sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / media / platform / rcar_fdp1.c
blob674cc1309b436b963b313e7102e789a4be966316
1 /*
2 * Renesas RCar Fine Display Processor
4 * Video format converter and frame deinterlacer device.
6 * Author: Kieran Bingham, <kieran@bingham.xyz>
7 * Copyright (c) 2016 Renesas Electronics Corporation.
9 * This code is developed and inspired from the vim2m, rcar_jpu,
10 * m2m-deinterlace, and vsp1 drivers.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/fs.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <media/rcar-fcp.h>
32 #include <media/v4l2-ctrls.h>
33 #include <media/v4l2-device.h>
34 #include <media/v4l2-event.h>
35 #include <media/v4l2-ioctl.h>
36 #include <media/v4l2-mem2mem.h>
37 #include <media/videobuf2-dma-contig.h>
39 static unsigned int debug;
40 module_param(debug, uint, 0644);
41 MODULE_PARM_DESC(debug, "activate debug info");
43 /* Minimum and maximum frame width/height */
44 #define FDP1_MIN_W 80U
45 #define FDP1_MIN_H 80U
47 #define FDP1_MAX_W 3840U
48 #define FDP1_MAX_H 2160U
50 #define FDP1_MAX_PLANES 3U
51 #define FDP1_MAX_STRIDE 8190U
53 /* Flags that indicate a format can be used for capture/output */
54 #define FDP1_CAPTURE BIT(0)
55 #define FDP1_OUTPUT BIT(1)
57 #define DRIVER_NAME "rcar_fdp1"
59 /* Number of Job's to have available on the processing queue */
60 #define FDP1_NUMBER_JOBS 8
62 #define dprintk(fdp1, fmt, arg...) \
63 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
66 * FDP1 registers and bits
69 /* FDP1 start register - Imm */
70 #define FD1_CTL_CMD 0x0000
71 #define FD1_CTL_CMD_STRCMD BIT(0)
73 /* Sync generator register - Imm */
74 #define FD1_CTL_SGCMD 0x0004
75 #define FD1_CTL_SGCMD_SGEN BIT(0)
77 /* Register set end register - Imm */
78 #define FD1_CTL_REGEND 0x0008
79 #define FD1_CTL_REGEND_REGEND BIT(0)
81 /* Channel activation register - Vupdt */
82 #define FD1_CTL_CHACT 0x000c
83 #define FD1_CTL_CHACT_SMW BIT(9)
84 #define FD1_CTL_CHACT_WR BIT(8)
85 #define FD1_CTL_CHACT_SMR BIT(3)
86 #define FD1_CTL_CHACT_RD2 BIT(2)
87 #define FD1_CTL_CHACT_RD1 BIT(1)
88 #define FD1_CTL_CHACT_RD0 BIT(0)
90 /* Operation Mode Register - Vupdt */
91 #define FD1_CTL_OPMODE 0x0010
92 #define FD1_CTL_OPMODE_PRG BIT(4)
93 #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
94 #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
95 #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
97 #define FD1_CTL_VPERIOD 0x0014
98 #define FD1_CTL_CLKCTRL 0x0018
99 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
101 /* Software reset register */
102 #define FD1_CTL_SRESET 0x001c
103 #define FD1_CTL_SRESET_SRST BIT(0)
105 /* Control status register (V-update-status) */
106 #define FD1_CTL_STATUS 0x0024
107 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
108 #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
109 #define FD1_CTL_STATUS_SGREGSET BIT(10)
110 #define FD1_CTL_STATUS_SGVERR BIT(9)
111 #define FD1_CTL_STATUS_SGFREND BIT(8)
112 #define FD1_CTL_STATUS_BSY BIT(0)
114 #define FD1_CTL_VCYCLE_STAT 0x0028
116 /* Interrupt enable register */
117 #define FD1_CTL_IRQENB 0x0038
118 /* Interrupt status register */
119 #define FD1_CTL_IRQSTA 0x003c
120 /* Interrupt control register */
121 #define FD1_CTL_IRQFSET 0x0040
123 /* Common IRQ Bit settings */
124 #define FD1_CTL_IRQ_VERE BIT(16)
125 #define FD1_CTL_IRQ_VINTE BIT(4)
126 #define FD1_CTL_IRQ_FREE BIT(0)
127 #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
128 FD1_CTL_IRQ_VINTE | \
129 FD1_CTL_IRQ_FREE)
131 /* RPF */
132 #define FD1_RPF_SIZE 0x0060
133 #define FD1_RPF_SIZE_MASK GENMASK(12, 0)
134 #define FD1_RPF_SIZE_H_SHIFT 16
135 #define FD1_RPF_SIZE_V_SHIFT 0
137 #define FD1_RPF_FORMAT 0x0064
138 #define FD1_RPF_FORMAT_CIPM BIT(16)
139 #define FD1_RPF_FORMAT_RSPYCS BIT(13)
140 #define FD1_RPF_FORMAT_RSPUVS BIT(12)
141 #define FD1_RPF_FORMAT_CF BIT(8)
143 #define FD1_RPF_PSTRIDE 0x0068
144 #define FD1_RPF_PSTRIDE_Y_SHIFT 16
145 #define FD1_RPF_PSTRIDE_C_SHIFT 0
147 /* RPF0 Source Component Y Address register */
148 #define FD1_RPF0_ADDR_Y 0x006c
150 /* RPF1 Current Picture Registers */
151 #define FD1_RPF1_ADDR_Y 0x0078
152 #define FD1_RPF1_ADDR_C0 0x007c
153 #define FD1_RPF1_ADDR_C1 0x0080
155 /* RPF2 next picture register */
156 #define FD1_RPF2_ADDR_Y 0x0084
158 #define FD1_RPF_SMSK_ADDR 0x0090
159 #define FD1_RPF_SWAP 0x0094
161 /* WPF */
162 #define FD1_WPF_FORMAT 0x00c0
163 #define FD1_WPF_FORMAT_PDV_SHIFT 24
164 #define FD1_WPF_FORMAT_FCNL BIT(20)
165 #define FD1_WPF_FORMAT_WSPYCS BIT(15)
166 #define FD1_WPF_FORMAT_WSPUVS BIT(14)
167 #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
168 #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
169 #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
170 #define FD1_WPF_FORMAT_CSC BIT(8)
172 #define FD1_WPF_RNDCTL 0x00c4
173 #define FD1_WPF_RNDCTL_CBRM BIT(28)
174 #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
175 #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
176 #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
178 #define FD1_WPF_PSTRIDE 0x00c8
179 #define FD1_WPF_PSTRIDE_Y_SHIFT 16
180 #define FD1_WPF_PSTRIDE_C_SHIFT 0
182 /* WPF Destination picture */
183 #define FD1_WPF_ADDR_Y 0x00cc
184 #define FD1_WPF_ADDR_C0 0x00d0
185 #define FD1_WPF_ADDR_C1 0x00d4
186 #define FD1_WPF_SWAP 0x00d8
187 #define FD1_WPF_SWAP_OSWAP_SHIFT 0
188 #define FD1_WPF_SWAP_SSWAP_SHIFT 4
190 /* WPF/RPF Common */
191 #define FD1_RWPF_SWAP_BYTE BIT(0)
192 #define FD1_RWPF_SWAP_WORD BIT(1)
193 #define FD1_RWPF_SWAP_LWRD BIT(2)
194 #define FD1_RWPF_SWAP_LLWD BIT(3)
196 /* IPC */
197 #define FD1_IPC_MODE 0x0100
198 #define FD1_IPC_MODE_DLI BIT(8)
199 #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
200 #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
201 #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
202 #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
203 #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
205 #define FD1_IPC_SMSK_THRESH 0x0104
206 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002
208 #define FD1_IPC_COMB_DET 0x0108
209 #define FD1_IPC_COMB_DET_CONST 0x00200040
211 #define FD1_IPC_MOTDEC 0x010c
212 #define FD1_IPC_MOTDEC_CONST 0x00008020
214 /* DLI registers */
215 #define FD1_IPC_DLI_BLEND 0x0120
216 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
218 #define FD1_IPC_DLI_HGAIN 0x0124
219 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
221 #define FD1_IPC_DLI_SPRS 0x0128
222 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff
224 #define FD1_IPC_DLI_ANGLE 0x012c
225 #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
227 #define FD1_IPC_DLI_ISOPIX0 0x0130
228 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
230 #define FD1_IPC_DLI_ISOPIX1 0x0134
231 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
233 /* Sensor registers */
234 #define FD1_IPC_SENSOR_TH0 0x0140
235 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080
237 #define FD1_IPC_SENSOR_TH1 0x0144
238 #define FD1_IPC_SENSOR_TH1_CONST 0
240 #define FD1_IPC_SENSOR_CTL0 0x0170
241 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
243 #define FD1_IPC_SENSOR_CTL1 0x0174
244 #define FD1_IPC_SENSOR_CTL1_CONST 0
246 #define FD1_IPC_SENSOR_CTL2 0x0178
247 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
248 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
250 #define FD1_IPC_SENSOR_CTL3 0x017c
251 #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
252 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
254 /* Line memory pixel number register */
255 #define FD1_IPC_LMEM 0x01e0
256 #define FD1_IPC_LMEM_LINEAR 1024
257 #define FD1_IPC_LMEM_TILE 960
259 /* Internal Data (HW Version) */
260 #define FD1_IP_INTDATA 0x0800
261 #define FD1_IP_H3 0x02010101
262 #define FD1_IP_M3W 0x02010202
264 /* LUTs */
265 #define FD1_LUT_DIF_ADJ 0x1000
266 #define FD1_LUT_SAD_ADJ 0x1400
267 #define FD1_LUT_BLD_GAIN 0x1800
268 #define FD1_LUT_DIF_GAIN 0x1c00
269 #define FD1_LUT_MDET 0x2000
272 * struct fdp1_fmt - The FDP1 internal format data
273 * @fourcc: the fourcc code, to match the V4L2 API
274 * @bpp: bits per pixel per plane
275 * @num_planes: number of planes
276 * @hsub: horizontal subsampling factor
277 * @vsub: vertical subsampling factor
278 * @fmt: 7-bit format code for the fdp1 hardware
279 * @swap_yc: the Y and C components are swapped (Y comes before C)
280 * @swap_uv: the U and V components are swapped (V comes before U)
281 * @swap: swap register control
282 * @types: types of queue this format is applicable to
284 struct fdp1_fmt {
285 u32 fourcc;
286 u8 bpp[3];
287 u8 num_planes;
288 u8 hsub;
289 u8 vsub;
290 u8 fmt;
291 bool swap_yc;
292 bool swap_uv;
293 u8 swap;
294 u8 types;
297 static const struct fdp1_fmt fdp1_formats[] = {
298 /* RGB formats are only supported by the Write Pixel Formatter */
300 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
301 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
302 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
303 FDP1_CAPTURE },
304 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
305 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
306 FD1_RWPF_SWAP_WORD,
307 FDP1_CAPTURE },
308 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
309 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
310 FD1_RWPF_SWAP_WORD,
311 FDP1_CAPTURE },
312 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
313 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
314 FD1_RWPF_SWAP_WORD,
315 FDP1_CAPTURE },
316 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
317 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
318 FDP1_CAPTURE },
319 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
320 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
321 FDP1_CAPTURE },
322 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
323 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
324 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
325 FDP1_CAPTURE },
326 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
327 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
328 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
329 FDP1_CAPTURE },
330 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
331 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
332 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
333 FDP1_CAPTURE },
334 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
335 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
336 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
337 FDP1_CAPTURE },
338 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
339 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
340 FD1_RWPF_SWAP_WORD,
341 FDP1_CAPTURE },
342 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
343 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
344 FD1_RWPF_SWAP_WORD,
345 FDP1_CAPTURE },
347 /* YUV Formats are supported by Read and Write Pixel Formatters */
349 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
350 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
351 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
352 FDP1_CAPTURE | FDP1_OUTPUT },
353 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
354 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
355 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
356 FDP1_CAPTURE | FDP1_OUTPUT },
357 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
358 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
359 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
360 FDP1_CAPTURE | FDP1_OUTPUT },
361 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
362 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
363 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
364 FDP1_CAPTURE | FDP1_OUTPUT },
365 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
366 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
367 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
368 FDP1_CAPTURE | FDP1_OUTPUT },
369 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
370 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
371 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
372 FDP1_CAPTURE | FDP1_OUTPUT },
373 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
374 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
375 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
376 FDP1_CAPTURE | FDP1_OUTPUT },
377 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
378 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
379 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
380 FDP1_CAPTURE | FDP1_OUTPUT },
381 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
382 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
383 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
384 FDP1_CAPTURE | FDP1_OUTPUT },
385 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
386 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
387 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
388 FDP1_CAPTURE | FDP1_OUTPUT },
389 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
390 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
391 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
392 FDP1_CAPTURE | FDP1_OUTPUT },
393 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
394 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
395 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
396 FDP1_CAPTURE | FDP1_OUTPUT },
397 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
398 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
399 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
400 FDP1_CAPTURE | FDP1_OUTPUT },
401 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
402 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
403 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
404 FDP1_CAPTURE | FDP1_OUTPUT },
407 static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
409 return fmt->fmt <= 0x1b; /* Last RGB code */
413 * FDP1 Lookup tables range from 0...255 only
415 * Each table must be less than 256 entries, and all tables
416 * are padded out to 256 entries by duplicating the last value.
418 static const u8 fdp1_diff_adj[] = {
419 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
420 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
421 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
424 static const u8 fdp1_sad_adj[] = {
425 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
426 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
427 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
430 static const u8 fdp1_bld_gain[] = {
431 0x80,
434 static const u8 fdp1_dif_gain[] = {
435 0x80,
438 static const u8 fdp1_mdet[] = {
439 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
440 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
441 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
442 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
443 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
444 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
445 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
446 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
447 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
448 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
449 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
450 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
451 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
452 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
453 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
454 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
455 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
456 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
457 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
458 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
459 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
460 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
461 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
462 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
463 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
464 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
465 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
466 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
467 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
468 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
469 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
470 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
473 /* Per-queue, driver-specific private data */
474 struct fdp1_q_data {
475 const struct fdp1_fmt *fmt;
476 struct v4l2_pix_format_mplane format;
478 unsigned int vsize;
479 unsigned int stride_y;
480 unsigned int stride_c;
483 static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
485 const struct fdp1_fmt *fmt;
486 unsigned int i;
488 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
489 fmt = &fdp1_formats[i];
490 if (fmt->fourcc == pixelformat)
491 return fmt;
494 return NULL;
497 enum fdp1_deint_mode {
498 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
499 FDP1_ADAPT2D3D,
500 FDP1_FIXED2D,
501 FDP1_FIXED3D,
502 FDP1_PREVFIELD,
503 FDP1_NEXTFIELD,
506 #define FDP1_DEINT_MODE_USES_NEXT(mode) \
507 (mode == FDP1_ADAPT2D3D || \
508 mode == FDP1_FIXED3D || \
509 mode == FDP1_NEXTFIELD)
511 #define FDP1_DEINT_MODE_USES_PREV(mode) \
512 (mode == FDP1_ADAPT2D3D || \
513 mode == FDP1_FIXED3D || \
514 mode == FDP1_PREVFIELD)
517 * FDP1 operates on potentially 3 fields, which are tracked
518 * from the VB buffers using this context structure.
519 * Will always be a field or a full frame, never two fields.
521 struct fdp1_field_buffer {
522 struct vb2_v4l2_buffer *vb;
523 dma_addr_t addrs[3];
525 /* Should be NONE:TOP:BOTTOM only */
526 enum v4l2_field field;
528 /* Flag to indicate this is the last field in the vb */
529 bool last_field;
531 /* Buffer queue lists */
532 struct list_head list;
535 struct fdp1_buffer {
536 struct v4l2_m2m_buffer m2m_buf;
537 struct fdp1_field_buffer fields[2];
538 unsigned int num_fields;
541 static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
543 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
546 struct fdp1_job {
547 struct fdp1_field_buffer *previous;
548 struct fdp1_field_buffer *active;
549 struct fdp1_field_buffer *next;
550 struct fdp1_field_buffer *dst;
552 /* A job can only be on one list at a time */
553 struct list_head list;
556 struct fdp1_dev {
557 struct v4l2_device v4l2_dev;
558 struct video_device vfd;
560 struct mutex dev_mutex;
561 spinlock_t irqlock;
562 spinlock_t device_process_lock;
564 void __iomem *regs;
565 unsigned int irq;
566 struct device *dev;
568 /* Job Queues */
569 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
570 struct list_head free_job_list;
571 struct list_head queued_job_list;
572 struct list_head hw_job_list;
574 unsigned int clk_rate;
576 struct rcar_fcp_device *fcp;
577 struct v4l2_m2m_dev *m2m_dev;
580 struct fdp1_ctx {
581 struct v4l2_fh fh;
582 struct fdp1_dev *fdp1;
584 struct v4l2_ctrl_handler hdl;
585 unsigned int sequence;
587 /* Processed buffers in this transaction */
588 u8 num_processed;
590 /* Transaction length (i.e. how many buffers per transaction) */
591 u32 translen;
593 /* Abort requested by m2m */
594 int aborting;
596 /* Deinterlace processing mode */
597 enum fdp1_deint_mode deint_mode;
600 * Adaptive 2D/3D mode uses a shared mask
601 * This is allocated at streamon, if the ADAPT2D3D mode
602 * is requested
604 unsigned int smsk_size;
605 dma_addr_t smsk_addr[2];
606 void *smsk_cpu;
608 /* Capture pipeline, can specify an alpha value
609 * for supported formats. 0-255 only
611 unsigned char alpha;
613 /* Source and destination queue data */
614 struct fdp1_q_data out_q; /* HW Source */
615 struct fdp1_q_data cap_q; /* HW Destination */
618 * Field Queues
619 * Interlaced fields are used on 3 occasions, and tracked in this list.
621 * V4L2 Buffers are tracked inside the fdp1_buffer
622 * and released when the last 'field' completes
624 struct list_head fields_queue;
625 unsigned int buffers_queued;
628 * For de-interlacing we need to track our previous buffer
629 * while preparing our job lists.
631 struct fdp1_field_buffer *previous;
634 static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
636 return container_of(fh, struct fdp1_ctx, fh);
639 static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
640 enum v4l2_buf_type type)
642 if (V4L2_TYPE_IS_OUTPUT(type))
643 return &ctx->out_q;
644 else
645 return &ctx->cap_q;
649 * list_remove_job: Take the first item off the specified job list
651 * Returns: pointer to a job, or NULL if the list is empty.
653 static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
654 struct list_head *list)
656 struct fdp1_job *job;
657 unsigned long flags;
659 spin_lock_irqsave(&fdp1->irqlock, flags);
660 job = list_first_entry_or_null(list, struct fdp1_job, list);
661 if (job)
662 list_del(&job->list);
663 spin_unlock_irqrestore(&fdp1->irqlock, flags);
665 return job;
669 * list_add_job: Add a job to the specified job list
671 * Returns: void - always succeeds
673 static void list_add_job(struct fdp1_dev *fdp1,
674 struct list_head *list,
675 struct fdp1_job *job)
677 unsigned long flags;
679 spin_lock_irqsave(&fdp1->irqlock, flags);
680 list_add_tail(&job->list, list);
681 spin_unlock_irqrestore(&fdp1->irqlock, flags);
684 static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
686 return list_remove_job(fdp1, &fdp1->free_job_list);
689 static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
691 /* Ensure that all residue from previous jobs is gone */
692 memset(job, 0, sizeof(struct fdp1_job));
694 list_add_job(fdp1, &fdp1->free_job_list, job);
697 static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
699 list_add_job(fdp1, &fdp1->queued_job_list, job);
702 static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
704 return list_remove_job(fdp1, &fdp1->queued_job_list);
707 static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
709 list_add_job(fdp1, &fdp1->hw_job_list, job);
712 static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
714 return list_remove_job(fdp1, &fdp1->hw_job_list);
718 * Buffer lists handling
720 static void fdp1_field_complete(struct fdp1_ctx *ctx,
721 struct fdp1_field_buffer *fbuf)
723 /* job->previous may be on the first field */
724 if (!fbuf)
725 return;
727 if (fbuf->last_field)
728 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
731 static void fdp1_queue_field(struct fdp1_ctx *ctx,
732 struct fdp1_field_buffer *fbuf)
734 unsigned long flags;
736 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
737 list_add_tail(&fbuf->list, &ctx->fields_queue);
738 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
740 ctx->buffers_queued++;
743 static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
745 struct fdp1_field_buffer *fbuf;
746 unsigned long flags;
748 ctx->buffers_queued--;
750 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
751 fbuf = list_first_entry_or_null(&ctx->fields_queue,
752 struct fdp1_field_buffer, list);
753 if (fbuf)
754 list_del(&fbuf->list);
755 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
757 return fbuf;
761 * Return the next field in the queue - or NULL,
762 * without removing the item from the list
764 static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
766 struct fdp1_field_buffer *fbuf;
767 unsigned long flags;
769 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
770 fbuf = list_first_entry_or_null(&ctx->fields_queue,
771 struct fdp1_field_buffer, list);
772 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
774 return fbuf;
777 static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
779 u32 value = ioread32(fdp1->regs + reg);
781 if (debug >= 2)
782 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
784 return value;
787 static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
789 if (debug >= 2)
790 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
792 iowrite32(val, fdp1->regs + reg);
795 /* IPC registers are to be programmed with constant values */
796 static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
798 struct fdp1_dev *fdp1 = ctx->fdp1;
800 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
801 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
802 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
804 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
805 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
806 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
807 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
808 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
809 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
813 static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
815 struct fdp1_dev *fdp1 = ctx->fdp1;
816 struct fdp1_q_data *src_q_data = &ctx->out_q;
817 unsigned int x0, x1;
818 unsigned int hsize = src_q_data->format.width;
819 unsigned int vsize = src_q_data->format.height;
821 x0 = hsize / 3;
822 x1 = 2 * hsize / 3;
824 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
825 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
826 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
827 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
829 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
830 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
831 FD1_IPC_SENSOR_CTL2);
833 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
834 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
835 FD1_IPC_SENSOR_CTL3);
839 * fdp1_write_lut: Write a padded LUT to the hw
841 * FDP1 uses constant data for de-interlacing processing,
842 * with large tables. These hardware tables are all 256 bytes
843 * long, however they often contain repeated data at the end.
845 * The last byte of the table is written to all remaining entries.
847 static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
848 unsigned int len, unsigned int base)
850 unsigned int i;
851 u8 pad;
853 /* Tables larger than the hw are clipped */
854 len = min(len, 256u);
856 for (i = 0; i < len; i++)
857 fdp1_write(fdp1, lut[i], base + (i*4));
859 /* Tables are padded with the last entry */
860 pad = lut[i-1];
862 for (; i < 256; i++)
863 fdp1_write(fdp1, pad, base + (i*4));
866 static void fdp1_set_lut(struct fdp1_dev *fdp1)
868 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
869 FD1_LUT_DIF_ADJ);
870 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
871 FD1_LUT_SAD_ADJ);
872 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
873 FD1_LUT_BLD_GAIN);
874 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
875 FD1_LUT_DIF_GAIN);
876 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
877 FD1_LUT_MDET);
880 static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
881 struct fdp1_job *job)
883 struct fdp1_dev *fdp1 = ctx->fdp1;
884 u32 picture_size;
885 u32 pstride;
886 u32 format;
887 u32 smsk_addr;
889 struct fdp1_q_data *q_data = &ctx->out_q;
891 /* Picture size is common to Source and Destination frames */
892 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
893 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
895 /* Strides */
896 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
897 if (q_data->format.num_planes > 1)
898 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
900 /* Format control */
901 format = q_data->fmt->fmt;
902 if (q_data->fmt->swap_yc)
903 format |= FD1_RPF_FORMAT_RSPYCS;
905 if (q_data->fmt->swap_uv)
906 format |= FD1_RPF_FORMAT_RSPUVS;
908 if (job->active->field == V4L2_FIELD_BOTTOM) {
909 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
910 smsk_addr = ctx->smsk_addr[0];
911 } else {
912 smsk_addr = ctx->smsk_addr[1];
915 /* Deint mode is non-zero when deinterlacing */
916 if (ctx->deint_mode)
917 format |= FD1_RPF_FORMAT_CIPM;
919 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
920 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
921 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
922 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
923 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
925 /* Previous Field Channel (CH0) */
926 if (job->previous)
927 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
929 /* Current Field Channel (CH1) */
930 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
931 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
932 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
934 /* Next Field Channel (CH2) */
935 if (job->next)
936 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
939 static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
940 struct fdp1_job *job)
942 struct fdp1_dev *fdp1 = ctx->fdp1;
943 struct fdp1_q_data *src_q_data = &ctx->out_q;
944 struct fdp1_q_data *q_data = &ctx->cap_q;
945 u32 pstride;
946 u32 format;
947 u32 swap;
948 u32 rndctl;
950 pstride = q_data->format.plane_fmt[0].bytesperline
951 << FD1_WPF_PSTRIDE_Y_SHIFT;
953 if (q_data->format.num_planes > 1)
954 pstride |= q_data->format.plane_fmt[1].bytesperline
955 << FD1_WPF_PSTRIDE_C_SHIFT;
957 format = q_data->fmt->fmt; /* Output Format Code */
959 if (q_data->fmt->swap_yc)
960 format |= FD1_WPF_FORMAT_WSPYCS;
962 if (q_data->fmt->swap_uv)
963 format |= FD1_WPF_FORMAT_WSPUVS;
965 if (fdp1_fmt_is_rgb(q_data->fmt)) {
966 /* Enable Colour Space conversion */
967 format |= FD1_WPF_FORMAT_CSC;
969 /* Set WRTM */
970 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
971 format |= FD1_WPF_FORMAT_WRTM_709_16;
972 else if (src_q_data->format.quantization ==
973 V4L2_QUANTIZATION_FULL_RANGE)
974 format |= FD1_WPF_FORMAT_WRTM_601_0;
975 else
976 format |= FD1_WPF_FORMAT_WRTM_601_16;
979 /* Set an alpha value into the Pad Value */
980 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
982 /* Determine picture rounding and clipping */
983 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
984 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
986 /* WPF Swap needs both ISWAP and OSWAP setting */
987 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
988 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
990 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
991 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
992 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
993 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
995 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
996 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
997 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
1000 static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
1001 struct fdp1_job *job)
1003 struct fdp1_dev *fdp1 = ctx->fdp1;
1004 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1005 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1006 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1008 /* De-interlacing Mode */
1009 switch (ctx->deint_mode) {
1010 default:
1011 case FDP1_PROGRESSIVE:
1012 dprintk(fdp1, "Progressive Mode\n");
1013 opmode |= FD1_CTL_OPMODE_PRG;
1014 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1015 break;
1016 case FDP1_ADAPT2D3D:
1017 dprintk(fdp1, "Adapt2D3D Mode\n");
1018 if (ctx->sequence == 0 || ctx->aborting)
1019 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1020 else
1021 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1023 if (ctx->sequence > 1) {
1024 channels |= FD1_CTL_CHACT_SMW;
1025 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1028 if (ctx->sequence > 2)
1029 channels |= FD1_CTL_CHACT_SMR;
1031 break;
1032 case FDP1_FIXED3D:
1033 dprintk(fdp1, "Fixed 3D Mode\n");
1034 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1035 /* Except for first and last frame, enable all channels */
1036 if (!(ctx->sequence == 0 || ctx->aborting))
1037 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1038 break;
1039 case FDP1_FIXED2D:
1040 dprintk(fdp1, "Fixed 2D Mode\n");
1041 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1042 /* No extra channels enabled */
1043 break;
1044 case FDP1_PREVFIELD:
1045 dprintk(fdp1, "Previous Field Mode\n");
1046 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1047 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1048 break;
1049 case FDP1_NEXTFIELD:
1050 dprintk(fdp1, "Next Field Mode\n");
1051 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1052 channels |= FD1_CTL_CHACT_RD2; /* Next */
1053 break;
1056 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1057 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1058 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1062 * fdp1_device_process() - Run the hardware
1064 * Configure and start the hardware to generate a single frame
1065 * of output given our input parameters.
1067 static int fdp1_device_process(struct fdp1_ctx *ctx)
1070 struct fdp1_dev *fdp1 = ctx->fdp1;
1071 struct fdp1_job *job;
1072 unsigned long flags;
1074 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1076 /* Get a job to process */
1077 job = get_queued_job(fdp1);
1078 if (!job) {
1080 * VINT can call us to see if we can queue another job.
1081 * If we have no work to do, we simply return.
1083 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1084 return 0;
1087 /* First Frame only? ... */
1088 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1090 /* Set the mode, and configuration */
1091 fdp1_configure_deint_mode(ctx, job);
1093 /* DLI Static Configuration */
1094 fdp1_set_ipc_dli(ctx);
1096 /* Sensor Configuration */
1097 fdp1_set_ipc_sensor(ctx);
1099 /* Setup the source picture */
1100 fdp1_configure_rpf(ctx, job);
1102 /* Setup the destination picture */
1103 fdp1_configure_wpf(ctx, job);
1105 /* Line Memory Pixel Number Register for linear access */
1106 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1108 /* Enable Interrupts */
1109 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1111 /* Finally, the Immediate Registers */
1113 /* This job is now in the HW queue */
1114 queue_hw_job(fdp1, job);
1116 /* Start the command */
1117 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1119 /* Registers will update to HW at next VINT */
1120 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1122 /* Enable VINT Generator */
1123 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1125 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1127 return 0;
1131 * mem2mem callbacks
1135 * job_ready() - check whether an instance is ready to be scheduled to run
1137 static int fdp1_m2m_job_ready(void *priv)
1139 struct fdp1_ctx *ctx = priv;
1140 struct fdp1_q_data *src_q_data = &ctx->out_q;
1141 int srcbufs = 1;
1142 int dstbufs = 1;
1144 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1145 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1146 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1148 /* One output buffer is required for each field */
1149 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1150 dstbufs = 2;
1152 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1153 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1154 dprintk(ctx->fdp1, "Not enough buffers available\n");
1155 return 0;
1158 return 1;
1161 static void fdp1_m2m_job_abort(void *priv)
1163 struct fdp1_ctx *ctx = priv;
1165 dprintk(ctx->fdp1, "+\n");
1167 /* Will cancel the transaction in the next interrupt handler */
1168 ctx->aborting = 1;
1170 /* Immediate abort sequence */
1171 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1172 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1176 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1178 * Prepare the next field, (or frame in progressive) and an output
1179 * buffer for the hardware to perform a single operation.
1181 static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1183 struct vb2_v4l2_buffer *vbuf;
1184 struct fdp1_buffer *fbuf;
1185 struct fdp1_dev *fdp1 = ctx->fdp1;
1186 struct fdp1_job *job;
1187 unsigned int buffers_required = 1;
1189 dprintk(fdp1, "+\n");
1191 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1192 buffers_required = 2;
1194 if (ctx->buffers_queued < buffers_required)
1195 return NULL;
1197 job = fdp1_job_alloc(fdp1);
1198 if (!job) {
1199 dprintk(fdp1, "No free jobs currently available\n");
1200 return NULL;
1203 job->active = fdp1_dequeue_field(ctx);
1204 if (!job->active) {
1205 /* Buffer check should prevent this ever happening */
1206 dprintk(fdp1, "No input buffers currently available\n");
1208 fdp1_job_free(fdp1, job);
1209 return NULL;
1212 dprintk(fdp1, "+ Buffer en-route...\n");
1214 /* Source buffers have been prepared on our buffer_queue
1215 * Prepare our Output buffer
1217 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1218 fbuf = to_fdp1_buffer(vbuf);
1219 job->dst = &fbuf->fields[0];
1221 job->active->vb->sequence = ctx->sequence;
1222 job->dst->vb->sequence = ctx->sequence;
1223 ctx->sequence++;
1225 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1226 job->previous = ctx->previous;
1228 /* Active buffer becomes the next job's previous buffer */
1229 ctx->previous = job->active;
1232 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1233 /* Must be called after 'active' is dequeued */
1234 job->next = fdp1_peek_queued_field(ctx);
1237 /* Transfer timestamps and flags from src->dst */
1239 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1241 job->dst->vb->flags = job->active->vb->flags &
1242 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1244 /* Ideally, the frame-end function will just 'check' to see
1245 * if there are more jobs instead
1247 ctx->translen++;
1249 /* Finally, Put this job on the processing queue */
1250 queue_job(fdp1, job);
1252 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1254 return job;
1257 /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1259 * A single input buffer is taken and serialised into our fdp1_buffer
1260 * queue. The queue is then processed to create as many jobs as possible
1261 * from our available input.
1263 static void fdp1_m2m_device_run(void *priv)
1265 struct fdp1_ctx *ctx = priv;
1266 struct fdp1_dev *fdp1 = ctx->fdp1;
1267 struct vb2_v4l2_buffer *src_vb;
1268 struct fdp1_buffer *buf;
1269 unsigned int i;
1271 dprintk(fdp1, "+\n");
1273 ctx->translen = 0;
1275 /* Get our incoming buffer of either one or two fields, or one frame */
1276 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1277 buf = to_fdp1_buffer(src_vb);
1279 for (i = 0; i < buf->num_fields; i++) {
1280 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1282 fdp1_queue_field(ctx, fbuf);
1283 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1284 i, fbuf->last_field);
1287 /* Queue as many jobs as our data provides for */
1288 while (fdp1_prepare_job(ctx))
1291 if (ctx->translen == 0) {
1292 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1293 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1294 return;
1297 /* Kick the job processing action */
1298 fdp1_device_process(ctx);
1302 * device_frame_end:
1304 * Handles the M2M level after a buffer completion event.
1306 static void device_frame_end(struct fdp1_dev *fdp1,
1307 enum vb2_buffer_state state)
1309 struct fdp1_ctx *ctx;
1310 unsigned long flags;
1311 struct fdp1_job *job = get_hw_queued_job(fdp1);
1313 dprintk(fdp1, "+\n");
1315 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1317 if (ctx == NULL) {
1318 v4l2_err(&fdp1->v4l2_dev,
1319 "Instance released before the end of transaction\n");
1320 return;
1323 ctx->num_processed++;
1326 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1327 * reference is complete
1329 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1330 fdp1_field_complete(ctx, job->previous);
1331 else
1332 fdp1_field_complete(ctx, job->active);
1334 spin_lock_irqsave(&fdp1->irqlock, flags);
1335 v4l2_m2m_buf_done(job->dst->vb, state);
1336 job->dst = NULL;
1337 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1339 /* Move this job back to the free job list */
1340 fdp1_job_free(fdp1, job);
1342 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1343 ctx->num_processed, ctx->translen);
1345 if (ctx->num_processed == ctx->translen ||
1346 ctx->aborting) {
1347 dprintk(ctx->fdp1, "Finishing transaction\n");
1348 ctx->num_processed = 0;
1349 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1350 } else {
1352 * For pipelined performance support, this would
1353 * be called from a VINT handler
1355 fdp1_device_process(ctx);
1360 * video ioctls
1362 static int fdp1_vidioc_querycap(struct file *file, void *priv,
1363 struct v4l2_capability *cap)
1365 strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1366 strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1367 snprintf(cap->bus_info, sizeof(cap->bus_info),
1368 "platform:%s", DRIVER_NAME);
1369 return 0;
1372 static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1374 unsigned int i, num;
1376 num = 0;
1378 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1379 if (fdp1_formats[i].types & type) {
1380 if (num == f->index)
1381 break;
1382 ++num;
1386 /* Format not found */
1387 if (i >= ARRAY_SIZE(fdp1_formats))
1388 return -EINVAL;
1390 /* Format found */
1391 f->pixelformat = fdp1_formats[i].fourcc;
1393 return 0;
1396 static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1397 struct v4l2_fmtdesc *f)
1399 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1402 static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1403 struct v4l2_fmtdesc *f)
1405 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1408 static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1410 struct fdp1_q_data *q_data;
1411 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1413 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1414 return -EINVAL;
1416 q_data = get_q_data(ctx, f->type);
1417 f->fmt.pix_mp = q_data->format;
1419 return 0;
1422 static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1423 const struct fdp1_fmt *fmt)
1425 unsigned int i;
1427 /* Compute and clamp the stride and image size. */
1428 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1429 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1430 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1431 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1432 unsigned int align = 128;
1433 unsigned int bpl;
1435 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1436 pix->width / hsub * fmt->bpp[i] / 8,
1437 round_down(FDP1_MAX_STRIDE, align));
1439 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1440 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1441 * pix->height / vsub;
1443 memset(pix->plane_fmt[i].reserved, 0,
1444 sizeof(pix->plane_fmt[i].reserved));
1447 if (fmt->num_planes == 3) {
1448 /* The two chroma planes must have the same stride. */
1449 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1450 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1452 memset(pix->plane_fmt[2].reserved, 0,
1453 sizeof(pix->plane_fmt[2].reserved));
1457 static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1458 const struct fdp1_fmt **fmtinfo,
1459 struct v4l2_pix_format_mplane *pix)
1461 const struct fdp1_fmt *fmt;
1462 unsigned int width;
1463 unsigned int height;
1465 /* Validate the pixel format to ensure the output queue supports it. */
1466 fmt = fdp1_find_format(pix->pixelformat);
1467 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1468 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1470 if (fmtinfo)
1471 *fmtinfo = fmt;
1473 pix->pixelformat = fmt->fourcc;
1474 pix->num_planes = fmt->num_planes;
1477 * Progressive video and all interlaced field orders are acceptable.
1478 * Default to V4L2_FIELD_INTERLACED.
1480 if (pix->field != V4L2_FIELD_NONE &&
1481 pix->field != V4L2_FIELD_ALTERNATE &&
1482 !V4L2_FIELD_HAS_BOTH(pix->field))
1483 pix->field = V4L2_FIELD_INTERLACED;
1486 * The deinterlacer doesn't care about the colorspace, accept all values
1487 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1488 * at the output of the deinterlacer supports a subset of encodings and
1489 * quantization methods and will only be available when the colorspace
1490 * allows it.
1492 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1493 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1496 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1497 * them to the supported frame size range. The height boundary are
1498 * related to the full frame, divide them by two when the format passes
1499 * fields in separate buffers.
1501 width = round_down(pix->width, fmt->hsub);
1502 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1504 height = round_down(pix->height, fmt->vsub);
1505 if (pix->field == V4L2_FIELD_ALTERNATE)
1506 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1507 else
1508 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1510 fdp1_compute_stride(pix, fmt);
1513 static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1514 const struct fdp1_fmt **fmtinfo,
1515 struct v4l2_pix_format_mplane *pix)
1517 struct fdp1_q_data *src_data = &ctx->out_q;
1518 enum v4l2_colorspace colorspace;
1519 enum v4l2_ycbcr_encoding ycbcr_enc;
1520 enum v4l2_quantization quantization;
1521 const struct fdp1_fmt *fmt;
1522 bool allow_rgb;
1525 * Validate the pixel format. We can only accept RGB output formats if
1526 * the input encoding and quantization are compatible with the format
1527 * conversions supported by the hardware. The supported combinations are
1529 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1530 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1531 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1533 colorspace = src_data->format.colorspace;
1535 ycbcr_enc = src_data->format.ycbcr_enc;
1536 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1537 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1539 quantization = src_data->format.quantization;
1540 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1541 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1542 ycbcr_enc);
1544 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1545 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1546 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1548 fmt = fdp1_find_format(pix->pixelformat);
1549 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1550 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1552 if (fmtinfo)
1553 *fmtinfo = fmt;
1555 pix->pixelformat = fmt->fourcc;
1556 pix->num_planes = fmt->num_planes;
1557 pix->field = V4L2_FIELD_NONE;
1560 * The colorspace on the capture queue is copied from the output queue
1561 * as the hardware can't change the colorspace. It can convert YCbCr to
1562 * RGB though, in which case the encoding and quantization are set to
1563 * default values as anything else wouldn't make sense.
1565 pix->colorspace = src_data->format.colorspace;
1566 pix->xfer_func = src_data->format.xfer_func;
1568 if (fdp1_fmt_is_rgb(fmt)) {
1569 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1570 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1571 } else {
1572 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1573 pix->quantization = src_data->format.quantization;
1577 * The frame width is identical to the output queue, and the height is
1578 * either doubled or identical depending on whether the output queue
1579 * field order contains one or two fields per frame.
1581 pix->width = src_data->format.width;
1582 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1583 pix->height = 2 * src_data->format.height;
1584 else
1585 pix->height = src_data->format.height;
1587 fdp1_compute_stride(pix, fmt);
1590 static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1592 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1594 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1595 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1596 else
1597 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1599 dprintk(ctx->fdp1, "Try %s format: %4s (0x%08x) %ux%u field %u\n",
1600 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1601 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1602 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1604 return 0;
1607 static void fdp1_set_format(struct fdp1_ctx *ctx,
1608 struct v4l2_pix_format_mplane *pix,
1609 enum v4l2_buf_type type)
1611 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1612 const struct fdp1_fmt *fmtinfo;
1614 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1615 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1616 else
1617 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1619 q_data->fmt = fmtinfo;
1620 q_data->format = *pix;
1622 q_data->vsize = pix->height;
1623 if (pix->field != V4L2_FIELD_NONE)
1624 q_data->vsize /= 2;
1626 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1627 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1629 /* Adjust strides for interleaved buffers */
1630 if (pix->field == V4L2_FIELD_INTERLACED ||
1631 pix->field == V4L2_FIELD_INTERLACED_TB ||
1632 pix->field == V4L2_FIELD_INTERLACED_BT) {
1633 q_data->stride_y *= 2;
1634 q_data->stride_c *= 2;
1637 /* Propagate the format from the output node to the capture node. */
1638 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1639 struct fdp1_q_data *dst_data = &ctx->cap_q;
1642 * Copy the format, clear the per-plane bytes per line and image
1643 * size, override the field and double the height if needed.
1645 dst_data->format = q_data->format;
1646 memset(dst_data->format.plane_fmt, 0,
1647 sizeof(dst_data->format.plane_fmt));
1649 dst_data->format.field = V4L2_FIELD_NONE;
1650 if (pix->field == V4L2_FIELD_ALTERNATE)
1651 dst_data->format.height *= 2;
1653 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1655 dst_data->vsize = dst_data->format.height;
1656 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1657 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1661 static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1663 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1664 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1665 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1667 if (vb2_is_busy(vq)) {
1668 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1669 return -EBUSY;
1672 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1674 dprintk(ctx->fdp1, "Set %s format: %4s (0x%08x) %ux%u field %u\n",
1675 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1676 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1677 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1679 return 0;
1682 static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1684 struct fdp1_ctx *ctx =
1685 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1686 struct fdp1_q_data *src_q_data = &ctx->out_q;
1688 switch (ctrl->id) {
1689 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1690 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1691 ctrl->val = 2;
1692 else
1693 ctrl->val = 1;
1694 return 0;
1697 return 1;
1700 static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1702 struct fdp1_ctx *ctx =
1703 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1705 switch (ctrl->id) {
1706 case V4L2_CID_ALPHA_COMPONENT:
1707 ctx->alpha = ctrl->val;
1708 break;
1710 case V4L2_CID_DEINTERLACING_MODE:
1711 ctx->deint_mode = ctrl->val;
1712 break;
1715 return 0;
1718 static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1719 .s_ctrl = fdp1_s_ctrl,
1720 .g_volatile_ctrl = fdp1_g_ctrl,
1723 static const char * const fdp1_ctrl_deint_menu[] = {
1724 "Progressive",
1725 "Adaptive 2D/3D",
1726 "Fixed 2D",
1727 "Fixed 3D",
1728 "Previous field",
1729 "Next field",
1730 NULL
1733 static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1734 .vidioc_querycap = fdp1_vidioc_querycap,
1736 .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
1737 .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
1738 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1739 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1740 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1741 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1742 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1743 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1745 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1746 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1747 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1748 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1749 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1750 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1751 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1753 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1754 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1756 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1757 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1761 * Queue operations
1764 static int fdp1_queue_setup(struct vb2_queue *vq,
1765 unsigned int *nbuffers, unsigned int *nplanes,
1766 unsigned int sizes[],
1767 struct device *alloc_ctxs[])
1769 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1770 struct fdp1_q_data *q_data;
1771 unsigned int i;
1773 q_data = get_q_data(ctx, vq->type);
1775 if (*nplanes) {
1776 if (*nplanes > FDP1_MAX_PLANES)
1777 return -EINVAL;
1779 return 0;
1782 *nplanes = q_data->format.num_planes;
1784 for (i = 0; i < *nplanes; i++)
1785 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1787 return 0;
1790 static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1791 struct vb2_v4l2_buffer *vbuf,
1792 unsigned int field_num)
1794 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1795 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1796 unsigned int num_fields;
1797 unsigned int i;
1799 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1801 fbuf->vb = vbuf;
1802 fbuf->last_field = (field_num + 1) == num_fields;
1804 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1805 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1807 switch (vbuf->field) {
1808 case V4L2_FIELD_INTERLACED:
1810 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1811 * top-bottom for 50Hz. As TV standards are not applicable to
1812 * the mem-to-mem API, use the height as a heuristic.
1814 fbuf->field = (q_data->format.height < 576) == field_num
1815 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1816 break;
1817 case V4L2_FIELD_INTERLACED_TB:
1818 case V4L2_FIELD_SEQ_TB:
1819 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1820 break;
1821 case V4L2_FIELD_INTERLACED_BT:
1822 case V4L2_FIELD_SEQ_BT:
1823 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1824 break;
1825 default:
1826 fbuf->field = vbuf->field;
1827 break;
1830 /* Buffer is completed */
1831 if (!field_num)
1832 return;
1834 /* Adjust buffer addresses for second field */
1835 switch (vbuf->field) {
1836 case V4L2_FIELD_INTERLACED:
1837 case V4L2_FIELD_INTERLACED_TB:
1838 case V4L2_FIELD_INTERLACED_BT:
1839 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1840 fbuf->addrs[i] +=
1841 (i == 0 ? q_data->stride_y : q_data->stride_c);
1842 break;
1843 case V4L2_FIELD_SEQ_TB:
1844 case V4L2_FIELD_SEQ_BT:
1845 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1846 fbuf->addrs[i] += q_data->vsize *
1847 (i == 0 ? q_data->stride_y : q_data->stride_c);
1848 break;
1852 static int fdp1_buf_prepare(struct vb2_buffer *vb)
1854 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1855 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1856 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1857 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1858 unsigned int i;
1860 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1861 bool field_valid = true;
1863 /* Validate the buffer field. */
1864 switch (q_data->format.field) {
1865 case V4L2_FIELD_NONE:
1866 if (vbuf->field != V4L2_FIELD_NONE)
1867 field_valid = false;
1868 break;
1870 case V4L2_FIELD_ALTERNATE:
1871 if (vbuf->field != V4L2_FIELD_TOP &&
1872 vbuf->field != V4L2_FIELD_BOTTOM)
1873 field_valid = false;
1874 break;
1876 case V4L2_FIELD_INTERLACED:
1877 case V4L2_FIELD_SEQ_TB:
1878 case V4L2_FIELD_SEQ_BT:
1879 case V4L2_FIELD_INTERLACED_TB:
1880 case V4L2_FIELD_INTERLACED_BT:
1881 if (vbuf->field != q_data->format.field)
1882 field_valid = false;
1883 break;
1886 if (!field_valid) {
1887 dprintk(ctx->fdp1,
1888 "buffer field %u invalid for format field %u\n",
1889 vbuf->field, q_data->format.field);
1890 return -EINVAL;
1892 } else {
1893 vbuf->field = V4L2_FIELD_NONE;
1896 /* Validate the planes sizes. */
1897 for (i = 0; i < q_data->format.num_planes; i++) {
1898 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1900 if (vb2_plane_size(vb, i) < size) {
1901 dprintk(ctx->fdp1,
1902 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1903 i, q_data->format.num_planes,
1904 vb2_plane_size(vb, i), size);
1905 return -EINVAL;
1908 /* We have known size formats all around */
1909 vb2_set_plane_payload(vb, i, size);
1912 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1913 for (i = 0; i < buf->num_fields; ++i)
1914 fdp1_buf_prepare_field(q_data, vbuf, i);
1916 return 0;
1919 static void fdp1_buf_queue(struct vb2_buffer *vb)
1921 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1922 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1924 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1927 static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1929 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1930 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1932 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1934 * Force our deint_mode when we are progressive,
1935 * ignoring any setting on the device from the user,
1936 * Otherwise, lock in the requested de-interlace mode.
1938 if (q_data->format.field == V4L2_FIELD_NONE)
1939 ctx->deint_mode = FDP1_PROGRESSIVE;
1941 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1942 u32 stride;
1943 dma_addr_t smsk_base;
1944 const u32 bpp = 2; /* bytes per pixel */
1946 stride = round_up(q_data->format.width, 8);
1948 ctx->smsk_size = bpp * stride * q_data->vsize;
1950 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1951 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1953 if (ctx->smsk_cpu == NULL) {
1954 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1955 return -ENOMEM;
1958 ctx->smsk_addr[0] = smsk_base;
1959 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1963 return 0;
1966 static void fdp1_stop_streaming(struct vb2_queue *q)
1968 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1969 struct vb2_v4l2_buffer *vbuf;
1970 unsigned long flags;
1972 while (1) {
1973 if (V4L2_TYPE_IS_OUTPUT(q->type))
1974 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1975 else
1976 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1977 if (vbuf == NULL)
1978 break;
1979 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1980 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1981 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1984 /* Empty Output queues */
1985 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1986 /* Empty our internal queues */
1987 struct fdp1_field_buffer *fbuf;
1989 /* Free any queued buffers */
1990 fbuf = fdp1_dequeue_field(ctx);
1991 while (fbuf != NULL) {
1992 fdp1_field_complete(ctx, fbuf);
1993 fbuf = fdp1_dequeue_field(ctx);
1996 /* Free smsk_data */
1997 if (ctx->smsk_cpu) {
1998 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1999 ctx->smsk_cpu, ctx->smsk_addr[0]);
2000 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
2001 ctx->smsk_cpu = NULL;
2004 WARN(!list_empty(&ctx->fields_queue),
2005 "Buffer queue not empty");
2006 } else {
2007 /* Empty Capture queues (Jobs) */
2008 struct fdp1_job *job;
2010 job = get_queued_job(ctx->fdp1);
2011 while (job) {
2012 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2013 fdp1_field_complete(ctx, job->previous);
2014 else
2015 fdp1_field_complete(ctx, job->active);
2017 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2018 job->dst = NULL;
2020 job = get_queued_job(ctx->fdp1);
2023 /* Free any held buffer in the ctx */
2024 fdp1_field_complete(ctx, ctx->previous);
2026 WARN(!list_empty(&ctx->fdp1->queued_job_list),
2027 "Queued Job List not empty");
2029 WARN(!list_empty(&ctx->fdp1->hw_job_list),
2030 "HW Job list not empty");
2034 static struct vb2_ops fdp1_qops = {
2035 .queue_setup = fdp1_queue_setup,
2036 .buf_prepare = fdp1_buf_prepare,
2037 .buf_queue = fdp1_buf_queue,
2038 .start_streaming = fdp1_start_streaming,
2039 .stop_streaming = fdp1_stop_streaming,
2040 .wait_prepare = vb2_ops_wait_prepare,
2041 .wait_finish = vb2_ops_wait_finish,
2044 static int queue_init(void *priv, struct vb2_queue *src_vq,
2045 struct vb2_queue *dst_vq)
2047 struct fdp1_ctx *ctx = priv;
2048 int ret;
2050 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2051 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2052 src_vq->drv_priv = ctx;
2053 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2054 src_vq->ops = &fdp1_qops;
2055 src_vq->mem_ops = &vb2_dma_contig_memops;
2056 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2057 src_vq->lock = &ctx->fdp1->dev_mutex;
2058 src_vq->dev = ctx->fdp1->dev;
2060 ret = vb2_queue_init(src_vq);
2061 if (ret)
2062 return ret;
2064 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2065 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2066 dst_vq->drv_priv = ctx;
2067 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2068 dst_vq->ops = &fdp1_qops;
2069 dst_vq->mem_ops = &vb2_dma_contig_memops;
2070 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2071 dst_vq->lock = &ctx->fdp1->dev_mutex;
2072 dst_vq->dev = ctx->fdp1->dev;
2074 return vb2_queue_init(dst_vq);
2078 * File operations
2080 static int fdp1_open(struct file *file)
2082 struct fdp1_dev *fdp1 = video_drvdata(file);
2083 struct v4l2_pix_format_mplane format;
2084 struct fdp1_ctx *ctx = NULL;
2085 struct v4l2_ctrl *ctrl;
2086 int ret = 0;
2088 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2089 return -ERESTARTSYS;
2091 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2092 if (!ctx) {
2093 ret = -ENOMEM;
2094 goto done;
2097 v4l2_fh_init(&ctx->fh, video_devdata(file));
2098 file->private_data = &ctx->fh;
2099 ctx->fdp1 = fdp1;
2101 /* Initialise Queues */
2102 INIT_LIST_HEAD(&ctx->fields_queue);
2104 ctx->translen = 1;
2105 ctx->sequence = 0;
2107 /* Initialise controls */
2109 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2110 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2111 V4L2_CID_DEINTERLACING_MODE,
2112 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2113 fdp1_ctrl_deint_menu);
2115 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2116 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2117 if (ctrl)
2118 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2120 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2121 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2123 if (ctx->hdl.error) {
2124 ret = ctx->hdl.error;
2125 v4l2_ctrl_handler_free(&ctx->hdl);
2126 goto done;
2129 ctx->fh.ctrl_handler = &ctx->hdl;
2130 v4l2_ctrl_handler_setup(&ctx->hdl);
2132 /* Configure default parameters. */
2133 memset(&format, 0, sizeof(format));
2134 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2136 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2138 if (IS_ERR(ctx->fh.m2m_ctx)) {
2139 ret = PTR_ERR(ctx->fh.m2m_ctx);
2141 v4l2_ctrl_handler_free(&ctx->hdl);
2142 kfree(ctx);
2143 goto done;
2146 /* Perform any power management required */
2147 pm_runtime_get_sync(fdp1->dev);
2149 v4l2_fh_add(&ctx->fh);
2151 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2152 ctx, ctx->fh.m2m_ctx);
2154 done:
2155 mutex_unlock(&fdp1->dev_mutex);
2156 return ret;
2159 static int fdp1_release(struct file *file)
2161 struct fdp1_dev *fdp1 = video_drvdata(file);
2162 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2164 dprintk(fdp1, "Releasing instance %p\n", ctx);
2166 v4l2_fh_del(&ctx->fh);
2167 v4l2_fh_exit(&ctx->fh);
2168 v4l2_ctrl_handler_free(&ctx->hdl);
2169 mutex_lock(&fdp1->dev_mutex);
2170 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2171 mutex_unlock(&fdp1->dev_mutex);
2172 kfree(ctx);
2174 pm_runtime_put(fdp1->dev);
2176 return 0;
2179 static const struct v4l2_file_operations fdp1_fops = {
2180 .owner = THIS_MODULE,
2181 .open = fdp1_open,
2182 .release = fdp1_release,
2183 .poll = v4l2_m2m_fop_poll,
2184 .unlocked_ioctl = video_ioctl2,
2185 .mmap = v4l2_m2m_fop_mmap,
2188 static const struct video_device fdp1_videodev = {
2189 .name = DRIVER_NAME,
2190 .vfl_dir = VFL_DIR_M2M,
2191 .fops = &fdp1_fops,
2192 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2193 .ioctl_ops = &fdp1_ioctl_ops,
2194 .minor = -1,
2195 .release = video_device_release_empty,
2198 static const struct v4l2_m2m_ops m2m_ops = {
2199 .device_run = fdp1_m2m_device_run,
2200 .job_ready = fdp1_m2m_job_ready,
2201 .job_abort = fdp1_m2m_job_abort,
2204 static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2206 struct fdp1_dev *fdp1 = dev_id;
2207 u32 int_status;
2208 u32 ctl_status;
2209 u32 vint_cnt;
2210 u32 cycles;
2212 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2213 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2214 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2215 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2216 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2218 /* Clear interrupts */
2219 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2221 if (debug >= 2) {
2222 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2223 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2224 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2225 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2227 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2228 cycles, cycles/(fdp1->clk_rate/1000));
2230 dprintk(fdp1,
2231 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2232 ctl_status, vint_cnt,
2233 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2234 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2235 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2236 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2237 dprintk(fdp1, "***********************************\n");
2240 /* Spurious interrupt */
2241 if (!(FD1_CTL_IRQ_MASK & int_status))
2242 return IRQ_NONE;
2244 /* Work completed, release the frame */
2245 if (FD1_CTL_IRQ_VERE & int_status)
2246 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2247 else if (FD1_CTL_IRQ_FREE & int_status)
2248 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2250 return IRQ_HANDLED;
2253 static int fdp1_probe(struct platform_device *pdev)
2255 struct fdp1_dev *fdp1;
2256 struct video_device *vfd;
2257 struct device_node *fcp_node;
2258 struct resource *res;
2259 struct clk *clk;
2260 unsigned int i;
2262 int ret;
2263 int hw_version;
2265 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2266 if (!fdp1)
2267 return -ENOMEM;
2269 INIT_LIST_HEAD(&fdp1->free_job_list);
2270 INIT_LIST_HEAD(&fdp1->queued_job_list);
2271 INIT_LIST_HEAD(&fdp1->hw_job_list);
2273 /* Initialise the jobs on the free list */
2274 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2275 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2277 mutex_init(&fdp1->dev_mutex);
2279 spin_lock_init(&fdp1->irqlock);
2280 spin_lock_init(&fdp1->device_process_lock);
2281 fdp1->dev = &pdev->dev;
2282 platform_set_drvdata(pdev, fdp1);
2284 /* Memory-mapped registers */
2285 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2286 fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
2287 if (IS_ERR(fdp1->regs))
2288 return PTR_ERR(fdp1->regs);
2290 /* Interrupt service routine registration */
2291 fdp1->irq = ret = platform_get_irq(pdev, 0);
2292 if (ret < 0) {
2293 dev_err(&pdev->dev, "cannot find IRQ\n");
2294 return ret;
2297 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2298 dev_name(&pdev->dev), fdp1);
2299 if (ret) {
2300 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2301 return ret;
2304 /* FCP */
2305 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2306 if (fcp_node) {
2307 fdp1->fcp = rcar_fcp_get(fcp_node);
2308 of_node_put(fcp_node);
2309 if (IS_ERR(fdp1->fcp)) {
2310 dev_err(&pdev->dev, "FCP not found (%ld)\n",
2311 PTR_ERR(fdp1->fcp));
2312 return PTR_ERR(fdp1->fcp);
2316 /* Determine our clock rate */
2317 clk = clk_get(&pdev->dev, NULL);
2318 if (IS_ERR(clk))
2319 return PTR_ERR(clk);
2321 fdp1->clk_rate = clk_get_rate(clk);
2322 clk_put(clk);
2324 /* V4L2 device registration */
2325 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2326 if (ret) {
2327 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2328 return ret;
2331 /* M2M registration */
2332 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2333 if (IS_ERR(fdp1->m2m_dev)) {
2334 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2335 ret = PTR_ERR(fdp1->m2m_dev);
2336 goto unreg_dev;
2339 /* Video registration */
2340 fdp1->vfd = fdp1_videodev;
2341 vfd = &fdp1->vfd;
2342 vfd->lock = &fdp1->dev_mutex;
2343 vfd->v4l2_dev = &fdp1->v4l2_dev;
2344 video_set_drvdata(vfd, fdp1);
2345 strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2347 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2348 if (ret) {
2349 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2350 goto release_m2m;
2353 v4l2_info(&fdp1->v4l2_dev,
2354 "Device registered as /dev/video%d\n", vfd->num);
2356 /* Power up the cells to read HW */
2357 pm_runtime_enable(&pdev->dev);
2358 pm_runtime_get_sync(fdp1->dev);
2360 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2361 switch (hw_version) {
2362 case FD1_IP_H3:
2363 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2364 break;
2365 case FD1_IP_M3W:
2366 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2367 break;
2368 default:
2369 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2370 hw_version);
2373 /* Allow the hw to sleep until an open call puts it to use */
2374 pm_runtime_put(fdp1->dev);
2376 return 0;
2378 release_m2m:
2379 v4l2_m2m_release(fdp1->m2m_dev);
2381 unreg_dev:
2382 v4l2_device_unregister(&fdp1->v4l2_dev);
2384 return ret;
2387 static int fdp1_remove(struct platform_device *pdev)
2389 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2391 v4l2_m2m_release(fdp1->m2m_dev);
2392 video_unregister_device(&fdp1->vfd);
2393 v4l2_device_unregister(&fdp1->v4l2_dev);
2394 pm_runtime_disable(&pdev->dev);
2396 return 0;
2399 static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2401 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2403 rcar_fcp_disable(fdp1->fcp);
2405 return 0;
2408 static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2410 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2412 /* Program in the static LUTs */
2413 fdp1_set_lut(fdp1);
2415 return rcar_fcp_enable(fdp1->fcp);
2418 static const struct dev_pm_ops fdp1_pm_ops = {
2419 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2420 fdp1_pm_runtime_resume,
2421 NULL)
2424 static const struct of_device_id fdp1_dt_ids[] = {
2425 { .compatible = "renesas,fdp1" },
2426 { },
2428 MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2430 static struct platform_driver fdp1_pdrv = {
2431 .probe = fdp1_probe,
2432 .remove = fdp1_remove,
2433 .driver = {
2434 .name = DRIVER_NAME,
2435 .of_match_table = fdp1_dt_ids,
2436 .pm = &fdp1_pm_ops,
2440 module_platform_driver(fdp1_pdrv);
2442 MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2443 MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
2444 MODULE_LICENSE("GPL");
2445 MODULE_ALIAS("platform:" DRIVER_NAME);