called with adap->lock held.
1319 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1321 if (phys_addr == adap->phys_addr || adap->devnode.unregistered)
1322 return;
1324 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1325 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1326 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1327 cec_post_state_event(adap);
1328 cec_adap_unconfigure(adap);
1329 /* Disabling monitor all mode should always succeed */
1330 if (adap->monitor_all_cnt)
1331 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1332 WARN_ON(adap->ops->adap_enable(adap, false));
1333 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1334 return;
1337 if (adap->ops->adap_enable(adap, true))
1338 return;
1340 if (adap->monitor_all_cnt &&
1341 call_op(adap, adap_monitor_all_enable, true)) {
1342 WARN_ON(adap->ops->adap_enable(adap, false));
1343 return;
1345 adap->phys_addr = phys_addr;
1346 cec_post_state_event(adap);
1347 if (adap->log_addrs.num_log_addrs)
1348 cec_claim_log_addrs(adap, block);
1351 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1353 if (IS_ERR_OR_NULL(adap))
1354 return;
1356 mutex_lock(&adap->lock);
1357 __cec_s_phys_addr(adap, phys_addr, block);
1358 mutex_unlock(&adap->lock);
1360 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1363 * Called from either the ioctl or a driver to set the logical addresses.
1365 * This function is called with adap->lock held.
1367 int __cec_s_log_addrs(struct cec_adapter *adap,
1368 struct cec_log_addrs *log_addrs, bool block)
1370 u16 type_mask = 0;
1371 int i;
1373 if (adap->devnode.unregistered)
1374 return -ENODEV;
1376 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1377 adap->log_addrs.num_log_addrs = 0;
1378 cec_adap_unconfigure(adap);
1379 return 0;
1382 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1384 * Sanitize log_addrs fields if a CDC-Only device is
1385 * requested.
1387 log_addrs->num_log_addrs = 1;
1388 log_addrs->osd_name[0] = '\0';
1389 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1390 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1392 * This is just an internal convention since a CDC-Only device
1393 * doesn't have to be a switch. But switches already use
1394 * unregistered, so it makes some kind of sense to pick this
1395 * as the primary device. Since a CDC-Only device never sends
1396 * any 'normal' CEC messages this primary device type is never
1397 * sent over the CEC bus.
1399 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1400 log_addrs->all_device_types[0] = 0;
1401 log_addrs->features[0][0] = 0;
1402 log_addrs->features[0][1] = 0;
1405 /* Ensure the osd name is 0-terminated */
1406 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1408 /* Sanity checks */
1409 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1410 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1411 return -EINVAL;
1415 * Vendor ID is a 24 bit number, so check if the value is
1416 * within the correct range.
1418 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1419 (log_addrs->vendor_id & 0xff000000) != 0)
1420 return -EINVAL;
1422 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1423 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0)
1424 return -EINVAL;
1426 if (log_addrs->num_log_addrs > 1)
1427 for (i = 0; i < log_addrs->num_log_addrs; i++)
1428 if (log_addrs->log_addr_type[i] ==
1429 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1430 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1431 return -EINVAL;
1434 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1435 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1436 u8 *features = log_addrs->features[i];
1437 bool op_is_dev_features = false;
1438 unsigned j;
1440 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1441 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1442 dprintk(1, "duplicate logical address type\n");
1443 return -EINVAL;
1445 type_mask |= 1 << log_addrs->log_addr_type[i];
1446 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1447 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1448 /* Record already contains the playback functionality */
1449 dprintk(1, "invalid record + playback combination\n");
1450 return -EINVAL;
1452 if (log_addrs->primary_device_type[i] >
1453 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1454 dprintk(1, "unknown primary device type\n");
1455 return -EINVAL;
1457 if (log_addrs->primary_device_type[i] == 2) {
1458 dprintk(1, "invalid primary device type\n");
1459 return -EINVAL;
1461 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1462 dprintk(1, "unknown logical address type\n");
1463 return -EINVAL;
1465 for (j = 0; j < feature_sz; j++) {
1466 if ((features[j] & 0x80) == 0) {
1467 if (op_is_dev_features)
1468 break;
1469 op_is_dev_features = true;
1472 if (!op_is_dev_features || j == feature_sz) {
1473 dprintk(1, "malformed features\n");
1474 return -EINVAL;
1476 /* Zero unused part of the feature array */
1477 memset(features + j + 1, 0, feature_sz - j - 1);
1480 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1481 if (log_addrs->num_log_addrs > 2) {
1482 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1483 return -EINVAL;
1485 if (log_addrs->num_log_addrs == 2) {
1486 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1487 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1488 dprintk(1, "Two LAs is only allowed for audiosystem and TV\n");
1489 return -EINVAL;
1491 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1492 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1493 dprintk(1, "An audiosystem/TV can only be combined with record or playback\n");
1494 return -EINVAL;
1499 /* Zero unused LAs */
1500 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1501 log_addrs->primary_device_type[i] = 0;
1502 log_addrs->log_addr_type[i] = 0;
1503 log_addrs->all_device_types[i] = 0;
1504 memset(log_addrs->features[i], 0,
1505 sizeof(log_addrs->features[i]));
1508 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1509 adap->log_addrs = *log_addrs;
1510 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1511 cec_claim_log_addrs(adap, block);
1512 return 0;
1515 int cec_s_log_addrs(struct cec_adapter *adap,
1516 struct cec_log_addrs *log_addrs, bool block)
1518 int err;
1520 mutex_lock(&adap->lock);
1521 err = __cec_s_log_addrs(adap, log_addrs, block);
1522 mutex_unlock(&adap->lock);
1523 return err;
1525 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1527 /* High-level core CEC message handling */
1529 /* Transmit the Report Features message */
1530 static int cec_report_features(struct cec_adapter *adap, unsigned int la_idx)
1532 struct cec_msg msg = { };
1533 const struct cec_log_addrs *las = &adap->log_addrs;
1534 const u8 *features = las->features[la_idx];
1535 bool op_is_dev_features = false;
1536 unsigned int idx;
1538 /* This is 2.0 and up only */
1539 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
1540 return 0;
1542 /* Report Features */
1543 msg.msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1544 msg.len = 4;
1545 msg.msg[1] = CEC_MSG_REPORT_FEATURES;
1546 msg.msg[2] = adap->log_addrs.cec_version;
1547 msg.msg[3] = las->all_device_types[la_idx];
1549 /* Write RC Profiles first, then Device Features */
1550 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1551 msg.msg[msg.len++] = features[idx];
1552 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1553 if (op_is_dev_features)
1554 break;
1555 op_is_dev_features = true;
1558 return cec_transmit_msg(adap, &msg, false);
1561 /* Transmit the Report Physical Address message */
1562 static int cec_report_phys_addr(struct cec_adapter *adap, unsigned int la_idx)
1564 const struct cec_log_addrs *las = &adap->log_addrs;
1565 struct cec_msg msg = { };
1567 /* Report Physical Address */
1568 msg.msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1569 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1570 las->primary_device_type[la_idx]);
1571 dprintk(2, "config: la %d pa %x.%x.%x.%x\n",
1572 las->log_addr[la_idx],
1573 cec_phys_addr_exp(adap->phys_addr));
1574 return cec_transmit_msg(adap, &msg, false);
1577 /* Transmit the Feature Abort message */
1578 static int cec_feature_abort_reason(struct cec_adapter *adap,
1579 struct cec_msg *msg, u8 reason)
1581 struct cec_msg tx_msg = { };
1584 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1585 * message!
1587 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1588 return 0;
1589 cec_msg_set_reply_to(&tx_msg, msg);
1590 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1591 return cec_transmit_msg(adap, &tx_msg, false);
1594 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1596 return cec_feature_abort_reason(adap, msg,
1597 CEC_OP_ABORT_UNRECOGNIZED_OP);
1600 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1602 return cec_feature_abort_reason(adap, msg,
1603 CEC_OP_ABORT_REFUSED);
1607 * Called when a CEC message is received. This function will do any
1608 * necessary core processing. The is_reply bool is true if this message
1609 * is a reply to an earlier transmit.
1611 * The message is either a broadcast message or a valid directed message.
1613 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1614 bool is_reply)
1616 bool is_broadcast = cec_msg_is_broadcast(msg);
1617 u8 dest_laddr = cec_msg_destination(msg);
1618 u8 init_laddr = cec_msg_initiator(msg);
1619 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1620 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1621 bool from_unregistered = init_laddr == 0xf;
1622 struct cec_msg tx_cec_msg = { };
1624 dprintk(1, "cec_receive_notify: %*ph\n", msg->len, msg->msg);
1626 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1627 if (cec_is_cdc_only(&adap->log_addrs) &&
1628 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1629 return 0;
1631 if (adap->ops->received) {
1632 /* Allow drivers to process the message first */
1633 if (adap->ops->received(adap, msg) != -ENOMSG)
1634 return 0;
1638 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1639 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1640 * handled by the CEC core, even if the passthrough mode is on.
1641 * The others are just ignored if passthrough mode is on.
1643 switch (msg->msg[1]) {
1644 case CEC_MSG_GET_CEC_VERSION:
1645 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1646 case CEC_MSG_ABORT:
1647 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1648 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1649 case CEC_MSG_GIVE_OSD_NAME:
1650 case CEC_MSG_GIVE_FEATURES:
1652 * Skip processing these messages if the passthrough mode
1653 * is on.
1655 if (adap->passthrough)
1656 goto skip_processing;
1657 /* Ignore if addressing is wrong */
1658 if (is_broadcast || from_unregistered)
1659 return 0;
1660 break;
1662 case CEC_MSG_USER_CONTROL_PRESSED:
1663 case CEC_MSG_USER_CONTROL_RELEASED:
1664 /* Wrong addressing mode: don't process */
1665 if (is_broadcast || from_unregistered)
1666 goto skip_processing;
1667 break;
1669 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1671 * This message is always processed, regardless of the
1672 * passthrough setting.
1674 * Exception: don't process if wrong addressing mode.
1676 if (!is_broadcast)
1677 goto skip_processing;
1678 break;
1680 default:
1681 break;
1684 cec_msg_set_reply_to(&tx_cec_msg, msg);
1686 switch (msg->msg[1]) {
1687 /* The following messages are processed but still passed through */
1688 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1689 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1691 if (!from_unregistered)
1692 adap->phys_addrs[init_laddr] = pa;
1693 dprintk(1, "Reported physical address %x.%x.%x.%x for logical address %d\n",
1694 cec_phys_addr_exp(pa), init_laddr);
1695 break;
1698 case CEC_MSG_USER_CONTROL_PRESSED:
1699 if (!(adap->capabilities & CEC_CAP_RC) ||
1700 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1701 break;
1703 #if IS_REACHABLE(CONFIG_RC_CORE)
1704 switch (msg->msg[2]) {
1706 * Play function, this message can have variable length
1707 * depending on the specific play function that is used.
1709 case 0x60:
1710 if (msg->len == 2)
1711 rc_keydown(adap->rc, RC_TYPE_CEC,
1712 msg->msg[2], 0);
1713 else
1714 rc_keydown(adap->rc, RC_TYPE_CEC,
1715 msg->msg[2] << 8 | msg->msg[3], 0);
1716 break;
1718 * Other function messages that are not handled.
1719 * Currently the RC framework does not allow to supply an
1720 * additional parameter to a keypress. These "keys" contain
1721 * other information such as channel number, an input number
1722 * etc.
1723 * For the time being these messages are not processed by the
1724 * framework and are simply forwarded to the user space.
1726 case 0x56: case 0x57:
1727 case 0x67: case 0x68: case 0x69: case 0x6a:
1728 break;
1729 default:
1730 rc_keydown(adap->rc, RC_TYPE_CEC, msg->msg[2], 0);
1731 break;
1733 #endif
1734 break;
1736 case CEC_MSG_USER_CONTROL_RELEASED:
1737 if (!(adap->capabilities & CEC_CAP_RC) ||
1738 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1739 break;
1740 #if IS_REACHABLE(CONFIG_RC_CORE)
1741 rc_keyup(adap->rc);
1742 #endif
1743 break;
1746 * The remaining messages are only processed if the passthrough mode
1747 * is off.
1749 case CEC_MSG_GET_CEC_VERSION:
1750 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1751 return cec_transmit_msg(adap, &tx_cec_msg, false);
1753 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1754 /* Do nothing for CEC switches using addr 15 */
1755 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1756 return 0;
1757 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1758 return cec_transmit_msg(adap, &tx_cec_msg, false);
1760 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1761 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1762 return cec_feature_abort(adap, msg);
1763 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1764 return cec_transmit_msg(adap, &tx_cec_msg, false);
1766 case CEC_MSG_ABORT:
1767 /* Do nothing for CEC switches */
1768 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1769 return 0;
1770 return cec_feature_refused(adap, msg);
1772 case CEC_MSG_GIVE_OSD_NAME: {
1773 if (adap->log_addrs.osd_name[0] == 0)
1774 return cec_feature_abort(adap, msg);
1775 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1776 return cec_transmit_msg(adap, &tx_cec_msg, false);
1779 case CEC_MSG_GIVE_FEATURES:
1780 if (adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0)
1781 return cec_report_features(adap, la_idx);
1782 return 0;
1784 default:
1786 * Unprocessed messages are aborted if userspace isn't doing
1787 * any processing either.
1789 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
1790 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
1791 return cec_feature_abort(adap, msg);
1792 break;
1795 skip_processing:
1796 /* If this was a reply, then we're done, unless otherwise specified */
1797 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
1798 return 0;
1801 * Send to the exclusive follower if there is one, otherwise send
1802 * to all followers.
1804 if (adap->cec_follower)
1805 cec_queue_msg_fh(adap->cec_follower, msg);
1806 else
1807 cec_queue_msg_followers(adap, msg);
1808 return 0;
1812 * Helper functions to keep track of the 'monitor all' use count.
1814 * These functions are called with adap->lock held.
1816 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
1818 int ret = 0;
1820 if (adap->monitor_all_cnt == 0)
1821 ret = call_op(adap, adap_monitor_all_enable, 1);
1822 if (ret == 0)
1823 adap->monitor_all_cnt++;
1824 return ret;
1827 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
1829 adap->monitor_all_cnt--;
1830 if (adap->monitor_all_cnt == 0)
1831 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
1834 #ifdef CONFIG_MEDIA_CEC_DEBUG
1836 * Log the current state of the CEC adapter.
1837 * Very useful for debugging.
1839 int cec_adap_status(struct seq_file *file, void *priv)
1841 struct cec_adapter *adap = dev_get_drvdata(file->private);
1842 struct cec_data *data;
1844 mutex_lock(&adap->lock);
1845 seq_printf(file, "configured: %d\n", adap->is_configured);
1846 seq_printf(file, "configuring: %d\n", adap->is_configuring);
1847 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
1848 cec_phys_addr_exp(adap->phys_addr));
1849 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
1850 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
1851 if (adap->cec_follower)
1852 seq_printf(file, "has CEC follower%s\n",
1853 adap->passthrough ? " (in passthrough mode)" : "");
1854 if (adap->cec_initiator)
1855 seq_puts(file, "has CEC initiator\n");
1856 if (adap->monitor_all_cnt)
1857 seq_printf(file, "file handles in Monitor All mode: %u\n",
1858 adap->monitor_all_cnt);
1859 data = adap->transmitting;
1860 if (data)
1861 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
1862 data->msg.len, data->msg.msg, data->msg.reply,
1863 data->msg.timeout);
1864 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
1865 list_for_each_entry(data, &adap->transmit_queue, list) {
1866 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
1867 data->msg.len, data->msg.msg, data->msg.reply,
1868 data->msg.timeout);
1870 list_for_each_entry(data, &adap->wait_queue, list) {
1871 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
1872 data->msg.len, data->msg.msg, data->msg.reply,
1873 data->msg.timeout);
1876 call_void_op(adap, adap_status, file);
1877 mutex_unlock(&adap->lock);
1878 return 0;
1880 #endif