4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
57 * | o-----------------------o |
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
62 * | o----------------------o |
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
133 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
134 * types are passed around to enqueue and dequeue routines. Note that
135 * often the functions passed are simply wrappers around memcpy
138 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139 * there's an unused last parameter for the hosted side. In
140 * ESX, that parameter holds a buffer type.
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue
*queue
,
143 u64 queue_offset
, const void *src
,
144 size_t src_offset
, size_t size
);
145 typedef int vmci_memcpy_from_queue_func(void *dest
, size_t dest_offset
,
146 const struct vmci_queue
*queue
,
147 u64 queue_offset
, size_t size
);
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if
{
151 struct mutex __mutex
; /* Protects the queue. */
152 struct mutex
*mutex
; /* Shared by producer and consumer queues. */
153 size_t num_pages
; /* Number of pages incl. header. */
154 bool host
; /* Host or guest? */
159 } g
; /* Used by the guest. */
162 struct page
**header_page
;
163 } h
; /* Used by the host. */
168 * This structure is opaque to the clients.
171 struct vmci_handle handle
;
172 struct vmci_queue
*produce_q
;
173 struct vmci_queue
*consume_q
;
180 unsigned int blocked
;
181 unsigned int generation
;
182 wait_queue_head_t event
;
185 enum qp_broker_state
{
187 VMCIQPB_CREATED_NO_MEM
,
189 VMCIQPB_ATTACHED_NO_MEM
,
190 VMCIQPB_ATTACHED_MEM
,
191 VMCIQPB_SHUTDOWN_NO_MEM
,
192 VMCIQPB_SHUTDOWN_MEM
,
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197 _qpb->state == VMCIQPB_ATTACHED_MEM || \
198 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
201 * In the queue pair broker, we always use the guest point of view for
202 * the produce and consume queue values and references, e.g., the
203 * produce queue size stored is the guests produce queue size. The
204 * host endpoint will need to swap these around. The only exception is
205 * the local queue pairs on the host, in which case the host endpoint
206 * that creates the queue pair will have the right orientation, and
207 * the attaching host endpoint will need to swap.
210 struct list_head list_item
;
211 struct vmci_handle handle
;
219 struct qp_broker_entry
{
220 struct vmci_resource resource
;
224 enum qp_broker_state state
;
225 bool require_trusted_attach
;
226 bool created_by_trusted
;
227 bool vmci_page_files
; /* Created by VMX using VMCI page files */
228 struct vmci_queue
*produce_q
;
229 struct vmci_queue
*consume_q
;
230 struct vmci_queue_header saved_produce_q
;
231 struct vmci_queue_header saved_consume_q
;
232 vmci_event_release_cb wakeup_cb
;
234 void *local_mem
; /* Kernel memory for local queue pair */
237 struct qp_guest_endpoint
{
238 struct vmci_resource resource
;
243 struct ppn_set ppn_set
;
247 struct list_head head
;
248 struct mutex mutex
; /* Protect queue list. */
251 static struct qp_list qp_broker_list
= {
252 .head
= LIST_HEAD_INIT(qp_broker_list
.head
),
253 .mutex
= __MUTEX_INITIALIZER(qp_broker_list
.mutex
),
256 static struct qp_list qp_guest_endpoints
= {
257 .head
= LIST_HEAD_INIT(qp_guest_endpoints
.head
),
258 .mutex
= __MUTEX_INITIALIZER(qp_guest_endpoints
.mutex
),
261 #define INVALID_VMCI_GUEST_MEM_ID 0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
268 * Frees kernel VA space for a given queue and its queue header, and
269 * frees physical data pages.
271 static void qp_free_queue(void *q
, u64 size
)
273 struct vmci_queue
*queue
= q
;
278 /* Given size does not include header, so add in a page here. */
279 for (i
= 0; i
< DIV_ROUND_UP(size
, PAGE_SIZE
) + 1; i
++) {
280 dma_free_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
281 queue
->kernel_if
->u
.g
.vas
[i
],
282 queue
->kernel_if
->u
.g
.pas
[i
]);
290 * Allocates kernel queue pages of specified size with IOMMU mappings,
291 * plus space for the queue structure/kernel interface and the queue
294 static void *qp_alloc_queue(u64 size
, u32 flags
)
297 struct vmci_queue
*queue
;
300 size_t queue_size
= sizeof(*queue
) + sizeof(*queue
->kernel_if
);
301 const u64 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
304 (SIZE_MAX
- queue_size
) /
305 (sizeof(*queue
->kernel_if
->u
.g
.pas
) +
306 sizeof(*queue
->kernel_if
->u
.g
.vas
)))
309 pas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.pas
);
310 vas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.vas
);
311 queue_size
+= pas_size
+ vas_size
;
313 queue
= vmalloc(queue_size
);
317 queue
->q_header
= NULL
;
318 queue
->saved_header
= NULL
;
319 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
320 queue
->kernel_if
->mutex
= NULL
;
321 queue
->kernel_if
->num_pages
= num_pages
;
322 queue
->kernel_if
->u
.g
.pas
= (dma_addr_t
*)(queue
->kernel_if
+ 1);
323 queue
->kernel_if
->u
.g
.vas
=
324 (void **)((u8
*)queue
->kernel_if
->u
.g
.pas
+ pas_size
);
325 queue
->kernel_if
->host
= false;
327 for (i
= 0; i
< num_pages
; i
++) {
328 queue
->kernel_if
->u
.g
.vas
[i
] =
329 dma_alloc_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
330 &queue
->kernel_if
->u
.g
.pas
[i
],
332 if (!queue
->kernel_if
->u
.g
.vas
[i
]) {
333 /* Size excl. the header. */
334 qp_free_queue(queue
, i
* PAGE_SIZE
);
339 /* Queue header is the first page. */
340 queue
->q_header
= queue
->kernel_if
->u
.g
.vas
[0];
346 * Copies from a given buffer or iovector to a VMCI Queue. Uses
347 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
348 * by traversing the offset -> page translation structure for the queue.
349 * Assumes that offset + size does not wrap around in the queue.
351 static int __qp_memcpy_to_queue(struct vmci_queue
*queue
,
357 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
358 size_t bytes_copied
= 0;
360 while (bytes_copied
< size
) {
361 const u64 page_index
=
362 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
363 const size_t page_offset
=
364 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
369 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
371 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
374 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
375 /* Enough payload to fill up from this page. */
376 to_copy
= PAGE_SIZE
- page_offset
;
378 to_copy
= size
- bytes_copied
;
381 struct msghdr
*msg
= (struct msghdr
*)src
;
384 /* The iovec will track bytes_copied internally. */
385 err
= memcpy_from_msg((u8
*)va
+ page_offset
,
389 kunmap(kernel_if
->u
.h
.page
[page_index
]);
390 return VMCI_ERROR_INVALID_ARGS
;
393 memcpy((u8
*)va
+ page_offset
,
394 (u8
*)src
+ bytes_copied
, to_copy
);
397 bytes_copied
+= to_copy
;
399 kunmap(kernel_if
->u
.h
.page
[page_index
]);
406 * Copies to a given buffer or iovector from a VMCI Queue. Uses
407 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
408 * by traversing the offset -> page translation structure for the queue.
409 * Assumes that offset + size does not wrap around in the queue.
411 static int __qp_memcpy_from_queue(void *dest
,
412 const struct vmci_queue
*queue
,
417 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
418 size_t bytes_copied
= 0;
420 while (bytes_copied
< size
) {
421 const u64 page_index
=
422 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
423 const size_t page_offset
=
424 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
429 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
431 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
434 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
435 /* Enough payload to fill up this page. */
436 to_copy
= PAGE_SIZE
- page_offset
;
438 to_copy
= size
- bytes_copied
;
441 struct msghdr
*msg
= dest
;
444 /* The iovec will track bytes_copied internally. */
445 err
= memcpy_to_msg(msg
, (u8
*)va
+ page_offset
,
449 kunmap(kernel_if
->u
.h
.page
[page_index
]);
450 return VMCI_ERROR_INVALID_ARGS
;
453 memcpy((u8
*)dest
+ bytes_copied
,
454 (u8
*)va
+ page_offset
, to_copy
);
457 bytes_copied
+= to_copy
;
459 kunmap(kernel_if
->u
.h
.page
[page_index
]);
466 * Allocates two list of PPNs --- one for the pages in the produce queue,
467 * and the other for the pages in the consume queue. Intializes the list
468 * of PPNs with the page frame numbers of the KVA for the two queues (and
469 * the queue headers).
471 static int qp_alloc_ppn_set(void *prod_q
,
472 u64 num_produce_pages
,
474 u64 num_consume_pages
, struct ppn_set
*ppn_set
)
478 struct vmci_queue
*produce_q
= prod_q
;
479 struct vmci_queue
*consume_q
= cons_q
;
482 if (!produce_q
|| !num_produce_pages
|| !consume_q
||
483 !num_consume_pages
|| !ppn_set
)
484 return VMCI_ERROR_INVALID_ARGS
;
486 if (ppn_set
->initialized
)
487 return VMCI_ERROR_ALREADY_EXISTS
;
490 kmalloc(num_produce_pages
* sizeof(*produce_ppns
), GFP_KERNEL
);
492 return VMCI_ERROR_NO_MEM
;
495 kmalloc(num_consume_pages
* sizeof(*consume_ppns
), GFP_KERNEL
);
498 return VMCI_ERROR_NO_MEM
;
501 for (i
= 0; i
< num_produce_pages
; i
++) {
505 produce_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
506 pfn
= produce_ppns
[i
];
508 /* Fail allocation if PFN isn't supported by hypervisor. */
509 if (sizeof(pfn
) > sizeof(*produce_ppns
)
510 && pfn
!= produce_ppns
[i
])
514 for (i
= 0; i
< num_consume_pages
; i
++) {
518 consume_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
519 pfn
= consume_ppns
[i
];
521 /* Fail allocation if PFN isn't supported by hypervisor. */
522 if (sizeof(pfn
) > sizeof(*consume_ppns
)
523 && pfn
!= consume_ppns
[i
])
527 ppn_set
->num_produce_pages
= num_produce_pages
;
528 ppn_set
->num_consume_pages
= num_consume_pages
;
529 ppn_set
->produce_ppns
= produce_ppns
;
530 ppn_set
->consume_ppns
= consume_ppns
;
531 ppn_set
->initialized
= true;
537 return VMCI_ERROR_INVALID_ARGS
;
541 * Frees the two list of PPNs for a queue pair.
543 static void qp_free_ppn_set(struct ppn_set
*ppn_set
)
545 if (ppn_set
->initialized
) {
546 /* Do not call these functions on NULL inputs. */
547 kfree(ppn_set
->produce_ppns
);
548 kfree(ppn_set
->consume_ppns
);
550 memset(ppn_set
, 0, sizeof(*ppn_set
));
554 * Populates the list of PPNs in the hypercall structure with the PPNS
555 * of the produce queue and the consume queue.
557 static int qp_populate_ppn_set(u8
*call_buf
, const struct ppn_set
*ppn_set
)
559 memcpy(call_buf
, ppn_set
->produce_ppns
,
560 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
));
562 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
),
563 ppn_set
->consume_ppns
,
564 ppn_set
->num_consume_pages
* sizeof(*ppn_set
->consume_ppns
));
569 static int qp_memcpy_to_queue(struct vmci_queue
*queue
,
571 const void *src
, size_t src_offset
, size_t size
)
573 return __qp_memcpy_to_queue(queue
, queue_offset
,
574 (u8
*)src
+ src_offset
, size
, false);
577 static int qp_memcpy_from_queue(void *dest
,
579 const struct vmci_queue
*queue
,
580 u64 queue_offset
, size_t size
)
582 return __qp_memcpy_from_queue((u8
*)dest
+ dest_offset
,
583 queue
, queue_offset
, size
, false);
587 * Copies from a given iovec from a VMCI Queue.
589 static int qp_memcpy_to_queue_iov(struct vmci_queue
*queue
,
592 size_t src_offset
, size_t size
)
596 * We ignore src_offset because src is really a struct iovec * and will
597 * maintain offset internally.
599 return __qp_memcpy_to_queue(queue
, queue_offset
, msg
, size
, true);
603 * Copies to a given iovec from a VMCI Queue.
605 static int qp_memcpy_from_queue_iov(void *dest
,
607 const struct vmci_queue
*queue
,
608 u64 queue_offset
, size_t size
)
611 * We ignore dest_offset because dest is really a struct iovec * and
612 * will maintain offset internally.
614 return __qp_memcpy_from_queue(dest
, queue
, queue_offset
, size
, true);
618 * Allocates kernel VA space of specified size plus space for the queue
619 * and kernel interface. This is different from the guest queue allocator,
620 * because we do not allocate our own queue header/data pages here but
621 * share those of the guest.
623 static struct vmci_queue
*qp_host_alloc_queue(u64 size
)
625 struct vmci_queue
*queue
;
626 size_t queue_page_size
;
627 const u64 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
628 const size_t queue_size
= sizeof(*queue
) + sizeof(*(queue
->kernel_if
));
630 if (num_pages
> (SIZE_MAX
- queue_size
) /
631 sizeof(*queue
->kernel_if
->u
.h
.page
))
634 queue_page_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.h
.page
);
636 queue
= kzalloc(queue_size
+ queue_page_size
, GFP_KERNEL
);
638 queue
->q_header
= NULL
;
639 queue
->saved_header
= NULL
;
640 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
641 queue
->kernel_if
->host
= true;
642 queue
->kernel_if
->mutex
= NULL
;
643 queue
->kernel_if
->num_pages
= num_pages
;
644 queue
->kernel_if
->u
.h
.header_page
=
645 (struct page
**)((u8
*)queue
+ queue_size
);
646 queue
->kernel_if
->u
.h
.page
=
647 &queue
->kernel_if
->u
.h
.header_page
[1];
654 * Frees kernel memory for a given queue (header plus translation
657 static void qp_host_free_queue(struct vmci_queue
*queue
, u64 queue_size
)
663 * Initialize the mutex for the pair of queues. This mutex is used to
664 * protect the q_header and the buffer from changing out from under any
665 * users of either queue. Of course, it's only any good if the mutexes
666 * are actually acquired. Queue structure must lie on non-paged memory
667 * or we cannot guarantee access to the mutex.
669 static void qp_init_queue_mutex(struct vmci_queue
*produce_q
,
670 struct vmci_queue
*consume_q
)
673 * Only the host queue has shared state - the guest queues do not
674 * need to synchronize access using a queue mutex.
677 if (produce_q
->kernel_if
->host
) {
678 produce_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
679 consume_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
680 mutex_init(produce_q
->kernel_if
->mutex
);
685 * Cleans up the mutex for the pair of queues.
687 static void qp_cleanup_queue_mutex(struct vmci_queue
*produce_q
,
688 struct vmci_queue
*consume_q
)
690 if (produce_q
->kernel_if
->host
) {
691 produce_q
->kernel_if
->mutex
= NULL
;
692 consume_q
->kernel_if
->mutex
= NULL
;
697 * Acquire the mutex for the queue. Note that the produce_q and
698 * the consume_q share a mutex. So, only one of the two need to
699 * be passed in to this routine. Either will work just fine.
701 static void qp_acquire_queue_mutex(struct vmci_queue
*queue
)
703 if (queue
->kernel_if
->host
)
704 mutex_lock(queue
->kernel_if
->mutex
);
708 * Release the mutex for the queue. Note that the produce_q and
709 * the consume_q share a mutex. So, only one of the two need to
710 * be passed in to this routine. Either will work just fine.
712 static void qp_release_queue_mutex(struct vmci_queue
*queue
)
714 if (queue
->kernel_if
->host
)
715 mutex_unlock(queue
->kernel_if
->mutex
);
719 * Helper function to release pages in the PageStoreAttachInfo
720 * previously obtained using get_user_pages.
722 static void qp_release_pages(struct page
**pages
,
723 u64 num_pages
, bool dirty
)
727 for (i
= 0; i
< num_pages
; i
++) {
729 set_page_dirty(pages
[i
]);
737 * Lock the user pages referenced by the {produce,consume}Buffer
738 * struct into memory and populate the {produce,consume}Pages
739 * arrays in the attach structure with them.
741 static int qp_host_get_user_memory(u64 produce_uva
,
743 struct vmci_queue
*produce_q
,
744 struct vmci_queue
*consume_q
)
747 int err
= VMCI_SUCCESS
;
749 retval
= get_user_pages_fast((uintptr_t) produce_uva
,
750 produce_q
->kernel_if
->num_pages
, 1,
751 produce_q
->kernel_if
->u
.h
.header_page
);
752 if (retval
< produce_q
->kernel_if
->num_pages
) {
753 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
755 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
757 err
= VMCI_ERROR_NO_MEM
;
761 retval
= get_user_pages_fast((uintptr_t) consume_uva
,
762 consume_q
->kernel_if
->num_pages
, 1,
763 consume_q
->kernel_if
->u
.h
.header_page
);
764 if (retval
< consume_q
->kernel_if
->num_pages
) {
765 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
767 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
769 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
770 produce_q
->kernel_if
->num_pages
, false);
771 err
= VMCI_ERROR_NO_MEM
;
779 * Registers the specification of the user pages used for backing a queue
780 * pair. Enough information to map in pages is stored in the OS specific
781 * part of the struct vmci_queue structure.
783 static int qp_host_register_user_memory(struct vmci_qp_page_store
*page_store
,
784 struct vmci_queue
*produce_q
,
785 struct vmci_queue
*consume_q
)
791 * The new style and the old style mapping only differs in
792 * that we either get a single or two UVAs, so we split the
793 * single UVA range at the appropriate spot.
795 produce_uva
= page_store
->pages
;
796 consume_uva
= page_store
->pages
+
797 produce_q
->kernel_if
->num_pages
* PAGE_SIZE
;
798 return qp_host_get_user_memory(produce_uva
, consume_uva
, produce_q
,
803 * Releases and removes the references to user pages stored in the attach
804 * struct. Pages are released from the page cache and may become
807 static void qp_host_unregister_user_memory(struct vmci_queue
*produce_q
,
808 struct vmci_queue
*consume_q
)
810 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
811 produce_q
->kernel_if
->num_pages
, true);
812 memset(produce_q
->kernel_if
->u
.h
.header_page
, 0,
813 sizeof(*produce_q
->kernel_if
->u
.h
.header_page
) *
814 produce_q
->kernel_if
->num_pages
);
815 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
816 consume_q
->kernel_if
->num_pages
, true);
817 memset(consume_q
->kernel_if
->u
.h
.header_page
, 0,
818 sizeof(*consume_q
->kernel_if
->u
.h
.header_page
) *
819 consume_q
->kernel_if
->num_pages
);
823 * Once qp_host_register_user_memory has been performed on a
824 * queue, the queue pair headers can be mapped into the
825 * kernel. Once mapped, they must be unmapped with
826 * qp_host_unmap_queues prior to calling
827 * qp_host_unregister_user_memory.
830 static int qp_host_map_queues(struct vmci_queue
*produce_q
,
831 struct vmci_queue
*consume_q
)
835 if (!produce_q
->q_header
|| !consume_q
->q_header
) {
836 struct page
*headers
[2];
838 if (produce_q
->q_header
!= consume_q
->q_header
)
839 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
841 if (produce_q
->kernel_if
->u
.h
.header_page
== NULL
||
842 *produce_q
->kernel_if
->u
.h
.header_page
== NULL
)
843 return VMCI_ERROR_UNAVAILABLE
;
845 headers
[0] = *produce_q
->kernel_if
->u
.h
.header_page
;
846 headers
[1] = *consume_q
->kernel_if
->u
.h
.header_page
;
848 produce_q
->q_header
= vmap(headers
, 2, VM_MAP
, PAGE_KERNEL
);
849 if (produce_q
->q_header
!= NULL
) {
850 consume_q
->q_header
=
851 (struct vmci_queue_header
*)((u8
*)
852 produce_q
->q_header
+
854 result
= VMCI_SUCCESS
;
856 pr_warn("vmap failed\n");
857 result
= VMCI_ERROR_NO_MEM
;
860 result
= VMCI_SUCCESS
;
867 * Unmaps previously mapped queue pair headers from the kernel.
868 * Pages are unpinned.
870 static int qp_host_unmap_queues(u32 gid
,
871 struct vmci_queue
*produce_q
,
872 struct vmci_queue
*consume_q
)
874 if (produce_q
->q_header
) {
875 if (produce_q
->q_header
< consume_q
->q_header
)
876 vunmap(produce_q
->q_header
);
878 vunmap(consume_q
->q_header
);
880 produce_q
->q_header
= NULL
;
881 consume_q
->q_header
= NULL
;
888 * Finds the entry in the list corresponding to a given handle. Assumes
889 * that the list is locked.
891 static struct qp_entry
*qp_list_find(struct qp_list
*qp_list
,
892 struct vmci_handle handle
)
894 struct qp_entry
*entry
;
896 if (vmci_handle_is_invalid(handle
))
899 list_for_each_entry(entry
, &qp_list
->head
, list_item
) {
900 if (vmci_handle_is_equal(entry
->handle
, handle
))
908 * Finds the entry in the list corresponding to a given handle.
910 static struct qp_guest_endpoint
*
911 qp_guest_handle_to_entry(struct vmci_handle handle
)
913 struct qp_guest_endpoint
*entry
;
914 struct qp_entry
*qp
= qp_list_find(&qp_guest_endpoints
, handle
);
916 entry
= qp
? container_of(
917 qp
, struct qp_guest_endpoint
, qp
) : NULL
;
922 * Finds the entry in the list corresponding to a given handle.
924 static struct qp_broker_entry
*
925 qp_broker_handle_to_entry(struct vmci_handle handle
)
927 struct qp_broker_entry
*entry
;
928 struct qp_entry
*qp
= qp_list_find(&qp_broker_list
, handle
);
930 entry
= qp
? container_of(
931 qp
, struct qp_broker_entry
, qp
) : NULL
;
936 * Dispatches a queue pair event message directly into the local event
939 static int qp_notify_peer_local(bool attach
, struct vmci_handle handle
)
941 u32 context_id
= vmci_get_context_id();
942 struct vmci_event_qp ev
;
944 ev
.msg
.hdr
.dst
= vmci_make_handle(context_id
, VMCI_EVENT_HANDLER
);
945 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
946 VMCI_CONTEXT_RESOURCE_ID
);
947 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
948 ev
.msg
.event_data
.event
=
949 attach
? VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
950 ev
.payload
.peer_id
= context_id
;
951 ev
.payload
.handle
= handle
;
953 return vmci_event_dispatch(&ev
.msg
.hdr
);
957 * Allocates and initializes a qp_guest_endpoint structure.
958 * Allocates a queue_pair rid (and handle) iff the given entry has
959 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
960 * are reserved handles. Assumes that the QP list mutex is held
963 static struct qp_guest_endpoint
*
964 qp_guest_endpoint_create(struct vmci_handle handle
,
973 struct qp_guest_endpoint
*entry
;
974 /* One page each for the queue headers. */
975 const u64 num_ppns
= DIV_ROUND_UP(produce_size
, PAGE_SIZE
) +
976 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 2;
978 if (vmci_handle_is_invalid(handle
)) {
979 u32 context_id
= vmci_get_context_id();
981 handle
= vmci_make_handle(context_id
, VMCI_INVALID_ID
);
984 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
986 entry
->qp
.peer
= peer
;
987 entry
->qp
.flags
= flags
;
988 entry
->qp
.produce_size
= produce_size
;
989 entry
->qp
.consume_size
= consume_size
;
990 entry
->qp
.ref_count
= 0;
991 entry
->num_ppns
= num_ppns
;
992 entry
->produce_q
= produce_q
;
993 entry
->consume_q
= consume_q
;
994 INIT_LIST_HEAD(&entry
->qp
.list_item
);
996 /* Add resource obj */
997 result
= vmci_resource_add(&entry
->resource
,
998 VMCI_RESOURCE_TYPE_QPAIR_GUEST
,
1000 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1001 if ((result
!= VMCI_SUCCESS
) ||
1002 qp_list_find(&qp_guest_endpoints
, entry
->qp
.handle
)) {
1003 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1004 handle
.context
, handle
.resource
, result
);
1013 * Frees a qp_guest_endpoint structure.
1015 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint
*entry
)
1017 qp_free_ppn_set(&entry
->ppn_set
);
1018 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1019 qp_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
1020 qp_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
1021 /* Unlink from resource hash table and free callback */
1022 vmci_resource_remove(&entry
->resource
);
1028 * Helper to make a queue_pairAlloc hypercall when the driver is
1029 * supporting a guest device.
1031 static int qp_alloc_hypercall(const struct qp_guest_endpoint
*entry
)
1033 struct vmci_qp_alloc_msg
*alloc_msg
;
1037 if (!entry
|| entry
->num_ppns
<= 2)
1038 return VMCI_ERROR_INVALID_ARGS
;
1040 msg_size
= sizeof(*alloc_msg
) +
1041 (size_t) entry
->num_ppns
* sizeof(u32
);
1042 alloc_msg
= kmalloc(msg_size
, GFP_KERNEL
);
1044 return VMCI_ERROR_NO_MEM
;
1046 alloc_msg
->hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1047 VMCI_QUEUEPAIR_ALLOC
);
1048 alloc_msg
->hdr
.src
= VMCI_ANON_SRC_HANDLE
;
1049 alloc_msg
->hdr
.payload_size
= msg_size
- VMCI_DG_HEADERSIZE
;
1050 alloc_msg
->handle
= entry
->qp
.handle
;
1051 alloc_msg
->peer
= entry
->qp
.peer
;
1052 alloc_msg
->flags
= entry
->qp
.flags
;
1053 alloc_msg
->produce_size
= entry
->qp
.produce_size
;
1054 alloc_msg
->consume_size
= entry
->qp
.consume_size
;
1055 alloc_msg
->num_ppns
= entry
->num_ppns
;
1057 result
= qp_populate_ppn_set((u8
*)alloc_msg
+ sizeof(*alloc_msg
),
1059 if (result
== VMCI_SUCCESS
)
1060 result
= vmci_send_datagram(&alloc_msg
->hdr
);
1068 * Helper to make a queue_pairDetach hypercall when the driver is
1069 * supporting a guest device.
1071 static int qp_detatch_hypercall(struct vmci_handle handle
)
1073 struct vmci_qp_detach_msg detach_msg
;
1075 detach_msg
.hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1076 VMCI_QUEUEPAIR_DETACH
);
1077 detach_msg
.hdr
.src
= VMCI_ANON_SRC_HANDLE
;
1078 detach_msg
.hdr
.payload_size
= sizeof(handle
);
1079 detach_msg
.handle
= handle
;
1081 return vmci_send_datagram(&detach_msg
.hdr
);
1085 * Adds the given entry to the list. Assumes that the list is locked.
1087 static void qp_list_add_entry(struct qp_list
*qp_list
, struct qp_entry
*entry
)
1090 list_add(&entry
->list_item
, &qp_list
->head
);
1094 * Removes the given entry from the list. Assumes that the list is locked.
1096 static void qp_list_remove_entry(struct qp_list
*qp_list
,
1097 struct qp_entry
*entry
)
1100 list_del(&entry
->list_item
);
1104 * Helper for VMCI queue_pair detach interface. Frees the physical
1105 * pages for the queue pair.
1107 static int qp_detatch_guest_work(struct vmci_handle handle
)
1110 struct qp_guest_endpoint
*entry
;
1111 u32 ref_count
= ~0; /* To avoid compiler warning below */
1113 mutex_lock(&qp_guest_endpoints
.mutex
);
1115 entry
= qp_guest_handle_to_entry(handle
);
1117 mutex_unlock(&qp_guest_endpoints
.mutex
);
1118 return VMCI_ERROR_NOT_FOUND
;
1121 if (entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1122 result
= VMCI_SUCCESS
;
1124 if (entry
->qp
.ref_count
> 1) {
1125 result
= qp_notify_peer_local(false, handle
);
1127 * We can fail to notify a local queuepair
1128 * because we can't allocate. We still want
1129 * to release the entry if that happens, so
1130 * don't bail out yet.
1134 result
= qp_detatch_hypercall(handle
);
1135 if (result
< VMCI_SUCCESS
) {
1137 * We failed to notify a non-local queuepair.
1138 * That other queuepair might still be
1139 * accessing the shared memory, so don't
1140 * release the entry yet. It will get cleaned
1141 * up by VMCIqueue_pair_Exit() if necessary
1142 * (assuming we are going away, otherwise why
1146 mutex_unlock(&qp_guest_endpoints
.mutex
);
1152 * If we get here then we either failed to notify a local queuepair, or
1153 * we succeeded in all cases. Release the entry if required.
1156 entry
->qp
.ref_count
--;
1157 if (entry
->qp
.ref_count
== 0)
1158 qp_list_remove_entry(&qp_guest_endpoints
, &entry
->qp
);
1160 /* If we didn't remove the entry, this could change once we unlock. */
1162 ref_count
= entry
->qp
.ref_count
;
1164 mutex_unlock(&qp_guest_endpoints
.mutex
);
1167 qp_guest_endpoint_destroy(entry
);
1173 * This functions handles the actual allocation of a VMCI queue
1174 * pair guest endpoint. Allocates physical pages for the queue
1175 * pair. It makes OS dependent calls through generic wrappers.
1177 static int qp_alloc_guest_work(struct vmci_handle
*handle
,
1178 struct vmci_queue
**produce_q
,
1180 struct vmci_queue
**consume_q
,
1186 const u64 num_produce_pages
=
1187 DIV_ROUND_UP(produce_size
, PAGE_SIZE
) + 1;
1188 const u64 num_consume_pages
=
1189 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 1;
1190 void *my_produce_q
= NULL
;
1191 void *my_consume_q
= NULL
;
1193 struct qp_guest_endpoint
*queue_pair_entry
= NULL
;
1195 if (priv_flags
!= VMCI_NO_PRIVILEGE_FLAGS
)
1196 return VMCI_ERROR_NO_ACCESS
;
1198 mutex_lock(&qp_guest_endpoints
.mutex
);
1200 queue_pair_entry
= qp_guest_handle_to_entry(*handle
);
1201 if (queue_pair_entry
) {
1202 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1203 /* Local attach case. */
1204 if (queue_pair_entry
->qp
.ref_count
> 1) {
1205 pr_devel("Error attempting to attach more than once\n");
1206 result
= VMCI_ERROR_UNAVAILABLE
;
1207 goto error_keep_entry
;
1210 if (queue_pair_entry
->qp
.produce_size
!= consume_size
||
1211 queue_pair_entry
->qp
.consume_size
!=
1213 queue_pair_entry
->qp
.flags
!=
1214 (flags
& ~VMCI_QPFLAG_ATTACH_ONLY
)) {
1215 pr_devel("Error mismatched queue pair in local attach\n");
1216 result
= VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1217 goto error_keep_entry
;
1221 * Do a local attach. We swap the consume and
1222 * produce queues for the attacher and deliver
1225 result
= qp_notify_peer_local(true, *handle
);
1226 if (result
< VMCI_SUCCESS
)
1227 goto error_keep_entry
;
1229 my_produce_q
= queue_pair_entry
->consume_q
;
1230 my_consume_q
= queue_pair_entry
->produce_q
;
1234 result
= VMCI_ERROR_ALREADY_EXISTS
;
1235 goto error_keep_entry
;
1238 my_produce_q
= qp_alloc_queue(produce_size
, flags
);
1239 if (!my_produce_q
) {
1240 pr_warn("Error allocating pages for produce queue\n");
1241 result
= VMCI_ERROR_NO_MEM
;
1245 my_consume_q
= qp_alloc_queue(consume_size
, flags
);
1246 if (!my_consume_q
) {
1247 pr_warn("Error allocating pages for consume queue\n");
1248 result
= VMCI_ERROR_NO_MEM
;
1252 queue_pair_entry
= qp_guest_endpoint_create(*handle
, peer
, flags
,
1253 produce_size
, consume_size
,
1254 my_produce_q
, my_consume_q
);
1255 if (!queue_pair_entry
) {
1256 pr_warn("Error allocating memory in %s\n", __func__
);
1257 result
= VMCI_ERROR_NO_MEM
;
1261 result
= qp_alloc_ppn_set(my_produce_q
, num_produce_pages
, my_consume_q
,
1263 &queue_pair_entry
->ppn_set
);
1264 if (result
< VMCI_SUCCESS
) {
1265 pr_warn("qp_alloc_ppn_set failed\n");
1270 * It's only necessary to notify the host if this queue pair will be
1271 * attached to from another context.
1273 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1274 /* Local create case. */
1275 u32 context_id
= vmci_get_context_id();
1278 * Enforce similar checks on local queue pairs as we
1279 * do for regular ones. The handle's context must
1280 * match the creator or attacher context id (here they
1281 * are both the current context id) and the
1282 * attach-only flag cannot exist during create. We
1283 * also ensure specified peer is this context or an
1286 if (queue_pair_entry
->qp
.handle
.context
!= context_id
||
1287 (queue_pair_entry
->qp
.peer
!= VMCI_INVALID_ID
&&
1288 queue_pair_entry
->qp
.peer
!= context_id
)) {
1289 result
= VMCI_ERROR_NO_ACCESS
;
1293 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_ATTACH_ONLY
) {
1294 result
= VMCI_ERROR_NOT_FOUND
;
1298 result
= qp_alloc_hypercall(queue_pair_entry
);
1299 if (result
< VMCI_SUCCESS
) {
1300 pr_warn("qp_alloc_hypercall result = %d\n", result
);
1305 qp_init_queue_mutex((struct vmci_queue
*)my_produce_q
,
1306 (struct vmci_queue
*)my_consume_q
);
1308 qp_list_add_entry(&qp_guest_endpoints
, &queue_pair_entry
->qp
);
1311 queue_pair_entry
->qp
.ref_count
++;
1312 *handle
= queue_pair_entry
->qp
.handle
;
1313 *produce_q
= (struct vmci_queue
*)my_produce_q
;
1314 *consume_q
= (struct vmci_queue
*)my_consume_q
;
1317 * We should initialize the queue pair header pages on a local
1318 * queue pair create. For non-local queue pairs, the
1319 * hypervisor initializes the header pages in the create step.
1321 if ((queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) &&
1322 queue_pair_entry
->qp
.ref_count
== 1) {
1323 vmci_q_header_init((*produce_q
)->q_header
, *handle
);
1324 vmci_q_header_init((*consume_q
)->q_header
, *handle
);
1327 mutex_unlock(&qp_guest_endpoints
.mutex
);
1329 return VMCI_SUCCESS
;
1332 mutex_unlock(&qp_guest_endpoints
.mutex
);
1333 if (queue_pair_entry
) {
1334 /* The queues will be freed inside the destroy routine. */
1335 qp_guest_endpoint_destroy(queue_pair_entry
);
1337 qp_free_queue(my_produce_q
, produce_size
);
1338 qp_free_queue(my_consume_q
, consume_size
);
1343 /* This path should only be used when an existing entry was found. */
1344 mutex_unlock(&qp_guest_endpoints
.mutex
);
1349 * The first endpoint issuing a queue pair allocation will create the state
1350 * of the queue pair in the queue pair broker.
1352 * If the creator is a guest, it will associate a VMX virtual address range
1353 * with the queue pair as specified by the page_store. For compatibility with
1354 * older VMX'en, that would use a separate step to set the VMX virtual
1355 * address range, the virtual address range can be registered later using
1356 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1359 * If the creator is the host, a page_store of NULL should be used as well,
1360 * since the host is not able to supply a page store for the queue pair.
1362 * For older VMX and host callers, the queue pair will be created in the
1363 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1364 * created in VMCOQPB_CREATED_MEM state.
1366 static int qp_broker_create(struct vmci_handle handle
,
1372 struct vmci_qp_page_store
*page_store
,
1373 struct vmci_ctx
*context
,
1374 vmci_event_release_cb wakeup_cb
,
1375 void *client_data
, struct qp_broker_entry
**ent
)
1377 struct qp_broker_entry
*entry
= NULL
;
1378 const u32 context_id
= vmci_ctx_get_id(context
);
1379 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1381 u64 guest_produce_size
;
1382 u64 guest_consume_size
;
1384 /* Do not create if the caller asked not to. */
1385 if (flags
& VMCI_QPFLAG_ATTACH_ONLY
)
1386 return VMCI_ERROR_NOT_FOUND
;
1389 * Creator's context ID should match handle's context ID or the creator
1390 * must allow the context in handle's context ID as the "peer".
1392 if (handle
.context
!= context_id
&& handle
.context
!= peer
)
1393 return VMCI_ERROR_NO_ACCESS
;
1395 if (VMCI_CONTEXT_IS_VM(context_id
) && VMCI_CONTEXT_IS_VM(peer
))
1396 return VMCI_ERROR_DST_UNREACHABLE
;
1399 * Creator's context ID for local queue pairs should match the
1400 * peer, if a peer is specified.
1402 if (is_local
&& peer
!= VMCI_INVALID_ID
&& context_id
!= peer
)
1403 return VMCI_ERROR_NO_ACCESS
;
1405 entry
= kzalloc(sizeof(*entry
), GFP_ATOMIC
);
1407 return VMCI_ERROR_NO_MEM
;
1409 if (vmci_ctx_get_id(context
) == VMCI_HOST_CONTEXT_ID
&& !is_local
) {
1411 * The queue pair broker entry stores values from the guest
1412 * point of view, so a creating host side endpoint should swap
1413 * produce and consume values -- unless it is a local queue
1414 * pair, in which case no swapping is necessary, since the local
1415 * attacher will swap queues.
1418 guest_produce_size
= consume_size
;
1419 guest_consume_size
= produce_size
;
1421 guest_produce_size
= produce_size
;
1422 guest_consume_size
= consume_size
;
1425 entry
->qp
.handle
= handle
;
1426 entry
->qp
.peer
= peer
;
1427 entry
->qp
.flags
= flags
;
1428 entry
->qp
.produce_size
= guest_produce_size
;
1429 entry
->qp
.consume_size
= guest_consume_size
;
1430 entry
->qp
.ref_count
= 1;
1431 entry
->create_id
= context_id
;
1432 entry
->attach_id
= VMCI_INVALID_ID
;
1433 entry
->state
= VMCIQPB_NEW
;
1434 entry
->require_trusted_attach
=
1435 !!(context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
);
1436 entry
->created_by_trusted
=
1437 !!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
);
1438 entry
->vmci_page_files
= false;
1439 entry
->wakeup_cb
= wakeup_cb
;
1440 entry
->client_data
= client_data
;
1441 entry
->produce_q
= qp_host_alloc_queue(guest_produce_size
);
1442 if (entry
->produce_q
== NULL
) {
1443 result
= VMCI_ERROR_NO_MEM
;
1446 entry
->consume_q
= qp_host_alloc_queue(guest_consume_size
);
1447 if (entry
->consume_q
== NULL
) {
1448 result
= VMCI_ERROR_NO_MEM
;
1452 qp_init_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1454 INIT_LIST_HEAD(&entry
->qp
.list_item
);
1459 entry
->local_mem
= kcalloc(QPE_NUM_PAGES(entry
->qp
),
1460 PAGE_SIZE
, GFP_KERNEL
);
1461 if (entry
->local_mem
== NULL
) {
1462 result
= VMCI_ERROR_NO_MEM
;
1465 entry
->state
= VMCIQPB_CREATED_MEM
;
1466 entry
->produce_q
->q_header
= entry
->local_mem
;
1467 tmp
= (u8
*)entry
->local_mem
+ PAGE_SIZE
*
1468 (DIV_ROUND_UP(entry
->qp
.produce_size
, PAGE_SIZE
) + 1);
1469 entry
->consume_q
->q_header
= (struct vmci_queue_header
*)tmp
;
1470 } else if (page_store
) {
1472 * The VMX already initialized the queue pair headers, so no
1473 * need for the kernel side to do that.
1475 result
= qp_host_register_user_memory(page_store
,
1478 if (result
< VMCI_SUCCESS
)
1481 entry
->state
= VMCIQPB_CREATED_MEM
;
1484 * A create without a page_store may be either a host
1485 * side create (in which case we are waiting for the
1486 * guest side to supply the memory) or an old style
1487 * queue pair create (in which case we will expect a
1488 * set page store call as the next step).
1490 entry
->state
= VMCIQPB_CREATED_NO_MEM
;
1493 qp_list_add_entry(&qp_broker_list
, &entry
->qp
);
1497 /* Add to resource obj */
1498 result
= vmci_resource_add(&entry
->resource
,
1499 VMCI_RESOURCE_TYPE_QPAIR_HOST
,
1501 if (result
!= VMCI_SUCCESS
) {
1502 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1503 handle
.context
, handle
.resource
, result
);
1507 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1509 vmci_q_header_init(entry
->produce_q
->q_header
,
1511 vmci_q_header_init(entry
->consume_q
->q_header
,
1515 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1517 return VMCI_SUCCESS
;
1520 if (entry
!= NULL
) {
1521 qp_host_free_queue(entry
->produce_q
, guest_produce_size
);
1522 qp_host_free_queue(entry
->consume_q
, guest_consume_size
);
1530 * Enqueues an event datagram to notify the peer VM attached to
1531 * the given queue pair handle about attach/detach event by the
1532 * given VM. Returns Payload size of datagram enqueued on
1533 * success, error code otherwise.
1535 static int qp_notify_peer(bool attach
,
1536 struct vmci_handle handle
,
1541 struct vmci_event_qp ev
;
1543 if (vmci_handle_is_invalid(handle
) || my_id
== VMCI_INVALID_ID
||
1544 peer_id
== VMCI_INVALID_ID
)
1545 return VMCI_ERROR_INVALID_ARGS
;
1548 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1549 * number of pending events from the hypervisor to a given VM
1550 * otherwise a rogue VM could do an arbitrary number of attach
1551 * and detach operations causing memory pressure in the host
1555 ev
.msg
.hdr
.dst
= vmci_make_handle(peer_id
, VMCI_EVENT_HANDLER
);
1556 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1557 VMCI_CONTEXT_RESOURCE_ID
);
1558 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
1559 ev
.msg
.event_data
.event
= attach
?
1560 VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
1561 ev
.payload
.handle
= handle
;
1562 ev
.payload
.peer_id
= my_id
;
1564 rv
= vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID
,
1565 &ev
.msg
.hdr
, false);
1566 if (rv
< VMCI_SUCCESS
)
1567 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1568 attach
? "ATTACH" : "DETACH", peer_id
);
1574 * The second endpoint issuing a queue pair allocation will attach to
1575 * the queue pair registered with the queue pair broker.
1577 * If the attacher is a guest, it will associate a VMX virtual address
1578 * range with the queue pair as specified by the page_store. At this
1579 * point, the already attach host endpoint may start using the queue
1580 * pair, and an attach event is sent to it. For compatibility with
1581 * older VMX'en, that used a separate step to set the VMX virtual
1582 * address range, the virtual address range can be registered later
1583 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1584 * NULL should be used, and the attach event will be generated once
1585 * the actual page store has been set.
1587 * If the attacher is the host, a page_store of NULL should be used as
1588 * well, since the page store information is already set by the guest.
1590 * For new VMX and host callers, the queue pair will be moved to the
1591 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1592 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1594 static int qp_broker_attach(struct qp_broker_entry
*entry
,
1600 struct vmci_qp_page_store
*page_store
,
1601 struct vmci_ctx
*context
,
1602 vmci_event_release_cb wakeup_cb
,
1604 struct qp_broker_entry
**ent
)
1606 const u32 context_id
= vmci_ctx_get_id(context
);
1607 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1610 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
1611 entry
->state
!= VMCIQPB_CREATED_MEM
)
1612 return VMCI_ERROR_UNAVAILABLE
;
1615 if (!(entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) ||
1616 context_id
!= entry
->create_id
) {
1617 return VMCI_ERROR_INVALID_ARGS
;
1619 } else if (context_id
== entry
->create_id
||
1620 context_id
== entry
->attach_id
) {
1621 return VMCI_ERROR_ALREADY_EXISTS
;
1624 if (VMCI_CONTEXT_IS_VM(context_id
) &&
1625 VMCI_CONTEXT_IS_VM(entry
->create_id
))
1626 return VMCI_ERROR_DST_UNREACHABLE
;
1629 * If we are attaching from a restricted context then the queuepair
1630 * must have been created by a trusted endpoint.
1632 if ((context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
) &&
1633 !entry
->created_by_trusted
)
1634 return VMCI_ERROR_NO_ACCESS
;
1637 * If we are attaching to a queuepair that was created by a restricted
1638 * context then we must be trusted.
1640 if (entry
->require_trusted_attach
&&
1641 (!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
)))
1642 return VMCI_ERROR_NO_ACCESS
;
1645 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1646 * control check is not performed.
1648 if (entry
->qp
.peer
!= VMCI_INVALID_ID
&& entry
->qp
.peer
!= context_id
)
1649 return VMCI_ERROR_NO_ACCESS
;
1651 if (entry
->create_id
== VMCI_HOST_CONTEXT_ID
) {
1653 * Do not attach if the caller doesn't support Host Queue Pairs
1654 * and a host created this queue pair.
1657 if (!vmci_ctx_supports_host_qp(context
))
1658 return VMCI_ERROR_INVALID_RESOURCE
;
1660 } else if (context_id
== VMCI_HOST_CONTEXT_ID
) {
1661 struct vmci_ctx
*create_context
;
1662 bool supports_host_qp
;
1665 * Do not attach a host to a user created queue pair if that
1666 * user doesn't support host queue pair end points.
1669 create_context
= vmci_ctx_get(entry
->create_id
);
1670 supports_host_qp
= vmci_ctx_supports_host_qp(create_context
);
1671 vmci_ctx_put(create_context
);
1673 if (!supports_host_qp
)
1674 return VMCI_ERROR_INVALID_RESOURCE
;
1677 if ((entry
->qp
.flags
& ~VMCI_QP_ASYMM
) != (flags
& ~VMCI_QP_ASYMM_PEER
))
1678 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1680 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1682 * The queue pair broker entry stores values from the guest
1683 * point of view, so an attaching guest should match the values
1684 * stored in the entry.
1687 if (entry
->qp
.produce_size
!= produce_size
||
1688 entry
->qp
.consume_size
!= consume_size
) {
1689 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1691 } else if (entry
->qp
.produce_size
!= consume_size
||
1692 entry
->qp
.consume_size
!= produce_size
) {
1693 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1696 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1698 * If a guest attached to a queue pair, it will supply
1699 * the backing memory. If this is a pre NOVMVM vmx,
1700 * the backing memory will be supplied by calling
1701 * vmci_qp_broker_set_page_store() following the
1702 * return of the vmci_qp_broker_alloc() call. If it is
1703 * a vmx of version NOVMVM or later, the page store
1704 * must be supplied as part of the
1705 * vmci_qp_broker_alloc call. Under all circumstances
1706 * must the initially created queue pair not have any
1707 * memory associated with it already.
1710 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
)
1711 return VMCI_ERROR_INVALID_ARGS
;
1713 if (page_store
!= NULL
) {
1715 * Patch up host state to point to guest
1716 * supplied memory. The VMX already
1717 * initialized the queue pair headers, so no
1718 * need for the kernel side to do that.
1721 result
= qp_host_register_user_memory(page_store
,
1724 if (result
< VMCI_SUCCESS
)
1727 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1729 entry
->state
= VMCIQPB_ATTACHED_NO_MEM
;
1731 } else if (entry
->state
== VMCIQPB_CREATED_NO_MEM
) {
1733 * The host side is attempting to attach to a queue
1734 * pair that doesn't have any memory associated with
1735 * it. This must be a pre NOVMVM vmx that hasn't set
1736 * the page store information yet, or a quiesced VM.
1739 return VMCI_ERROR_UNAVAILABLE
;
1741 /* The host side has successfully attached to a queue pair. */
1742 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1745 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
1747 qp_notify_peer(true, entry
->qp
.handle
, context_id
,
1749 if (result
< VMCI_SUCCESS
)
1750 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1751 entry
->create_id
, entry
->qp
.handle
.context
,
1752 entry
->qp
.handle
.resource
);
1755 entry
->attach_id
= context_id
;
1756 entry
->qp
.ref_count
++;
1758 entry
->wakeup_cb
= wakeup_cb
;
1759 entry
->client_data
= client_data
;
1763 * When attaching to local queue pairs, the context already has
1764 * an entry tracking the queue pair, so don't add another one.
1767 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1772 return VMCI_SUCCESS
;
1776 * queue_pair_Alloc for use when setting up queue pair endpoints
1779 static int qp_broker_alloc(struct vmci_handle handle
,
1785 struct vmci_qp_page_store
*page_store
,
1786 struct vmci_ctx
*context
,
1787 vmci_event_release_cb wakeup_cb
,
1789 struct qp_broker_entry
**ent
,
1792 const u32 context_id
= vmci_ctx_get_id(context
);
1794 struct qp_broker_entry
*entry
= NULL
;
1795 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1798 if (vmci_handle_is_invalid(handle
) ||
1799 (flags
& ~VMCI_QP_ALL_FLAGS
) || is_local
||
1800 !(produce_size
|| consume_size
) ||
1801 !context
|| context_id
== VMCI_INVALID_ID
||
1802 handle
.context
== VMCI_INVALID_ID
) {
1803 return VMCI_ERROR_INVALID_ARGS
;
1806 if (page_store
&& !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store
))
1807 return VMCI_ERROR_INVALID_ARGS
;
1810 * In the initial argument check, we ensure that non-vmkernel hosts
1811 * are not allowed to create local queue pairs.
1814 mutex_lock(&qp_broker_list
.mutex
);
1816 if (!is_local
&& vmci_ctx_qp_exists(context
, handle
)) {
1817 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1818 context_id
, handle
.context
, handle
.resource
);
1819 mutex_unlock(&qp_broker_list
.mutex
);
1820 return VMCI_ERROR_ALREADY_EXISTS
;
1823 if (handle
.resource
!= VMCI_INVALID_ID
)
1824 entry
= qp_broker_handle_to_entry(handle
);
1829 qp_broker_create(handle
, peer
, flags
, priv_flags
,
1830 produce_size
, consume_size
, page_store
,
1831 context
, wakeup_cb
, client_data
, ent
);
1835 qp_broker_attach(entry
, peer
, flags
, priv_flags
,
1836 produce_size
, consume_size
, page_store
,
1837 context
, wakeup_cb
, client_data
, ent
);
1840 mutex_unlock(&qp_broker_list
.mutex
);
1843 *swap
= (context_id
== VMCI_HOST_CONTEXT_ID
) &&
1844 !(create
&& is_local
);
1850 * This function implements the kernel API for allocating a queue
1853 static int qp_alloc_host_work(struct vmci_handle
*handle
,
1854 struct vmci_queue
**produce_q
,
1856 struct vmci_queue
**consume_q
,
1861 vmci_event_release_cb wakeup_cb
,
1864 struct vmci_handle new_handle
;
1865 struct vmci_ctx
*context
;
1866 struct qp_broker_entry
*entry
;
1870 if (vmci_handle_is_invalid(*handle
)) {
1871 new_handle
= vmci_make_handle(
1872 VMCI_HOST_CONTEXT_ID
, VMCI_INVALID_ID
);
1874 new_handle
= *handle
;
1876 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1879 qp_broker_alloc(new_handle
, peer
, flags
, priv_flags
,
1880 produce_size
, consume_size
, NULL
, context
,
1881 wakeup_cb
, client_data
, &entry
, &swap
);
1882 if (result
== VMCI_SUCCESS
) {
1885 * If this is a local queue pair, the attacher
1886 * will swap around produce and consume
1890 *produce_q
= entry
->consume_q
;
1891 *consume_q
= entry
->produce_q
;
1893 *produce_q
= entry
->produce_q
;
1894 *consume_q
= entry
->consume_q
;
1897 *handle
= vmci_resource_handle(&entry
->resource
);
1899 *handle
= VMCI_INVALID_HANDLE
;
1900 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1903 vmci_ctx_put(context
);
1908 * Allocates a VMCI queue_pair. Only checks validity of input
1909 * arguments. The real work is done in the host or guest
1910 * specific function.
1912 int vmci_qp_alloc(struct vmci_handle
*handle
,
1913 struct vmci_queue
**produce_q
,
1915 struct vmci_queue
**consume_q
,
1920 bool guest_endpoint
,
1921 vmci_event_release_cb wakeup_cb
,
1924 if (!handle
|| !produce_q
|| !consume_q
||
1925 (!produce_size
&& !consume_size
) || (flags
& ~VMCI_QP_ALL_FLAGS
))
1926 return VMCI_ERROR_INVALID_ARGS
;
1928 if (guest_endpoint
) {
1929 return qp_alloc_guest_work(handle
, produce_q
,
1930 produce_size
, consume_q
,
1934 return qp_alloc_host_work(handle
, produce_q
,
1935 produce_size
, consume_q
,
1936 consume_size
, peer
, flags
,
1937 priv_flags
, wakeup_cb
, client_data
);
1942 * This function implements the host kernel API for detaching from
1945 static int qp_detatch_host_work(struct vmci_handle handle
)
1948 struct vmci_ctx
*context
;
1950 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1952 result
= vmci_qp_broker_detach(handle
, context
);
1954 vmci_ctx_put(context
);
1959 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1960 * Real work is done in the host or guest specific function.
1962 static int qp_detatch(struct vmci_handle handle
, bool guest_endpoint
)
1964 if (vmci_handle_is_invalid(handle
))
1965 return VMCI_ERROR_INVALID_ARGS
;
1968 return qp_detatch_guest_work(handle
);
1970 return qp_detatch_host_work(handle
);
1974 * Returns the entry from the head of the list. Assumes that the list is
1977 static struct qp_entry
*qp_list_get_head(struct qp_list
*qp_list
)
1979 if (!list_empty(&qp_list
->head
)) {
1980 struct qp_entry
*entry
=
1981 list_first_entry(&qp_list
->head
, struct qp_entry
,
1989 void vmci_qp_broker_exit(void)
1991 struct qp_entry
*entry
;
1992 struct qp_broker_entry
*be
;
1994 mutex_lock(&qp_broker_list
.mutex
);
1996 while ((entry
= qp_list_get_head(&qp_broker_list
))) {
1997 be
= (struct qp_broker_entry
*)entry
;
1999 qp_list_remove_entry(&qp_broker_list
, entry
);
2003 mutex_unlock(&qp_broker_list
.mutex
);
2007 * Requests that a queue pair be allocated with the VMCI queue
2008 * pair broker. Allocates a queue pair entry if one does not
2009 * exist. Attaches to one if it exists, and retrieves the page
2010 * files backing that queue_pair. Assumes that the queue pair
2011 * broker lock is held.
2013 int vmci_qp_broker_alloc(struct vmci_handle handle
,
2019 struct vmci_qp_page_store
*page_store
,
2020 struct vmci_ctx
*context
)
2022 return qp_broker_alloc(handle
, peer
, flags
, priv_flags
,
2023 produce_size
, consume_size
,
2024 page_store
, context
, NULL
, NULL
, NULL
, NULL
);
2028 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2029 * step to add the UVAs of the VMX mapping of the queue pair. This function
2030 * provides backwards compatibility with such VMX'en, and takes care of
2031 * registering the page store for a queue pair previously allocated by the
2032 * VMX during create or attach. This function will move the queue pair state
2033 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2034 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2035 * attached state with memory, the queue pair is ready to be used by the
2036 * host peer, and an attached event will be generated.
2038 * Assumes that the queue pair broker lock is held.
2040 * This function is only used by the hosted platform, since there is no
2041 * issue with backwards compatibility for vmkernel.
2043 int vmci_qp_broker_set_page_store(struct vmci_handle handle
,
2046 struct vmci_ctx
*context
)
2048 struct qp_broker_entry
*entry
;
2050 const u32 context_id
= vmci_ctx_get_id(context
);
2052 if (vmci_handle_is_invalid(handle
) || !context
||
2053 context_id
== VMCI_INVALID_ID
)
2054 return VMCI_ERROR_INVALID_ARGS
;
2057 * We only support guest to host queue pairs, so the VMX must
2058 * supply UVAs for the mapped page files.
2061 if (produce_uva
== 0 || consume_uva
== 0)
2062 return VMCI_ERROR_INVALID_ARGS
;
2064 mutex_lock(&qp_broker_list
.mutex
);
2066 if (!vmci_ctx_qp_exists(context
, handle
)) {
2067 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2068 context_id
, handle
.context
, handle
.resource
);
2069 result
= VMCI_ERROR_NOT_FOUND
;
2073 entry
= qp_broker_handle_to_entry(handle
);
2075 result
= VMCI_ERROR_NOT_FOUND
;
2080 * If I'm the owner then I can set the page store.
2082 * Or, if a host created the queue_pair and I'm the attached peer
2083 * then I can set the page store.
2085 if (entry
->create_id
!= context_id
&&
2086 (entry
->create_id
!= VMCI_HOST_CONTEXT_ID
||
2087 entry
->attach_id
!= context_id
)) {
2088 result
= VMCI_ERROR_QUEUEPAIR_NOTOWNER
;
2092 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
2093 entry
->state
!= VMCIQPB_ATTACHED_NO_MEM
) {
2094 result
= VMCI_ERROR_UNAVAILABLE
;
2098 result
= qp_host_get_user_memory(produce_uva
, consume_uva
,
2099 entry
->produce_q
, entry
->consume_q
);
2100 if (result
< VMCI_SUCCESS
)
2103 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2104 if (result
< VMCI_SUCCESS
) {
2105 qp_host_unregister_user_memory(entry
->produce_q
,
2110 if (entry
->state
== VMCIQPB_CREATED_NO_MEM
)
2111 entry
->state
= VMCIQPB_CREATED_MEM
;
2113 entry
->state
= VMCIQPB_ATTACHED_MEM
;
2115 entry
->vmci_page_files
= true;
2117 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
2119 qp_notify_peer(true, handle
, context_id
, entry
->create_id
);
2120 if (result
< VMCI_SUCCESS
) {
2121 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2122 entry
->create_id
, entry
->qp
.handle
.context
,
2123 entry
->qp
.handle
.resource
);
2127 result
= VMCI_SUCCESS
;
2129 mutex_unlock(&qp_broker_list
.mutex
);
2134 * Resets saved queue headers for the given QP broker
2135 * entry. Should be used when guest memory becomes available
2136 * again, or the guest detaches.
2138 static void qp_reset_saved_headers(struct qp_broker_entry
*entry
)
2140 entry
->produce_q
->saved_header
= NULL
;
2141 entry
->consume_q
->saved_header
= NULL
;
2145 * The main entry point for detaching from a queue pair registered with the
2146 * queue pair broker. If more than one endpoint is attached to the queue
2147 * pair, the first endpoint will mainly decrement a reference count and
2148 * generate a notification to its peer. The last endpoint will clean up
2149 * the queue pair state registered with the broker.
2151 * When a guest endpoint detaches, it will unmap and unregister the guest
2152 * memory backing the queue pair. If the host is still attached, it will
2153 * no longer be able to access the queue pair content.
2155 * If the queue pair is already in a state where there is no memory
2156 * registered for the queue pair (any *_NO_MEM state), it will transition to
2157 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2158 * endpoint is the first of two endpoints to detach. If the host endpoint is
2159 * the first out of two to detach, the queue pair will move to the
2160 * VMCIQPB_SHUTDOWN_MEM state.
2162 int vmci_qp_broker_detach(struct vmci_handle handle
, struct vmci_ctx
*context
)
2164 struct qp_broker_entry
*entry
;
2165 const u32 context_id
= vmci_ctx_get_id(context
);
2167 bool is_local
= false;
2170 if (vmci_handle_is_invalid(handle
) || !context
||
2171 context_id
== VMCI_INVALID_ID
) {
2172 return VMCI_ERROR_INVALID_ARGS
;
2175 mutex_lock(&qp_broker_list
.mutex
);
2177 if (!vmci_ctx_qp_exists(context
, handle
)) {
2178 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2179 context_id
, handle
.context
, handle
.resource
);
2180 result
= VMCI_ERROR_NOT_FOUND
;
2184 entry
= qp_broker_handle_to_entry(handle
);
2186 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2187 context_id
, handle
.context
, handle
.resource
);
2188 result
= VMCI_ERROR_NOT_FOUND
;
2192 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2193 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2197 if (context_id
== entry
->create_id
) {
2198 peer_id
= entry
->attach_id
;
2199 entry
->create_id
= VMCI_INVALID_ID
;
2201 peer_id
= entry
->create_id
;
2202 entry
->attach_id
= VMCI_INVALID_ID
;
2204 entry
->qp
.ref_count
--;
2206 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2208 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2209 bool headers_mapped
;
2212 * Pre NOVMVM vmx'en may detach from a queue pair
2213 * before setting the page store, and in that case
2214 * there is no user memory to detach from. Also, more
2215 * recent VMX'en may detach from a queue pair in the
2219 qp_acquire_queue_mutex(entry
->produce_q
);
2220 headers_mapped
= entry
->produce_q
->q_header
||
2221 entry
->consume_q
->q_header
;
2222 if (QPBROKERSTATE_HAS_MEM(entry
)) {
2224 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID
,
2227 if (result
< VMCI_SUCCESS
)
2228 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2229 handle
.context
, handle
.resource
,
2232 if (entry
->vmci_page_files
)
2233 qp_host_unregister_user_memory(entry
->produce_q
,
2237 qp_host_unregister_user_memory(entry
->produce_q
,
2243 if (!headers_mapped
)
2244 qp_reset_saved_headers(entry
);
2246 qp_release_queue_mutex(entry
->produce_q
);
2248 if (!headers_mapped
&& entry
->wakeup_cb
)
2249 entry
->wakeup_cb(entry
->client_data
);
2252 if (entry
->wakeup_cb
) {
2253 entry
->wakeup_cb
= NULL
;
2254 entry
->client_data
= NULL
;
2258 if (entry
->qp
.ref_count
== 0) {
2259 qp_list_remove_entry(&qp_broker_list
, &entry
->qp
);
2262 kfree(entry
->local_mem
);
2264 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
2265 qp_host_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
2266 qp_host_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
2267 /* Unlink from resource hash table and free callback */
2268 vmci_resource_remove(&entry
->resource
);
2272 vmci_ctx_qp_destroy(context
, handle
);
2274 qp_notify_peer(false, handle
, context_id
, peer_id
);
2275 if (context_id
== VMCI_HOST_CONTEXT_ID
&&
2276 QPBROKERSTATE_HAS_MEM(entry
)) {
2277 entry
->state
= VMCIQPB_SHUTDOWN_MEM
;
2279 entry
->state
= VMCIQPB_SHUTDOWN_NO_MEM
;
2283 vmci_ctx_qp_destroy(context
, handle
);
2286 result
= VMCI_SUCCESS
;
2288 mutex_unlock(&qp_broker_list
.mutex
);
2293 * Establishes the necessary mappings for a queue pair given a
2294 * reference to the queue pair guest memory. This is usually
2295 * called when a guest is unquiesced and the VMX is allowed to
2296 * map guest memory once again.
2298 int vmci_qp_broker_map(struct vmci_handle handle
,
2299 struct vmci_ctx
*context
,
2302 struct qp_broker_entry
*entry
;
2303 const u32 context_id
= vmci_ctx_get_id(context
);
2304 bool is_local
= false;
2307 if (vmci_handle_is_invalid(handle
) || !context
||
2308 context_id
== VMCI_INVALID_ID
)
2309 return VMCI_ERROR_INVALID_ARGS
;
2311 mutex_lock(&qp_broker_list
.mutex
);
2313 if (!vmci_ctx_qp_exists(context
, handle
)) {
2314 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2315 context_id
, handle
.context
, handle
.resource
);
2316 result
= VMCI_ERROR_NOT_FOUND
;
2320 entry
= qp_broker_handle_to_entry(handle
);
2322 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2323 context_id
, handle
.context
, handle
.resource
);
2324 result
= VMCI_ERROR_NOT_FOUND
;
2328 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2329 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2333 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2334 result
= VMCI_SUCCESS
;
2336 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2337 struct vmci_qp_page_store page_store
;
2339 page_store
.pages
= guest_mem
;
2340 page_store
.len
= QPE_NUM_PAGES(entry
->qp
);
2342 qp_acquire_queue_mutex(entry
->produce_q
);
2343 qp_reset_saved_headers(entry
);
2345 qp_host_register_user_memory(&page_store
,
2348 qp_release_queue_mutex(entry
->produce_q
);
2349 if (result
== VMCI_SUCCESS
) {
2350 /* Move state from *_NO_MEM to *_MEM */
2354 if (entry
->wakeup_cb
)
2355 entry
->wakeup_cb(entry
->client_data
);
2360 mutex_unlock(&qp_broker_list
.mutex
);
2365 * Saves a snapshot of the queue headers for the given QP broker
2366 * entry. Should be used when guest memory is unmapped.
2368 * VMCI_SUCCESS on success, appropriate error code if guest memory
2369 * can't be accessed..
2371 static int qp_save_headers(struct qp_broker_entry
*entry
)
2375 if (entry
->produce_q
->saved_header
!= NULL
&&
2376 entry
->consume_q
->saved_header
!= NULL
) {
2378 * If the headers have already been saved, we don't need to do
2379 * it again, and we don't want to map in the headers
2383 return VMCI_SUCCESS
;
2386 if (NULL
== entry
->produce_q
->q_header
||
2387 NULL
== entry
->consume_q
->q_header
) {
2388 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2389 if (result
< VMCI_SUCCESS
)
2393 memcpy(&entry
->saved_produce_q
, entry
->produce_q
->q_header
,
2394 sizeof(entry
->saved_produce_q
));
2395 entry
->produce_q
->saved_header
= &entry
->saved_produce_q
;
2396 memcpy(&entry
->saved_consume_q
, entry
->consume_q
->q_header
,
2397 sizeof(entry
->saved_consume_q
));
2398 entry
->consume_q
->saved_header
= &entry
->saved_consume_q
;
2400 return VMCI_SUCCESS
;
2404 * Removes all references to the guest memory of a given queue pair, and
2405 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2406 * called when a VM is being quiesced where access to guest memory should
2409 int vmci_qp_broker_unmap(struct vmci_handle handle
,
2410 struct vmci_ctx
*context
,
2413 struct qp_broker_entry
*entry
;
2414 const u32 context_id
= vmci_ctx_get_id(context
);
2415 bool is_local
= false;
2418 if (vmci_handle_is_invalid(handle
) || !context
||
2419 context_id
== VMCI_INVALID_ID
)
2420 return VMCI_ERROR_INVALID_ARGS
;
2422 mutex_lock(&qp_broker_list
.mutex
);
2424 if (!vmci_ctx_qp_exists(context
, handle
)) {
2425 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2426 context_id
, handle
.context
, handle
.resource
);
2427 result
= VMCI_ERROR_NOT_FOUND
;
2431 entry
= qp_broker_handle_to_entry(handle
);
2433 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2434 context_id
, handle
.context
, handle
.resource
);
2435 result
= VMCI_ERROR_NOT_FOUND
;
2439 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2440 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2444 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2446 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2447 qp_acquire_queue_mutex(entry
->produce_q
);
2448 result
= qp_save_headers(entry
);
2449 if (result
< VMCI_SUCCESS
)
2450 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2451 handle
.context
, handle
.resource
, result
);
2453 qp_host_unmap_queues(gid
, entry
->produce_q
, entry
->consume_q
);
2456 * On hosted, when we unmap queue pairs, the VMX will also
2457 * unmap the guest memory, so we invalidate the previously
2458 * registered memory. If the queue pair is mapped again at a
2459 * later point in time, we will need to reregister the user
2460 * memory with a possibly new user VA.
2462 qp_host_unregister_user_memory(entry
->produce_q
,
2466 * Move state from *_MEM to *_NO_MEM.
2470 qp_release_queue_mutex(entry
->produce_q
);
2473 result
= VMCI_SUCCESS
;
2476 mutex_unlock(&qp_broker_list
.mutex
);
2481 * Destroys all guest queue pair endpoints. If active guest queue
2482 * pairs still exist, hypercalls to attempt detach from these
2483 * queue pairs will be made. Any failure to detach is silently
2486 void vmci_qp_guest_endpoints_exit(void)
2488 struct qp_entry
*entry
;
2489 struct qp_guest_endpoint
*ep
;
2491 mutex_lock(&qp_guest_endpoints
.mutex
);
2493 while ((entry
= qp_list_get_head(&qp_guest_endpoints
))) {
2494 ep
= (struct qp_guest_endpoint
*)entry
;
2496 /* Don't make a hypercall for local queue_pairs. */
2497 if (!(entry
->flags
& VMCI_QPFLAG_LOCAL
))
2498 qp_detatch_hypercall(entry
->handle
);
2500 /* We cannot fail the exit, so let's reset ref_count. */
2501 entry
->ref_count
= 0;
2502 qp_list_remove_entry(&qp_guest_endpoints
, entry
);
2504 qp_guest_endpoint_destroy(ep
);
2507 mutex_unlock(&qp_guest_endpoints
.mutex
);
2511 * Helper routine that will lock the queue pair before subsequent
2513 * Note: Non-blocking on the host side is currently only implemented in ESX.
2514 * Since non-blocking isn't yet implemented on the host personality we
2515 * have no reason to acquire a spin lock. So to avoid the use of an
2516 * unnecessary lock only acquire the mutex if we can block.
2518 static void qp_lock(const struct vmci_qp
*qpair
)
2520 qp_acquire_queue_mutex(qpair
->produce_q
);
2524 * Helper routine that unlocks the queue pair after calling
2527 static void qp_unlock(const struct vmci_qp
*qpair
)
2529 qp_release_queue_mutex(qpair
->produce_q
);
2533 * The queue headers may not be mapped at all times. If a queue is
2534 * currently not mapped, it will be attempted to do so.
2536 static int qp_map_queue_headers(struct vmci_queue
*produce_q
,
2537 struct vmci_queue
*consume_q
)
2541 if (NULL
== produce_q
->q_header
|| NULL
== consume_q
->q_header
) {
2542 result
= qp_host_map_queues(produce_q
, consume_q
);
2543 if (result
< VMCI_SUCCESS
)
2544 return (produce_q
->saved_header
&&
2545 consume_q
->saved_header
) ?
2546 VMCI_ERROR_QUEUEPAIR_NOT_READY
:
2547 VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2550 return VMCI_SUCCESS
;
2554 * Helper routine that will retrieve the produce and consume
2555 * headers of a given queue pair. If the guest memory of the
2556 * queue pair is currently not available, the saved queue headers
2557 * will be returned, if these are available.
2559 static int qp_get_queue_headers(const struct vmci_qp
*qpair
,
2560 struct vmci_queue_header
**produce_q_header
,
2561 struct vmci_queue_header
**consume_q_header
)
2565 result
= qp_map_queue_headers(qpair
->produce_q
, qpair
->consume_q
);
2566 if (result
== VMCI_SUCCESS
) {
2567 *produce_q_header
= qpair
->produce_q
->q_header
;
2568 *consume_q_header
= qpair
->consume_q
->q_header
;
2569 } else if (qpair
->produce_q
->saved_header
&&
2570 qpair
->consume_q
->saved_header
) {
2571 *produce_q_header
= qpair
->produce_q
->saved_header
;
2572 *consume_q_header
= qpair
->consume_q
->saved_header
;
2573 result
= VMCI_SUCCESS
;
2580 * Callback from VMCI queue pair broker indicating that a queue
2581 * pair that was previously not ready, now either is ready or
2584 static int qp_wakeup_cb(void *client_data
)
2586 struct vmci_qp
*qpair
= (struct vmci_qp
*)client_data
;
2589 while (qpair
->blocked
> 0) {
2591 qpair
->generation
++;
2592 wake_up(&qpair
->event
);
2596 return VMCI_SUCCESS
;
2600 * Makes the calling thread wait for the queue pair to become
2601 * ready for host side access. Returns true when thread is
2602 * woken up after queue pair state change, false otherwise.
2604 static bool qp_wait_for_ready_queue(struct vmci_qp
*qpair
)
2606 unsigned int generation
;
2609 generation
= qpair
->generation
;
2611 wait_event(qpair
->event
, generation
!= qpair
->generation
);
2618 * Enqueues a given buffer to the produce queue using the provided
2619 * function. As many bytes as possible (space available in the queue)
2620 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2621 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2622 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2623 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2624 * an error occured when accessing the buffer,
2625 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2626 * available. Otherwise, the number of bytes written to the queue is
2627 * returned. Updates the tail pointer of the produce queue.
2629 static ssize_t
qp_enqueue_locked(struct vmci_queue
*produce_q
,
2630 struct vmci_queue
*consume_q
,
2631 const u64 produce_q_size
,
2634 vmci_memcpy_to_queue_func memcpy_to_queue
)
2641 result
= qp_map_queue_headers(produce_q
, consume_q
);
2642 if (unlikely(result
!= VMCI_SUCCESS
))
2645 free_space
= vmci_q_header_free_space(produce_q
->q_header
,
2646 consume_q
->q_header
,
2648 if (free_space
== 0)
2649 return VMCI_ERROR_QUEUEPAIR_NOSPACE
;
2651 if (free_space
< VMCI_SUCCESS
)
2652 return (ssize_t
) free_space
;
2654 written
= (size_t) (free_space
> buf_size
? buf_size
: free_space
);
2655 tail
= vmci_q_header_producer_tail(produce_q
->q_header
);
2656 if (likely(tail
+ written
< produce_q_size
)) {
2657 result
= memcpy_to_queue(produce_q
, tail
, buf
, 0, written
);
2659 /* Tail pointer wraps around. */
2661 const size_t tmp
= (size_t) (produce_q_size
- tail
);
2663 result
= memcpy_to_queue(produce_q
, tail
, buf
, 0, tmp
);
2664 if (result
>= VMCI_SUCCESS
)
2665 result
= memcpy_to_queue(produce_q
, 0, buf
, tmp
,
2669 if (result
< VMCI_SUCCESS
)
2672 vmci_q_header_add_producer_tail(produce_q
->q_header
, written
,
2678 * Dequeues data (if available) from the given consume queue. Writes data
2679 * to the user provided buffer using the provided function.
2680 * Assumes the queue->mutex has been acquired.
2682 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2683 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2684 * (as defined by the queue size).
2685 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2686 * Otherwise the number of bytes dequeued is returned.
2688 * Updates the head pointer of the consume queue.
2690 static ssize_t
qp_dequeue_locked(struct vmci_queue
*produce_q
,
2691 struct vmci_queue
*consume_q
,
2692 const u64 consume_q_size
,
2695 vmci_memcpy_from_queue_func memcpy_from_queue
,
2696 bool update_consumer
)
2703 result
= qp_map_queue_headers(produce_q
, consume_q
);
2704 if (unlikely(result
!= VMCI_SUCCESS
))
2707 buf_ready
= vmci_q_header_buf_ready(consume_q
->q_header
,
2708 produce_q
->q_header
,
2711 return VMCI_ERROR_QUEUEPAIR_NODATA
;
2713 if (buf_ready
< VMCI_SUCCESS
)
2714 return (ssize_t
) buf_ready
;
2716 read
= (size_t) (buf_ready
> buf_size
? buf_size
: buf_ready
);
2717 head
= vmci_q_header_consumer_head(produce_q
->q_header
);
2718 if (likely(head
+ read
< consume_q_size
)) {
2719 result
= memcpy_from_queue(buf
, 0, consume_q
, head
, read
);
2721 /* Head pointer wraps around. */
2723 const size_t tmp
= (size_t) (consume_q_size
- head
);
2725 result
= memcpy_from_queue(buf
, 0, consume_q
, head
, tmp
);
2726 if (result
>= VMCI_SUCCESS
)
2727 result
= memcpy_from_queue(buf
, tmp
, consume_q
, 0,
2732 if (result
< VMCI_SUCCESS
)
2735 if (update_consumer
)
2736 vmci_q_header_add_consumer_head(produce_q
->q_header
,
2737 read
, consume_q_size
);
2743 * vmci_qpair_alloc() - Allocates a queue pair.
2744 * @qpair: Pointer for the new vmci_qp struct.
2745 * @handle: Handle to track the resource.
2746 * @produce_qsize: Desired size of the producer queue.
2747 * @consume_qsize: Desired size of the consumer queue.
2748 * @peer: ContextID of the peer.
2749 * @flags: VMCI flags.
2750 * @priv_flags: VMCI priviledge flags.
2752 * This is the client interface for allocating the memory for a
2753 * vmci_qp structure and then attaching to the underlying
2754 * queue. If an error occurs allocating the memory for the
2755 * vmci_qp structure no attempt is made to attach. If an
2756 * error occurs attaching, then the structure is freed.
2758 int vmci_qpair_alloc(struct vmci_qp
**qpair
,
2759 struct vmci_handle
*handle
,
2766 struct vmci_qp
*my_qpair
;
2768 struct vmci_handle src
= VMCI_INVALID_HANDLE
;
2769 struct vmci_handle dst
= vmci_make_handle(peer
, VMCI_INVALID_ID
);
2770 enum vmci_route route
;
2771 vmci_event_release_cb wakeup_cb
;
2775 * Restrict the size of a queuepair. The device already
2776 * enforces a limit on the total amount of memory that can be
2777 * allocated to queuepairs for a guest. However, we try to
2778 * allocate this memory before we make the queuepair
2779 * allocation hypercall. On Linux, we allocate each page
2780 * separately, which means rather than fail, the guest will
2781 * thrash while it tries to allocate, and will become
2782 * increasingly unresponsive to the point where it appears to
2783 * be hung. So we place a limit on the size of an individual
2784 * queuepair here, and leave the device to enforce the
2785 * restriction on total queuepair memory. (Note that this
2786 * doesn't prevent all cases; a user with only this much
2787 * physical memory could still get into trouble.) The error
2788 * used by the device is NO_RESOURCES, so use that here too.
2791 if (produce_qsize
+ consume_qsize
< max(produce_qsize
, consume_qsize
) ||
2792 produce_qsize
+ consume_qsize
> VMCI_MAX_GUEST_QP_MEMORY
)
2793 return VMCI_ERROR_NO_RESOURCES
;
2795 retval
= vmci_route(&src
, &dst
, false, &route
);
2796 if (retval
< VMCI_SUCCESS
)
2797 route
= vmci_guest_code_active() ?
2798 VMCI_ROUTE_AS_GUEST
: VMCI_ROUTE_AS_HOST
;
2800 if (flags
& (VMCI_QPFLAG_NONBLOCK
| VMCI_QPFLAG_PINNED
)) {
2801 pr_devel("NONBLOCK OR PINNED set");
2802 return VMCI_ERROR_INVALID_ARGS
;
2805 my_qpair
= kzalloc(sizeof(*my_qpair
), GFP_KERNEL
);
2807 return VMCI_ERROR_NO_MEM
;
2809 my_qpair
->produce_q_size
= produce_qsize
;
2810 my_qpair
->consume_q_size
= consume_qsize
;
2811 my_qpair
->peer
= peer
;
2812 my_qpair
->flags
= flags
;
2813 my_qpair
->priv_flags
= priv_flags
;
2818 if (VMCI_ROUTE_AS_HOST
== route
) {
2819 my_qpair
->guest_endpoint
= false;
2820 if (!(flags
& VMCI_QPFLAG_LOCAL
)) {
2821 my_qpair
->blocked
= 0;
2822 my_qpair
->generation
= 0;
2823 init_waitqueue_head(&my_qpair
->event
);
2824 wakeup_cb
= qp_wakeup_cb
;
2825 client_data
= (void *)my_qpair
;
2828 my_qpair
->guest_endpoint
= true;
2831 retval
= vmci_qp_alloc(handle
,
2832 &my_qpair
->produce_q
,
2833 my_qpair
->produce_q_size
,
2834 &my_qpair
->consume_q
,
2835 my_qpair
->consume_q_size
,
2838 my_qpair
->priv_flags
,
2839 my_qpair
->guest_endpoint
,
2840 wakeup_cb
, client_data
);
2842 if (retval
< VMCI_SUCCESS
) {
2848 my_qpair
->handle
= *handle
;
2852 EXPORT_SYMBOL_GPL(vmci_qpair_alloc
);
2855 * vmci_qpair_detach() - Detatches the client from a queue pair.
2856 * @qpair: Reference of a pointer to the qpair struct.
2858 * This is the client interface for detaching from a VMCIQPair.
2859 * Note that this routine will free the memory allocated for the
2860 * vmci_qp structure too.
2862 int vmci_qpair_detach(struct vmci_qp
**qpair
)
2865 struct vmci_qp
*old_qpair
;
2867 if (!qpair
|| !(*qpair
))
2868 return VMCI_ERROR_INVALID_ARGS
;
2871 result
= qp_detatch(old_qpair
->handle
, old_qpair
->guest_endpoint
);
2874 * The guest can fail to detach for a number of reasons, and
2875 * if it does so, it will cleanup the entry (if there is one).
2876 * The host can fail too, but it won't cleanup the entry
2877 * immediately, it will do that later when the context is
2878 * freed. Either way, we need to release the qpair struct
2879 * here; there isn't much the caller can do, and we don't want
2883 memset(old_qpair
, 0, sizeof(*old_qpair
));
2884 old_qpair
->handle
= VMCI_INVALID_HANDLE
;
2885 old_qpair
->peer
= VMCI_INVALID_ID
;
2891 EXPORT_SYMBOL_GPL(vmci_qpair_detach
);
2894 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2895 * @qpair: Pointer to the queue pair struct.
2896 * @producer_tail: Reference used for storing producer tail index.
2897 * @consumer_head: Reference used for storing the consumer head index.
2899 * This is the client interface for getting the current indexes of the
2900 * QPair from the point of the view of the caller as the producer.
2902 int vmci_qpair_get_produce_indexes(const struct vmci_qp
*qpair
,
2906 struct vmci_queue_header
*produce_q_header
;
2907 struct vmci_queue_header
*consume_q_header
;
2911 return VMCI_ERROR_INVALID_ARGS
;
2915 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2916 if (result
== VMCI_SUCCESS
)
2917 vmci_q_header_get_pointers(produce_q_header
, consume_q_header
,
2918 producer_tail
, consumer_head
);
2921 if (result
== VMCI_SUCCESS
&&
2922 ((producer_tail
&& *producer_tail
>= qpair
->produce_q_size
) ||
2923 (consumer_head
&& *consumer_head
>= qpair
->produce_q_size
)))
2924 return VMCI_ERROR_INVALID_SIZE
;
2928 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes
);
2931 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2932 * @qpair: Pointer to the queue pair struct.
2933 * @consumer_tail: Reference used for storing consumer tail index.
2934 * @producer_head: Reference used for storing the producer head index.
2936 * This is the client interface for getting the current indexes of the
2937 * QPair from the point of the view of the caller as the consumer.
2939 int vmci_qpair_get_consume_indexes(const struct vmci_qp
*qpair
,
2943 struct vmci_queue_header
*produce_q_header
;
2944 struct vmci_queue_header
*consume_q_header
;
2948 return VMCI_ERROR_INVALID_ARGS
;
2952 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2953 if (result
== VMCI_SUCCESS
)
2954 vmci_q_header_get_pointers(consume_q_header
, produce_q_header
,
2955 consumer_tail
, producer_head
);
2958 if (result
== VMCI_SUCCESS
&&
2959 ((consumer_tail
&& *consumer_tail
>= qpair
->consume_q_size
) ||
2960 (producer_head
&& *producer_head
>= qpair
->consume_q_size
)))
2961 return VMCI_ERROR_INVALID_SIZE
;
2965 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes
);
2968 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2969 * @qpair: Pointer to the queue pair struct.
2971 * This is the client interface for getting the amount of free
2972 * space in the QPair from the point of the view of the caller as
2973 * the producer which is the common case. Returns < 0 if err, else
2974 * available bytes into which data can be enqueued if > 0.
2976 s64
vmci_qpair_produce_free_space(const struct vmci_qp
*qpair
)
2978 struct vmci_queue_header
*produce_q_header
;
2979 struct vmci_queue_header
*consume_q_header
;
2983 return VMCI_ERROR_INVALID_ARGS
;
2987 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2988 if (result
== VMCI_SUCCESS
)
2989 result
= vmci_q_header_free_space(produce_q_header
,
2991 qpair
->produce_q_size
);
2999 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space
);
3002 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3003 * @qpair: Pointer to the queue pair struct.
3005 * This is the client interface for getting the amount of free
3006 * space in the QPair from the point of the view of the caller as
3007 * the consumer which is not the common case. Returns < 0 if err, else
3008 * available bytes into which data can be enqueued if > 0.
3010 s64
vmci_qpair_consume_free_space(const struct vmci_qp
*qpair
)
3012 struct vmci_queue_header
*produce_q_header
;
3013 struct vmci_queue_header
*consume_q_header
;
3017 return VMCI_ERROR_INVALID_ARGS
;
3021 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3022 if (result
== VMCI_SUCCESS
)
3023 result
= vmci_q_header_free_space(consume_q_header
,
3025 qpair
->consume_q_size
);
3033 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space
);
3036 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3038 * @qpair: Pointer to the queue pair struct.
3040 * This is the client interface for getting the amount of
3041 * enqueued data in the QPair from the point of the view of the
3042 * caller as the producer which is not the common case. Returns < 0 if err,
3043 * else available bytes that may be read.
3045 s64
vmci_qpair_produce_buf_ready(const struct vmci_qp
*qpair
)
3047 struct vmci_queue_header
*produce_q_header
;
3048 struct vmci_queue_header
*consume_q_header
;
3052 return VMCI_ERROR_INVALID_ARGS
;
3056 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3057 if (result
== VMCI_SUCCESS
)
3058 result
= vmci_q_header_buf_ready(produce_q_header
,
3060 qpair
->produce_q_size
);
3068 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready
);
3071 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3073 * @qpair: Pointer to the queue pair struct.
3075 * This is the client interface for getting the amount of
3076 * enqueued data in the QPair from the point of the view of the
3077 * caller as the consumer which is the normal case. Returns < 0 if err,
3078 * else available bytes that may be read.
3080 s64
vmci_qpair_consume_buf_ready(const struct vmci_qp
*qpair
)
3082 struct vmci_queue_header
*produce_q_header
;
3083 struct vmci_queue_header
*consume_q_header
;
3087 return VMCI_ERROR_INVALID_ARGS
;
3091 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3092 if (result
== VMCI_SUCCESS
)
3093 result
= vmci_q_header_buf_ready(consume_q_header
,
3095 qpair
->consume_q_size
);
3103 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready
);
3106 * vmci_qpair_enqueue() - Throw data on the queue.
3107 * @qpair: Pointer to the queue pair struct.
3108 * @buf: Pointer to buffer containing data
3109 * @buf_size: Length of buffer.
3110 * @buf_type: Buffer type (Unused).
3112 * This is the client interface for enqueueing data into the queue.
3113 * Returns number of bytes enqueued or < 0 on error.
3115 ssize_t
vmci_qpair_enqueue(struct vmci_qp
*qpair
,
3123 return VMCI_ERROR_INVALID_ARGS
;
3128 result
= qp_enqueue_locked(qpair
->produce_q
,
3130 qpair
->produce_q_size
,
3132 qp_memcpy_to_queue
);
3134 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3135 !qp_wait_for_ready_queue(qpair
))
3136 result
= VMCI_ERROR_WOULD_BLOCK
;
3138 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3144 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue
);
3147 * vmci_qpair_dequeue() - Get data from the queue.
3148 * @qpair: Pointer to the queue pair struct.
3149 * @buf: Pointer to buffer for the data
3150 * @buf_size: Length of buffer.
3151 * @buf_type: Buffer type (Unused).
3153 * This is the client interface for dequeueing data from the queue.
3154 * Returns number of bytes dequeued or < 0 on error.
3156 ssize_t
vmci_qpair_dequeue(struct vmci_qp
*qpair
,
3164 return VMCI_ERROR_INVALID_ARGS
;
3169 result
= qp_dequeue_locked(qpair
->produce_q
,
3171 qpair
->consume_q_size
,
3173 qp_memcpy_from_queue
, true);
3175 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3176 !qp_wait_for_ready_queue(qpair
))
3177 result
= VMCI_ERROR_WOULD_BLOCK
;
3179 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3185 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue
);
3188 * vmci_qpair_peek() - Peek at the data in the queue.
3189 * @qpair: Pointer to the queue pair struct.
3190 * @buf: Pointer to buffer for the data
3191 * @buf_size: Length of buffer.
3192 * @buf_type: Buffer type (Unused on Linux).
3194 * This is the client interface for peeking into a queue. (I.e.,
3195 * copy data from the queue without updating the head pointer.)
3196 * Returns number of bytes dequeued or < 0 on error.
3198 ssize_t
vmci_qpair_peek(struct vmci_qp
*qpair
,
3206 return VMCI_ERROR_INVALID_ARGS
;
3211 result
= qp_dequeue_locked(qpair
->produce_q
,
3213 qpair
->consume_q_size
,
3215 qp_memcpy_from_queue
, false);
3217 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3218 !qp_wait_for_ready_queue(qpair
))
3219 result
= VMCI_ERROR_WOULD_BLOCK
;
3221 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3227 EXPORT_SYMBOL_GPL(vmci_qpair_peek
);
3230 * vmci_qpair_enquev() - Throw data on the queue using iov.
3231 * @qpair: Pointer to the queue pair struct.
3232 * @iov: Pointer to buffer containing data
3233 * @iov_size: Length of buffer.
3234 * @buf_type: Buffer type (Unused).
3236 * This is the client interface for enqueueing data into the queue.
3237 * This function uses IO vectors to handle the work. Returns number
3238 * of bytes enqueued or < 0 on error.
3240 ssize_t
vmci_qpair_enquev(struct vmci_qp
*qpair
,
3248 return VMCI_ERROR_INVALID_ARGS
;
3253 result
= qp_enqueue_locked(qpair
->produce_q
,
3255 qpair
->produce_q_size
,
3257 qp_memcpy_to_queue_iov
);
3259 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3260 !qp_wait_for_ready_queue(qpair
))
3261 result
= VMCI_ERROR_WOULD_BLOCK
;
3263 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3269 EXPORT_SYMBOL_GPL(vmci_qpair_enquev
);
3272 * vmci_qpair_dequev() - Get data from the queue using iov.
3273 * @qpair: Pointer to the queue pair struct.
3274 * @iov: Pointer to buffer for the data
3275 * @iov_size: Length of buffer.
3276 * @buf_type: Buffer type (Unused).
3278 * This is the client interface for dequeueing data from the queue.
3279 * This function uses IO vectors to handle the work. Returns number
3280 * of bytes dequeued or < 0 on error.
3282 ssize_t
vmci_qpair_dequev(struct vmci_qp
*qpair
,
3290 return VMCI_ERROR_INVALID_ARGS
;
3295 result
= qp_dequeue_locked(qpair
->produce_q
,
3297 qpair
->consume_q_size
,
3299 qp_memcpy_from_queue_iov
,
3302 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3303 !qp_wait_for_ready_queue(qpair
))
3304 result
= VMCI_ERROR_WOULD_BLOCK
;
3306 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3312 EXPORT_SYMBOL_GPL(vmci_qpair_dequev
);
3315 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3316 * @qpair: Pointer to the queue pair struct.
3317 * @iov: Pointer to buffer for the data
3318 * @iov_size: Length of buffer.
3319 * @buf_type: Buffer type (Unused on Linux).
3321 * This is the client interface for peeking into a queue. (I.e.,
3322 * copy data from the queue without updating the head pointer.)
3323 * This function uses IO vectors to handle the work. Returns number
3324 * of bytes peeked or < 0 on error.
3326 ssize_t
vmci_qpair_peekv(struct vmci_qp
*qpair
,
3334 return VMCI_ERROR_INVALID_ARGS
;
3339 result
= qp_dequeue_locked(qpair
->produce_q
,
3341 qpair
->consume_q_size
,
3343 qp_memcpy_from_queue_iov
,
3346 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3347 !qp_wait_for_ready_queue(qpair
))
3348 result
= VMCI_ERROR_WOULD_BLOCK
;
3350 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3355 EXPORT_SYMBOL_GPL(vmci_qpair_peekv
);