2 * drivers/media/i2c/smiapp/smiapp-core.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/slab.h>
32 #include <linux/smiapp.h>
33 #include <linux/v4l2-mediabus.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-of.h>
39 #define SMIAPP_ALIGN_DIM(dim, flags) \
40 ((flags) & V4L2_SEL_FLAG_GE \
45 * smiapp_module_idents - supported camera modules
47 static const struct smiapp_module_ident smiapp_module_idents
[] = {
48 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
49 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
50 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
51 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
52 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
53 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk
),
54 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
55 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
56 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk
),
57 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk
),
58 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk
),
63 * Dynamic Capability Identification
67 static int smiapp_read_frame_fmt(struct smiapp_sensor
*sensor
)
69 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
70 u32 fmt_model_type
, fmt_model_subtype
, ncol_desc
, nrow_desc
;
76 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE
,
81 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE
,
86 ncol_desc
= (fmt_model_subtype
87 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK
)
88 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT
;
89 nrow_desc
= fmt_model_subtype
90 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK
;
92 dev_dbg(&client
->dev
, "format_model_type %s\n",
93 fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
95 fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
96 ? "4 byte" : "is simply bad");
98 for (i
= 0; i
< ncol_desc
+ nrow_desc
; i
++) {
106 if (fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
) {
107 reg
= SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i
);
108 rval
= smiapp_read(sensor
, reg
, &desc
);
114 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK
)
115 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT
;
116 pixels
= desc
& SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK
;
117 } else if (fmt_model_type
118 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
) {
119 reg
= SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i
);
120 rval
= smiapp_read(sensor
, reg
, &desc
);
126 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK
)
127 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT
;
128 pixels
= desc
& SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK
;
130 dev_dbg(&client
->dev
,
131 "invalid frame format model type %d\n",
142 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED
:
145 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY
:
148 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK
:
151 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK
:
154 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
:
162 dev_dbg(&client
->dev
,
163 "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg
,
164 what
, pixels
, which
, pixelcode
);
168 SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
)
169 sensor
->visible_pixel_start
= pixel_count
;
170 pixel_count
+= pixels
;
174 /* Handle row descriptors */
176 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED
:
177 if (sensor
->embedded_end
)
179 sensor
->embedded_start
= line_count
;
180 sensor
->embedded_end
= line_count
+ pixels
;
182 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
:
183 sensor
->image_start
= line_count
;
186 line_count
+= pixels
;
189 if (sensor
->embedded_end
> sensor
->image_start
) {
190 dev_dbg(&client
->dev
,
191 "adjusting image start line to %u (was %u)\n",
192 sensor
->embedded_end
, sensor
->image_start
);
193 sensor
->image_start
= sensor
->embedded_end
;
196 dev_dbg(&client
->dev
, "embedded data from lines %d to %d\n",
197 sensor
->embedded_start
, sensor
->embedded_end
);
198 dev_dbg(&client
->dev
, "image data starts at line %d\n",
199 sensor
->image_start
);
204 static int smiapp_pll_configure(struct smiapp_sensor
*sensor
)
206 struct smiapp_pll
*pll
= &sensor
->pll
;
210 sensor
, SMIAPP_REG_U16_VT_PIX_CLK_DIV
, pll
->vt
.pix_clk_div
);
215 sensor
, SMIAPP_REG_U16_VT_SYS_CLK_DIV
, pll
->vt
.sys_clk_div
);
220 sensor
, SMIAPP_REG_U16_PRE_PLL_CLK_DIV
, pll
->pre_pll_clk_div
);
225 sensor
, SMIAPP_REG_U16_PLL_MULTIPLIER
, pll
->pll_multiplier
);
229 /* Lane op clock ratio does not apply here. */
231 sensor
, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS
,
232 DIV_ROUND_UP(pll
->op
.sys_clk_freq_hz
, 1000000 / 256 / 256));
233 if (rval
< 0 || sensor
->minfo
.smiapp_profile
== SMIAPP_PROFILE_0
)
237 sensor
, SMIAPP_REG_U16_OP_PIX_CLK_DIV
, pll
->op
.pix_clk_div
);
242 sensor
, SMIAPP_REG_U16_OP_SYS_CLK_DIV
, pll
->op
.sys_clk_div
);
245 static int smiapp_pll_try(struct smiapp_sensor
*sensor
,
246 struct smiapp_pll
*pll
)
248 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
249 struct smiapp_pll_limits lim
= {
250 .min_pre_pll_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV
],
251 .max_pre_pll_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV
],
252 .min_pll_ip_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ
],
253 .max_pll_ip_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ
],
254 .min_pll_multiplier
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER
],
255 .max_pll_multiplier
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER
],
256 .min_pll_op_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ
],
257 .max_pll_op_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ
],
259 .op
.min_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV
],
260 .op
.max_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV
],
261 .op
.min_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV
],
262 .op
.max_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV
],
263 .op
.min_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ
],
264 .op
.max_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ
],
265 .op
.min_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ
],
266 .op
.max_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ
],
268 .vt
.min_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV
],
269 .vt
.max_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV
],
270 .vt
.min_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV
],
271 .vt
.max_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV
],
272 .vt
.min_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ
],
273 .vt
.max_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ
],
274 .vt
.min_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ
],
275 .vt
.max_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ
],
277 .min_line_length_pck_bin
= sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
],
278 .min_line_length_pck
= sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK
],
281 return smiapp_pll_calculate(&client
->dev
, &lim
, pll
);
284 static int smiapp_pll_update(struct smiapp_sensor
*sensor
)
286 struct smiapp_pll
*pll
= &sensor
->pll
;
289 pll
->binning_horizontal
= sensor
->binning_horizontal
;
290 pll
->binning_vertical
= sensor
->binning_vertical
;
292 sensor
->link_freq
->qmenu_int
[sensor
->link_freq
->val
];
293 pll
->scale_m
= sensor
->scale_m
;
294 pll
->bits_per_pixel
= sensor
->csi_format
->compressed
;
296 rval
= smiapp_pll_try(sensor
, pll
);
300 __v4l2_ctrl_s_ctrl_int64(sensor
->pixel_rate_parray
,
301 pll
->pixel_rate_pixel_array
);
302 __v4l2_ctrl_s_ctrl_int64(sensor
->pixel_rate_csi
, pll
->pixel_rate_csi
);
310 * V4L2 Controls handling
314 static void __smiapp_update_exposure_limits(struct smiapp_sensor
*sensor
)
316 struct v4l2_ctrl
*ctrl
= sensor
->exposure
;
319 max
= sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
320 + sensor
->vblank
->val
321 - sensor
->limits
[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN
];
323 __v4l2_ctrl_modify_range(ctrl
, ctrl
->minimum
, max
, ctrl
->step
, max
);
329 * 1. Bits-per-pixel, descending.
330 * 2. Bits-per-pixel compressed, descending.
331 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
332 * orders must be defined.
334 static const struct smiapp_csi_data_format smiapp_csi_data_formats
[] = {
335 { MEDIA_BUS_FMT_SGRBG16_1X16
, 16, 16, SMIAPP_PIXEL_ORDER_GRBG
, },
336 { MEDIA_BUS_FMT_SRGGB16_1X16
, 16, 16, SMIAPP_PIXEL_ORDER_RGGB
, },
337 { MEDIA_BUS_FMT_SBGGR16_1X16
, 16, 16, SMIAPP_PIXEL_ORDER_BGGR
, },
338 { MEDIA_BUS_FMT_SGBRG16_1X16
, 16, 16, SMIAPP_PIXEL_ORDER_GBRG
, },
339 { MEDIA_BUS_FMT_SGRBG14_1X14
, 14, 14, SMIAPP_PIXEL_ORDER_GRBG
, },
340 { MEDIA_BUS_FMT_SRGGB14_1X14
, 14, 14, SMIAPP_PIXEL_ORDER_RGGB
, },
341 { MEDIA_BUS_FMT_SBGGR14_1X14
, 14, 14, SMIAPP_PIXEL_ORDER_BGGR
, },
342 { MEDIA_BUS_FMT_SGBRG14_1X14
, 14, 14, SMIAPP_PIXEL_ORDER_GBRG
, },
343 { MEDIA_BUS_FMT_SGRBG12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_GRBG
, },
344 { MEDIA_BUS_FMT_SRGGB12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_RGGB
, },
345 { MEDIA_BUS_FMT_SBGGR12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_BGGR
, },
346 { MEDIA_BUS_FMT_SGBRG12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_GBRG
, },
347 { MEDIA_BUS_FMT_SGRBG10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_GRBG
, },
348 { MEDIA_BUS_FMT_SRGGB10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_RGGB
, },
349 { MEDIA_BUS_FMT_SBGGR10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_BGGR
, },
350 { MEDIA_BUS_FMT_SGBRG10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_GBRG
, },
351 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_GRBG
, },
352 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_RGGB
, },
353 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_BGGR
, },
354 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_GBRG
, },
355 { MEDIA_BUS_FMT_SGRBG8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_GRBG
, },
356 { MEDIA_BUS_FMT_SRGGB8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_RGGB
, },
357 { MEDIA_BUS_FMT_SBGGR8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_BGGR
, },
358 { MEDIA_BUS_FMT_SGBRG8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_GBRG
, },
361 static const char *pixel_order_str
[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
363 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
364 - (unsigned long)smiapp_csi_data_formats) \
365 / sizeof(*smiapp_csi_data_formats))
367 static u32
smiapp_pixel_order(struct smiapp_sensor
*sensor
)
369 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
373 if (sensor
->hflip
->val
)
374 flip
|= SMIAPP_IMAGE_ORIENTATION_HFLIP
;
376 if (sensor
->vflip
->val
)
377 flip
|= SMIAPP_IMAGE_ORIENTATION_VFLIP
;
380 flip
^= sensor
->hvflip_inv_mask
;
382 dev_dbg(&client
->dev
, "flip %d\n", flip
);
383 return sensor
->default_pixel_order
^ flip
;
386 static void smiapp_update_mbus_formats(struct smiapp_sensor
*sensor
)
388 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
389 unsigned int csi_format_idx
=
390 to_csi_format_idx(sensor
->csi_format
) & ~3;
391 unsigned int internal_csi_format_idx
=
392 to_csi_format_idx(sensor
->internal_csi_format
) & ~3;
393 unsigned int pixel_order
= smiapp_pixel_order(sensor
);
395 sensor
->mbus_frame_fmts
=
396 sensor
->default_mbus_frame_fmts
<< pixel_order
;
398 &smiapp_csi_data_formats
[csi_format_idx
+ pixel_order
];
399 sensor
->internal_csi_format
=
400 &smiapp_csi_data_formats
[internal_csi_format_idx
403 BUG_ON(max(internal_csi_format_idx
, csi_format_idx
) + pixel_order
404 >= ARRAY_SIZE(smiapp_csi_data_formats
));
406 dev_dbg(&client
->dev
, "new pixel order %s\n",
407 pixel_order_str
[pixel_order
]);
410 static const char * const smiapp_test_patterns
[] = {
413 "Eight Vertical Colour Bars",
414 "Colour Bars With Fade to Grey",
415 "Pseudorandom Sequence (PN9)",
418 static int smiapp_set_ctrl(struct v4l2_ctrl
*ctrl
)
420 struct smiapp_sensor
*sensor
=
421 container_of(ctrl
->handler
, struct smiapp_subdev
, ctrl_handler
)
428 case V4L2_CID_ANALOGUE_GAIN
:
431 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL
, ctrl
->val
);
433 case V4L2_CID_EXPOSURE
:
436 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME
, ctrl
->val
);
440 if (sensor
->streaming
)
443 if (sensor
->hflip
->val
)
444 orient
|= SMIAPP_IMAGE_ORIENTATION_HFLIP
;
446 if (sensor
->vflip
->val
)
447 orient
|= SMIAPP_IMAGE_ORIENTATION_VFLIP
;
449 orient
^= sensor
->hvflip_inv_mask
;
450 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_IMAGE_ORIENTATION
,
455 smiapp_update_mbus_formats(sensor
);
459 case V4L2_CID_VBLANK
:
460 exposure
= sensor
->exposure
->val
;
462 __smiapp_update_exposure_limits(sensor
);
464 if (exposure
> sensor
->exposure
->maximum
) {
465 sensor
->exposure
->val
= sensor
->exposure
->maximum
;
466 rval
= smiapp_set_ctrl(sensor
->exposure
);
472 sensor
, SMIAPP_REG_U16_FRAME_LENGTH_LINES
,
473 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
476 case V4L2_CID_HBLANK
:
478 sensor
, SMIAPP_REG_U16_LINE_LENGTH_PCK
,
479 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
482 case V4L2_CID_LINK_FREQ
:
483 if (sensor
->streaming
)
486 return smiapp_pll_update(sensor
);
488 case V4L2_CID_TEST_PATTERN
: {
491 for (i
= 0; i
< ARRAY_SIZE(sensor
->test_data
); i
++)
493 sensor
->test_data
[i
],
495 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR
);
498 sensor
, SMIAPP_REG_U16_TEST_PATTERN_MODE
, ctrl
->val
);
501 case V4L2_CID_TEST_PATTERN_RED
:
503 sensor
, SMIAPP_REG_U16_TEST_DATA_RED
, ctrl
->val
);
505 case V4L2_CID_TEST_PATTERN_GREENR
:
507 sensor
, SMIAPP_REG_U16_TEST_DATA_GREENR
, ctrl
->val
);
509 case V4L2_CID_TEST_PATTERN_BLUE
:
511 sensor
, SMIAPP_REG_U16_TEST_DATA_BLUE
, ctrl
->val
);
513 case V4L2_CID_TEST_PATTERN_GREENB
:
515 sensor
, SMIAPP_REG_U16_TEST_DATA_GREENB
, ctrl
->val
);
517 case V4L2_CID_PIXEL_RATE
:
518 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
526 static const struct v4l2_ctrl_ops smiapp_ctrl_ops
= {
527 .s_ctrl
= smiapp_set_ctrl
,
530 static int smiapp_init_controls(struct smiapp_sensor
*sensor
)
532 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
535 rval
= v4l2_ctrl_handler_init(&sensor
->pixel_array
->ctrl_handler
, 12);
539 sensor
->pixel_array
->ctrl_handler
.lock
= &sensor
->mutex
;
541 sensor
->analog_gain
= v4l2_ctrl_new_std(
542 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
543 V4L2_CID_ANALOGUE_GAIN
,
544 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN
],
545 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX
],
546 max(sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP
], 1U),
547 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN
]);
549 /* Exposure limits will be updated soon, use just something here. */
550 sensor
->exposure
= v4l2_ctrl_new_std(
551 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
552 V4L2_CID_EXPOSURE
, 0, 0, 1, 0);
554 sensor
->hflip
= v4l2_ctrl_new_std(
555 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
556 V4L2_CID_HFLIP
, 0, 1, 1, 0);
557 sensor
->vflip
= v4l2_ctrl_new_std(
558 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
559 V4L2_CID_VFLIP
, 0, 1, 1, 0);
561 sensor
->vblank
= v4l2_ctrl_new_std(
562 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
563 V4L2_CID_VBLANK
, 0, 1, 1, 0);
566 sensor
->vblank
->flags
|= V4L2_CTRL_FLAG_UPDATE
;
568 sensor
->hblank
= v4l2_ctrl_new_std(
569 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
570 V4L2_CID_HBLANK
, 0, 1, 1, 0);
573 sensor
->hblank
->flags
|= V4L2_CTRL_FLAG_UPDATE
;
575 sensor
->pixel_rate_parray
= v4l2_ctrl_new_std(
576 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
577 V4L2_CID_PIXEL_RATE
, 1, INT_MAX
, 1, 1);
579 v4l2_ctrl_new_std_menu_items(&sensor
->pixel_array
->ctrl_handler
,
580 &smiapp_ctrl_ops
, V4L2_CID_TEST_PATTERN
,
581 ARRAY_SIZE(smiapp_test_patterns
) - 1,
582 0, 0, smiapp_test_patterns
);
584 if (sensor
->pixel_array
->ctrl_handler
.error
) {
585 dev_err(&client
->dev
,
586 "pixel array controls initialization failed (%d)\n",
587 sensor
->pixel_array
->ctrl_handler
.error
);
588 return sensor
->pixel_array
->ctrl_handler
.error
;
591 sensor
->pixel_array
->sd
.ctrl_handler
=
592 &sensor
->pixel_array
->ctrl_handler
;
594 v4l2_ctrl_cluster(2, &sensor
->hflip
);
596 rval
= v4l2_ctrl_handler_init(&sensor
->src
->ctrl_handler
, 0);
600 sensor
->src
->ctrl_handler
.lock
= &sensor
->mutex
;
602 sensor
->pixel_rate_csi
= v4l2_ctrl_new_std(
603 &sensor
->src
->ctrl_handler
, &smiapp_ctrl_ops
,
604 V4L2_CID_PIXEL_RATE
, 1, INT_MAX
, 1, 1);
606 if (sensor
->src
->ctrl_handler
.error
) {
607 dev_err(&client
->dev
,
608 "src controls initialization failed (%d)\n",
609 sensor
->src
->ctrl_handler
.error
);
610 return sensor
->src
->ctrl_handler
.error
;
613 sensor
->src
->sd
.ctrl_handler
= &sensor
->src
->ctrl_handler
;
619 * For controls that require information on available media bus codes
620 * and linke frequencies.
622 static int smiapp_init_late_controls(struct smiapp_sensor
*sensor
)
624 unsigned long *valid_link_freqs
= &sensor
->valid_link_freqs
[
625 sensor
->csi_format
->compressed
- sensor
->compressed_min_bpp
];
628 for (i
= 0; i
< ARRAY_SIZE(sensor
->test_data
); i
++) {
629 int max_value
= (1 << sensor
->csi_format
->width
) - 1;
631 sensor
->test_data
[i
] = v4l2_ctrl_new_std(
632 &sensor
->pixel_array
->ctrl_handler
,
633 &smiapp_ctrl_ops
, V4L2_CID_TEST_PATTERN_RED
+ i
,
634 0, max_value
, 1, max_value
);
637 for (max
= 0; sensor
->hwcfg
->op_sys_clock
[max
+ 1]; max
++);
639 sensor
->link_freq
= v4l2_ctrl_new_int_menu(
640 &sensor
->src
->ctrl_handler
, &smiapp_ctrl_ops
,
641 V4L2_CID_LINK_FREQ
, __fls(*valid_link_freqs
),
642 __ffs(*valid_link_freqs
), sensor
->hwcfg
->op_sys_clock
);
644 return sensor
->src
->ctrl_handler
.error
;
647 static void smiapp_free_controls(struct smiapp_sensor
*sensor
)
651 for (i
= 0; i
< sensor
->ssds_used
; i
++)
652 v4l2_ctrl_handler_free(&sensor
->ssds
[i
].ctrl_handler
);
655 static int smiapp_get_limits(struct smiapp_sensor
*sensor
, int const *limit
,
658 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
663 for (i
= 0; i
< n
; i
++) {
665 sensor
, smiapp_reg_limits
[limit
[i
]].addr
, &val
);
668 sensor
->limits
[limit
[i
]] = val
;
669 dev_dbg(&client
->dev
, "0x%8.8x \"%s\" = %u, 0x%x\n",
670 smiapp_reg_limits
[limit
[i
]].addr
,
671 smiapp_reg_limits
[limit
[i
]].what
, val
, val
);
677 static int smiapp_get_all_limits(struct smiapp_sensor
*sensor
)
682 for (i
= 0; i
< SMIAPP_LIMIT_LAST
; i
++) {
683 rval
= smiapp_get_limits(sensor
, &i
, 1);
688 if (sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] == 0)
689 smiapp_replace_limit(sensor
, SMIAPP_LIMIT_SCALER_N_MIN
, 16);
694 static int smiapp_get_limits_binning(struct smiapp_sensor
*sensor
)
696 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
697 static u32
const limits
[] = {
698 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
,
699 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN
,
700 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
,
701 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN
,
702 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
,
703 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN
,
704 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN
,
706 static u32
const limits_replace
[] = {
707 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES
,
708 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES
,
709 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK
,
710 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK
,
711 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK
,
712 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN
,
713 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN
,
718 if (sensor
->limits
[SMIAPP_LIMIT_BINNING_CAPABILITY
] ==
719 SMIAPP_BINNING_CAPABILITY_NO
) {
720 for (i
= 0; i
< ARRAY_SIZE(limits
); i
++)
721 sensor
->limits
[limits
[i
]] =
722 sensor
->limits
[limits_replace
[i
]];
727 rval
= smiapp_get_limits(sensor
, limits
, ARRAY_SIZE(limits
));
732 * Sanity check whether the binning limits are valid. If not,
733 * use the non-binning ones.
735 if (sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
]
736 && sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
]
737 && sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
])
740 for (i
= 0; i
< ARRAY_SIZE(limits
); i
++) {
741 dev_dbg(&client
->dev
,
742 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
743 smiapp_reg_limits
[limits
[i
]].addr
,
744 smiapp_reg_limits
[limits
[i
]].what
,
745 sensor
->limits
[limits_replace
[i
]],
746 sensor
->limits
[limits_replace
[i
]]);
747 sensor
->limits
[limits
[i
]] =
748 sensor
->limits
[limits_replace
[i
]];
754 static int smiapp_get_mbus_formats(struct smiapp_sensor
*sensor
)
756 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
757 struct smiapp_pll
*pll
= &sensor
->pll
;
758 u8 compressed_max_bpp
= 0;
759 unsigned int type
, n
;
760 unsigned int i
, pixel_order
;
764 sensor
, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE
, &type
);
768 dev_dbg(&client
->dev
, "data_format_model_type %d\n", type
);
770 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_PIXEL_ORDER
,
775 if (pixel_order
>= ARRAY_SIZE(pixel_order_str
)) {
776 dev_dbg(&client
->dev
, "bad pixel order %d\n", pixel_order
);
780 dev_dbg(&client
->dev
, "pixel order %d (%s)\n", pixel_order
,
781 pixel_order_str
[pixel_order
]);
784 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL
:
785 n
= SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N
;
787 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED
:
788 n
= SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N
;
794 sensor
->default_pixel_order
= pixel_order
;
795 sensor
->mbus_frame_fmts
= 0;
797 for (i
= 0; i
< n
; i
++) {
802 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i
), &fmt
);
806 dev_dbg(&client
->dev
, "%u: bpp %u, compressed %u\n",
807 i
, fmt
>> 8, (u8
)fmt
);
809 for (j
= 0; j
< ARRAY_SIZE(smiapp_csi_data_formats
); j
++) {
810 const struct smiapp_csi_data_format
*f
=
811 &smiapp_csi_data_formats
[j
];
813 if (f
->pixel_order
!= SMIAPP_PIXEL_ORDER_GRBG
)
816 if (f
->width
!= fmt
>> 8 || f
->compressed
!= (u8
)fmt
)
819 dev_dbg(&client
->dev
, "jolly good! %d\n", j
);
821 sensor
->default_mbus_frame_fmts
|= 1 << j
;
825 /* Figure out which BPP values can be used with which formats. */
826 pll
->binning_horizontal
= 1;
827 pll
->binning_vertical
= 1;
828 pll
->scale_m
= sensor
->scale_m
;
830 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
831 sensor
->compressed_min_bpp
=
832 min(smiapp_csi_data_formats
[i
].compressed
,
833 sensor
->compressed_min_bpp
);
835 max(smiapp_csi_data_formats
[i
].compressed
,
839 sensor
->valid_link_freqs
= devm_kcalloc(
841 compressed_max_bpp
- sensor
->compressed_min_bpp
+ 1,
842 sizeof(*sensor
->valid_link_freqs
), GFP_KERNEL
);
844 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
845 const struct smiapp_csi_data_format
*f
=
846 &smiapp_csi_data_formats
[i
];
847 unsigned long *valid_link_freqs
=
848 &sensor
->valid_link_freqs
[
849 f
->compressed
- sensor
->compressed_min_bpp
];
852 if (!(sensor
->default_mbus_frame_fmts
& 1 << i
))
855 pll
->bits_per_pixel
= f
->compressed
;
857 for (j
= 0; sensor
->hwcfg
->op_sys_clock
[j
]; j
++) {
858 pll
->link_freq
= sensor
->hwcfg
->op_sys_clock
[j
];
860 rval
= smiapp_pll_try(sensor
, pll
);
861 dev_dbg(&client
->dev
, "link freq %u Hz, bpp %u %s\n",
862 pll
->link_freq
, pll
->bits_per_pixel
,
863 rval
? "not ok" : "ok");
867 set_bit(j
, valid_link_freqs
);
870 if (!*valid_link_freqs
) {
871 dev_info(&client
->dev
,
872 "no valid link frequencies for %u bpp\n",
874 sensor
->default_mbus_frame_fmts
&= ~BIT(i
);
878 if (!sensor
->csi_format
879 || f
->width
> sensor
->csi_format
->width
880 || (f
->width
== sensor
->csi_format
->width
881 && f
->compressed
> sensor
->csi_format
->compressed
)) {
882 sensor
->csi_format
= f
;
883 sensor
->internal_csi_format
= f
;
887 if (!sensor
->csi_format
) {
888 dev_err(&client
->dev
, "no supported mbus code found\n");
892 smiapp_update_mbus_formats(sensor
);
897 static void smiapp_update_blanking(struct smiapp_sensor
*sensor
)
899 struct v4l2_ctrl
*vblank
= sensor
->vblank
;
900 struct v4l2_ctrl
*hblank
= sensor
->hblank
;
904 sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES
],
905 sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
] -
906 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
);
907 max
= sensor
->limits
[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN
] -
908 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
;
910 __v4l2_ctrl_modify_range(vblank
, min
, max
, vblank
->step
, min
);
913 sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
] -
914 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
,
915 sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
]);
916 max
= sensor
->limits
[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN
] -
917 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
;
919 __v4l2_ctrl_modify_range(hblank
, min
, max
, hblank
->step
, min
);
921 __smiapp_update_exposure_limits(sensor
);
924 static int smiapp_update_mode(struct smiapp_sensor
*sensor
)
926 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
927 unsigned int binning_mode
;
930 /* Binning has to be set up here; it affects limits */
931 if (sensor
->binning_horizontal
== 1 &&
932 sensor
->binning_vertical
== 1) {
936 (sensor
->binning_horizontal
<< 4)
937 | sensor
->binning_vertical
;
940 sensor
, SMIAPP_REG_U8_BINNING_TYPE
, binning_type
);
946 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_BINNING_MODE
, binning_mode
);
950 /* Get updated limits due to binning */
951 rval
= smiapp_get_limits_binning(sensor
);
955 rval
= smiapp_pll_update(sensor
);
959 /* Output from pixel array, including blanking */
960 smiapp_update_blanking(sensor
);
962 dev_dbg(&client
->dev
, "vblank\t\t%d\n", sensor
->vblank
->val
);
963 dev_dbg(&client
->dev
, "hblank\t\t%d\n", sensor
->hblank
->val
);
965 dev_dbg(&client
->dev
, "real timeperframe\t100/%d\n",
966 sensor
->pll
.pixel_rate_pixel_array
/
967 ((sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
968 + sensor
->hblank
->val
) *
969 (sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
970 + sensor
->vblank
->val
) / 100));
977 * SMIA++ NVM handling
980 static int smiapp_read_nvm(struct smiapp_sensor
*sensor
,
986 np
= sensor
->nvm_size
/ SMIAPP_NVM_PAGE_SIZE
;
987 for (p
= 0; p
< np
; p
++) {
990 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT
, p
);
994 rval
= smiapp_write(sensor
,
995 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL
,
996 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN
|
997 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN
);
1001 for (i
= 0; i
< 1000; i
++) {
1004 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS
, &s
);
1009 if (s
& SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY
)
1019 for (i
= 0; i
< SMIAPP_NVM_PAGE_SIZE
; i
++) {
1022 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0
+ i
,
1032 rval2
= smiapp_write(sensor
, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL
, 0);
1041 * SMIA++ CCI address control
1044 static int smiapp_change_cci_addr(struct smiapp_sensor
*sensor
)
1046 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1050 client
->addr
= sensor
->hwcfg
->i2c_addr_dfl
;
1052 rval
= smiapp_write(sensor
,
1053 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL
,
1054 sensor
->hwcfg
->i2c_addr_alt
<< 1);
1058 client
->addr
= sensor
->hwcfg
->i2c_addr_alt
;
1060 /* verify addr change went ok */
1061 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL
, &val
);
1065 if (val
!= sensor
->hwcfg
->i2c_addr_alt
<< 1)
1073 * SMIA++ Mode Control
1076 static int smiapp_setup_flash_strobe(struct smiapp_sensor
*sensor
)
1078 struct smiapp_flash_strobe_parms
*strobe_setup
;
1079 unsigned int ext_freq
= sensor
->hwcfg
->ext_clk
;
1081 u32 strobe_adjustment
;
1082 u32 strobe_width_high_rs
;
1085 strobe_setup
= sensor
->hwcfg
->strobe_setup
;
1088 * How to calculate registers related to strobe length. Please
1089 * do not change, or if you do at least know what you're
1092 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1094 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1095 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1097 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1098 * flash_strobe_adjustment E N, [1 - 0xff]
1100 * The formula above is written as below to keep it on one
1103 * l / 10^6 = w / e * a
1105 * Let's mark w * a by x:
1113 * The strobe width must be at least as long as requested,
1114 * thus rounding upwards is needed.
1116 * x = (l * e + 10^6 - 1) / 10^6
1117 * -----------------------------
1119 * Maximum possible accuracy is wanted at all times. Thus keep
1120 * a as small as possible.
1122 * Calculate a, assuming maximum w, with rounding upwards:
1124 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1125 * -------------------------------------
1127 * Thus, we also get w, with that a, with rounding upwards:
1129 * w = (x + a - 1) / a
1130 * -------------------
1134 * x E [1, (2^16 - 1) * (2^8 - 1)]
1136 * Substituting maximum x to the original formula (with rounding),
1137 * the maximum l is thus
1139 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1141 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1142 * --------------------------------------------------
1144 * flash_strobe_length must be clamped between 1 and
1145 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1149 * flash_strobe_adjustment = ((flash_strobe_length *
1150 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1152 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1153 * EXTCLK freq + 10^6 - 1) / 10^6 +
1154 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1156 tmp
= div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1157 1000000 + 1, ext_freq
);
1158 strobe_setup
->strobe_width_high_us
=
1159 clamp_t(u32
, strobe_setup
->strobe_width_high_us
, 1, tmp
);
1161 tmp
= div_u64(((u64
)strobe_setup
->strobe_width_high_us
* (u64
)ext_freq
+
1162 1000000 - 1), 1000000ULL);
1163 strobe_adjustment
= (tmp
+ (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1164 strobe_width_high_rs
= (tmp
+ strobe_adjustment
- 1) /
1167 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_MODE_RS
,
1168 strobe_setup
->mode
);
1172 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT
,
1177 rval
= smiapp_write(
1178 sensor
, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL
,
1179 strobe_width_high_rs
);
1183 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL
,
1184 strobe_setup
->strobe_delay
);
1188 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_FLASH_STROBE_START_POINT
,
1189 strobe_setup
->stobe_start_point
);
1193 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_TRIGGER_RS
,
1194 strobe_setup
->trigger
);
1197 sensor
->hwcfg
->strobe_setup
->trigger
= 0;
1202 /* -----------------------------------------------------------------------------
1206 static int smiapp_power_on(struct device
*dev
)
1208 struct i2c_client
*client
= to_i2c_client(dev
);
1209 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
1210 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1212 * The sub-device related to the I2C device is always the
1213 * source one, i.e. ssds[0].
1215 struct smiapp_sensor
*sensor
=
1216 container_of(ssd
, struct smiapp_sensor
, ssds
[0]);
1220 rval
= regulator_enable(sensor
->vana
);
1222 dev_err(&client
->dev
, "failed to enable vana regulator\n");
1225 usleep_range(1000, 1000);
1227 rval
= clk_prepare_enable(sensor
->ext_clk
);
1229 dev_dbg(&client
->dev
, "failed to enable xclk\n");
1232 usleep_range(1000, 1000);
1234 gpiod_set_value(sensor
->xshutdown
, 1);
1236 sleep
= SMIAPP_RESET_DELAY(sensor
->hwcfg
->ext_clk
);
1237 usleep_range(sleep
, sleep
);
1240 * Failures to respond to the address change command have been noticed.
1241 * Those failures seem to be caused by the sensor requiring a longer
1242 * boot time than advertised. An additional 10ms delay seems to work
1243 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1244 * unnecessary. The failures need to be investigated to find a proper
1245 * fix, and a delay will likely need to be added here if the I2C write
1246 * retry hack is reverted before the root cause of the boot time issue
1250 if (sensor
->hwcfg
->i2c_addr_alt
) {
1251 rval
= smiapp_change_cci_addr(sensor
);
1253 dev_err(&client
->dev
, "cci address change error\n");
1254 goto out_cci_addr_fail
;
1258 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_SOFTWARE_RESET
,
1259 SMIAPP_SOFTWARE_RESET
);
1261 dev_err(&client
->dev
, "software reset failed\n");
1262 goto out_cci_addr_fail
;
1265 if (sensor
->hwcfg
->i2c_addr_alt
) {
1266 rval
= smiapp_change_cci_addr(sensor
);
1268 dev_err(&client
->dev
, "cci address change error\n");
1269 goto out_cci_addr_fail
;
1273 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_COMPRESSION_MODE
,
1274 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR
);
1276 dev_err(&client
->dev
, "compression mode set failed\n");
1277 goto out_cci_addr_fail
;
1280 rval
= smiapp_write(
1281 sensor
, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ
,
1282 sensor
->hwcfg
->ext_clk
/ (1000000 / (1 << 8)));
1284 dev_err(&client
->dev
, "extclk frequency set failed\n");
1285 goto out_cci_addr_fail
;
1288 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_CSI_LANE_MODE
,
1289 sensor
->hwcfg
->lanes
- 1);
1291 dev_err(&client
->dev
, "csi lane mode set failed\n");
1292 goto out_cci_addr_fail
;
1295 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FAST_STANDBY_CTRL
,
1296 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE
);
1298 dev_err(&client
->dev
, "fast standby set failed\n");
1299 goto out_cci_addr_fail
;
1302 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_CSI_SIGNALLING_MODE
,
1303 sensor
->hwcfg
->csi_signalling_mode
);
1305 dev_err(&client
->dev
, "csi signalling mode set failed\n");
1306 goto out_cci_addr_fail
;
1309 /* DPHY control done by sensor based on requested link rate */
1310 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_DPHY_CTRL
,
1311 SMIAPP_DPHY_CTRL_UI
);
1315 rval
= smiapp_call_quirk(sensor
, post_poweron
);
1317 dev_err(&client
->dev
, "post_poweron quirks failed\n");
1318 goto out_cci_addr_fail
;
1321 /* Are we still initialising...? If yes, return here. */
1322 if (!sensor
->pixel_array
)
1325 rval
= v4l2_ctrl_handler_setup(&sensor
->pixel_array
->ctrl_handler
);
1327 goto out_cci_addr_fail
;
1329 rval
= v4l2_ctrl_handler_setup(&sensor
->src
->ctrl_handler
);
1331 goto out_cci_addr_fail
;
1333 mutex_lock(&sensor
->mutex
);
1334 rval
= smiapp_update_mode(sensor
);
1335 mutex_unlock(&sensor
->mutex
);
1337 goto out_cci_addr_fail
;
1343 gpiod_set_value(sensor
->xshutdown
, 0);
1344 clk_disable_unprepare(sensor
->ext_clk
);
1347 regulator_disable(sensor
->vana
);
1352 static int smiapp_power_off(struct device
*dev
)
1354 struct i2c_client
*client
= to_i2c_client(dev
);
1355 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
1356 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1357 struct smiapp_sensor
*sensor
=
1358 container_of(ssd
, struct smiapp_sensor
, ssds
[0]);
1361 * Currently power/clock to lens are enable/disabled separately
1362 * but they are essentially the same signals. So if the sensor is
1363 * powered off while the lens is powered on the sensor does not
1364 * really see a power off and next time the cci address change
1365 * will fail. So do a soft reset explicitly here.
1367 if (sensor
->hwcfg
->i2c_addr_alt
)
1368 smiapp_write(sensor
,
1369 SMIAPP_REG_U8_SOFTWARE_RESET
,
1370 SMIAPP_SOFTWARE_RESET
);
1372 gpiod_set_value(sensor
->xshutdown
, 0);
1373 clk_disable_unprepare(sensor
->ext_clk
);
1374 usleep_range(5000, 5000);
1375 regulator_disable(sensor
->vana
);
1376 sensor
->streaming
= false;
1381 static int smiapp_set_power(struct v4l2_subdev
*subdev
, int on
)
1386 pm_runtime_mark_last_busy(subdev
->dev
);
1387 pm_runtime_put_autosuspend(subdev
->dev
);
1392 rval
= pm_runtime_get_sync(subdev
->dev
);
1396 if (rval
!= -EBUSY
&& rval
!= -EAGAIN
)
1397 pm_runtime_set_active(subdev
->dev
);
1399 pm_runtime_put(subdev
->dev
);
1404 /* -----------------------------------------------------------------------------
1405 * Video stream management
1408 static int smiapp_start_streaming(struct smiapp_sensor
*sensor
)
1410 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1413 mutex_lock(&sensor
->mutex
);
1415 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_CSI_DATA_FORMAT
,
1416 (sensor
->csi_format
->width
<< 8) |
1417 sensor
->csi_format
->compressed
);
1421 rval
= smiapp_pll_configure(sensor
);
1425 /* Analog crop start coordinates */
1426 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_X_ADDR_START
,
1427 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].left
);
1431 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_Y_ADDR_START
,
1432 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].top
);
1436 /* Analog crop end coordinates */
1437 rval
= smiapp_write(
1438 sensor
, SMIAPP_REG_U16_X_ADDR_END
,
1439 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].left
1440 + sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
- 1);
1444 rval
= smiapp_write(
1445 sensor
, SMIAPP_REG_U16_Y_ADDR_END
,
1446 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].top
1447 + sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
- 1);
1452 * Output from pixel array, including blanking, is set using
1453 * controls below. No need to set here.
1457 if (sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
1458 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
) {
1459 rval
= smiapp_write(
1460 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET
,
1461 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].left
);
1465 rval
= smiapp_write(
1466 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET
,
1467 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].top
);
1471 rval
= smiapp_write(
1472 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH
,
1473 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].width
);
1477 rval
= smiapp_write(
1478 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT
,
1479 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].height
);
1485 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
1486 != SMIAPP_SCALING_CAPABILITY_NONE
) {
1487 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_SCALING_MODE
,
1488 sensor
->scaling_mode
);
1492 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_SCALE_M
,
1498 /* Output size from sensor */
1499 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_X_OUTPUT_SIZE
,
1500 sensor
->src
->crop
[SMIAPP_PAD_SRC
].width
);
1503 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_Y_OUTPUT_SIZE
,
1504 sensor
->src
->crop
[SMIAPP_PAD_SRC
].height
);
1508 if ((sensor
->limits
[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY
] &
1509 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE
|
1510 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE
)) &&
1511 sensor
->hwcfg
->strobe_setup
!= NULL
&&
1512 sensor
->hwcfg
->strobe_setup
->trigger
!= 0) {
1513 rval
= smiapp_setup_flash_strobe(sensor
);
1518 rval
= smiapp_call_quirk(sensor
, pre_streamon
);
1520 dev_err(&client
->dev
, "pre_streamon quirks failed\n");
1524 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_MODE_SELECT
,
1525 SMIAPP_MODE_SELECT_STREAMING
);
1528 mutex_unlock(&sensor
->mutex
);
1533 static int smiapp_stop_streaming(struct smiapp_sensor
*sensor
)
1535 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1538 mutex_lock(&sensor
->mutex
);
1539 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_MODE_SELECT
,
1540 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY
);
1544 rval
= smiapp_call_quirk(sensor
, post_streamoff
);
1546 dev_err(&client
->dev
, "post_streamoff quirks failed\n");
1549 mutex_unlock(&sensor
->mutex
);
1553 /* -----------------------------------------------------------------------------
1554 * V4L2 subdev video operations
1557 static int smiapp_set_stream(struct v4l2_subdev
*subdev
, int enable
)
1559 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1562 if (sensor
->streaming
== enable
)
1566 sensor
->streaming
= true;
1567 rval
= smiapp_start_streaming(sensor
);
1569 sensor
->streaming
= false;
1571 rval
= smiapp_stop_streaming(sensor
);
1572 sensor
->streaming
= false;
1578 static int smiapp_enum_mbus_code(struct v4l2_subdev
*subdev
,
1579 struct v4l2_subdev_pad_config
*cfg
,
1580 struct v4l2_subdev_mbus_code_enum
*code
)
1582 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1583 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1588 mutex_lock(&sensor
->mutex
);
1590 dev_err(&client
->dev
, "subdev %s, pad %d, index %d\n",
1591 subdev
->name
, code
->pad
, code
->index
);
1593 if (subdev
!= &sensor
->src
->sd
|| code
->pad
!= SMIAPP_PAD_SRC
) {
1597 code
->code
= sensor
->internal_csi_format
->code
;
1602 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
1603 if (sensor
->mbus_frame_fmts
& (1 << i
))
1606 if (idx
== code
->index
) {
1607 code
->code
= smiapp_csi_data_formats
[i
].code
;
1608 dev_err(&client
->dev
, "found index %d, i %d, code %x\n",
1609 code
->index
, i
, code
->code
);
1616 mutex_unlock(&sensor
->mutex
);
1621 static u32
__smiapp_get_mbus_code(struct v4l2_subdev
*subdev
,
1624 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1626 if (subdev
== &sensor
->src
->sd
&& pad
== SMIAPP_PAD_SRC
)
1627 return sensor
->csi_format
->code
;
1629 return sensor
->internal_csi_format
->code
;
1632 static int __smiapp_get_format(struct v4l2_subdev
*subdev
,
1633 struct v4l2_subdev_pad_config
*cfg
,
1634 struct v4l2_subdev_format
*fmt
)
1636 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1638 if (fmt
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1639 fmt
->format
= *v4l2_subdev_get_try_format(subdev
, cfg
,
1642 struct v4l2_rect
*r
;
1644 if (fmt
->pad
== ssd
->source_pad
)
1645 r
= &ssd
->crop
[ssd
->source_pad
];
1649 fmt
->format
.code
= __smiapp_get_mbus_code(subdev
, fmt
->pad
);
1650 fmt
->format
.width
= r
->width
;
1651 fmt
->format
.height
= r
->height
;
1652 fmt
->format
.field
= V4L2_FIELD_NONE
;
1658 static int smiapp_get_format(struct v4l2_subdev
*subdev
,
1659 struct v4l2_subdev_pad_config
*cfg
,
1660 struct v4l2_subdev_format
*fmt
)
1662 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1665 mutex_lock(&sensor
->mutex
);
1666 rval
= __smiapp_get_format(subdev
, cfg
, fmt
);
1667 mutex_unlock(&sensor
->mutex
);
1672 static void smiapp_get_crop_compose(struct v4l2_subdev
*subdev
,
1673 struct v4l2_subdev_pad_config
*cfg
,
1674 struct v4l2_rect
**crops
,
1675 struct v4l2_rect
**comps
, int which
)
1677 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1680 if (which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1682 for (i
= 0; i
< subdev
->entity
.num_pads
; i
++)
1683 crops
[i
] = &ssd
->crop
[i
];
1685 *comps
= &ssd
->compose
;
1688 for (i
= 0; i
< subdev
->entity
.num_pads
; i
++) {
1689 crops
[i
] = v4l2_subdev_get_try_crop(subdev
, cfg
, i
);
1694 *comps
= v4l2_subdev_get_try_compose(subdev
, cfg
,
1701 /* Changes require propagation only on sink pad. */
1702 static void smiapp_propagate(struct v4l2_subdev
*subdev
,
1703 struct v4l2_subdev_pad_config
*cfg
, int which
,
1706 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1707 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1708 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
1710 smiapp_get_crop_compose(subdev
, cfg
, crops
, &comp
, which
);
1713 case V4L2_SEL_TGT_CROP
:
1714 comp
->width
= crops
[SMIAPP_PAD_SINK
]->width
;
1715 comp
->height
= crops
[SMIAPP_PAD_SINK
]->height
;
1716 if (which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1717 if (ssd
== sensor
->scaler
) {
1720 SMIAPP_LIMIT_SCALER_N_MIN
];
1721 sensor
->scaling_mode
=
1722 SMIAPP_SCALING_MODE_NONE
;
1723 } else if (ssd
== sensor
->binner
) {
1724 sensor
->binning_horizontal
= 1;
1725 sensor
->binning_vertical
= 1;
1729 case V4L2_SEL_TGT_COMPOSE
:
1730 *crops
[SMIAPP_PAD_SRC
] = *comp
;
1737 static const struct smiapp_csi_data_format
1738 *smiapp_validate_csi_data_format(struct smiapp_sensor
*sensor
, u32 code
)
1742 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
1743 if (sensor
->mbus_frame_fmts
& (1 << i
)
1744 && smiapp_csi_data_formats
[i
].code
== code
)
1745 return &smiapp_csi_data_formats
[i
];
1748 return sensor
->csi_format
;
1751 static int smiapp_set_format_source(struct v4l2_subdev
*subdev
,
1752 struct v4l2_subdev_pad_config
*cfg
,
1753 struct v4l2_subdev_format
*fmt
)
1755 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1756 const struct smiapp_csi_data_format
*csi_format
,
1757 *old_csi_format
= sensor
->csi_format
;
1758 unsigned long *valid_link_freqs
;
1759 u32 code
= fmt
->format
.code
;
1763 rval
= __smiapp_get_format(subdev
, cfg
, fmt
);
1768 * Media bus code is changeable on src subdev's source pad. On
1769 * other source pads we just get format here.
1771 if (subdev
!= &sensor
->src
->sd
)
1774 csi_format
= smiapp_validate_csi_data_format(sensor
, code
);
1776 fmt
->format
.code
= csi_format
->code
;
1778 if (fmt
->which
!= V4L2_SUBDEV_FORMAT_ACTIVE
)
1781 sensor
->csi_format
= csi_format
;
1783 if (csi_format
->width
!= old_csi_format
->width
)
1784 for (i
= 0; i
< ARRAY_SIZE(sensor
->test_data
); i
++)
1785 __v4l2_ctrl_modify_range(
1786 sensor
->test_data
[i
], 0,
1787 (1 << csi_format
->width
) - 1, 1, 0);
1789 if (csi_format
->compressed
== old_csi_format
->compressed
)
1793 &sensor
->valid_link_freqs
[sensor
->csi_format
->compressed
1794 - sensor
->compressed_min_bpp
];
1796 __v4l2_ctrl_modify_range(
1797 sensor
->link_freq
, 0,
1798 __fls(*valid_link_freqs
), ~*valid_link_freqs
,
1799 __ffs(*valid_link_freqs
));
1801 return smiapp_pll_update(sensor
);
1804 static int smiapp_set_format(struct v4l2_subdev
*subdev
,
1805 struct v4l2_subdev_pad_config
*cfg
,
1806 struct v4l2_subdev_format
*fmt
)
1808 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1809 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1810 struct v4l2_rect
*crops
[SMIAPP_PADS
];
1812 mutex_lock(&sensor
->mutex
);
1814 if (fmt
->pad
== ssd
->source_pad
) {
1817 rval
= smiapp_set_format_source(subdev
, cfg
, fmt
);
1819 mutex_unlock(&sensor
->mutex
);
1824 /* Sink pad. Width and height are changeable here. */
1825 fmt
->format
.code
= __smiapp_get_mbus_code(subdev
, fmt
->pad
);
1826 fmt
->format
.width
&= ~1;
1827 fmt
->format
.height
&= ~1;
1828 fmt
->format
.field
= V4L2_FIELD_NONE
;
1831 clamp(fmt
->format
.width
,
1832 sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
],
1833 sensor
->limits
[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE
]);
1834 fmt
->format
.height
=
1835 clamp(fmt
->format
.height
,
1836 sensor
->limits
[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE
],
1837 sensor
->limits
[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE
]);
1839 smiapp_get_crop_compose(subdev
, cfg
, crops
, NULL
, fmt
->which
);
1841 crops
[ssd
->sink_pad
]->left
= 0;
1842 crops
[ssd
->sink_pad
]->top
= 0;
1843 crops
[ssd
->sink_pad
]->width
= fmt
->format
.width
;
1844 crops
[ssd
->sink_pad
]->height
= fmt
->format
.height
;
1845 if (fmt
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
)
1846 ssd
->sink_fmt
= *crops
[ssd
->sink_pad
];
1847 smiapp_propagate(subdev
, cfg
, fmt
->which
,
1850 mutex_unlock(&sensor
->mutex
);
1856 * Calculate goodness of scaled image size compared to expected image
1857 * size and flags provided.
1859 #define SCALING_GOODNESS 100000
1860 #define SCALING_GOODNESS_EXTREME 100000000
1861 static int scaling_goodness(struct v4l2_subdev
*subdev
, int w
, int ask_w
,
1862 int h
, int ask_h
, u32 flags
)
1864 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1865 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1873 if (flags
& V4L2_SEL_FLAG_GE
) {
1875 val
-= SCALING_GOODNESS
;
1877 val
-= SCALING_GOODNESS
;
1880 if (flags
& V4L2_SEL_FLAG_LE
) {
1882 val
-= SCALING_GOODNESS
;
1884 val
-= SCALING_GOODNESS
;
1887 val
-= abs(w
- ask_w
);
1888 val
-= abs(h
- ask_h
);
1890 if (w
< sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
])
1891 val
-= SCALING_GOODNESS_EXTREME
;
1893 dev_dbg(&client
->dev
, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1894 w
, ask_h
, h
, ask_h
, val
);
1899 static void smiapp_set_compose_binner(struct v4l2_subdev
*subdev
,
1900 struct v4l2_subdev_pad_config
*cfg
,
1901 struct v4l2_subdev_selection
*sel
,
1902 struct v4l2_rect
**crops
,
1903 struct v4l2_rect
*comp
)
1905 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1907 unsigned int binh
= 1, binv
= 1;
1908 int best
= scaling_goodness(
1910 crops
[SMIAPP_PAD_SINK
]->width
, sel
->r
.width
,
1911 crops
[SMIAPP_PAD_SINK
]->height
, sel
->r
.height
, sel
->flags
);
1913 for (i
= 0; i
< sensor
->nbinning_subtypes
; i
++) {
1914 int this = scaling_goodness(
1916 crops
[SMIAPP_PAD_SINK
]->width
1917 / sensor
->binning_subtypes
[i
].horizontal
,
1919 crops
[SMIAPP_PAD_SINK
]->height
1920 / sensor
->binning_subtypes
[i
].vertical
,
1921 sel
->r
.height
, sel
->flags
);
1924 binh
= sensor
->binning_subtypes
[i
].horizontal
;
1925 binv
= sensor
->binning_subtypes
[i
].vertical
;
1929 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1930 sensor
->binning_vertical
= binv
;
1931 sensor
->binning_horizontal
= binh
;
1934 sel
->r
.width
= (crops
[SMIAPP_PAD_SINK
]->width
/ binh
) & ~1;
1935 sel
->r
.height
= (crops
[SMIAPP_PAD_SINK
]->height
/ binv
) & ~1;
1939 * Calculate best scaling ratio and mode for given output resolution.
1941 * Try all of these: horizontal ratio, vertical ratio and smallest
1942 * size possible (horizontally).
1944 * Also try whether horizontal scaler or full scaler gives a better
1947 static void smiapp_set_compose_scaler(struct v4l2_subdev
*subdev
,
1948 struct v4l2_subdev_pad_config
*cfg
,
1949 struct v4l2_subdev_selection
*sel
,
1950 struct v4l2_rect
**crops
,
1951 struct v4l2_rect
*comp
)
1953 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1954 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1955 u32 min
, max
, a
, b
, max_m
;
1956 u32 scale_m
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
1957 int mode
= SMIAPP_SCALING_MODE_HORIZONTAL
;
1963 sel
->r
.width
= min_t(unsigned int, sel
->r
.width
,
1964 crops
[SMIAPP_PAD_SINK
]->width
);
1965 sel
->r
.height
= min_t(unsigned int, sel
->r
.height
,
1966 crops
[SMIAPP_PAD_SINK
]->height
);
1968 a
= crops
[SMIAPP_PAD_SINK
]->width
1969 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] / sel
->r
.width
;
1970 b
= crops
[SMIAPP_PAD_SINK
]->height
1971 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] / sel
->r
.height
;
1972 max_m
= crops
[SMIAPP_PAD_SINK
]->width
1973 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
]
1974 / sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
];
1976 a
= clamp(a
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1977 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1978 b
= clamp(b
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1979 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1980 max_m
= clamp(max_m
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1981 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1983 dev_dbg(&client
->dev
, "scaling: a %d b %d max_m %d\n", a
, b
, max_m
);
1985 min
= min(max_m
, min(a
, b
));
1986 max
= min(max_m
, max(a
, b
));
1995 try[ntry
] = min
+ 1;
1998 try[ntry
] = max
+ 1;
2003 for (i
= 0; i
< ntry
; i
++) {
2004 int this = scaling_goodness(
2006 crops
[SMIAPP_PAD_SINK
]->width
2008 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
2010 crops
[SMIAPP_PAD_SINK
]->height
,
2014 dev_dbg(&client
->dev
, "trying factor %d (%d)\n", try[i
], i
);
2018 mode
= SMIAPP_SCALING_MODE_HORIZONTAL
;
2022 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
2023 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL
)
2026 this = scaling_goodness(
2027 subdev
, crops
[SMIAPP_PAD_SINK
]->width
2029 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
2031 crops
[SMIAPP_PAD_SINK
]->height
2033 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
2039 mode
= SMIAPP_SCALING_MODE_BOTH
;
2045 (crops
[SMIAPP_PAD_SINK
]->width
2047 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
]) & ~1;
2048 if (mode
== SMIAPP_SCALING_MODE_BOTH
)
2050 (crops
[SMIAPP_PAD_SINK
]->height
2052 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
])
2055 sel
->r
.height
= crops
[SMIAPP_PAD_SINK
]->height
;
2057 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
2058 sensor
->scale_m
= scale_m
;
2059 sensor
->scaling_mode
= mode
;
2062 /* We're only called on source pads. This function sets scaling. */
2063 static int smiapp_set_compose(struct v4l2_subdev
*subdev
,
2064 struct v4l2_subdev_pad_config
*cfg
,
2065 struct v4l2_subdev_selection
*sel
)
2067 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2068 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
2069 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
2071 smiapp_get_crop_compose(subdev
, cfg
, crops
, &comp
, sel
->which
);
2076 if (ssd
== sensor
->binner
)
2077 smiapp_set_compose_binner(subdev
, cfg
, sel
, crops
, comp
);
2079 smiapp_set_compose_scaler(subdev
, cfg
, sel
, crops
, comp
);
2082 smiapp_propagate(subdev
, cfg
, sel
->which
, V4L2_SEL_TGT_COMPOSE
);
2084 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
)
2085 return smiapp_update_mode(sensor
);
2090 static int __smiapp_sel_supported(struct v4l2_subdev
*subdev
,
2091 struct v4l2_subdev_selection
*sel
)
2093 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2094 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
2096 /* We only implement crop in three places. */
2097 switch (sel
->target
) {
2098 case V4L2_SEL_TGT_CROP
:
2099 case V4L2_SEL_TGT_CROP_BOUNDS
:
2100 if (ssd
== sensor
->pixel_array
2101 && sel
->pad
== SMIAPP_PA_PAD_SRC
)
2103 if (ssd
== sensor
->src
2104 && sel
->pad
== SMIAPP_PAD_SRC
)
2106 if (ssd
== sensor
->scaler
2107 && sel
->pad
== SMIAPP_PAD_SINK
2108 && sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
2109 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
)
2112 case V4L2_SEL_TGT_NATIVE_SIZE
:
2113 if (ssd
== sensor
->pixel_array
2114 && sel
->pad
== SMIAPP_PA_PAD_SRC
)
2117 case V4L2_SEL_TGT_COMPOSE
:
2118 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
2119 if (sel
->pad
== ssd
->source_pad
)
2121 if (ssd
== sensor
->binner
)
2123 if (ssd
== sensor
->scaler
2124 && sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
2125 != SMIAPP_SCALING_CAPABILITY_NONE
)
2133 static int smiapp_set_crop(struct v4l2_subdev
*subdev
,
2134 struct v4l2_subdev_pad_config
*cfg
,
2135 struct v4l2_subdev_selection
*sel
)
2137 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2138 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
2139 struct v4l2_rect
*src_size
, *crops
[SMIAPP_PADS
];
2140 struct v4l2_rect _r
;
2142 smiapp_get_crop_compose(subdev
, cfg
, crops
, NULL
, sel
->which
);
2144 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
2145 if (sel
->pad
== ssd
->sink_pad
)
2146 src_size
= &ssd
->sink_fmt
;
2148 src_size
= &ssd
->compose
;
2150 if (sel
->pad
== ssd
->sink_pad
) {
2153 _r
.width
= v4l2_subdev_get_try_format(subdev
, cfg
, sel
->pad
)
2155 _r
.height
= v4l2_subdev_get_try_format(subdev
, cfg
, sel
->pad
)
2159 src_size
= v4l2_subdev_get_try_compose(
2160 subdev
, cfg
, ssd
->sink_pad
);
2164 if (ssd
== sensor
->src
&& sel
->pad
== SMIAPP_PAD_SRC
) {
2169 sel
->r
.width
= min(sel
->r
.width
, src_size
->width
);
2170 sel
->r
.height
= min(sel
->r
.height
, src_size
->height
);
2172 sel
->r
.left
= min_t(int, sel
->r
.left
, src_size
->width
- sel
->r
.width
);
2173 sel
->r
.top
= min_t(int, sel
->r
.top
, src_size
->height
- sel
->r
.height
);
2175 *crops
[sel
->pad
] = sel
->r
;
2177 if (ssd
!= sensor
->pixel_array
&& sel
->pad
== SMIAPP_PAD_SINK
)
2178 smiapp_propagate(subdev
, cfg
, sel
->which
,
2184 static void smiapp_get_native_size(struct smiapp_subdev
*ssd
,
2185 struct v4l2_rect
*r
)
2189 r
->width
= ssd
->sensor
->limits
[SMIAPP_LIMIT_X_ADDR_MAX
] + 1;
2190 r
->height
= ssd
->sensor
->limits
[SMIAPP_LIMIT_Y_ADDR_MAX
] + 1;
2193 static int __smiapp_get_selection(struct v4l2_subdev
*subdev
,
2194 struct v4l2_subdev_pad_config
*cfg
,
2195 struct v4l2_subdev_selection
*sel
)
2197 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2198 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
2199 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
2200 struct v4l2_rect sink_fmt
;
2203 ret
= __smiapp_sel_supported(subdev
, sel
);
2207 smiapp_get_crop_compose(subdev
, cfg
, crops
, &comp
, sel
->which
);
2209 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
2210 sink_fmt
= ssd
->sink_fmt
;
2212 struct v4l2_mbus_framefmt
*fmt
=
2213 v4l2_subdev_get_try_format(subdev
, cfg
, ssd
->sink_pad
);
2217 sink_fmt
.width
= fmt
->width
;
2218 sink_fmt
.height
= fmt
->height
;
2221 switch (sel
->target
) {
2222 case V4L2_SEL_TGT_CROP_BOUNDS
:
2223 case V4L2_SEL_TGT_NATIVE_SIZE
:
2224 if (ssd
== sensor
->pixel_array
)
2225 smiapp_get_native_size(ssd
, &sel
->r
);
2226 else if (sel
->pad
== ssd
->sink_pad
)
2231 case V4L2_SEL_TGT_CROP
:
2232 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
2233 sel
->r
= *crops
[sel
->pad
];
2235 case V4L2_SEL_TGT_COMPOSE
:
2243 static int smiapp_get_selection(struct v4l2_subdev
*subdev
,
2244 struct v4l2_subdev_pad_config
*cfg
,
2245 struct v4l2_subdev_selection
*sel
)
2247 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2250 mutex_lock(&sensor
->mutex
);
2251 rval
= __smiapp_get_selection(subdev
, cfg
, sel
);
2252 mutex_unlock(&sensor
->mutex
);
2256 static int smiapp_set_selection(struct v4l2_subdev
*subdev
,
2257 struct v4l2_subdev_pad_config
*cfg
,
2258 struct v4l2_subdev_selection
*sel
)
2260 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2263 ret
= __smiapp_sel_supported(subdev
, sel
);
2267 mutex_lock(&sensor
->mutex
);
2269 sel
->r
.left
= max(0, sel
->r
.left
& ~1);
2270 sel
->r
.top
= max(0, sel
->r
.top
& ~1);
2271 sel
->r
.width
= SMIAPP_ALIGN_DIM(sel
->r
.width
, sel
->flags
);
2272 sel
->r
.height
= SMIAPP_ALIGN_DIM(sel
->r
.height
, sel
->flags
);
2274 sel
->r
.width
= max_t(unsigned int,
2275 sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
],
2277 sel
->r
.height
= max_t(unsigned int,
2278 sensor
->limits
[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE
],
2281 switch (sel
->target
) {
2282 case V4L2_SEL_TGT_CROP
:
2283 ret
= smiapp_set_crop(subdev
, cfg
, sel
);
2285 case V4L2_SEL_TGT_COMPOSE
:
2286 ret
= smiapp_set_compose(subdev
, cfg
, sel
);
2292 mutex_unlock(&sensor
->mutex
);
2296 static int smiapp_get_skip_frames(struct v4l2_subdev
*subdev
, u32
*frames
)
2298 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2300 *frames
= sensor
->frame_skip
;
2304 static int smiapp_get_skip_top_lines(struct v4l2_subdev
*subdev
, u32
*lines
)
2306 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2308 *lines
= sensor
->image_start
;
2313 /* -----------------------------------------------------------------------------
2318 smiapp_sysfs_nvm_read(struct device
*dev
, struct device_attribute
*attr
,
2321 struct v4l2_subdev
*subdev
= i2c_get_clientdata(to_i2c_client(dev
));
2322 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
2323 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2324 unsigned int nbytes
;
2326 if (!sensor
->dev_init_done
)
2329 if (!sensor
->nvm_size
) {
2332 /* NVM not read yet - read it now */
2333 sensor
->nvm_size
= sensor
->hwcfg
->nvm_size
;
2335 rval
= pm_runtime_get_sync(&client
->dev
);
2337 if (rval
!= -EBUSY
&& rval
!= -EAGAIN
)
2338 pm_runtime_set_active(&client
->dev
);
2339 pm_runtime_put(&client
->dev
);
2343 if (smiapp_read_nvm(sensor
, sensor
->nvm
)) {
2344 dev_err(&client
->dev
, "nvm read failed\n");
2348 pm_runtime_mark_last_busy(&client
->dev
);
2349 pm_runtime_put_autosuspend(&client
->dev
);
2352 * NVM is still way below a PAGE_SIZE, so we can safely
2353 * assume this for now.
2355 nbytes
= min_t(unsigned int, sensor
->nvm_size
, PAGE_SIZE
);
2356 memcpy(buf
, sensor
->nvm
, nbytes
);
2360 static DEVICE_ATTR(nvm
, S_IRUGO
, smiapp_sysfs_nvm_read
, NULL
);
2363 smiapp_sysfs_ident_read(struct device
*dev
, struct device_attribute
*attr
,
2366 struct v4l2_subdev
*subdev
= i2c_get_clientdata(to_i2c_client(dev
));
2367 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2368 struct smiapp_module_info
*minfo
= &sensor
->minfo
;
2370 return snprintf(buf
, PAGE_SIZE
, "%2.2x%4.4x%2.2x\n",
2371 minfo
->manufacturer_id
, minfo
->model_id
,
2372 minfo
->revision_number_major
) + 1;
2375 static DEVICE_ATTR(ident
, S_IRUGO
, smiapp_sysfs_ident_read
, NULL
);
2377 /* -----------------------------------------------------------------------------
2378 * V4L2 subdev core operations
2381 static int smiapp_identify_module(struct smiapp_sensor
*sensor
)
2383 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
2384 struct smiapp_module_info
*minfo
= &sensor
->minfo
;
2388 minfo
->name
= SMIAPP_NAME
;
2391 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_MANUFACTURER_ID
,
2392 &minfo
->manufacturer_id
);
2394 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U16_MODEL_ID
,
2397 rval
= smiapp_read_8only(sensor
,
2398 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR
,
2399 &minfo
->revision_number_major
);
2401 rval
= smiapp_read_8only(sensor
,
2402 SMIAPP_REG_U8_REVISION_NUMBER_MINOR
,
2403 &minfo
->revision_number_minor
);
2405 rval
= smiapp_read_8only(sensor
,
2406 SMIAPP_REG_U8_MODULE_DATE_YEAR
,
2407 &minfo
->module_year
);
2409 rval
= smiapp_read_8only(sensor
,
2410 SMIAPP_REG_U8_MODULE_DATE_MONTH
,
2411 &minfo
->module_month
);
2413 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_MODULE_DATE_DAY
,
2414 &minfo
->module_day
);
2418 rval
= smiapp_read_8only(sensor
,
2419 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID
,
2420 &minfo
->sensor_manufacturer_id
);
2422 rval
= smiapp_read_8only(sensor
,
2423 SMIAPP_REG_U16_SENSOR_MODEL_ID
,
2424 &minfo
->sensor_model_id
);
2426 rval
= smiapp_read_8only(sensor
,
2427 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER
,
2428 &minfo
->sensor_revision_number
);
2430 rval
= smiapp_read_8only(sensor
,
2431 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION
,
2432 &minfo
->sensor_firmware_version
);
2436 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_SMIA_VERSION
,
2437 &minfo
->smia_version
);
2439 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_SMIAPP_VERSION
,
2440 &minfo
->smiapp_version
);
2443 dev_err(&client
->dev
, "sensor detection failed\n");
2447 dev_dbg(&client
->dev
, "module 0x%2.2x-0x%4.4x\n",
2448 minfo
->manufacturer_id
, minfo
->model_id
);
2450 dev_dbg(&client
->dev
,
2451 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2452 minfo
->revision_number_major
, minfo
->revision_number_minor
,
2453 minfo
->module_year
, minfo
->module_month
, minfo
->module_day
);
2455 dev_dbg(&client
->dev
, "sensor 0x%2.2x-0x%4.4x\n",
2456 minfo
->sensor_manufacturer_id
, minfo
->sensor_model_id
);
2458 dev_dbg(&client
->dev
,
2459 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2460 minfo
->sensor_revision_number
, minfo
->sensor_firmware_version
);
2462 dev_dbg(&client
->dev
, "smia version %2.2d smiapp version %2.2d\n",
2463 minfo
->smia_version
, minfo
->smiapp_version
);
2466 * Some modules have bad data in the lvalues below. Hope the
2467 * rvalues have better stuff. The lvalues are module
2468 * parameters whereas the rvalues are sensor parameters.
2470 if (!minfo
->manufacturer_id
&& !minfo
->model_id
) {
2471 minfo
->manufacturer_id
= minfo
->sensor_manufacturer_id
;
2472 minfo
->model_id
= minfo
->sensor_model_id
;
2473 minfo
->revision_number_major
= minfo
->sensor_revision_number
;
2476 for (i
= 0; i
< ARRAY_SIZE(smiapp_module_idents
); i
++) {
2477 if (smiapp_module_idents
[i
].manufacturer_id
2478 != minfo
->manufacturer_id
)
2480 if (smiapp_module_idents
[i
].model_id
!= minfo
->model_id
)
2482 if (smiapp_module_idents
[i
].flags
2483 & SMIAPP_MODULE_IDENT_FLAG_REV_LE
) {
2484 if (smiapp_module_idents
[i
].revision_number_major
2485 < minfo
->revision_number_major
)
2488 if (smiapp_module_idents
[i
].revision_number_major
2489 != minfo
->revision_number_major
)
2493 minfo
->name
= smiapp_module_idents
[i
].name
;
2494 minfo
->quirk
= smiapp_module_idents
[i
].quirk
;
2498 if (i
>= ARRAY_SIZE(smiapp_module_idents
))
2499 dev_warn(&client
->dev
,
2500 "no quirks for this module; let's hope it's fully compliant\n");
2502 dev_dbg(&client
->dev
, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2503 minfo
->name
, minfo
->manufacturer_id
, minfo
->model_id
,
2504 minfo
->revision_number_major
);
2509 static const struct v4l2_subdev_ops smiapp_ops
;
2510 static const struct v4l2_subdev_internal_ops smiapp_internal_ops
;
2511 static const struct media_entity_operations smiapp_entity_ops
;
2513 static int smiapp_register_subdev(struct smiapp_sensor
*sensor
,
2514 struct smiapp_subdev
*ssd
,
2515 struct smiapp_subdev
*sink_ssd
,
2516 u16 source_pad
, u16 sink_pad
, u32 link_flags
)
2518 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
2524 rval
= media_entity_pads_init(&ssd
->sd
.entity
,
2525 ssd
->npads
, ssd
->pads
);
2527 dev_err(&client
->dev
,
2528 "media_entity_pads_init failed\n");
2532 rval
= v4l2_device_register_subdev(sensor
->src
->sd
.v4l2_dev
,
2535 dev_err(&client
->dev
,
2536 "v4l2_device_register_subdev failed\n");
2540 rval
= media_create_pad_link(&ssd
->sd
.entity
, source_pad
,
2541 &sink_ssd
->sd
.entity
, sink_pad
,
2544 dev_err(&client
->dev
,
2545 "media_create_pad_link failed\n");
2546 v4l2_device_unregister_subdev(&ssd
->sd
);
2553 static void smiapp_unregistered(struct v4l2_subdev
*subdev
)
2555 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2558 for (i
= 1; i
< sensor
->ssds_used
; i
++)
2559 v4l2_device_unregister_subdev(&sensor
->ssds
[i
].sd
);
2562 static int smiapp_registered(struct v4l2_subdev
*subdev
)
2564 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2567 if (sensor
->scaler
) {
2568 rval
= smiapp_register_subdev(
2569 sensor
, sensor
->binner
, sensor
->scaler
,
2570 SMIAPP_PAD_SRC
, SMIAPP_PAD_SINK
,
2571 MEDIA_LNK_FL_ENABLED
| MEDIA_LNK_FL_IMMUTABLE
);
2576 rval
= smiapp_register_subdev(
2577 sensor
, sensor
->pixel_array
, sensor
->binner
,
2578 SMIAPP_PA_PAD_SRC
, SMIAPP_PAD_SINK
,
2579 MEDIA_LNK_FL_ENABLED
| MEDIA_LNK_FL_IMMUTABLE
);
2586 smiapp_unregistered(subdev
);
2591 static void smiapp_cleanup(struct smiapp_sensor
*sensor
)
2593 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
2595 device_remove_file(&client
->dev
, &dev_attr_nvm
);
2596 device_remove_file(&client
->dev
, &dev_attr_ident
);
2598 smiapp_free_controls(sensor
);
2601 static void smiapp_create_subdev(struct smiapp_sensor
*sensor
,
2602 struct smiapp_subdev
*ssd
, const char *name
,
2603 unsigned short num_pads
)
2605 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
2610 if (ssd
!= sensor
->src
)
2611 v4l2_subdev_init(&ssd
->sd
, &smiapp_ops
);
2613 ssd
->sd
.flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
;
2614 ssd
->sensor
= sensor
;
2616 ssd
->npads
= num_pads
;
2617 ssd
->source_pad
= num_pads
- 1;
2619 snprintf(ssd
->sd
.name
,
2620 sizeof(ssd
->sd
.name
), "%s %s %d-%4.4x", sensor
->minfo
.name
,
2621 name
, i2c_adapter_id(client
->adapter
), client
->addr
);
2623 smiapp_get_native_size(ssd
, &ssd
->sink_fmt
);
2625 ssd
->compose
.width
= ssd
->sink_fmt
.width
;
2626 ssd
->compose
.height
= ssd
->sink_fmt
.height
;
2627 ssd
->crop
[ssd
->source_pad
] = ssd
->compose
;
2628 ssd
->pads
[ssd
->source_pad
].flags
= MEDIA_PAD_FL_SOURCE
;
2629 if (ssd
!= sensor
->pixel_array
) {
2630 ssd
->crop
[ssd
->sink_pad
] = ssd
->compose
;
2631 ssd
->pads
[ssd
->sink_pad
].flags
= MEDIA_PAD_FL_SINK
;
2634 ssd
->sd
.entity
.ops
= &smiapp_entity_ops
;
2636 if (ssd
== sensor
->src
)
2639 ssd
->sd
.internal_ops
= &smiapp_internal_ops
;
2640 ssd
->sd
.owner
= THIS_MODULE
;
2641 ssd
->sd
.dev
= &client
->dev
;
2642 v4l2_set_subdevdata(&ssd
->sd
, client
);
2645 static int smiapp_open(struct v4l2_subdev
*sd
, struct v4l2_subdev_fh
*fh
)
2647 struct smiapp_subdev
*ssd
= to_smiapp_subdev(sd
);
2648 struct smiapp_sensor
*sensor
= ssd
->sensor
;
2652 mutex_lock(&sensor
->mutex
);
2654 for (i
= 0; i
< ssd
->npads
; i
++) {
2655 struct v4l2_mbus_framefmt
*try_fmt
=
2656 v4l2_subdev_get_try_format(sd
, fh
->pad
, i
);
2657 struct v4l2_rect
*try_crop
=
2658 v4l2_subdev_get_try_crop(sd
, fh
->pad
, i
);
2659 struct v4l2_rect
*try_comp
;
2661 smiapp_get_native_size(ssd
, try_crop
);
2663 try_fmt
->width
= try_crop
->width
;
2664 try_fmt
->height
= try_crop
->height
;
2665 try_fmt
->code
= sensor
->internal_csi_format
->code
;
2666 try_fmt
->field
= V4L2_FIELD_NONE
;
2668 if (ssd
!= sensor
->pixel_array
)
2671 try_comp
= v4l2_subdev_get_try_compose(sd
, fh
->pad
, i
);
2672 *try_comp
= *try_crop
;
2675 mutex_unlock(&sensor
->mutex
);
2677 rval
= pm_runtime_get_sync(sd
->dev
);
2681 if (rval
!= -EBUSY
&& rval
!= -EAGAIN
)
2682 pm_runtime_set_active(sd
->dev
);
2683 pm_runtime_put(sd
->dev
);
2688 static int smiapp_close(struct v4l2_subdev
*sd
, struct v4l2_subdev_fh
*fh
)
2690 pm_runtime_mark_last_busy(sd
->dev
);
2691 pm_runtime_put_autosuspend(sd
->dev
);
2696 static const struct v4l2_subdev_video_ops smiapp_video_ops
= {
2697 .s_stream
= smiapp_set_stream
,
2700 static const struct v4l2_subdev_core_ops smiapp_core_ops
= {
2701 .s_power
= smiapp_set_power
,
2704 static const struct v4l2_subdev_pad_ops smiapp_pad_ops
= {
2705 .enum_mbus_code
= smiapp_enum_mbus_code
,
2706 .get_fmt
= smiapp_get_format
,
2707 .set_fmt
= smiapp_set_format
,
2708 .get_selection
= smiapp_get_selection
,
2709 .set_selection
= smiapp_set_selection
,
2712 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops
= {
2713 .g_skip_frames
= smiapp_get_skip_frames
,
2714 .g_skip_top_lines
= smiapp_get_skip_top_lines
,
2717 static const struct v4l2_subdev_ops smiapp_ops
= {
2718 .core
= &smiapp_core_ops
,
2719 .video
= &smiapp_video_ops
,
2720 .pad
= &smiapp_pad_ops
,
2721 .sensor
= &smiapp_sensor_ops
,
2724 static const struct media_entity_operations smiapp_entity_ops
= {
2725 .link_validate
= v4l2_subdev_link_validate
,
2728 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops
= {
2729 .registered
= smiapp_registered
,
2730 .unregistered
= smiapp_unregistered
,
2731 .open
= smiapp_open
,
2732 .close
= smiapp_close
,
2735 static const struct v4l2_subdev_internal_ops smiapp_internal_ops
= {
2736 .open
= smiapp_open
,
2737 .close
= smiapp_close
,
2740 /* -----------------------------------------------------------------------------
2746 static int smiapp_suspend(struct device
*dev
)
2748 struct i2c_client
*client
= to_i2c_client(dev
);
2749 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
2750 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2751 bool streaming
= sensor
->streaming
;
2754 rval
= pm_runtime_get_sync(dev
);
2756 if (rval
!= -EBUSY
&& rval
!= -EAGAIN
)
2757 pm_runtime_set_active(&client
->dev
);
2758 pm_runtime_put(dev
);
2762 if (sensor
->streaming
)
2763 smiapp_stop_streaming(sensor
);
2765 /* save state for resume */
2766 sensor
->streaming
= streaming
;
2771 static int smiapp_resume(struct device
*dev
)
2773 struct i2c_client
*client
= to_i2c_client(dev
);
2774 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
2775 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2778 pm_runtime_put(dev
);
2780 if (sensor
->streaming
)
2781 rval
= smiapp_start_streaming(sensor
);
2788 #define smiapp_suspend NULL
2789 #define smiapp_resume NULL
2791 #endif /* CONFIG_PM */
2793 static struct smiapp_hwconfig
*smiapp_get_hwconfig(struct device
*dev
)
2795 struct smiapp_hwconfig
*hwcfg
;
2796 struct v4l2_of_endpoint
*bus_cfg
;
2797 struct device_node
*ep
;
2802 return dev
->platform_data
;
2804 ep
= of_graph_get_next_endpoint(dev
->of_node
, NULL
);
2808 bus_cfg
= v4l2_of_alloc_parse_endpoint(ep
);
2809 if (IS_ERR(bus_cfg
))
2812 hwcfg
= devm_kzalloc(dev
, sizeof(*hwcfg
), GFP_KERNEL
);
2816 switch (bus_cfg
->bus_type
) {
2817 case V4L2_MBUS_CSI2
:
2818 hwcfg
->csi_signalling_mode
= SMIAPP_CSI_SIGNALLING_MODE_CSI2
;
2820 /* FIXME: add CCP2 support. */
2825 hwcfg
->lanes
= bus_cfg
->bus
.mipi_csi2
.num_data_lanes
;
2826 dev_dbg(dev
, "lanes %u\n", hwcfg
->lanes
);
2828 /* NVM size is not mandatory */
2829 of_property_read_u32(dev
->of_node
, "nokia,nvm-size",
2832 rval
= of_property_read_u32(dev
->of_node
, "clock-frequency",
2835 dev_warn(dev
, "can't get clock-frequency\n");
2839 dev_dbg(dev
, "nvm %d, clk %d, csi %d\n", hwcfg
->nvm_size
,
2840 hwcfg
->ext_clk
, hwcfg
->csi_signalling_mode
);
2842 if (!bus_cfg
->nr_of_link_frequencies
) {
2843 dev_warn(dev
, "no link frequencies defined\n");
2847 hwcfg
->op_sys_clock
= devm_kcalloc(
2848 dev
, bus_cfg
->nr_of_link_frequencies
+ 1 /* guardian */,
2849 sizeof(*hwcfg
->op_sys_clock
), GFP_KERNEL
);
2850 if (!hwcfg
->op_sys_clock
)
2853 for (i
= 0; i
< bus_cfg
->nr_of_link_frequencies
; i
++) {
2854 hwcfg
->op_sys_clock
[i
] = bus_cfg
->link_frequencies
[i
];
2855 dev_dbg(dev
, "freq %d: %lld\n", i
, hwcfg
->op_sys_clock
[i
]);
2858 v4l2_of_free_endpoint(bus_cfg
);
2863 v4l2_of_free_endpoint(bus_cfg
);
2868 static int smiapp_probe(struct i2c_client
*client
,
2869 const struct i2c_device_id
*devid
)
2871 struct smiapp_sensor
*sensor
;
2872 struct smiapp_hwconfig
*hwcfg
= smiapp_get_hwconfig(&client
->dev
);
2879 sensor
= devm_kzalloc(&client
->dev
, sizeof(*sensor
), GFP_KERNEL
);
2883 sensor
->hwcfg
= hwcfg
;
2884 mutex_init(&sensor
->mutex
);
2885 sensor
->src
= &sensor
->ssds
[sensor
->ssds_used
];
2887 v4l2_i2c_subdev_init(&sensor
->src
->sd
, client
, &smiapp_ops
);
2888 sensor
->src
->sd
.internal_ops
= &smiapp_internal_src_ops
;
2890 sensor
->vana
= devm_regulator_get(&client
->dev
, "vana");
2891 if (IS_ERR(sensor
->vana
)) {
2892 dev_err(&client
->dev
, "could not get regulator for vana\n");
2893 return PTR_ERR(sensor
->vana
);
2896 sensor
->ext_clk
= devm_clk_get(&client
->dev
, NULL
);
2897 if (IS_ERR(sensor
->ext_clk
)) {
2898 dev_err(&client
->dev
, "could not get clock (%ld)\n",
2899 PTR_ERR(sensor
->ext_clk
));
2900 return -EPROBE_DEFER
;
2903 rval
= clk_set_rate(sensor
->ext_clk
, sensor
->hwcfg
->ext_clk
);
2905 dev_err(&client
->dev
,
2906 "unable to set clock freq to %u\n",
2907 sensor
->hwcfg
->ext_clk
);
2911 sensor
->xshutdown
= devm_gpiod_get_optional(&client
->dev
, "xshutdown",
2913 if (IS_ERR(sensor
->xshutdown
))
2914 return PTR_ERR(sensor
->xshutdown
);
2916 pm_runtime_enable(&client
->dev
);
2918 rval
= pm_runtime_get_sync(&client
->dev
);
2924 rval
= smiapp_identify_module(sensor
);
2930 rval
= smiapp_get_all_limits(sensor
);
2936 rval
= smiapp_read_frame_fmt(sensor
);
2943 * Handle Sensor Module orientation on the board.
2945 * The application of H-FLIP and V-FLIP on the sensor is modified by
2946 * the sensor orientation on the board.
2948 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2949 * both H-FLIP and V-FLIP for normal operation which also implies
2950 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2951 * controls will need to be internally inverted.
2953 * Rotation also changes the bayer pattern.
2955 if (sensor
->hwcfg
->module_board_orient
==
2956 SMIAPP_MODULE_BOARD_ORIENT_180
)
2957 sensor
->hvflip_inv_mask
= SMIAPP_IMAGE_ORIENTATION_HFLIP
|
2958 SMIAPP_IMAGE_ORIENTATION_VFLIP
;
2960 rval
= smiapp_call_quirk(sensor
, limits
);
2962 dev_err(&client
->dev
, "limits quirks failed\n");
2966 if (sensor
->limits
[SMIAPP_LIMIT_BINNING_CAPABILITY
]) {
2969 rval
= smiapp_read(sensor
,
2970 SMIAPP_REG_U8_BINNING_SUBTYPES
, &val
);
2975 sensor
->nbinning_subtypes
= min_t(u8
, val
,
2976 SMIAPP_BINNING_SUBTYPES
);
2978 for (i
= 0; i
< sensor
->nbinning_subtypes
; i
++) {
2980 sensor
, SMIAPP_REG_U8_BINNING_TYPE_n(i
), &val
);
2985 sensor
->binning_subtypes
[i
] =
2986 *(struct smiapp_binning_subtype
*)&val
;
2988 dev_dbg(&client
->dev
, "binning %xx%x\n",
2989 sensor
->binning_subtypes
[i
].horizontal
,
2990 sensor
->binning_subtypes
[i
].vertical
);
2993 sensor
->binning_horizontal
= 1;
2994 sensor
->binning_vertical
= 1;
2996 if (device_create_file(&client
->dev
, &dev_attr_ident
) != 0) {
2997 dev_err(&client
->dev
, "sysfs ident entry creation failed\n");
3001 /* SMIA++ NVM initialization - it will be read from the sensor
3002 * when it is first requested by userspace.
3004 if (sensor
->minfo
.smiapp_version
&& sensor
->hwcfg
->nvm_size
) {
3005 sensor
->nvm
= devm_kzalloc(&client
->dev
,
3006 sensor
->hwcfg
->nvm_size
, GFP_KERNEL
);
3007 if (sensor
->nvm
== NULL
) {
3012 if (device_create_file(&client
->dev
, &dev_attr_nvm
) != 0) {
3013 dev_err(&client
->dev
, "sysfs nvm entry failed\n");
3019 /* We consider this as profile 0 sensor if any of these are zero. */
3020 if (!sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV
] ||
3021 !sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV
] ||
3022 !sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV
] ||
3023 !sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV
]) {
3024 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_0
;
3025 } else if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
3026 != SMIAPP_SCALING_CAPABILITY_NONE
) {
3027 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
3028 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL
)
3029 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_1
;
3031 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_2
;
3032 sensor
->scaler
= &sensor
->ssds
[sensor
->ssds_used
];
3033 sensor
->ssds_used
++;
3034 } else if (sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
3035 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
) {
3036 sensor
->scaler
= &sensor
->ssds
[sensor
->ssds_used
];
3037 sensor
->ssds_used
++;
3039 sensor
->binner
= &sensor
->ssds
[sensor
->ssds_used
];
3040 sensor
->ssds_used
++;
3041 sensor
->pixel_array
= &sensor
->ssds
[sensor
->ssds_used
];
3042 sensor
->ssds_used
++;
3044 sensor
->scale_m
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
3046 /* prepare PLL configuration input values */
3047 sensor
->pll
.bus_type
= SMIAPP_PLL_BUS_TYPE_CSI2
;
3048 sensor
->pll
.csi2
.lanes
= sensor
->hwcfg
->lanes
;
3049 sensor
->pll
.ext_clk_freq_hz
= sensor
->hwcfg
->ext_clk
;
3050 sensor
->pll
.scale_n
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
3051 /* Profile 0 sensors have no separate OP clock branch. */
3052 if (sensor
->minfo
.smiapp_profile
== SMIAPP_PROFILE_0
)
3053 sensor
->pll
.flags
|= SMIAPP_PLL_FLAG_NO_OP_CLOCKS
;
3055 smiapp_create_subdev(sensor
, sensor
->scaler
, "scaler", 2);
3056 smiapp_create_subdev(sensor
, sensor
->binner
, "binner", 2);
3057 smiapp_create_subdev(sensor
, sensor
->pixel_array
, "pixel_array", 1);
3059 dev_dbg(&client
->dev
, "profile %d\n", sensor
->minfo
.smiapp_profile
);
3061 sensor
->pixel_array
->sd
.entity
.function
= MEDIA_ENT_F_CAM_SENSOR
;
3063 rval
= smiapp_init_controls(sensor
);
3067 rval
= smiapp_call_quirk(sensor
, init
);
3071 rval
= smiapp_get_mbus_formats(sensor
);
3077 rval
= smiapp_init_late_controls(sensor
);
3083 mutex_lock(&sensor
->mutex
);
3084 rval
= smiapp_update_mode(sensor
);
3085 mutex_unlock(&sensor
->mutex
);
3087 dev_err(&client
->dev
, "update mode failed\n");
3091 sensor
->streaming
= false;
3092 sensor
->dev_init_done
= true;
3094 rval
= media_entity_pads_init(&sensor
->src
->sd
.entity
, 2,
3097 goto out_media_entity_cleanup
;
3099 rval
= v4l2_async_register_subdev(&sensor
->src
->sd
);
3101 goto out_media_entity_cleanup
;
3103 pm_runtime_set_autosuspend_delay(&client
->dev
, 1000);
3104 pm_runtime_use_autosuspend(&client
->dev
);
3105 pm_runtime_put_autosuspend(&client
->dev
);
3109 out_media_entity_cleanup
:
3110 media_entity_cleanup(&sensor
->src
->sd
.entity
);
3113 smiapp_cleanup(sensor
);
3116 pm_runtime_put(&client
->dev
);
3117 pm_runtime_disable(&client
->dev
);
3122 static int smiapp_remove(struct i2c_client
*client
)
3124 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
3125 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
3128 v4l2_async_unregister_subdev(subdev
);
3130 pm_runtime_suspend(&client
->dev
);
3131 pm_runtime_disable(&client
->dev
);
3133 for (i
= 0; i
< sensor
->ssds_used
; i
++) {
3134 v4l2_device_unregister_subdev(&sensor
->ssds
[i
].sd
);
3135 media_entity_cleanup(&sensor
->ssds
[i
].sd
.entity
);
3137 smiapp_cleanup(sensor
);
3142 static const struct of_device_id smiapp_of_table
[] = {
3143 { .compatible
= "nokia,smia" },
3146 MODULE_DEVICE_TABLE(of
, smiapp_of_table
);
3148 static const struct i2c_device_id smiapp_id_table
[] = {
3152 MODULE_DEVICE_TABLE(i2c
, smiapp_id_table
);
3154 static const struct dev_pm_ops smiapp_pm_ops
= {
3155 SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend
, smiapp_resume
)
3156 SET_RUNTIME_PM_OPS(smiapp_power_off
, smiapp_power_on
, NULL
)
3159 static struct i2c_driver smiapp_i2c_driver
= {
3161 .of_match_table
= smiapp_of_table
,
3162 .name
= SMIAPP_NAME
,
3163 .pm
= &smiapp_pm_ops
,
3165 .probe
= smiapp_probe
,
3166 .remove
= smiapp_remove
,
3167 .id_table
= smiapp_id_table
,
3170 module_i2c_driver(smiapp_i2c_driver
);
3172 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3173 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3174 MODULE_LICENSE("GPL");