sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / media / dvb-frontends / dib9000.c
blobc95fff4f958206c5e5d8c8117e1fb1b26703368c
1 /*
2 * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family.
4 * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation, version 2.
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/i2c.h>
15 #include <linux/mutex.h>
17 #include "dvb_math.h"
18 #include "dvb_frontend.h"
20 #include "dib9000.h"
21 #include "dibx000_common.h"
23 static int debug;
24 module_param(debug, int, 0644);
25 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
27 #define dprintk(fmt, arg...) do { \
28 if (debug) \
29 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
30 __func__, ##arg); \
31 } while (0)
33 #define MAX_NUMBER_OF_FRONTENDS 6
35 struct i2c_device {
36 struct i2c_adapter *i2c_adap;
37 u8 i2c_addr;
38 u8 *i2c_read_buffer;
39 u8 *i2c_write_buffer;
42 struct dib9000_pid_ctrl {
43 #define DIB9000_PID_FILTER_CTRL 0
44 #define DIB9000_PID_FILTER 1
45 u8 cmd;
46 u8 id;
47 u16 pid;
48 u8 onoff;
51 struct dib9000_state {
52 struct i2c_device i2c;
54 struct dibx000_i2c_master i2c_master;
55 struct i2c_adapter tuner_adap;
56 struct i2c_adapter component_bus;
58 u16 revision;
59 u8 reg_offs;
61 enum frontend_tune_state tune_state;
62 u32 status;
63 struct dvb_frontend_parametersContext channel_status;
65 u8 fe_id;
67 #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff
68 u16 gpio_dir;
69 #define DIB9000_GPIO_DEFAULT_VALUES 0x0000
70 u16 gpio_val;
71 #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff
72 u16 gpio_pwm_pos;
74 union { /* common for all chips */
75 struct {
76 u8 mobile_mode:1;
77 } host;
79 struct {
80 struct dib9000_fe_memory_map {
81 u16 addr;
82 u16 size;
83 } fe_mm[18];
84 u8 memcmd;
86 struct mutex mbx_if_lock; /* to protect read/write operations */
87 struct mutex mbx_lock; /* to protect the whole mailbox handling */
89 struct mutex mem_lock; /* to protect the memory accesses */
90 struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */
92 #define MBX_MAX_WORDS (256 - 200 - 2)
93 #define DIB9000_MSG_CACHE_SIZE 2
94 u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS];
95 u8 fw_is_running;
96 } risc;
97 } platform;
99 union { /* common for all platforms */
100 struct {
101 struct dib9000_config cfg;
102 } d9;
103 } chip;
105 struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
106 u16 component_bus_speed;
108 /* for the I2C transfer */
109 struct i2c_msg msg[2];
110 u8 i2c_write_buffer[255];
111 u8 i2c_read_buffer[255];
112 struct mutex demod_lock;
113 u8 get_frontend_internal;
114 struct dib9000_pid_ctrl pid_ctrl[10];
115 s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */
118 static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
119 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
120 0, 0, 0, 0, 0, 0, 0, 0
123 enum dib9000_power_mode {
124 DIB9000_POWER_ALL = 0,
126 DIB9000_POWER_NO,
127 DIB9000_POWER_INTERF_ANALOG_AGC,
128 DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
129 DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD,
130 DIB9000_POWER_INTERFACE_ONLY,
133 enum dib9000_out_messages {
134 OUT_MSG_HBM_ACK,
135 OUT_MSG_HOST_BUF_FAIL,
136 OUT_MSG_REQ_VERSION,
137 OUT_MSG_BRIDGE_I2C_W,
138 OUT_MSG_BRIDGE_I2C_R,
139 OUT_MSG_BRIDGE_APB_W,
140 OUT_MSG_BRIDGE_APB_R,
141 OUT_MSG_SCAN_CHANNEL,
142 OUT_MSG_MONIT_DEMOD,
143 OUT_MSG_CONF_GPIO,
144 OUT_MSG_DEBUG_HELP,
145 OUT_MSG_SUBBAND_SEL,
146 OUT_MSG_ENABLE_TIME_SLICE,
147 OUT_MSG_FE_FW_DL,
148 OUT_MSG_FE_CHANNEL_SEARCH,
149 OUT_MSG_FE_CHANNEL_TUNE,
150 OUT_MSG_FE_SLEEP,
151 OUT_MSG_FE_SYNC,
152 OUT_MSG_CTL_MONIT,
154 OUT_MSG_CONF_SVC,
155 OUT_MSG_SET_HBM,
156 OUT_MSG_INIT_DEMOD,
157 OUT_MSG_ENABLE_DIVERSITY,
158 OUT_MSG_SET_OUTPUT_MODE,
159 OUT_MSG_SET_PRIORITARY_CHANNEL,
160 OUT_MSG_ACK_FRG,
161 OUT_MSG_INIT_PMU,
164 enum dib9000_in_messages {
165 IN_MSG_DATA,
166 IN_MSG_FRAME_INFO,
167 IN_MSG_CTL_MONIT,
168 IN_MSG_ACK_FREE_ITEM,
169 IN_MSG_DEBUG_BUF,
170 IN_MSG_MPE_MONITOR,
171 IN_MSG_RAWTS_MONITOR,
172 IN_MSG_END_BRIDGE_I2C_RW,
173 IN_MSG_END_BRIDGE_APB_RW,
174 IN_MSG_VERSION,
175 IN_MSG_END_OF_SCAN,
176 IN_MSG_MONIT_DEMOD,
177 IN_MSG_ERROR,
178 IN_MSG_FE_FW_DL_DONE,
179 IN_MSG_EVENT,
180 IN_MSG_ACK_CHANGE_SVC,
181 IN_MSG_HBM_PROF,
184 /* memory_access requests */
185 #define FE_MM_W_CHANNEL 0
186 #define FE_MM_W_FE_INFO 1
187 #define FE_MM_RW_SYNC 2
189 #define FE_SYNC_CHANNEL 1
190 #define FE_SYNC_W_GENERIC_MONIT 2
191 #define FE_SYNC_COMPONENT_ACCESS 3
193 #define FE_MM_R_CHANNEL_SEARCH_STATE 3
194 #define FE_MM_R_CHANNEL_UNION_CONTEXT 4
195 #define FE_MM_R_FE_INFO 5
196 #define FE_MM_R_FE_MONITOR 6
198 #define FE_MM_W_CHANNEL_HEAD 7
199 #define FE_MM_W_CHANNEL_UNION 8
200 #define FE_MM_W_CHANNEL_CONTEXT 9
201 #define FE_MM_R_CHANNEL_UNION 10
202 #define FE_MM_R_CHANNEL_CONTEXT 11
203 #define FE_MM_R_CHANNEL_TUNE_STATE 12
205 #define FE_MM_R_GENERIC_MONITORING_SIZE 13
206 #define FE_MM_W_GENERIC_MONITORING 14
207 #define FE_MM_R_GENERIC_MONITORING 15
209 #define FE_MM_W_COMPONENT_ACCESS 16
210 #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17
211 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len);
212 static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len);
214 static u16 to_fw_output_mode(u16 mode)
216 switch (mode) {
217 case OUTMODE_HIGH_Z:
218 return 0;
219 case OUTMODE_MPEG2_PAR_GATED_CLK:
220 return 4;
221 case OUTMODE_MPEG2_PAR_CONT_CLK:
222 return 8;
223 case OUTMODE_MPEG2_SERIAL:
224 return 16;
225 case OUTMODE_DIVERSITY:
226 return 128;
227 case OUTMODE_MPEG2_FIFO:
228 return 2;
229 case OUTMODE_ANALOG_ADC:
230 return 1;
231 default:
232 return 0;
236 static int dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 *b, u32 len, u16 attribute)
238 u32 chunk_size = 126;
239 u32 l;
240 int ret;
242 if (state->platform.risc.fw_is_running && (reg < 1024))
243 return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len);
245 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
246 state->msg[0].addr = state->i2c.i2c_addr >> 1;
247 state->msg[0].flags = 0;
248 state->msg[0].buf = state->i2c_write_buffer;
249 state->msg[0].len = 2;
250 state->msg[1].addr = state->i2c.i2c_addr >> 1;
251 state->msg[1].flags = I2C_M_RD;
252 state->msg[1].buf = b;
253 state->msg[1].len = len;
255 state->i2c_write_buffer[0] = reg >> 8;
256 state->i2c_write_buffer[1] = reg & 0xff;
258 if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
259 state->i2c_write_buffer[0] |= (1 << 5);
260 if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
261 state->i2c_write_buffer[0] |= (1 << 4);
263 do {
264 l = len < chunk_size ? len : chunk_size;
265 state->msg[1].len = l;
266 state->msg[1].buf = b;
267 ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0;
268 if (ret != 0) {
269 dprintk("i2c read error on %d\n", reg);
270 return -EREMOTEIO;
273 b += l;
274 len -= l;
276 if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
277 reg += l / 2;
278 } while ((ret == 0) && len);
280 return 0;
283 static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg)
285 struct i2c_msg msg[2] = {
286 {.addr = i2c->i2c_addr >> 1, .flags = 0,
287 .buf = i2c->i2c_write_buffer, .len = 2},
288 {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD,
289 .buf = i2c->i2c_read_buffer, .len = 2},
292 i2c->i2c_write_buffer[0] = reg >> 8;
293 i2c->i2c_write_buffer[1] = reg & 0xff;
295 if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) {
296 dprintk("read register %x error\n", reg);
297 return 0;
300 return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1];
303 static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg)
305 if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0)
306 return 0;
307 return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
310 static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute)
312 if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2,
313 attribute) != 0)
314 return 0;
315 return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
318 #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
320 static int dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 *buf, u32 len, u16 attribute)
322 u32 chunk_size = 126;
323 u32 l;
324 int ret;
326 if (state->platform.risc.fw_is_running && (reg < 1024)) {
327 if (dib9000_risc_apb_access_write
328 (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
329 return -EINVAL;
330 return 0;
333 memset(&state->msg[0], 0, sizeof(struct i2c_msg));
334 state->msg[0].addr = state->i2c.i2c_addr >> 1;
335 state->msg[0].flags = 0;
336 state->msg[0].buf = state->i2c_write_buffer;
337 state->msg[0].len = len + 2;
339 state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
340 state->i2c_write_buffer[1] = (reg) & 0xff;
342 if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
343 state->i2c_write_buffer[0] |= (1 << 5);
344 if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
345 state->i2c_write_buffer[0] |= (1 << 4);
347 do {
348 l = len < chunk_size ? len : chunk_size;
349 state->msg[0].len = l + 2;
350 memcpy(&state->i2c_write_buffer[2], buf, l);
352 ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0;
354 buf += l;
355 len -= l;
357 if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
358 reg += l / 2;
359 } while ((ret == 0) && len);
361 return ret;
364 static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
366 struct i2c_msg msg = {
367 .addr = i2c->i2c_addr >> 1, .flags = 0,
368 .buf = i2c->i2c_write_buffer, .len = 4
371 i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff;
372 i2c->i2c_write_buffer[1] = reg & 0xff;
373 i2c->i2c_write_buffer[2] = (val >> 8) & 0xff;
374 i2c->i2c_write_buffer[3] = val & 0xff;
376 return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
379 static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val)
381 u8 b[2] = { val >> 8, val & 0xff };
382 return dib9000_write16_attr(state, reg, b, 2, 0);
385 static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute)
387 u8 b[2] = { val >> 8, val & 0xff };
388 return dib9000_write16_attr(state, reg, b, 2, attribute);
391 #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0)
392 #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
393 #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute))
395 #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0)
396 #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0)
398 #define MAC_IRQ (1 << 1)
399 #define IRQ_POL_MSK (1 << 4)
401 #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
402 #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
404 static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading)
406 u8 b[14] = { 0 };
408 /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */
409 /* b[0] = 0 << 7; */
410 b[1] = 1;
412 /* b[2] = 0; */
413 /* b[3] = 0; */
414 b[4] = (u8) (addr >> 8);
415 b[5] = (u8) (addr & 0xff);
417 /* b[10] = 0; */
418 /* b[11] = 0; */
419 b[12] = (u8) (addr >> 8);
420 b[13] = (u8) (addr & 0xff);
422 addr += len;
423 /* b[6] = 0; */
424 /* b[7] = 0; */
425 b[8] = (u8) (addr >> 8);
426 b[9] = (u8) (addr & 0xff);
428 dib9000_write(state, 1056, b, 14);
429 if (reading)
430 dib9000_write_word(state, 1056, (1 << 15) | 1);
431 state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */
434 static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd)
436 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f];
437 /* decide whether we need to "refresh" the memory controller */
438 if (state->platform.risc.memcmd == cmd && /* same command */
439 !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
440 return;
441 dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80);
442 state->platform.risc.memcmd = cmd;
445 static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len)
447 if (!state->platform.risc.fw_is_running)
448 return -EIO;
450 if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
451 dprintk("could not get the lock\n");
452 return -EINTR;
454 dib9000_risc_mem_setup(state, cmd | 0x80);
455 dib9000_risc_mem_read_chunks(state, b, len);
456 mutex_unlock(&state->platform.risc.mem_lock);
457 return 0;
460 static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b)
462 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd];
463 if (!state->platform.risc.fw_is_running)
464 return -EIO;
466 if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
467 dprintk("could not get the lock\n");
468 return -EINTR;
470 dib9000_risc_mem_setup(state, cmd);
471 dib9000_risc_mem_write_chunks(state, b, m->size);
472 mutex_unlock(&state->platform.risc.mem_lock);
473 return 0;
476 static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len)
478 u16 offs;
480 if (risc_id == 1)
481 offs = 16;
482 else
483 offs = 0;
485 /* config crtl reg */
486 dib9000_write_word(state, 1024 + offs, 0x000f);
487 dib9000_write_word(state, 1025 + offs, 0);
488 dib9000_write_word(state, 1031 + offs, key);
490 dprintk("going to download %dB of microcode\n", len);
491 if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) {
492 dprintk("error while downloading microcode for RISC %c\n", 'A' + risc_id);
493 return -EIO;
496 dprintk("Microcode for RISC %c loaded\n", 'A' + risc_id);
498 return 0;
501 static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id)
503 u16 mbox_offs;
504 u16 reset_reg;
505 u16 tries = 1000;
507 if (risc_id == 1)
508 mbox_offs = 16;
509 else
510 mbox_offs = 0;
512 /* Reset mailbox */
513 dib9000_write_word(state, 1027 + mbox_offs, 0x8000);
515 /* Read reset status */
516 do {
517 reset_reg = dib9000_read_word(state, 1027 + mbox_offs);
518 msleep(100);
519 } while ((reset_reg & 0x8000) && --tries);
521 if (reset_reg & 0x8000) {
522 dprintk("MBX: init ERROR, no response from RISC %c\n", 'A' + risc_id);
523 return -EIO;
525 dprintk("MBX: initialized\n");
526 return 0;
529 #define MAX_MAILBOX_TRY 100
530 static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr)
532 u8 *d, b[2];
533 u16 tmp;
534 u16 size;
535 u32 i;
536 int ret = 0;
538 if (!state->platform.risc.fw_is_running)
539 return -EINVAL;
541 if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
542 dprintk("could not get the lock\n");
543 return -EINTR;
545 tmp = MAX_MAILBOX_TRY;
546 do {
547 size = dib9000_read_word_attr(state, 1043, attr) & 0xff;
548 if ((size + len + 1) > MBX_MAX_WORDS && --tmp) {
549 dprintk("MBX: RISC mbx full, retrying\n");
550 msleep(100);
551 } else
552 break;
553 } while (1);
555 /*dprintk( "MBX: size: %d\n", size); */
557 if (tmp == 0) {
558 ret = -EINVAL;
559 goto out;
561 #ifdef DUMP_MSG
562 dprintk("--> %02x %d %*ph\n", id, len + 1, len, data);
563 #endif
565 /* byte-order conversion - works on big (where it is not necessary) or little endian */
566 d = (u8 *) data;
567 for (i = 0; i < len; i++) {
568 tmp = data[i];
569 *d++ = tmp >> 8;
570 *d++ = tmp & 0xff;
573 /* write msg */
574 b[0] = id;
575 b[1] = len + 1;
576 if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) {
577 ret = -EIO;
578 goto out;
581 /* update register nb_mes_in_RX */
582 ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr);
584 out:
585 mutex_unlock(&state->platform.risc.mbx_if_lock);
587 return ret;
590 static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr)
592 #ifdef DUMP_MSG
593 u16 *d = data;
594 #endif
596 u16 tmp, i;
597 u8 size;
598 u8 mc_base;
600 if (!state->platform.risc.fw_is_running)
601 return 0;
603 if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
604 dprintk("could not get the lock\n");
605 return 0;
607 if (risc_id == 1)
608 mc_base = 16;
609 else
610 mc_base = 0;
612 /* Length and type in the first word */
613 *data = dib9000_read_word_attr(state, 1029 + mc_base, attr);
615 size = *data & 0xff;
616 if (size <= MBX_MAX_WORDS) {
617 data++;
618 size--; /* Initial word already read */
620 dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr);
622 /* to word conversion */
623 for (i = 0; i < size; i++) {
624 tmp = *data;
625 *data = (tmp >> 8) | (tmp << 8);
626 data++;
629 #ifdef DUMP_MSG
630 dprintk("<--\n");
631 for (i = 0; i < size + 1; i++)
632 dprintk("%04x\n", d[i]);
633 dprintk("\n");
634 #endif
635 } else {
636 dprintk("MBX: message is too big for message cache (%d), flushing message\n", size);
637 size--; /* Initial word already read */
638 while (size--)
639 dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr);
641 /* Update register nb_mes_in_TX */
642 dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr);
644 mutex_unlock(&state->platform.risc.mbx_if_lock);
646 return size + 1;
649 static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size)
651 u32 ts = data[1] << 16 | data[0];
652 char *b = (char *)&data[2];
654 b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */
655 if (*b == '~') {
656 b++;
657 dprintk("%s\n", b);
658 } else
659 dprintk("RISC%d: %d.%04d %s\n",
660 state->fe_id,
661 ts / 10000, ts % 10000, *b ? b : "<empty>");
662 return 1;
665 static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr)
667 int i;
668 u8 size;
669 u16 *block;
670 /* find a free slot */
671 for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
672 block = state->platform.risc.message_cache[i];
673 if (*block == 0) {
674 size = dib9000_mbx_read(state, block, 1, attr);
676 /* dprintk( "MBX: fetched %04x message to cache\n", *block); */
678 switch (*block >> 8) {
679 case IN_MSG_DEBUG_BUF:
680 dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */
681 *block = 0; /* free the block */
682 break;
683 #if 0
684 case IN_MSG_DATA: /* FE-TRACE */
685 dib9000_risc_data_process(state, block + 1, size);
686 *block = 0;
687 break;
688 #endif
689 default:
690 break;
693 return 1;
696 dprintk("MBX: no free cache-slot found for new message...\n");
697 return -1;
700 static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr)
702 if (risc_id == 0)
703 return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */
704 else
705 return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */
708 static int dib9000_mbx_process(struct dib9000_state *state, u16 attr)
710 int ret = 0;
712 if (!state->platform.risc.fw_is_running)
713 return -1;
715 if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) {
716 dprintk("could not get the lock\n");
717 return -1;
720 if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */
721 ret = dib9000_mbx_fetch_to_cache(state, attr);
723 dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */
724 /* if (tmp) */
725 /* dprintk( "cleared IRQ: %x\n", tmp); */
726 mutex_unlock(&state->platform.risc.mbx_lock);
728 return ret;
731 static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr)
733 u8 i;
734 u16 *block;
735 u16 timeout = 30;
737 *msg = 0;
738 do {
739 /* dib9000_mbx_get_from_cache(); */
740 for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
741 block = state->platform.risc.message_cache[i];
742 if ((*block >> 8) == id) {
743 *size = (*block & 0xff) - 1;
744 memcpy(msg, block + 1, (*size) * 2);
745 *block = 0; /* free the block */
746 i = 0; /* signal that we found a message */
747 break;
751 if (i == 0)
752 break;
754 if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */
755 return -1;
757 } while (--timeout);
759 if (timeout == 0) {
760 dprintk("waiting for message %d timed out\n", id);
761 return -1;
764 return i == 0;
767 static int dib9000_risc_check_version(struct dib9000_state *state)
769 u8 r[4];
770 u8 size;
771 u16 fw_version = 0;
773 if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0)
774 return -EIO;
776 if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0)
777 return -EIO;
779 fw_version = (r[0] << 8) | r[1];
780 dprintk("RISC: ver: %d.%02d (IC: %d)\n", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]);
782 if ((fw_version >> 10) != 7)
783 return -EINVAL;
785 switch (fw_version & 0x3ff) {
786 case 11:
787 case 12:
788 case 14:
789 case 15:
790 case 16:
791 case 17:
792 break;
793 default:
794 dprintk("RISC: invalid firmware version");
795 return -EINVAL;
798 dprintk("RISC: valid firmware version");
799 return 0;
802 static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB)
804 /* Reconfig pool mac ram */
805 dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */
806 dib9000_write_word(state, 1226, 0x05);
808 /* Toggles IP crypto to Host APB interface. */
809 dib9000_write_word(state, 1542, 1);
811 /* Set jump and no jump in the dma box */
812 dib9000_write_word(state, 1074, 0);
813 dib9000_write_word(state, 1075, 0);
815 /* Set MAC as APB Master. */
816 dib9000_write_word(state, 1237, 0);
818 /* Reset the RISCs */
819 if (codeA != NULL)
820 dib9000_write_word(state, 1024, 2);
821 else
822 dib9000_write_word(state, 1024, 15);
823 if (codeB != NULL)
824 dib9000_write_word(state, 1040, 2);
826 if (codeA != NULL)
827 dib9000_firmware_download(state, 0, 0x1234, codeA, lenA);
828 if (codeB != NULL)
829 dib9000_firmware_download(state, 1, 0x1234, codeB, lenB);
831 /* Run the RISCs */
832 if (codeA != NULL)
833 dib9000_write_word(state, 1024, 0);
834 if (codeB != NULL)
835 dib9000_write_word(state, 1040, 0);
837 if (codeA != NULL)
838 if (dib9000_mbx_host_init(state, 0) != 0)
839 return -EIO;
840 if (codeB != NULL)
841 if (dib9000_mbx_host_init(state, 1) != 0)
842 return -EIO;
844 msleep(100);
845 state->platform.risc.fw_is_running = 1;
847 if (dib9000_risc_check_version(state) != 0)
848 return -EINVAL;
850 state->platform.risc.memcmd = 0xff;
851 return 0;
854 static u16 dib9000_identify(struct i2c_device *client)
856 u16 value;
858 value = dib9000_i2c_read16(client, 896);
859 if (value != 0x01b3) {
860 dprintk("wrong Vendor ID (0x%x)\n", value);
861 return 0;
864 value = dib9000_i2c_read16(client, 897);
865 if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) {
866 dprintk("wrong Device ID (0x%x)\n", value);
867 return 0;
870 /* protect this driver to be used with 7000PC */
871 if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) {
872 dprintk("this driver does not work with DiB7000PC\n");
873 return 0;
876 switch (value) {
877 case 0x4000:
878 dprintk("found DiB7000MA/PA/MB/PB\n");
879 break;
880 case 0x4001:
881 dprintk("found DiB7000HC\n");
882 break;
883 case 0x4002:
884 dprintk("found DiB7000MC\n");
885 break;
886 case 0x4003:
887 dprintk("found DiB9000A\n");
888 break;
889 case 0x4004:
890 dprintk("found DiB9000H\n");
891 break;
892 case 0x4005:
893 dprintk("found DiB9000M\n");
894 break;
897 return value;
900 static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode)
902 /* by default everything is going to be powered off */
903 u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906;
904 u8 offset;
906 if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005)
907 offset = 1;
908 else
909 offset = 0;
911 reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */
913 /* now, depending on the requested mode, we power on */
914 switch (mode) {
915 /* power up everything in the demod */
916 case DIB9000_POWER_ALL:
917 reg_903 = 0x0000;
918 reg_904 = 0x0000;
919 reg_905 = 0x0000;
920 reg_906 = 0x0000;
921 break;
923 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
924 case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
925 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
926 break;
928 case DIB9000_POWER_INTERF_ANALOG_AGC:
929 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
930 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
931 reg_906 &= ~((1 << 0));
932 break;
934 case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
935 reg_903 = 0x0000;
936 reg_904 = 0x801f;
937 reg_905 = 0x0000;
938 reg_906 &= ~((1 << 0));
939 break;
941 case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD:
942 reg_903 = 0x0000;
943 reg_904 = 0x8000;
944 reg_905 = 0x010b;
945 reg_906 &= ~((1 << 0));
946 break;
947 default:
948 case DIB9000_POWER_NO:
949 break;
952 /* always power down unused parts */
953 if (!state->platform.host.mobile_mode)
954 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
956 /* P_sdio_select_clk = 0 on MC and after */
957 if (state->revision != 0x4000)
958 reg_906 <<= 1;
960 dib9000_write_word(state, 903 + offset, reg_903);
961 dib9000_write_word(state, 904 + offset, reg_904);
962 dib9000_write_word(state, 905 + offset, reg_905);
963 dib9000_write_word(state, 906 + offset, reg_906);
966 static int dib9000_fw_reset(struct dvb_frontend *fe)
968 struct dib9000_state *state = fe->demodulator_priv;
970 dib9000_write_word(state, 1817, 0x0003);
972 dib9000_write_word(state, 1227, 1);
973 dib9000_write_word(state, 1227, 0);
975 switch ((state->revision = dib9000_identify(&state->i2c))) {
976 case 0x4003:
977 case 0x4004:
978 case 0x4005:
979 state->reg_offs = 1;
980 break;
981 default:
982 return -EINVAL;
985 /* reset the i2c-master to use the host interface */
986 dibx000_reset_i2c_master(&state->i2c_master);
988 dib9000_set_power_mode(state, DIB9000_POWER_ALL);
990 /* unforce divstr regardless whether i2c enumeration was done or not */
991 dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1));
992 dib9000_write_word(state, 1796, 0);
993 dib9000_write_word(state, 1805, 0x805);
995 /* restart all parts */
996 dib9000_write_word(state, 898, 0xffff);
997 dib9000_write_word(state, 899, 0xffff);
998 dib9000_write_word(state, 900, 0x0001);
999 dib9000_write_word(state, 901, 0xff19);
1000 dib9000_write_word(state, 902, 0x003c);
1002 dib9000_write_word(state, 898, 0);
1003 dib9000_write_word(state, 899, 0);
1004 dib9000_write_word(state, 900, 0);
1005 dib9000_write_word(state, 901, 0);
1006 dib9000_write_word(state, 902, 0);
1008 dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives);
1010 dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY);
1012 return 0;
1015 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len)
1017 u16 mb[10];
1018 u8 i, s;
1020 if (address >= 1024 || !state->platform.risc.fw_is_running)
1021 return -EINVAL;
1023 /* dprintk( "APB access thru rd fw %d %x\n", address, attribute); */
1025 mb[0] = (u16) address;
1026 mb[1] = len / 2;
1027 dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute);
1028 switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) {
1029 case 1:
1030 s--;
1031 for (i = 0; i < s; i++) {
1032 b[i * 2] = (mb[i + 1] >> 8) & 0xff;
1033 b[i * 2 + 1] = (mb[i + 1]) & 0xff;
1035 return 0;
1036 default:
1037 return -EIO;
1039 return -EIO;
1042 static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len)
1044 u16 mb[10];
1045 u8 s, i;
1047 if (address >= 1024 || !state->platform.risc.fw_is_running)
1048 return -EINVAL;
1050 if (len > 18)
1051 return -EINVAL;
1053 /* dprintk( "APB access thru wr fw %d %x\n", address, attribute); */
1055 mb[0] = (u16)address;
1056 for (i = 0; i + 1 < len; i += 2)
1057 mb[1 + i / 2] = b[i] << 8 | b[i + 1];
1058 if (len & 1)
1059 mb[1 + len / 2] = b[len - 1] << 8;
1061 dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute);
1062 return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL;
1065 static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i)
1067 u8 index_loop = 10;
1069 if (!state->platform.risc.fw_is_running)
1070 return 0;
1071 dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i);
1072 do {
1073 dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1);
1074 } while (state->i2c_read_buffer[0] && index_loop--);
1076 if (index_loop > 0)
1077 return 0;
1078 return -EIO;
1081 static int dib9000_fw_init(struct dib9000_state *state)
1083 struct dibGPIOFunction *f;
1084 u16 b[40] = { 0 };
1085 u8 i;
1086 u8 size;
1088 if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0)
1089 return -EIO;
1091 /* initialize the firmware */
1092 for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) {
1093 f = &state->chip.d9.cfg.gpio_function[i];
1094 if (f->mask) {
1095 switch (f->function) {
1096 case BOARD_GPIO_FUNCTION_COMPONENT_ON:
1097 b[0] = (u16) f->mask;
1098 b[1] = (u16) f->direction;
1099 b[2] = (u16) f->value;
1100 break;
1101 case BOARD_GPIO_FUNCTION_COMPONENT_OFF:
1102 b[3] = (u16) f->mask;
1103 b[4] = (u16) f->direction;
1104 b[5] = (u16) f->value;
1105 break;
1109 if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0)
1110 return -EIO;
1112 /* subband */
1113 b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */
1114 for (i = 0; i < state->chip.d9.cfg.subband.size; i++) {
1115 b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz;
1116 b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask;
1117 b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction;
1118 b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value;
1120 b[1 + i * 4] = 0; /* fe_id */
1121 if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0)
1122 return -EIO;
1124 /* 0 - id, 1 - no_of_frontends */
1125 b[0] = (0 << 8) | 1;
1126 /* 0 = i2c-address demod, 0 = tuner */
1127 b[1] = (0 << 8) | (0);
1128 b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff);
1129 b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff);
1130 b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff);
1131 b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff);
1132 b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff);
1133 b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff);
1134 b[29] = state->chip.d9.cfg.if_drives;
1135 if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0)
1136 return -EIO;
1138 if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0)
1139 return -EIO;
1141 if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0)
1142 return -EIO;
1144 if (size > ARRAY_SIZE(b)) {
1145 dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size,
1146 (int)ARRAY_SIZE(b));
1147 return -EINVAL;
1150 for (i = 0; i < size; i += 2) {
1151 state->platform.risc.fe_mm[i / 2].addr = b[i + 0];
1152 state->platform.risc.fe_mm[i / 2].size = b[i + 1];
1155 return 0;
1158 static void dib9000_fw_set_channel_head(struct dib9000_state *state)
1160 u8 b[9];
1161 u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000;
1162 if (state->fe_id % 2)
1163 freq += 101;
1165 b[0] = (u8) ((freq >> 0) & 0xff);
1166 b[1] = (u8) ((freq >> 8) & 0xff);
1167 b[2] = (u8) ((freq >> 16) & 0xff);
1168 b[3] = (u8) ((freq >> 24) & 0xff);
1169 b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff);
1170 b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff);
1171 b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff);
1172 b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff);
1173 b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */
1174 if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT)
1175 b[8] |= 1;
1176 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b);
1179 static int dib9000_fw_get_channel(struct dvb_frontend *fe)
1181 struct dib9000_state *state = fe->demodulator_priv;
1182 struct dibDVBTChannel {
1183 s8 spectrum_inversion;
1185 s8 nfft;
1186 s8 guard;
1187 s8 constellation;
1189 s8 hrch;
1190 s8 alpha;
1191 s8 code_rate_hp;
1192 s8 code_rate_lp;
1193 s8 select_hp;
1195 s8 intlv_native;
1197 struct dibDVBTChannel *ch;
1198 int ret = 0;
1200 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
1201 dprintk("could not get the lock\n");
1202 return -EINTR;
1204 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
1205 ret = -EIO;
1206 goto error;
1209 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION,
1210 state->i2c_read_buffer, sizeof(struct dibDVBTChannel));
1211 ch = (struct dibDVBTChannel *)state->i2c_read_buffer;
1214 switch (ch->spectrum_inversion & 0x7) {
1215 case 1:
1216 state->fe[0]->dtv_property_cache.inversion = INVERSION_ON;
1217 break;
1218 case 0:
1219 state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF;
1220 break;
1221 default:
1222 case -1:
1223 state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO;
1224 break;
1226 switch (ch->nfft) {
1227 case 0:
1228 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
1229 break;
1230 case 2:
1231 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K;
1232 break;
1233 case 1:
1234 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
1235 break;
1236 default:
1237 case -1:
1238 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO;
1239 break;
1241 switch (ch->guard) {
1242 case 0:
1243 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
1244 break;
1245 case 1:
1246 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
1247 break;
1248 case 2:
1249 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
1250 break;
1251 case 3:
1252 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
1253 break;
1254 default:
1255 case -1:
1256 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO;
1257 break;
1259 switch (ch->constellation) {
1260 case 2:
1261 state->fe[0]->dtv_property_cache.modulation = QAM_64;
1262 break;
1263 case 1:
1264 state->fe[0]->dtv_property_cache.modulation = QAM_16;
1265 break;
1266 case 0:
1267 state->fe[0]->dtv_property_cache.modulation = QPSK;
1268 break;
1269 default:
1270 case -1:
1271 state->fe[0]->dtv_property_cache.modulation = QAM_AUTO;
1272 break;
1274 switch (ch->hrch) {
1275 case 0:
1276 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE;
1277 break;
1278 case 1:
1279 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1;
1280 break;
1281 default:
1282 case -1:
1283 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO;
1284 break;
1286 switch (ch->code_rate_hp) {
1287 case 1:
1288 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2;
1289 break;
1290 case 2:
1291 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3;
1292 break;
1293 case 3:
1294 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4;
1295 break;
1296 case 5:
1297 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6;
1298 break;
1299 case 7:
1300 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8;
1301 break;
1302 default:
1303 case -1:
1304 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO;
1305 break;
1307 switch (ch->code_rate_lp) {
1308 case 1:
1309 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2;
1310 break;
1311 case 2:
1312 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3;
1313 break;
1314 case 3:
1315 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4;
1316 break;
1317 case 5:
1318 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6;
1319 break;
1320 case 7:
1321 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8;
1322 break;
1323 default:
1324 case -1:
1325 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO;
1326 break;
1329 error:
1330 mutex_unlock(&state->platform.risc.mem_mbx_lock);
1331 return ret;
1334 static int dib9000_fw_set_channel_union(struct dvb_frontend *fe)
1336 struct dib9000_state *state = fe->demodulator_priv;
1337 struct dibDVBTChannel {
1338 s8 spectrum_inversion;
1340 s8 nfft;
1341 s8 guard;
1342 s8 constellation;
1344 s8 hrch;
1345 s8 alpha;
1346 s8 code_rate_hp;
1347 s8 code_rate_lp;
1348 s8 select_hp;
1350 s8 intlv_native;
1352 struct dibDVBTChannel ch;
1354 switch (state->fe[0]->dtv_property_cache.inversion) {
1355 case INVERSION_ON:
1356 ch.spectrum_inversion = 1;
1357 break;
1358 case INVERSION_OFF:
1359 ch.spectrum_inversion = 0;
1360 break;
1361 default:
1362 case INVERSION_AUTO:
1363 ch.spectrum_inversion = -1;
1364 break;
1366 switch (state->fe[0]->dtv_property_cache.transmission_mode) {
1367 case TRANSMISSION_MODE_2K:
1368 ch.nfft = 0;
1369 break;
1370 case TRANSMISSION_MODE_4K:
1371 ch.nfft = 2;
1372 break;
1373 case TRANSMISSION_MODE_8K:
1374 ch.nfft = 1;
1375 break;
1376 default:
1377 case TRANSMISSION_MODE_AUTO:
1378 ch.nfft = 1;
1379 break;
1381 switch (state->fe[0]->dtv_property_cache.guard_interval) {
1382 case GUARD_INTERVAL_1_32:
1383 ch.guard = 0;
1384 break;
1385 case GUARD_INTERVAL_1_16:
1386 ch.guard = 1;
1387 break;
1388 case GUARD_INTERVAL_1_8:
1389 ch.guard = 2;
1390 break;
1391 case GUARD_INTERVAL_1_4:
1392 ch.guard = 3;
1393 break;
1394 default:
1395 case GUARD_INTERVAL_AUTO:
1396 ch.guard = -1;
1397 break;
1399 switch (state->fe[0]->dtv_property_cache.modulation) {
1400 case QAM_64:
1401 ch.constellation = 2;
1402 break;
1403 case QAM_16:
1404 ch.constellation = 1;
1405 break;
1406 case QPSK:
1407 ch.constellation = 0;
1408 break;
1409 default:
1410 case QAM_AUTO:
1411 ch.constellation = -1;
1412 break;
1414 switch (state->fe[0]->dtv_property_cache.hierarchy) {
1415 case HIERARCHY_NONE:
1416 ch.hrch = 0;
1417 break;
1418 case HIERARCHY_1:
1419 case HIERARCHY_2:
1420 case HIERARCHY_4:
1421 ch.hrch = 1;
1422 break;
1423 default:
1424 case HIERARCHY_AUTO:
1425 ch.hrch = -1;
1426 break;
1428 ch.alpha = 1;
1429 switch (state->fe[0]->dtv_property_cache.code_rate_HP) {
1430 case FEC_1_2:
1431 ch.code_rate_hp = 1;
1432 break;
1433 case FEC_2_3:
1434 ch.code_rate_hp = 2;
1435 break;
1436 case FEC_3_4:
1437 ch.code_rate_hp = 3;
1438 break;
1439 case FEC_5_6:
1440 ch.code_rate_hp = 5;
1441 break;
1442 case FEC_7_8:
1443 ch.code_rate_hp = 7;
1444 break;
1445 default:
1446 case FEC_AUTO:
1447 ch.code_rate_hp = -1;
1448 break;
1450 switch (state->fe[0]->dtv_property_cache.code_rate_LP) {
1451 case FEC_1_2:
1452 ch.code_rate_lp = 1;
1453 break;
1454 case FEC_2_3:
1455 ch.code_rate_lp = 2;
1456 break;
1457 case FEC_3_4:
1458 ch.code_rate_lp = 3;
1459 break;
1460 case FEC_5_6:
1461 ch.code_rate_lp = 5;
1462 break;
1463 case FEC_7_8:
1464 ch.code_rate_lp = 7;
1465 break;
1466 default:
1467 case FEC_AUTO:
1468 ch.code_rate_lp = -1;
1469 break;
1471 ch.select_hp = 1;
1472 ch.intlv_native = 1;
1474 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch);
1476 return 0;
1479 static int dib9000_fw_tune(struct dvb_frontend *fe)
1481 struct dib9000_state *state = fe->demodulator_priv;
1482 int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN;
1483 s8 i;
1485 switch (state->tune_state) {
1486 case CT_DEMOD_START:
1487 dib9000_fw_set_channel_head(state);
1489 /* write the channel context - a channel is initialized to 0, so it is OK */
1490 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info);
1491 dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info);
1493 if (search)
1494 dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0);
1495 else {
1496 dib9000_fw_set_channel_union(fe);
1497 dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0);
1499 state->tune_state = CT_DEMOD_STEP_1;
1500 break;
1501 case CT_DEMOD_STEP_1:
1502 if (search)
1503 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1);
1504 else
1505 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1);
1506 i = (s8)state->i2c_read_buffer[0];
1507 switch (i) { /* something happened */
1508 case 0:
1509 break;
1510 case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */
1511 if (search)
1512 state->status = FE_STATUS_DEMOD_SUCCESS;
1513 else {
1514 state->tune_state = CT_DEMOD_STOP;
1515 state->status = FE_STATUS_LOCKED;
1517 break;
1518 default:
1519 state->status = FE_STATUS_TUNE_FAILED;
1520 state->tune_state = CT_DEMOD_STOP;
1521 break;
1523 break;
1524 default:
1525 ret = FE_CALLBACK_TIME_NEVER;
1526 break;
1529 return ret;
1532 static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff)
1534 struct dib9000_state *state = fe->demodulator_priv;
1535 u16 mode = (u16) onoff;
1536 return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1);
1539 static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode)
1541 struct dib9000_state *state = fe->demodulator_priv;
1542 u16 outreg, smo_mode;
1544 dprintk("setting output mode for demod %p to %d\n", fe, mode);
1546 switch (mode) {
1547 case OUTMODE_MPEG2_PAR_GATED_CLK:
1548 outreg = (1 << 10); /* 0x0400 */
1549 break;
1550 case OUTMODE_MPEG2_PAR_CONT_CLK:
1551 outreg = (1 << 10) | (1 << 6); /* 0x0440 */
1552 break;
1553 case OUTMODE_MPEG2_SERIAL:
1554 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
1555 break;
1556 case OUTMODE_DIVERSITY:
1557 outreg = (1 << 10) | (4 << 6); /* 0x0500 */
1558 break;
1559 case OUTMODE_MPEG2_FIFO:
1560 outreg = (1 << 10) | (5 << 6);
1561 break;
1562 case OUTMODE_HIGH_Z:
1563 outreg = 0;
1564 break;
1565 default:
1566 dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->fe[0]);
1567 return -EINVAL;
1570 dib9000_write_word(state, 1795, outreg);
1572 switch (mode) {
1573 case OUTMODE_MPEG2_PAR_GATED_CLK:
1574 case OUTMODE_MPEG2_PAR_CONT_CLK:
1575 case OUTMODE_MPEG2_SERIAL:
1576 case OUTMODE_MPEG2_FIFO:
1577 smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1);
1578 if (state->chip.d9.cfg.output_mpeg2_in_188_bytes)
1579 smo_mode |= (1 << 5);
1580 dib9000_write_word(state, 295, smo_mode);
1581 break;
1584 outreg = to_fw_output_mode(mode);
1585 return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1);
1588 static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
1590 struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
1591 u16 i, len, t, index_msg;
1593 for (index_msg = 0; index_msg < num; index_msg++) {
1594 if (msg[index_msg].flags & I2C_M_RD) { /* read */
1595 len = msg[index_msg].len;
1596 if (len > 16)
1597 len = 16;
1599 if (dib9000_read_word(state, 790) != 0)
1600 dprintk("TunerITF: read busy\n");
1602 dib9000_write_word(state, 784, (u16) (msg[index_msg].addr));
1603 dib9000_write_word(state, 787, (len / 2) - 1);
1604 dib9000_write_word(state, 786, 1); /* start read */
1606 i = 1000;
1607 while (dib9000_read_word(state, 790) != (len / 2) && i)
1608 i--;
1610 if (i == 0)
1611 dprintk("TunerITF: read failed\n");
1613 for (i = 0; i < len; i += 2) {
1614 t = dib9000_read_word(state, 785);
1615 msg[index_msg].buf[i] = (t >> 8) & 0xff;
1616 msg[index_msg].buf[i + 1] = (t) & 0xff;
1618 if (dib9000_read_word(state, 790) != 0)
1619 dprintk("TunerITF: read more data than expected\n");
1620 } else {
1621 i = 1000;
1622 while (dib9000_read_word(state, 789) && i)
1623 i--;
1624 if (i == 0)
1625 dprintk("TunerITF: write busy\n");
1627 len = msg[index_msg].len;
1628 if (len > 16)
1629 len = 16;
1631 for (i = 0; i < len; i += 2)
1632 dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]);
1633 dib9000_write_word(state, 784, (u16) msg[index_msg].addr);
1634 dib9000_write_word(state, 787, (len / 2) - 1);
1635 dib9000_write_word(state, 786, 0); /* start write */
1637 i = 1000;
1638 while (dib9000_read_word(state, 791) > 0 && i)
1639 i--;
1640 if (i == 0)
1641 dprintk("TunerITF: write failed\n");
1644 return num;
1647 int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed)
1649 struct dib9000_state *state = fe->demodulator_priv;
1651 state->component_bus_speed = speed;
1652 return 0;
1654 EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed);
1656 static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
1658 struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
1659 u8 type = 0; /* I2C */
1660 u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4;
1661 u16 scl = state->component_bus_speed; /* SCL frequency */
1662 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER];
1663 u8 p[13] = { 0 };
1665 p[0] = type;
1666 p[1] = port;
1667 p[2] = msg[0].addr << 1;
1669 p[3] = (u8) scl & 0xff; /* scl */
1670 p[4] = (u8) (scl >> 8);
1672 p[7] = 0;
1673 p[8] = 0;
1675 p[9] = (u8) (msg[0].len);
1676 p[10] = (u8) (msg[0].len >> 8);
1677 if ((num > 1) && (msg[1].flags & I2C_M_RD)) {
1678 p[11] = (u8) (msg[1].len);
1679 p[12] = (u8) (msg[1].len >> 8);
1680 } else {
1681 p[11] = 0;
1682 p[12] = 0;
1685 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
1686 dprintk("could not get the lock\n");
1687 return 0;
1690 dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p);
1692 { /* write-part */
1693 dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0);
1694 dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len);
1697 /* do the transaction */
1698 if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) {
1699 mutex_unlock(&state->platform.risc.mem_mbx_lock);
1700 return 0;
1703 /* read back any possible result */
1704 if ((num > 1) && (msg[1].flags & I2C_M_RD))
1705 dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len);
1707 mutex_unlock(&state->platform.risc.mem_mbx_lock);
1709 return num;
1712 static u32 dib9000_i2c_func(struct i2c_adapter *adapter)
1714 return I2C_FUNC_I2C;
1717 static struct i2c_algorithm dib9000_tuner_algo = {
1718 .master_xfer = dib9000_tuner_xfer,
1719 .functionality = dib9000_i2c_func,
1722 static struct i2c_algorithm dib9000_component_bus_algo = {
1723 .master_xfer = dib9000_fw_component_bus_xfer,
1724 .functionality = dib9000_i2c_func,
1727 struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe)
1729 struct dib9000_state *st = fe->demodulator_priv;
1730 return &st->tuner_adap;
1732 EXPORT_SYMBOL(dib9000_get_tuner_interface);
1734 struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
1736 struct dib9000_state *st = fe->demodulator_priv;
1737 return &st->component_bus;
1739 EXPORT_SYMBOL(dib9000_get_component_bus_interface);
1741 struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
1743 struct dib9000_state *st = fe->demodulator_priv;
1744 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
1746 EXPORT_SYMBOL(dib9000_get_i2c_master);
1748 int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
1750 struct dib9000_state *st = fe->demodulator_priv;
1752 st->i2c.i2c_adap = i2c;
1753 return 0;
1755 EXPORT_SYMBOL(dib9000_set_i2c_adapter);
1757 static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val)
1759 st->gpio_dir = dib9000_read_word(st, 773);
1760 st->gpio_dir &= ~(1 << num); /* reset the direction bit */
1761 st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
1762 dib9000_write_word(st, 773, st->gpio_dir);
1764 st->gpio_val = dib9000_read_word(st, 774);
1765 st->gpio_val &= ~(1 << num); /* reset the direction bit */
1766 st->gpio_val |= (val & 0x01) << num; /* set the new value */
1767 dib9000_write_word(st, 774, st->gpio_val);
1769 dprintk("gpio dir: %04x: gpio val: %04x\n", st->gpio_dir, st->gpio_val);
1771 return 0;
1774 int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
1776 struct dib9000_state *state = fe->demodulator_priv;
1777 return dib9000_cfg_gpio(state, num, dir, val);
1779 EXPORT_SYMBOL(dib9000_set_gpio);
1781 int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
1783 struct dib9000_state *state = fe->demodulator_priv;
1784 u16 val;
1785 int ret;
1787 if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) {
1788 /* postpone the pid filtering cmd */
1789 dprintk("pid filter cmd postpone\n");
1790 state->pid_ctrl_index++;
1791 state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL;
1792 state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
1793 return 0;
1796 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
1797 dprintk("could not get the lock\n");
1798 return -EINTR;
1801 val = dib9000_read_word(state, 294 + 1) & 0xffef;
1802 val |= (onoff & 0x1) << 4;
1804 dprintk("PID filter enabled %d\n", onoff);
1805 ret = dib9000_write_word(state, 294 + 1, val);
1806 mutex_unlock(&state->demod_lock);
1807 return ret;
1810 EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl);
1812 int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
1814 struct dib9000_state *state = fe->demodulator_priv;
1815 int ret;
1817 if (state->pid_ctrl_index != -2) {
1818 /* postpone the pid filtering cmd */
1819 dprintk("pid filter postpone\n");
1820 if (state->pid_ctrl_index < 9) {
1821 state->pid_ctrl_index++;
1822 state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER;
1823 state->pid_ctrl[state->pid_ctrl_index].id = id;
1824 state->pid_ctrl[state->pid_ctrl_index].pid = pid;
1825 state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
1826 } else
1827 dprintk("can not add any more pid ctrl cmd\n");
1828 return 0;
1831 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
1832 dprintk("could not get the lock\n");
1833 return -EINTR;
1835 dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff);
1836 ret = dib9000_write_word(state, 300 + 1 + id,
1837 onoff ? (1 << 13) | pid : 0);
1838 mutex_unlock(&state->demod_lock);
1839 return ret;
1841 EXPORT_SYMBOL(dib9000_fw_pid_filter);
1843 int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
1845 struct dib9000_state *state = fe->demodulator_priv;
1846 return dib9000_fw_init(state);
1848 EXPORT_SYMBOL(dib9000_firmware_post_pll_init);
1850 static void dib9000_release(struct dvb_frontend *demod)
1852 struct dib9000_state *st = demod->demodulator_priv;
1853 u8 index_frontend;
1855 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
1856 dvb_frontend_detach(st->fe[index_frontend]);
1858 dibx000_exit_i2c_master(&st->i2c_master);
1860 i2c_del_adapter(&st->tuner_adap);
1861 i2c_del_adapter(&st->component_bus);
1862 kfree(st->fe[0]);
1863 kfree(st);
1866 static int dib9000_wakeup(struct dvb_frontend *fe)
1868 return 0;
1871 static int dib9000_sleep(struct dvb_frontend *fe)
1873 struct dib9000_state *state = fe->demodulator_priv;
1874 u8 index_frontend;
1875 int ret = 0;
1877 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
1878 dprintk("could not get the lock\n");
1879 return -EINTR;
1881 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
1882 ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
1883 if (ret < 0)
1884 goto error;
1886 ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0);
1888 error:
1889 mutex_unlock(&state->demod_lock);
1890 return ret;
1893 static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1895 tune->min_delay_ms = 1000;
1896 return 0;
1899 static int dib9000_get_frontend(struct dvb_frontend *fe,
1900 struct dtv_frontend_properties *c)
1902 struct dib9000_state *state = fe->demodulator_priv;
1903 u8 index_frontend, sub_index_frontend;
1904 enum fe_status stat;
1905 int ret = 0;
1907 if (state->get_frontend_internal == 0) {
1908 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
1909 dprintk("could not get the lock\n");
1910 return -EINTR;
1914 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
1915 state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
1916 if (stat & FE_HAS_SYNC) {
1917 dprintk("TPS lock on the slave%i\n", index_frontend);
1919 /* synchronize the cache with the other frontends */
1920 state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
1921 for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL);
1922 sub_index_frontend++) {
1923 if (sub_index_frontend != index_frontend) {
1924 state->fe[sub_index_frontend]->dtv_property_cache.modulation =
1925 state->fe[index_frontend]->dtv_property_cache.modulation;
1926 state->fe[sub_index_frontend]->dtv_property_cache.inversion =
1927 state->fe[index_frontend]->dtv_property_cache.inversion;
1928 state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode =
1929 state->fe[index_frontend]->dtv_property_cache.transmission_mode;
1930 state->fe[sub_index_frontend]->dtv_property_cache.guard_interval =
1931 state->fe[index_frontend]->dtv_property_cache.guard_interval;
1932 state->fe[sub_index_frontend]->dtv_property_cache.hierarchy =
1933 state->fe[index_frontend]->dtv_property_cache.hierarchy;
1934 state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP =
1935 state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
1936 state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP =
1937 state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
1938 state->fe[sub_index_frontend]->dtv_property_cache.rolloff =
1939 state->fe[index_frontend]->dtv_property_cache.rolloff;
1942 ret = 0;
1943 goto return_value;
1947 /* get the channel from master chip */
1948 ret = dib9000_fw_get_channel(fe);
1949 if (ret != 0)
1950 goto return_value;
1952 /* synchronize the cache with the other frontends */
1953 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
1954 state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
1955 state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
1956 state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
1957 state->fe[index_frontend]->dtv_property_cache.modulation = c->modulation;
1958 state->fe[index_frontend]->dtv_property_cache.hierarchy = c->hierarchy;
1959 state->fe[index_frontend]->dtv_property_cache.code_rate_HP = c->code_rate_HP;
1960 state->fe[index_frontend]->dtv_property_cache.code_rate_LP = c->code_rate_LP;
1961 state->fe[index_frontend]->dtv_property_cache.rolloff = c->rolloff;
1963 ret = 0;
1965 return_value:
1966 if (state->get_frontend_internal == 0)
1967 mutex_unlock(&state->demod_lock);
1968 return ret;
1971 static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
1973 struct dib9000_state *state = fe->demodulator_priv;
1974 state->tune_state = tune_state;
1975 if (tune_state == CT_DEMOD_START)
1976 state->status = FE_STATUS_TUNE_PENDING;
1978 return 0;
1981 static u32 dib9000_get_status(struct dvb_frontend *fe)
1983 struct dib9000_state *state = fe->demodulator_priv;
1984 return state->status;
1987 static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status)
1989 struct dib9000_state *state = fe->demodulator_priv;
1991 memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext));
1992 return 0;
1995 static int dib9000_set_frontend(struct dvb_frontend *fe)
1997 struct dib9000_state *state = fe->demodulator_priv;
1998 int sleep_time, sleep_time_slave;
1999 u32 frontend_status;
2000 u8 nbr_pending, exit_condition, index_frontend, index_frontend_success;
2001 struct dvb_frontend_parametersContext channel_status;
2003 /* check that the correct parameters are set */
2004 if (state->fe[0]->dtv_property_cache.frequency == 0) {
2005 dprintk("dib9000: must specify frequency\n");
2006 return 0;
2009 if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) {
2010 dprintk("dib9000: must specify bandwidth\n");
2011 return 0;
2014 state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */
2015 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2016 dprintk("could not get the lock\n");
2017 return 0;
2020 fe->dtv_property_cache.delivery_system = SYS_DVBT;
2022 /* set the master status */
2023 if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO ||
2024 state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO ||
2025 state->fe[0]->dtv_property_cache.modulation == QAM_AUTO ||
2026 state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) {
2027 /* no channel specified, autosearch the channel */
2028 state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN;
2029 } else
2030 state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
2032 /* set mode and status for the different frontends */
2033 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2034 dib9000_fw_set_diversity_in(state->fe[index_frontend], 1);
2036 /* synchronization of the cache */
2037 memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
2039 state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT;
2040 dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z);
2042 dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status);
2043 dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
2046 /* actual tune */
2047 exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
2048 index_frontend_success = 0;
2049 do {
2050 sleep_time = dib9000_fw_tune(state->fe[0]);
2051 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2052 sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
2053 if (sleep_time == FE_CALLBACK_TIME_NEVER)
2054 sleep_time = sleep_time_slave;
2055 else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
2056 sleep_time = sleep_time_slave;
2058 if (sleep_time != FE_CALLBACK_TIME_NEVER)
2059 msleep(sleep_time / 10);
2060 else
2061 break;
2063 nbr_pending = 0;
2064 exit_condition = 0;
2065 index_frontend_success = 0;
2066 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2067 frontend_status = -dib9000_get_status(state->fe[index_frontend]);
2068 if (frontend_status > -FE_STATUS_TUNE_PENDING) {
2069 exit_condition = 2; /* tune success */
2070 index_frontend_success = index_frontend;
2071 break;
2073 if (frontend_status == -FE_STATUS_TUNE_PENDING)
2074 nbr_pending++; /* some frontends are still tuning */
2076 if ((exit_condition != 2) && (nbr_pending == 0))
2077 exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
2079 } while (exit_condition == 0);
2081 /* check the tune result */
2082 if (exit_condition == 1) { /* tune failed */
2083 dprintk("tune failed\n");
2084 mutex_unlock(&state->demod_lock);
2085 /* tune failed; put all the pid filtering cmd to junk */
2086 state->pid_ctrl_index = -1;
2087 return 0;
2090 dprintk("tune success on frontend%i\n", index_frontend_success);
2092 /* synchronize all the channel cache */
2093 state->get_frontend_internal = 1;
2094 dib9000_get_frontend(state->fe[0], &state->fe[0]->dtv_property_cache);
2095 state->get_frontend_internal = 0;
2097 /* retune the other frontends with the found channel */
2098 channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
2099 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2100 /* only retune the frontends which was not tuned success */
2101 if (index_frontend != index_frontend_success) {
2102 dib9000_set_channel_status(state->fe[index_frontend], &channel_status);
2103 dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
2106 do {
2107 sleep_time = FE_CALLBACK_TIME_NEVER;
2108 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2109 if (index_frontend != index_frontend_success) {
2110 sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
2111 if (sleep_time == FE_CALLBACK_TIME_NEVER)
2112 sleep_time = sleep_time_slave;
2113 else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
2114 sleep_time = sleep_time_slave;
2117 if (sleep_time != FE_CALLBACK_TIME_NEVER)
2118 msleep(sleep_time / 10);
2119 else
2120 break;
2122 nbr_pending = 0;
2123 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2124 if (index_frontend != index_frontend_success) {
2125 frontend_status = -dib9000_get_status(state->fe[index_frontend]);
2126 if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING))
2127 nbr_pending++; /* some frontends are still tuning */
2130 } while (nbr_pending != 0);
2132 /* set the output mode */
2133 dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode);
2134 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
2135 dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
2137 /* turn off the diversity for the last frontend */
2138 dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0);
2140 mutex_unlock(&state->demod_lock);
2141 if (state->pid_ctrl_index >= 0) {
2142 u8 index_pid_filter_cmd;
2143 u8 pid_ctrl_index = state->pid_ctrl_index;
2145 state->pid_ctrl_index = -2;
2146 for (index_pid_filter_cmd = 0;
2147 index_pid_filter_cmd <= pid_ctrl_index;
2148 index_pid_filter_cmd++) {
2149 if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL)
2150 dib9000_fw_pid_filter_ctrl(state->fe[0],
2151 state->pid_ctrl[index_pid_filter_cmd].onoff);
2152 else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER)
2153 dib9000_fw_pid_filter(state->fe[0],
2154 state->pid_ctrl[index_pid_filter_cmd].id,
2155 state->pid_ctrl[index_pid_filter_cmd].pid,
2156 state->pid_ctrl[index_pid_filter_cmd].onoff);
2159 /* do not postpone any more the pid filtering */
2160 state->pid_ctrl_index = -2;
2162 return 0;
2165 static u16 dib9000_read_lock(struct dvb_frontend *fe)
2167 struct dib9000_state *state = fe->demodulator_priv;
2169 return dib9000_read_word(state, 535);
2172 static int dib9000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
2174 struct dib9000_state *state = fe->demodulator_priv;
2175 u8 index_frontend;
2176 u16 lock = 0, lock_slave = 0;
2178 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2179 dprintk("could not get the lock\n");
2180 return -EINTR;
2182 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
2183 lock_slave |= dib9000_read_lock(state->fe[index_frontend]);
2185 lock = dib9000_read_word(state, 535);
2187 *stat = 0;
2189 if ((lock & 0x8000) || (lock_slave & 0x8000))
2190 *stat |= FE_HAS_SIGNAL;
2191 if ((lock & 0x3000) || (lock_slave & 0x3000))
2192 *stat |= FE_HAS_CARRIER;
2193 if ((lock & 0x0100) || (lock_slave & 0x0100))
2194 *stat |= FE_HAS_VITERBI;
2195 if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38))
2196 *stat |= FE_HAS_SYNC;
2197 if ((lock & 0x0008) || (lock_slave & 0x0008))
2198 *stat |= FE_HAS_LOCK;
2200 mutex_unlock(&state->demod_lock);
2202 return 0;
2205 static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber)
2207 struct dib9000_state *state = fe->demodulator_priv;
2208 u16 *c;
2209 int ret = 0;
2211 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2212 dprintk("could not get the lock\n");
2213 return -EINTR;
2215 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
2216 dprintk("could not get the lock\n");
2217 ret = -EINTR;
2218 goto error;
2220 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
2221 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2222 ret = -EIO;
2223 goto error;
2225 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR,
2226 state->i2c_read_buffer, 16 * 2);
2227 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2229 c = (u16 *)state->i2c_read_buffer;
2231 *ber = c[10] << 16 | c[11];
2233 error:
2234 mutex_unlock(&state->demod_lock);
2235 return ret;
2238 static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2240 struct dib9000_state *state = fe->demodulator_priv;
2241 u8 index_frontend;
2242 u16 *c = (u16 *)state->i2c_read_buffer;
2243 u16 val;
2244 int ret = 0;
2246 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2247 dprintk("could not get the lock\n");
2248 return -EINTR;
2250 *strength = 0;
2251 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
2252 state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
2253 if (val > 65535 - *strength)
2254 *strength = 65535;
2255 else
2256 *strength += val;
2259 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
2260 dprintk("could not get the lock\n");
2261 ret = -EINTR;
2262 goto error;
2264 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
2265 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2266 ret = -EIO;
2267 goto error;
2269 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
2270 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2272 val = 65535 - c[4];
2273 if (val > 65535 - *strength)
2274 *strength = 65535;
2275 else
2276 *strength += val;
2278 error:
2279 mutex_unlock(&state->demod_lock);
2280 return ret;
2283 static u32 dib9000_get_snr(struct dvb_frontend *fe)
2285 struct dib9000_state *state = fe->demodulator_priv;
2286 u16 *c = (u16 *)state->i2c_read_buffer;
2287 u32 n, s, exp;
2288 u16 val;
2290 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
2291 dprintk("could not get the lock\n");
2292 return 0;
2294 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
2295 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2296 return 0;
2298 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
2299 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2301 val = c[7];
2302 n = (val >> 4) & 0xff;
2303 exp = ((val & 0xf) << 2);
2304 val = c[8];
2305 exp += ((val >> 14) & 0x3);
2306 if ((exp & 0x20) != 0)
2307 exp -= 0x40;
2308 n <<= exp + 16;
2310 s = (val >> 6) & 0xFF;
2311 exp = (val & 0x3F);
2312 if ((exp & 0x20) != 0)
2313 exp -= 0x40;
2314 s <<= exp + 16;
2316 if (n > 0) {
2317 u32 t = (s / n) << 16;
2318 return t + ((s << 16) - n * t) / n;
2320 return 0xffffffff;
2323 static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr)
2325 struct dib9000_state *state = fe->demodulator_priv;
2326 u8 index_frontend;
2327 u32 snr_master;
2329 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2330 dprintk("could not get the lock\n");
2331 return -EINTR;
2333 snr_master = dib9000_get_snr(fe);
2334 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
2335 snr_master += dib9000_get_snr(state->fe[index_frontend]);
2337 if ((snr_master >> 16) != 0) {
2338 snr_master = 10 * intlog10(snr_master >> 16);
2339 *snr = snr_master / ((1 << 24) / 10);
2340 } else
2341 *snr = 0;
2343 mutex_unlock(&state->demod_lock);
2345 return 0;
2348 static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
2350 struct dib9000_state *state = fe->demodulator_priv;
2351 u16 *c = (u16 *)state->i2c_read_buffer;
2352 int ret = 0;
2354 if (mutex_lock_interruptible(&state->demod_lock) < 0) {
2355 dprintk("could not get the lock\n");
2356 return -EINTR;
2358 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
2359 dprintk("could not get the lock\n");
2360 ret = -EINTR;
2361 goto error;
2363 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
2364 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2365 ret = -EIO;
2366 goto error;
2368 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
2369 mutex_unlock(&state->platform.risc.mem_mbx_lock);
2371 *unc = c[12];
2373 error:
2374 mutex_unlock(&state->demod_lock);
2375 return ret;
2378 int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr)
2380 int k = 0, ret = 0;
2381 u8 new_addr = 0;
2382 struct i2c_device client = {.i2c_adap = i2c };
2384 client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
2385 if (!client.i2c_write_buffer) {
2386 dprintk("%s: not enough memory\n", __func__);
2387 return -ENOMEM;
2389 client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
2390 if (!client.i2c_read_buffer) {
2391 dprintk("%s: not enough memory\n", __func__);
2392 ret = -ENOMEM;
2393 goto error_memory;
2396 client.i2c_addr = default_addr + 16;
2397 dib9000_i2c_write16(&client, 1796, 0x0);
2399 for (k = no_of_demods - 1; k >= 0; k--) {
2400 /* designated i2c address */
2401 new_addr = first_addr + (k << 1);
2402 client.i2c_addr = default_addr;
2404 dib9000_i2c_write16(&client, 1817, 3);
2405 dib9000_i2c_write16(&client, 1796, 0);
2406 dib9000_i2c_write16(&client, 1227, 1);
2407 dib9000_i2c_write16(&client, 1227, 0);
2409 client.i2c_addr = new_addr;
2410 dib9000_i2c_write16(&client, 1817, 3);
2411 dib9000_i2c_write16(&client, 1796, 0);
2412 dib9000_i2c_write16(&client, 1227, 1);
2413 dib9000_i2c_write16(&client, 1227, 0);
2415 if (dib9000_identify(&client) == 0) {
2416 client.i2c_addr = default_addr;
2417 if (dib9000_identify(&client) == 0) {
2418 dprintk("DiB9000 #%d: not identified\n", k);
2419 ret = -EIO;
2420 goto error;
2424 dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6));
2425 dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2);
2427 dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
2430 for (k = 0; k < no_of_demods; k++) {
2431 new_addr = first_addr | (k << 1);
2432 client.i2c_addr = new_addr;
2434 dib9000_i2c_write16(&client, 1794, (new_addr << 2));
2435 dib9000_i2c_write16(&client, 1795, 0);
2438 error:
2439 kfree(client.i2c_read_buffer);
2440 error_memory:
2441 kfree(client.i2c_write_buffer);
2443 return ret;
2445 EXPORT_SYMBOL(dib9000_i2c_enumeration);
2447 int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
2449 struct dib9000_state *state = fe->demodulator_priv;
2450 u8 index_frontend = 1;
2452 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
2453 index_frontend++;
2454 if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
2455 dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend);
2456 state->fe[index_frontend] = fe_slave;
2457 return 0;
2460 dprintk("too many slave frontend\n");
2461 return -ENOMEM;
2463 EXPORT_SYMBOL(dib9000_set_slave_frontend);
2465 int dib9000_remove_slave_frontend(struct dvb_frontend *fe)
2467 struct dib9000_state *state = fe->demodulator_priv;
2468 u8 index_frontend = 1;
2470 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
2471 index_frontend++;
2472 if (index_frontend != 1) {
2473 dprintk("remove slave fe %p (index %i)\n", state->fe[index_frontend - 1], index_frontend - 1);
2474 state->fe[index_frontend] = NULL;
2475 return 0;
2478 dprintk("no frontend to be removed\n");
2479 return -ENODEV;
2481 EXPORT_SYMBOL(dib9000_remove_slave_frontend);
2483 struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
2485 struct dib9000_state *state = fe->demodulator_priv;
2487 if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
2488 return NULL;
2489 return state->fe[slave_index];
2491 EXPORT_SYMBOL(dib9000_get_slave_frontend);
2493 static const struct dvb_frontend_ops dib9000_ops;
2494 struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg)
2496 struct dvb_frontend *fe;
2497 struct dib9000_state *st;
2498 st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL);
2499 if (st == NULL)
2500 return NULL;
2501 fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
2502 if (fe == NULL) {
2503 kfree(st);
2504 return NULL;
2507 memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config));
2508 st->i2c.i2c_adap = i2c_adap;
2509 st->i2c.i2c_addr = i2c_addr;
2510 st->i2c.i2c_write_buffer = st->i2c_write_buffer;
2511 st->i2c.i2c_read_buffer = st->i2c_read_buffer;
2513 st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS;
2514 st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES;
2515 st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS;
2517 mutex_init(&st->platform.risc.mbx_if_lock);
2518 mutex_init(&st->platform.risc.mbx_lock);
2519 mutex_init(&st->platform.risc.mem_lock);
2520 mutex_init(&st->platform.risc.mem_mbx_lock);
2521 mutex_init(&st->demod_lock);
2522 st->get_frontend_internal = 0;
2524 st->pid_ctrl_index = -2;
2526 st->fe[0] = fe;
2527 fe->demodulator_priv = st;
2528 memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops));
2530 /* Ensure the output mode remains at the previous default if it's
2531 * not specifically set by the caller.
2533 if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2534 st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO;
2536 if (dib9000_identify(&st->i2c) == 0)
2537 goto error;
2539 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr);
2541 st->tuner_adap.dev.parent = i2c_adap->dev.parent;
2542 strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name));
2543 st->tuner_adap.algo = &dib9000_tuner_algo;
2544 st->tuner_adap.algo_data = NULL;
2545 i2c_set_adapdata(&st->tuner_adap, st);
2546 if (i2c_add_adapter(&st->tuner_adap) < 0)
2547 goto error;
2549 st->component_bus.dev.parent = i2c_adap->dev.parent;
2550 strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name));
2551 st->component_bus.algo = &dib9000_component_bus_algo;
2552 st->component_bus.algo_data = NULL;
2553 st->component_bus_speed = 340;
2554 i2c_set_adapdata(&st->component_bus, st);
2555 if (i2c_add_adapter(&st->component_bus) < 0)
2556 goto component_bus_add_error;
2558 dib9000_fw_reset(fe);
2560 return fe;
2562 component_bus_add_error:
2563 i2c_del_adapter(&st->tuner_adap);
2564 error:
2565 kfree(st);
2566 return NULL;
2568 EXPORT_SYMBOL(dib9000_attach);
2570 static const struct dvb_frontend_ops dib9000_ops = {
2571 .delsys = { SYS_DVBT },
2572 .info = {
2573 .name = "DiBcom 9000",
2574 .frequency_min = 44250000,
2575 .frequency_max = 867250000,
2576 .frequency_stepsize = 62500,
2577 .caps = FE_CAN_INVERSION_AUTO |
2578 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2579 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2580 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
2581 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
2584 .release = dib9000_release,
2586 .init = dib9000_wakeup,
2587 .sleep = dib9000_sleep,
2589 .set_frontend = dib9000_set_frontend,
2590 .get_tune_settings = dib9000_fe_get_tune_settings,
2591 .get_frontend = dib9000_get_frontend,
2593 .read_status = dib9000_read_status,
2594 .read_ber = dib9000_read_ber,
2595 .read_signal_strength = dib9000_read_signal_strength,
2596 .read_snr = dib9000_read_snr,
2597 .read_ucblocks = dib9000_read_unc_blocks,
2600 MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2601 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
2602 MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator");
2603 MODULE_LICENSE("GPL");