sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / media / platform / omap / omap_vout_vrfb.c
blob92c4e18263566888abd32837f656e4fe7105fbf7
1 /*
2 * omap_vout_vrfb.c
4 * Copyright (C) 2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
16 #include <media/videobuf-dma-contig.h>
17 #include <media/v4l2-device.h>
19 #include <linux/omap-dma.h>
20 #include <video/omapvrfb.h>
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 #include "omap_vout_vrfb.h"
26 #define OMAP_DMA_NO_DEVICE 0
29 * Function for allocating video buffers
31 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
32 unsigned int *count, int startindex)
34 int i, j;
36 for (i = 0; i < *count; i++) {
37 if (!vout->smsshado_virt_addr[i]) {
38 vout->smsshado_virt_addr[i] =
39 omap_vout_alloc_buffer(vout->smsshado_size,
40 &vout->smsshado_phy_addr[i]);
42 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
43 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
44 break;
46 if (!vout->smsshado_virt_addr[i]) {
47 for (j = 0; j < i; j++) {
48 omap_vout_free_buffer(
49 vout->smsshado_virt_addr[j],
50 vout->smsshado_size);
51 vout->smsshado_virt_addr[j] = 0;
52 vout->smsshado_phy_addr[j] = 0;
54 *count = 0;
55 return -ENOMEM;
57 memset((void *) vout->smsshado_virt_addr[i], 0,
58 vout->smsshado_size);
60 return 0;
64 * Wakes up the application once the DMA transfer to VRFB space is completed.
66 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
68 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
70 t->tx_status = 1;
71 wake_up_interruptible(&t->wait);
75 * Free VRFB buffers
77 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
79 int j;
81 for (j = 0; j < VRFB_NUM_BUFS; j++) {
82 if (vout->smsshado_virt_addr[j]) {
83 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
84 vout->smsshado_size);
85 vout->smsshado_virt_addr[j] = 0;
86 vout->smsshado_phy_addr[j] = 0;
91 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
92 bool static_vrfb_allocation)
94 int ret = 0, i, j;
95 struct omap_vout_device *vout;
96 struct video_device *vfd;
97 int image_width, image_height;
98 int vrfb_num_bufs = VRFB_NUM_BUFS;
99 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
100 struct omap2video_device *vid_dev =
101 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
103 vout = vid_dev->vouts[vid_num];
104 vfd = vout->vfd;
106 for (i = 0; i < VRFB_NUM_BUFS; i++) {
107 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
108 dev_info(&pdev->dev, ": VRFB allocation failed\n");
109 for (j = 0; j < i; j++)
110 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
111 ret = -ENOMEM;
112 goto free_buffers;
116 /* Calculate VRFB memory size */
117 /* allocate for worst case size */
118 image_width = VID_MAX_WIDTH / TILE_SIZE;
119 if (VID_MAX_WIDTH % TILE_SIZE)
120 image_width++;
122 image_width = image_width * TILE_SIZE;
123 image_height = VID_MAX_HEIGHT / TILE_SIZE;
125 if (VID_MAX_HEIGHT % TILE_SIZE)
126 image_height++;
128 image_height = image_height * TILE_SIZE;
129 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
132 * Request and Initialize DMA, for DMA based VRFB transfer
134 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
135 vout->vrfb_dma_tx.dma_ch = -1;
136 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
137 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
138 omap_vout_vrfb_dma_tx_callback,
139 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
140 if (ret < 0) {
141 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
142 dev_info(&pdev->dev,
143 ": failed to allocate DMA Channel for video%d\n",
144 vfd->minor);
146 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
148 /* statically allocated the VRFB buffer is done through
149 commands line aruments */
150 if (static_vrfb_allocation) {
151 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
152 ret = -ENOMEM;
153 goto release_vrfb_ctx;
155 vout->vrfb_static_allocation = true;
157 return 0;
159 release_vrfb_ctx:
160 for (j = 0; j < VRFB_NUM_BUFS; j++)
161 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
162 free_buffers:
163 omap_vout_free_buffers(vout);
165 return ret;
169 * Release the VRFB context once the module exits
171 void omap_vout_release_vrfb(struct omap_vout_device *vout)
173 int i;
175 for (i = 0; i < VRFB_NUM_BUFS; i++)
176 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
178 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
179 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
180 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
185 * Allocate the buffers for the VRFB space. Data is copied from V4L2
186 * buffers to the VRFB buffers using the DMA engine.
188 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
189 unsigned int *count, unsigned int startindex)
191 int i;
192 bool yuv_mode;
194 if (!is_rotation_enabled(vout))
195 return 0;
197 /* If rotation is enabled, allocate memory for VRFB space also */
198 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
200 /* Allocate the VRFB buffers only if the buffers are not
201 * allocated during init time.
203 if (!vout->vrfb_static_allocation)
204 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
205 return -ENOMEM;
207 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
208 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
209 yuv_mode = true;
210 else
211 yuv_mode = false;
213 for (i = 0; i < *count; i++)
214 omap_vrfb_setup(&vout->vrfb_context[i],
215 vout->smsshado_phy_addr[i], vout->pix.width,
216 vout->pix.height, vout->bpp, yuv_mode);
218 return 0;
221 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
222 struct videobuf_buffer *vb)
224 dma_addr_t dmabuf;
225 struct vid_vrfb_dma *tx;
226 enum dss_rotation rotation;
227 u32 dest_frame_index = 0, src_element_index = 0;
228 u32 dest_element_index = 0, src_frame_index = 0;
229 u32 elem_count = 0, frame_count = 0, pixsize = 2;
231 if (!is_rotation_enabled(vout))
232 return 0;
234 dmabuf = vout->buf_phy_addr[vb->i];
235 /* If rotation is enabled, copy input buffer into VRFB
236 * memory space using DMA. We are copying input buffer
237 * into VRFB memory space of desired angle and DSS will
238 * read image VRFB memory for 0 degree angle
240 pixsize = vout->bpp * vout->vrfb_bpp;
242 * DMA transfer in double index mode
245 /* Frame index */
246 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
247 (vout->pix.width * vout->bpp)) + 1;
249 /* Source and destination parameters */
250 src_element_index = 0;
251 src_frame_index = 0;
252 dest_element_index = 1;
253 /* Number of elements per frame */
254 elem_count = vout->pix.width * vout->bpp;
255 frame_count = vout->pix.height;
256 tx = &vout->vrfb_dma_tx;
257 tx->tx_status = 0;
258 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
259 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
260 tx->dev_id, 0x0);
261 /* src_port required only for OMAP1 */
262 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
263 dmabuf, src_element_index, src_frame_index);
264 /*set dma source burst mode for VRFB */
265 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
266 rotation = calc_rotation(vout);
268 /* dest_port required only for OMAP1 */
269 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
270 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
271 dest_frame_index);
272 /*set dma dest burst mode for VRFB */
273 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
274 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
276 omap_start_dma(tx->dma_ch);
277 wait_event_interruptible_timeout(tx->wait, tx->tx_status == 1,
278 VRFB_TX_TIMEOUT);
280 if (tx->tx_status == 0) {
281 omap_stop_dma(tx->dma_ch);
282 return -EINVAL;
284 /* Store buffers physical address into an array. Addresses
285 * from this array will be used to configure DSS */
286 vout->queued_buf_addr[vb->i] = (u8 *)
287 vout->vrfb_context[vb->i].paddr[rotation];
288 return 0;
292 * Calculate the buffer offsets from which the streaming should
293 * start. This offset calculation is mainly required because of
294 * the VRFB 32 pixels alignment with rotation.
296 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
298 enum dss_rotation rotation;
299 bool mirroring = vout->mirror;
300 struct v4l2_rect *crop = &vout->crop;
301 struct v4l2_pix_format *pix = &vout->pix;
302 int *cropped_offset = &vout->cropped_offset;
303 int vr_ps = 1, ps = 2, temp_ps = 2;
304 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
306 rotation = calc_rotation(vout);
308 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
309 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
310 if (is_rotation_enabled(vout)) {
312 * ps - Actual pixel size for YUYV/UYVY for
313 * VRFB/Mirroring is 4 bytes
314 * vr_ps - Virtually pixel size for YUYV/UYVY is
315 * 2 bytes
317 ps = 4;
318 vr_ps = 2;
319 } else {
320 ps = 2; /* otherwise the pixel size is 2 byte */
322 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
323 ps = 4;
324 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
325 ps = 3;
327 vout->ps = ps;
328 vout->vr_ps = vr_ps;
330 if (is_rotation_enabled(vout)) {
331 line_length = MAX_PIXELS_PER_LINE;
332 ctop = (pix->height - crop->height) - crop->top;
333 cleft = (pix->width - crop->width) - crop->left;
334 } else {
335 line_length = pix->width;
337 vout->line_length = line_length;
338 switch (rotation) {
339 case dss_rotation_90_degree:
340 offset = vout->vrfb_context[0].yoffset *
341 vout->vrfb_context[0].bytespp;
342 temp_ps = ps / vr_ps;
343 if (!mirroring) {
344 *cropped_offset = offset + line_length *
345 temp_ps * cleft + crop->top * temp_ps;
346 } else {
347 *cropped_offset = offset + line_length * temp_ps *
348 cleft + crop->top * temp_ps + (line_length *
349 ((crop->width / (vr_ps)) - 1) * ps);
351 break;
352 case dss_rotation_180_degree:
353 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
354 vout->vrfb_context[0].bytespp) +
355 (vout->vrfb_context[0].xoffset *
356 vout->vrfb_context[0].bytespp));
357 if (!mirroring) {
358 *cropped_offset = offset + (line_length * ps * ctop) +
359 (cleft / vr_ps) * ps;
361 } else {
362 *cropped_offset = offset + (line_length * ps * ctop) +
363 (cleft / vr_ps) * ps + (line_length *
364 (crop->height - 1) * ps);
366 break;
367 case dss_rotation_270_degree:
368 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
369 vout->vrfb_context[0].bytespp;
370 temp_ps = ps / vr_ps;
371 if (!mirroring) {
372 *cropped_offset = offset + line_length *
373 temp_ps * crop->left + ctop * ps;
374 } else {
375 *cropped_offset = offset + line_length *
376 temp_ps * crop->left + ctop * ps +
377 (line_length * ((crop->width / vr_ps) - 1) *
378 ps);
380 break;
381 case dss_rotation_0_degree:
382 if (!mirroring) {
383 *cropped_offset = (line_length * ps) *
384 crop->top + (crop->left / vr_ps) * ps;
385 } else {
386 *cropped_offset = (line_length * ps) *
387 crop->top + (crop->left / vr_ps) * ps +
388 (line_length * (crop->height - 1) * ps);
390 break;
391 default:
392 *cropped_offset = (line_length * ps * crop->top) /
393 vr_ps + (crop->left * ps) / vr_ps +
394 ((crop->width / vr_ps) - 1) * ps;
395 break;