2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
64 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
67 * Enabling software CRCs on the data blocks can be a significant (30%)
68 * performance cost, and for other reasons may not always be desired.
69 * So we allow it it to be disabled.
72 module_param(use_spi_crc
, bool, 0);
74 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
78 * We use the system_freezable_wq, because of two reasons.
79 * First, it allows several works (not the same work item) to be
80 * executed simultaneously. Second, the queue becomes frozen when
81 * userspace becomes frozen during system PM.
83 return queue_delayed_work(system_freezable_wq
, work
, delay
);
86 #ifdef CONFIG_FAIL_MMC_REQUEST
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
92 static void mmc_should_fail_request(struct mmc_host
*host
,
93 struct mmc_request
*mrq
)
95 struct mmc_command
*cmd
= mrq
->cmd
;
96 struct mmc_data
*data
= mrq
->data
;
97 static const int data_errors
[] = {
106 if (cmd
->error
|| data
->error
||
107 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
110 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
111 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
114 #else /* CONFIG_FAIL_MMC_REQUEST */
116 static inline void mmc_should_fail_request(struct mmc_host
*host
,
117 struct mmc_request
*mrq
)
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
123 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
125 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
126 complete_all(&mrq
->cmd_completion
);
129 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
131 if (!mrq
->cap_cmd_during_tfr
)
134 mmc_complete_cmd(mrq
);
136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
137 mmc_hostname(host
), mrq
->cmd
->opcode
);
139 EXPORT_SYMBOL(mmc_command_done
);
142 * mmc_request_done - finish processing an MMC request
143 * @host: MMC host which completed request
144 * @mrq: MMC request which request
146 * MMC drivers should call this function when they have completed
147 * their processing of a request.
149 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
151 struct mmc_command
*cmd
= mrq
->cmd
;
152 int err
= cmd
->error
;
154 /* Flag re-tuning needed on CRC errors */
155 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
156 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
157 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
158 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
159 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
160 mmc_retune_needed(host
);
162 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
163 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
167 if (host
->ongoing_mrq
== mrq
)
168 host
->ongoing_mrq
= NULL
;
170 mmc_complete_cmd(mrq
);
172 trace_mmc_request_done(host
, mrq
);
174 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
176 * Request starter must handle retries - see
177 * mmc_wait_for_req_done().
182 mmc_should_fail_request(host
, mrq
);
184 if (!host
->ongoing_mrq
)
185 led_trigger_event(host
->led
, LED_OFF
);
188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host
), mrq
->sbc
->opcode
,
191 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
192 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
196 mmc_hostname(host
), cmd
->opcode
, err
,
197 cmd
->resp
[0], cmd
->resp
[1],
198 cmd
->resp
[2], cmd
->resp
[3]);
201 pr_debug("%s: %d bytes transferred: %d\n",
203 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
208 mmc_hostname(host
), mrq
->stop
->opcode
,
210 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
211 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
219 EXPORT_SYMBOL(mmc_request_done
);
221 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err
= mmc_retune(host
);
228 mrq
->cmd
->error
= err
;
229 mmc_request_done(host
, mrq
);
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
237 if (mmc_is_io_op(mrq
->cmd
->opcode
) && host
->ops
->card_busy
) {
238 int tries
= 500; /* Wait aprox 500ms at maximum */
240 while (host
->ops
->card_busy(host
) && --tries
)
244 mrq
->cmd
->error
= -EBUSY
;
245 mmc_request_done(host
, mrq
);
250 if (mrq
->cap_cmd_during_tfr
) {
251 host
->ongoing_mrq
= mrq
;
253 * Retry path could come through here without having waiting on
254 * cmd_completion, so ensure it is reinitialised.
256 reinit_completion(&mrq
->cmd_completion
);
259 trace_mmc_request_start(host
, mrq
);
261 host
->ops
->request(host
, mrq
);
264 static int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
266 #ifdef CONFIG_MMC_DEBUG
268 struct scatterlist
*sg
;
270 mmc_retune_hold(host
);
272 if (mmc_card_removed(host
->card
))
276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
277 mmc_hostname(host
), mrq
->sbc
->opcode
,
278 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
282 mmc_hostname(host
), mrq
->cmd
->opcode
,
283 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
286 pr_debug("%s: blksz %d blocks %d flags %08x "
287 "tsac %d ms nsac %d\n",
288 mmc_hostname(host
), mrq
->data
->blksz
,
289 mrq
->data
->blocks
, mrq
->data
->flags
,
290 mrq
->data
->timeout_ns
/ 1000000,
291 mrq
->data
->timeout_clks
);
295 pr_debug("%s: CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host
), mrq
->stop
->opcode
,
297 mrq
->stop
->arg
, mrq
->stop
->flags
);
300 WARN_ON(!host
->claimed
);
309 if (mrq
->data
->blksz
> host
->max_blk_size
||
310 mrq
->data
->blocks
> host
->max_blk_count
||
311 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
313 #ifdef CONFIG_MMC_DEBUG
315 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
317 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
321 mrq
->cmd
->data
= mrq
->data
;
322 mrq
->data
->error
= 0;
323 mrq
->data
->mrq
= mrq
;
325 mrq
->data
->stop
= mrq
->stop
;
326 mrq
->stop
->error
= 0;
327 mrq
->stop
->mrq
= mrq
;
330 led_trigger_event(host
->led
, LED_FULL
);
331 __mmc_start_request(host
, mrq
);
337 * mmc_start_bkops - start BKOPS for supported cards
338 * @card: MMC card to start BKOPS
339 * @form_exception: A flag to indicate if this function was
340 * called due to an exception raised by the card
342 * Start background operations whenever requested.
343 * When the urgent BKOPS bit is set in a R1 command response
344 * then background operations should be started immediately.
346 void mmc_start_bkops(struct mmc_card
*card
, bool from_exception
)
350 bool use_busy_signal
;
352 if (!card
->ext_csd
.man_bkops_en
|| mmc_card_doing_bkops(card
))
355 err
= mmc_read_bkops_status(card
);
357 pr_err("%s: Failed to read bkops status: %d\n",
358 mmc_hostname(card
->host
), err
);
362 if (!card
->ext_csd
.raw_bkops_status
)
365 if (card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
&&
369 mmc_claim_host(card
->host
);
370 if (card
->ext_csd
.raw_bkops_status
>= EXT_CSD_BKOPS_LEVEL_2
) {
371 timeout
= MMC_BKOPS_MAX_TIMEOUT
;
372 use_busy_signal
= true;
375 use_busy_signal
= false;
378 mmc_retune_hold(card
->host
);
380 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
381 EXT_CSD_BKOPS_START
, 1, timeout
, 0,
382 use_busy_signal
, true, false);
384 pr_warn("%s: Error %d starting bkops\n",
385 mmc_hostname(card
->host
), err
);
386 mmc_retune_release(card
->host
);
391 * For urgent bkops status (LEVEL_2 and more)
392 * bkops executed synchronously, otherwise
393 * the operation is in progress
395 if (!use_busy_signal
)
396 mmc_card_set_doing_bkops(card
);
398 mmc_retune_release(card
->host
);
400 mmc_release_host(card
->host
);
402 EXPORT_SYMBOL(mmc_start_bkops
);
405 * mmc_wait_data_done() - done callback for data request
406 * @mrq: done data request
408 * Wakes up mmc context, passed as a callback to host controller driver
410 static void mmc_wait_data_done(struct mmc_request
*mrq
)
412 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
414 context_info
->is_done_rcv
= true;
415 wake_up_interruptible(&context_info
->wait
);
418 static void mmc_wait_done(struct mmc_request
*mrq
)
420 complete(&mrq
->completion
);
423 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
425 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
428 * If there is an ongoing transfer, wait for the command line to become
431 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
432 wait_for_completion(&ongoing_mrq
->cmd_completion
);
436 *__mmc_start_data_req() - starts data request
437 * @host: MMC host to start the request
438 * @mrq: data request to start
440 * Sets the done callback to be called when request is completed by the card.
441 * Starts data mmc request execution
442 * If an ongoing transfer is already in progress, wait for the command line
443 * to become available before sending another command.
445 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
449 mmc_wait_ongoing_tfr_cmd(host
);
451 mrq
->done
= mmc_wait_data_done
;
454 init_completion(&mrq
->cmd_completion
);
456 err
= mmc_start_request(host
, mrq
);
458 mrq
->cmd
->error
= err
;
459 mmc_complete_cmd(mrq
);
460 mmc_wait_data_done(mrq
);
466 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
470 mmc_wait_ongoing_tfr_cmd(host
);
472 init_completion(&mrq
->completion
);
473 mrq
->done
= mmc_wait_done
;
475 init_completion(&mrq
->cmd_completion
);
477 err
= mmc_start_request(host
, mrq
);
479 mrq
->cmd
->error
= err
;
480 mmc_complete_cmd(mrq
);
481 complete(&mrq
->completion
);
488 * mmc_wait_for_data_req_done() - wait for request completed
489 * @host: MMC host to prepare the command.
490 * @mrq: MMC request to wait for
492 * Blocks MMC context till host controller will ack end of data request
493 * execution or new request notification arrives from the block layer.
494 * Handles command retries.
496 * Returns enum mmc_blk_status after checking errors.
498 static enum mmc_blk_status
mmc_wait_for_data_req_done(struct mmc_host
*host
,
499 struct mmc_request
*mrq
)
501 struct mmc_command
*cmd
;
502 struct mmc_context_info
*context_info
= &host
->context_info
;
503 enum mmc_blk_status status
;
506 wait_event_interruptible(context_info
->wait
,
507 (context_info
->is_done_rcv
||
508 context_info
->is_new_req
));
510 if (context_info
->is_done_rcv
) {
511 context_info
->is_done_rcv
= false;
514 if (!cmd
->error
|| !cmd
->retries
||
515 mmc_card_removed(host
->card
)) {
516 status
= host
->areq
->err_check(host
->card
,
518 break; /* return status */
520 mmc_retune_recheck(host
);
521 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
523 cmd
->opcode
, cmd
->error
);
526 __mmc_start_request(host
, mrq
);
527 continue; /* wait for done/new event again */
531 return MMC_BLK_NEW_REQUEST
;
533 mmc_retune_release(host
);
537 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
539 struct mmc_command
*cmd
;
542 wait_for_completion(&mrq
->completion
);
547 * If host has timed out waiting for the sanitize
548 * to complete, card might be still in programming state
549 * so let's try to bring the card out of programming
552 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
553 if (!mmc_interrupt_hpi(host
->card
)) {
554 pr_warn("%s: %s: Interrupted sanitize\n",
555 mmc_hostname(host
), __func__
);
559 pr_err("%s: %s: Failed to interrupt sanitize\n",
560 mmc_hostname(host
), __func__
);
563 if (!cmd
->error
|| !cmd
->retries
||
564 mmc_card_removed(host
->card
))
567 mmc_retune_recheck(host
);
569 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
570 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
573 __mmc_start_request(host
, mrq
);
576 mmc_retune_release(host
);
578 EXPORT_SYMBOL(mmc_wait_for_req_done
);
581 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585 * mmc_is_req_done() is used with requests that have
586 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
587 * starting a request and before waiting for it to complete. That is,
588 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
589 * and before mmc_wait_for_req_done(). If it is called at other times the
590 * result is not meaningful.
592 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
595 return host
->context_info
.is_done_rcv
;
597 return completion_done(&mrq
->completion
);
599 EXPORT_SYMBOL(mmc_is_req_done
);
602 * mmc_pre_req - Prepare for a new request
603 * @host: MMC host to prepare command
604 * @mrq: MMC request to prepare for
606 * mmc_pre_req() is called in prior to mmc_start_req() to let
607 * host prepare for the new request. Preparation of a request may be
608 * performed while another request is running on the host.
610 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
612 if (host
->ops
->pre_req
)
613 host
->ops
->pre_req(host
, mrq
);
617 * mmc_post_req - Post process a completed request
618 * @host: MMC host to post process command
619 * @mrq: MMC request to post process for
620 * @err: Error, if non zero, clean up any resources made in pre_req
622 * Let the host post process a completed request. Post processing of
623 * a request may be performed while another reuqest is running.
625 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
628 if (host
->ops
->post_req
)
629 host
->ops
->post_req(host
, mrq
, err
);
633 * mmc_start_req - start a non-blocking request
634 * @host: MMC host to start command
635 * @areq: async request to start
636 * @error: out parameter returns 0 for success, otherwise non zero
638 * Start a new MMC custom command request for a host.
639 * If there is on ongoing async request wait for completion
640 * of that request and start the new one and return.
641 * Does not wait for the new request to complete.
643 * Returns the completed request, NULL in case of none completed.
644 * Wait for the an ongoing request (previoulsy started) to complete and
645 * return the completed request. If there is no ongoing request, NULL
646 * is returned without waiting. NULL is not an error condition.
648 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
649 struct mmc_async_req
*areq
,
650 enum mmc_blk_status
*ret_stat
)
652 enum mmc_blk_status status
= MMC_BLK_SUCCESS
;
654 struct mmc_async_req
*data
= host
->areq
;
656 /* Prepare a new request */
658 mmc_pre_req(host
, areq
->mrq
);
661 status
= mmc_wait_for_data_req_done(host
, host
->areq
->mrq
);
662 if (status
== MMC_BLK_NEW_REQUEST
) {
666 * The previous request was not completed,
672 * Check BKOPS urgency for each R1 response
674 if (host
->card
&& mmc_card_mmc(host
->card
) &&
675 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
676 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
677 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
679 /* Cancel the prepared request */
681 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
683 mmc_start_bkops(host
->card
, true);
685 /* prepare the request again */
687 mmc_pre_req(host
, areq
->mrq
);
691 if (status
== MMC_BLK_SUCCESS
&& areq
)
692 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
695 mmc_post_req(host
, host
->areq
->mrq
, 0);
697 /* Cancel a prepared request if it was not started. */
698 if ((status
!= MMC_BLK_SUCCESS
|| start_err
) && areq
)
699 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
701 if (status
!= MMC_BLK_SUCCESS
)
710 EXPORT_SYMBOL(mmc_start_req
);
713 * mmc_wait_for_req - start a request and wait for completion
714 * @host: MMC host to start command
715 * @mrq: MMC request to start
717 * Start a new MMC custom command request for a host, and wait
718 * for the command to complete. In the case of 'cap_cmd_during_tfr'
719 * requests, the transfer is ongoing and the caller can issue further
720 * commands that do not use the data lines, and then wait by calling
721 * mmc_wait_for_req_done().
722 * Does not attempt to parse the response.
724 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
726 __mmc_start_req(host
, mrq
);
728 if (!mrq
->cap_cmd_during_tfr
)
729 mmc_wait_for_req_done(host
, mrq
);
731 EXPORT_SYMBOL(mmc_wait_for_req
);
734 * mmc_interrupt_hpi - Issue for High priority Interrupt
735 * @card: the MMC card associated with the HPI transfer
737 * Issued High Priority Interrupt, and check for card status
738 * until out-of prg-state.
740 int mmc_interrupt_hpi(struct mmc_card
*card
)
744 unsigned long prg_wait
;
746 if (!card
->ext_csd
.hpi_en
) {
747 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
751 mmc_claim_host(card
->host
);
752 err
= mmc_send_status(card
, &status
);
754 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
758 switch (R1_CURRENT_STATE(status
)) {
764 * In idle and transfer states, HPI is not needed and the caller
765 * can issue the next intended command immediately
771 /* In all other states, it's illegal to issue HPI */
772 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
773 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
778 err
= mmc_send_hpi_cmd(card
, &status
);
782 prg_wait
= jiffies
+ msecs_to_jiffies(card
->ext_csd
.out_of_int_time
);
784 err
= mmc_send_status(card
, &status
);
786 if (!err
&& R1_CURRENT_STATE(status
) == R1_STATE_TRAN
)
788 if (time_after(jiffies
, prg_wait
))
793 mmc_release_host(card
->host
);
796 EXPORT_SYMBOL(mmc_interrupt_hpi
);
799 * mmc_wait_for_cmd - start a command and wait for completion
800 * @host: MMC host to start command
801 * @cmd: MMC command to start
802 * @retries: maximum number of retries
804 * Start a new MMC command for a host, and wait for the command
805 * to complete. Return any error that occurred while the command
806 * was executing. Do not attempt to parse the response.
808 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
810 struct mmc_request mrq
= {NULL
};
812 WARN_ON(!host
->claimed
);
814 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
815 cmd
->retries
= retries
;
820 mmc_wait_for_req(host
, &mrq
);
825 EXPORT_SYMBOL(mmc_wait_for_cmd
);
828 * mmc_stop_bkops - stop ongoing BKOPS
829 * @card: MMC card to check BKOPS
831 * Send HPI command to stop ongoing background operations to
832 * allow rapid servicing of foreground operations, e.g. read/
833 * writes. Wait until the card comes out of the programming state
834 * to avoid errors in servicing read/write requests.
836 int mmc_stop_bkops(struct mmc_card
*card
)
840 err
= mmc_interrupt_hpi(card
);
843 * If err is EINVAL, we can't issue an HPI.
844 * It should complete the BKOPS.
846 if (!err
|| (err
== -EINVAL
)) {
847 mmc_card_clr_doing_bkops(card
);
848 mmc_retune_release(card
->host
);
854 EXPORT_SYMBOL(mmc_stop_bkops
);
856 int mmc_read_bkops_status(struct mmc_card
*card
)
861 mmc_claim_host(card
->host
);
862 err
= mmc_get_ext_csd(card
, &ext_csd
);
863 mmc_release_host(card
->host
);
867 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
868 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
872 EXPORT_SYMBOL(mmc_read_bkops_status
);
875 * mmc_set_data_timeout - set the timeout for a data command
876 * @data: data phase for command
877 * @card: the MMC card associated with the data transfer
879 * Computes the data timeout parameters according to the
880 * correct algorithm given the card type.
882 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
887 * SDIO cards only define an upper 1 s limit on access.
889 if (mmc_card_sdio(card
)) {
890 data
->timeout_ns
= 1000000000;
891 data
->timeout_clks
= 0;
896 * SD cards use a 100 multiplier rather than 10
898 mult
= mmc_card_sd(card
) ? 100 : 10;
901 * Scale up the multiplier (and therefore the timeout) by
902 * the r2w factor for writes.
904 if (data
->flags
& MMC_DATA_WRITE
)
905 mult
<<= card
->csd
.r2w_factor
;
907 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
908 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
911 * SD cards also have an upper limit on the timeout.
913 if (mmc_card_sd(card
)) {
914 unsigned int timeout_us
, limit_us
;
916 timeout_us
= data
->timeout_ns
/ 1000;
917 if (card
->host
->ios
.clock
)
918 timeout_us
+= data
->timeout_clks
* 1000 /
919 (card
->host
->ios
.clock
/ 1000);
921 if (data
->flags
& MMC_DATA_WRITE
)
923 * The MMC spec "It is strongly recommended
924 * for hosts to implement more than 500ms
925 * timeout value even if the card indicates
926 * the 250ms maximum busy length." Even the
927 * previous value of 300ms is known to be
928 * insufficient for some cards.
935 * SDHC cards always use these fixed values.
937 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
938 data
->timeout_ns
= limit_us
* 1000;
939 data
->timeout_clks
= 0;
942 /* assign limit value if invalid */
944 data
->timeout_ns
= limit_us
* 1000;
948 * Some cards require longer data read timeout than indicated in CSD.
949 * Address this by setting the read timeout to a "reasonably high"
950 * value. For the cards tested, 600ms has proven enough. If necessary,
951 * this value can be increased if other problematic cards require this.
953 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
954 data
->timeout_ns
= 600000000;
955 data
->timeout_clks
= 0;
959 * Some cards need very high timeouts if driven in SPI mode.
960 * The worst observed timeout was 900ms after writing a
961 * continuous stream of data until the internal logic
964 if (mmc_host_is_spi(card
->host
)) {
965 if (data
->flags
& MMC_DATA_WRITE
) {
966 if (data
->timeout_ns
< 1000000000)
967 data
->timeout_ns
= 1000000000; /* 1s */
969 if (data
->timeout_ns
< 100000000)
970 data
->timeout_ns
= 100000000; /* 100ms */
974 EXPORT_SYMBOL(mmc_set_data_timeout
);
977 * mmc_align_data_size - pads a transfer size to a more optimal value
978 * @card: the MMC card associated with the data transfer
979 * @sz: original transfer size
981 * Pads the original data size with a number of extra bytes in
982 * order to avoid controller bugs and/or performance hits
983 * (e.g. some controllers revert to PIO for certain sizes).
985 * Returns the improved size, which might be unmodified.
987 * Note that this function is only relevant when issuing a
988 * single scatter gather entry.
990 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
993 * FIXME: We don't have a system for the controller to tell
994 * the core about its problems yet, so for now we just 32-bit
997 sz
= ((sz
+ 3) / 4) * 4;
1001 EXPORT_SYMBOL(mmc_align_data_size
);
1004 * __mmc_claim_host - exclusively claim a host
1005 * @host: mmc host to claim
1006 * @abort: whether or not the operation should be aborted
1008 * Claim a host for a set of operations. If @abort is non null and
1009 * dereference a non-zero value then this will return prematurely with
1010 * that non-zero value without acquiring the lock. Returns zero
1011 * with the lock held otherwise.
1013 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
1015 DECLARE_WAITQUEUE(wait
, current
);
1016 unsigned long flags
;
1022 add_wait_queue(&host
->wq
, &wait
);
1023 spin_lock_irqsave(&host
->lock
, flags
);
1025 set_current_state(TASK_UNINTERRUPTIBLE
);
1026 stop
= abort
? atomic_read(abort
) : 0;
1027 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
1029 spin_unlock_irqrestore(&host
->lock
, flags
);
1031 spin_lock_irqsave(&host
->lock
, flags
);
1033 set_current_state(TASK_RUNNING
);
1036 host
->claimer
= current
;
1037 host
->claim_cnt
+= 1;
1038 if (host
->claim_cnt
== 1)
1042 spin_unlock_irqrestore(&host
->lock
, flags
);
1043 remove_wait_queue(&host
->wq
, &wait
);
1046 pm_runtime_get_sync(mmc_dev(host
));
1050 EXPORT_SYMBOL(__mmc_claim_host
);
1053 * mmc_release_host - release a host
1054 * @host: mmc host to release
1056 * Release a MMC host, allowing others to claim the host
1057 * for their operations.
1059 void mmc_release_host(struct mmc_host
*host
)
1061 unsigned long flags
;
1063 WARN_ON(!host
->claimed
);
1065 spin_lock_irqsave(&host
->lock
, flags
);
1066 if (--host
->claim_cnt
) {
1067 /* Release for nested claim */
1068 spin_unlock_irqrestore(&host
->lock
, flags
);
1071 host
->claimer
= NULL
;
1072 spin_unlock_irqrestore(&host
->lock
, flags
);
1074 pm_runtime_mark_last_busy(mmc_dev(host
));
1075 pm_runtime_put_autosuspend(mmc_dev(host
));
1078 EXPORT_SYMBOL(mmc_release_host
);
1081 * This is a helper function, which fetches a runtime pm reference for the
1082 * card device and also claims the host.
1084 void mmc_get_card(struct mmc_card
*card
)
1086 pm_runtime_get_sync(&card
->dev
);
1087 mmc_claim_host(card
->host
);
1089 EXPORT_SYMBOL(mmc_get_card
);
1092 * This is a helper function, which releases the host and drops the runtime
1093 * pm reference for the card device.
1095 void mmc_put_card(struct mmc_card
*card
)
1097 mmc_release_host(card
->host
);
1098 pm_runtime_mark_last_busy(&card
->dev
);
1099 pm_runtime_put_autosuspend(&card
->dev
);
1101 EXPORT_SYMBOL(mmc_put_card
);
1104 * Internal function that does the actual ios call to the host driver,
1105 * optionally printing some debug output.
1107 static inline void mmc_set_ios(struct mmc_host
*host
)
1109 struct mmc_ios
*ios
= &host
->ios
;
1111 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1112 "width %u timing %u\n",
1113 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1114 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1115 1 << ios
->bus_width
, ios
->timing
);
1117 host
->ops
->set_ios(host
, ios
);
1121 * Control chip select pin on a host.
1123 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1125 host
->ios
.chip_select
= mode
;
1130 * Sets the host clock to the highest possible frequency that
1133 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1135 WARN_ON(hz
&& hz
< host
->f_min
);
1137 if (hz
> host
->f_max
)
1140 host
->ios
.clock
= hz
;
1144 int mmc_execute_tuning(struct mmc_card
*card
)
1146 struct mmc_host
*host
= card
->host
;
1150 if (!host
->ops
->execute_tuning
)
1153 if (mmc_card_mmc(card
))
1154 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
1156 opcode
= MMC_SEND_TUNING_BLOCK
;
1158 err
= host
->ops
->execute_tuning(host
, opcode
);
1161 pr_err("%s: tuning execution failed: %d\n",
1162 mmc_hostname(host
), err
);
1164 mmc_retune_enable(host
);
1170 * Change the bus mode (open drain/push-pull) of a host.
1172 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1174 host
->ios
.bus_mode
= mode
;
1179 * Change data bus width of a host.
1181 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1183 host
->ios
.bus_width
= width
;
1188 * Set initial state after a power cycle or a hw_reset.
1190 void mmc_set_initial_state(struct mmc_host
*host
)
1192 mmc_retune_disable(host
);
1194 if (mmc_host_is_spi(host
))
1195 host
->ios
.chip_select
= MMC_CS_HIGH
;
1197 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1198 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1199 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1200 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1201 host
->ios
.drv_type
= 0;
1202 host
->ios
.enhanced_strobe
= false;
1205 * Make sure we are in non-enhanced strobe mode before we
1206 * actually enable it in ext_csd.
1208 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1209 host
->ops
->hs400_enhanced_strobe
)
1210 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1216 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1217 * @vdd: voltage (mV)
1218 * @low_bits: prefer low bits in boundary cases
1220 * This function returns the OCR bit number according to the provided @vdd
1221 * value. If conversion is not possible a negative errno value returned.
1223 * Depending on the @low_bits flag the function prefers low or high OCR bits
1224 * on boundary voltages. For example,
1225 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1226 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1228 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1230 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1232 const int max_bit
= ilog2(MMC_VDD_35_36
);
1235 if (vdd
< 1650 || vdd
> 3600)
1238 if (vdd
>= 1650 && vdd
<= 1950)
1239 return ilog2(MMC_VDD_165_195
);
1244 /* Base 2000 mV, step 100 mV, bit's base 8. */
1245 bit
= (vdd
- 2000) / 100 + 8;
1252 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1253 * @vdd_min: minimum voltage value (mV)
1254 * @vdd_max: maximum voltage value (mV)
1256 * This function returns the OCR mask bits according to the provided @vdd_min
1257 * and @vdd_max values. If conversion is not possible the function returns 0.
1259 * Notes wrt boundary cases:
1260 * This function sets the OCR bits for all boundary voltages, for example
1261 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1262 * MMC_VDD_34_35 mask.
1264 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1268 if (vdd_max
< vdd_min
)
1271 /* Prefer high bits for the boundary vdd_max values. */
1272 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1276 /* Prefer low bits for the boundary vdd_min values. */
1277 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1281 /* Fill the mask, from max bit to min bit. */
1282 while (vdd_max
>= vdd_min
)
1283 mask
|= 1 << vdd_max
--;
1287 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1292 * mmc_of_parse_voltage - return mask of supported voltages
1293 * @np: The device node need to be parsed.
1294 * @mask: mask of voltages available for MMC/SD/SDIO
1296 * Parse the "voltage-ranges" DT property, returning zero if it is not
1297 * found, negative errno if the voltage-range specification is invalid,
1298 * or one if the voltage-range is specified and successfully parsed.
1300 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1302 const u32
*voltage_ranges
;
1305 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1306 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1307 if (!voltage_ranges
) {
1308 pr_debug("%s: voltage-ranges unspecified\n", np
->full_name
);
1312 pr_err("%s: voltage-ranges empty\n", np
->full_name
);
1316 for (i
= 0; i
< num_ranges
; i
++) {
1317 const int j
= i
* 2;
1320 ocr_mask
= mmc_vddrange_to_ocrmask(
1321 be32_to_cpu(voltage_ranges
[j
]),
1322 be32_to_cpu(voltage_ranges
[j
+ 1]));
1324 pr_err("%s: voltage-range #%d is invalid\n",
1333 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1335 #endif /* CONFIG_OF */
1337 static int mmc_of_get_func_num(struct device_node
*node
)
1342 ret
= of_property_read_u32(node
, "reg", ®
);
1349 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1352 struct device_node
*node
;
1354 if (!host
->parent
|| !host
->parent
->of_node
)
1357 for_each_child_of_node(host
->parent
->of_node
, node
) {
1358 if (mmc_of_get_func_num(node
) == func_num
)
1365 #ifdef CONFIG_REGULATOR
1368 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1369 * @vdd_bit: OCR bit number
1370 * @min_uV: minimum voltage value (mV)
1371 * @max_uV: maximum voltage value (mV)
1373 * This function returns the voltage range according to the provided OCR
1374 * bit number. If conversion is not possible a negative errno value returned.
1376 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1384 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1385 * bits this regulator doesn't quite support ... don't
1386 * be too picky, most cards and regulators are OK with
1387 * a 0.1V range goof (it's a small error percentage).
1389 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1391 *min_uV
= 1650 * 1000;
1392 *max_uV
= 1950 * 1000;
1394 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1395 *max_uV
= *min_uV
+ 100 * 1000;
1402 * mmc_regulator_get_ocrmask - return mask of supported voltages
1403 * @supply: regulator to use
1405 * This returns either a negative errno, or a mask of voltages that
1406 * can be provided to MMC/SD/SDIO devices using the specified voltage
1407 * regulator. This would normally be called before registering the
1410 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1418 count
= regulator_count_voltages(supply
);
1422 for (i
= 0; i
< count
; i
++) {
1423 vdd_uV
= regulator_list_voltage(supply
, i
);
1427 vdd_mV
= vdd_uV
/ 1000;
1428 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1432 vdd_uV
= regulator_get_voltage(supply
);
1436 vdd_mV
= vdd_uV
/ 1000;
1437 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1442 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1445 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1446 * @mmc: the host to regulate
1447 * @supply: regulator to use
1448 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1450 * Returns zero on success, else negative errno.
1452 * MMC host drivers may use this to enable or disable a regulator using
1453 * a particular supply voltage. This would normally be called from the
1456 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1457 struct regulator
*supply
,
1458 unsigned short vdd_bit
)
1464 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1466 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1467 if (result
== 0 && !mmc
->regulator_enabled
) {
1468 result
= regulator_enable(supply
);
1470 mmc
->regulator_enabled
= true;
1472 } else if (mmc
->regulator_enabled
) {
1473 result
= regulator_disable(supply
);
1475 mmc
->regulator_enabled
= false;
1479 dev_err(mmc_dev(mmc
),
1480 "could not set regulator OCR (%d)\n", result
);
1483 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1485 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1486 int min_uV
, int target_uV
,
1490 * Check if supported first to avoid errors since we may try several
1491 * signal levels during power up and don't want to show errors.
1493 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1496 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1501 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1503 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1504 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1505 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1506 * SD card spec also define VQMMC in terms of VMMC.
1507 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1509 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1510 * requested voltage. This is definitely a good idea for UHS where there's a
1511 * separate regulator on the card that's trying to make 1.8V and it's best if
1514 * This function is expected to be used by a controller's
1515 * start_signal_voltage_switch() function.
1517 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1519 struct device
*dev
= mmc_dev(mmc
);
1520 int ret
, volt
, min_uV
, max_uV
;
1522 /* If no vqmmc supply then we can't change the voltage */
1523 if (IS_ERR(mmc
->supply
.vqmmc
))
1526 switch (ios
->signal_voltage
) {
1527 case MMC_SIGNAL_VOLTAGE_120
:
1528 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1529 1100000, 1200000, 1300000);
1530 case MMC_SIGNAL_VOLTAGE_180
:
1531 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1532 1700000, 1800000, 1950000);
1533 case MMC_SIGNAL_VOLTAGE_330
:
1534 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1538 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1539 __func__
, volt
, max_uV
);
1541 min_uV
= max(volt
- 300000, 2700000);
1542 max_uV
= min(max_uV
+ 200000, 3600000);
1545 * Due to a limitation in the current implementation of
1546 * regulator_set_voltage_triplet() which is taking the lowest
1547 * voltage possible if below the target, search for a suitable
1548 * voltage in two steps and try to stay close to vmmc
1549 * with a 0.3V tolerance at first.
1551 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1552 min_uV
, volt
, max_uV
))
1555 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1556 2700000, volt
, 3600000);
1561 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1563 #endif /* CONFIG_REGULATOR */
1565 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1567 struct device
*dev
= mmc_dev(mmc
);
1570 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1571 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1573 if (IS_ERR(mmc
->supply
.vmmc
)) {
1574 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1575 return -EPROBE_DEFER
;
1576 dev_dbg(dev
, "No vmmc regulator found\n");
1578 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1580 mmc
->ocr_avail
= ret
;
1582 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1585 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1586 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1587 return -EPROBE_DEFER
;
1588 dev_dbg(dev
, "No vqmmc regulator found\n");
1593 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1596 * Mask off any voltages we don't support and select
1597 * the lowest voltage
1599 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1604 * Sanity check the voltages that the card claims to
1608 dev_warn(mmc_dev(host
),
1609 "card claims to support voltages below defined range\n");
1613 ocr
&= host
->ocr_avail
;
1615 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1619 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1622 mmc_power_cycle(host
, ocr
);
1626 if (bit
!= host
->ios
.vdd
)
1627 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1633 int __mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1636 int old_signal_voltage
= host
->ios
.signal_voltage
;
1638 host
->ios
.signal_voltage
= signal_voltage
;
1639 if (host
->ops
->start_signal_voltage_switch
)
1640 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1643 host
->ios
.signal_voltage
= old_signal_voltage
;
1649 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, u32 ocr
)
1651 struct mmc_command cmd
= {0};
1656 * Send CMD11 only if the request is to switch the card to
1659 if (signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1660 return __mmc_set_signal_voltage(host
, signal_voltage
);
1663 * If we cannot switch voltages, return failure so the caller
1664 * can continue without UHS mode
1666 if (!host
->ops
->start_signal_voltage_switch
)
1668 if (!host
->ops
->card_busy
)
1669 pr_warn("%s: cannot verify signal voltage switch\n",
1670 mmc_hostname(host
));
1672 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1674 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1676 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1680 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1684 * The card should drive cmd and dat[0:3] low immediately
1685 * after the response of cmd11, but wait 1 ms to be sure
1688 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1693 * During a signal voltage level switch, the clock must be gated
1694 * for 5 ms according to the SD spec
1696 clock
= host
->ios
.clock
;
1697 host
->ios
.clock
= 0;
1700 if (__mmc_set_signal_voltage(host
, signal_voltage
)) {
1702 * Voltages may not have been switched, but we've already
1703 * sent CMD11, so a power cycle is required anyway
1709 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1711 host
->ios
.clock
= clock
;
1714 /* Wait for at least 1 ms according to spec */
1718 * Failure to switch is indicated by the card holding
1721 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1726 pr_debug("%s: Signal voltage switch failed, "
1727 "power cycling card\n", mmc_hostname(host
));
1728 mmc_power_cycle(host
, ocr
);
1735 * Select timing parameters for host.
1737 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1739 host
->ios
.timing
= timing
;
1744 * Select appropriate driver type for host.
1746 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1748 host
->ios
.drv_type
= drv_type
;
1752 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1753 int card_drv_type
, int *drv_type
)
1755 struct mmc_host
*host
= card
->host
;
1756 int host_drv_type
= SD_DRIVER_TYPE_B
;
1760 if (!host
->ops
->select_drive_strength
)
1763 /* Use SD definition of driver strength for hosts */
1764 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1765 host_drv_type
|= SD_DRIVER_TYPE_A
;
1767 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1768 host_drv_type
|= SD_DRIVER_TYPE_C
;
1770 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1771 host_drv_type
|= SD_DRIVER_TYPE_D
;
1774 * The drive strength that the hardware can support
1775 * depends on the board design. Pass the appropriate
1776 * information and let the hardware specific code
1777 * return what is possible given the options
1779 return host
->ops
->select_drive_strength(card
, max_dtr
,
1786 * Apply power to the MMC stack. This is a two-stage process.
1787 * First, we enable power to the card without the clock running.
1788 * We then wait a bit for the power to stabilise. Finally,
1789 * enable the bus drivers and clock to the card.
1791 * We must _NOT_ enable the clock prior to power stablising.
1793 * If a host does all the power sequencing itself, ignore the
1794 * initial MMC_POWER_UP stage.
1796 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1798 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1801 mmc_pwrseq_pre_power_on(host
);
1803 host
->ios
.vdd
= fls(ocr
) - 1;
1804 host
->ios
.power_mode
= MMC_POWER_UP
;
1805 /* Set initial state and call mmc_set_ios */
1806 mmc_set_initial_state(host
);
1808 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1809 if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
) == 0)
1810 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1811 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
) == 0)
1812 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1813 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
) == 0)
1814 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1817 * This delay should be sufficient to allow the power supply
1818 * to reach the minimum voltage.
1822 mmc_pwrseq_post_power_on(host
);
1824 host
->ios
.clock
= host
->f_init
;
1826 host
->ios
.power_mode
= MMC_POWER_ON
;
1830 * This delay must be at least 74 clock sizes, or 1 ms, or the
1831 * time required to reach a stable voltage.
1836 void mmc_power_off(struct mmc_host
*host
)
1838 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1841 mmc_pwrseq_power_off(host
);
1843 host
->ios
.clock
= 0;
1846 host
->ios
.power_mode
= MMC_POWER_OFF
;
1847 /* Set initial state and call mmc_set_ios */
1848 mmc_set_initial_state(host
);
1851 * Some configurations, such as the 802.11 SDIO card in the OLPC
1852 * XO-1.5, require a short delay after poweroff before the card
1853 * can be successfully turned on again.
1858 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1860 mmc_power_off(host
);
1861 /* Wait at least 1 ms according to SD spec */
1863 mmc_power_up(host
, ocr
);
1867 * Cleanup when the last reference to the bus operator is dropped.
1869 static void __mmc_release_bus(struct mmc_host
*host
)
1871 WARN_ON(!host
->bus_dead
);
1873 host
->bus_ops
= NULL
;
1877 * Increase reference count of bus operator
1879 static inline void mmc_bus_get(struct mmc_host
*host
)
1881 unsigned long flags
;
1883 spin_lock_irqsave(&host
->lock
, flags
);
1885 spin_unlock_irqrestore(&host
->lock
, flags
);
1889 * Decrease reference count of bus operator and free it if
1890 * it is the last reference.
1892 static inline void mmc_bus_put(struct mmc_host
*host
)
1894 unsigned long flags
;
1896 spin_lock_irqsave(&host
->lock
, flags
);
1898 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1899 __mmc_release_bus(host
);
1900 spin_unlock_irqrestore(&host
->lock
, flags
);
1904 * Assign a mmc bus handler to a host. Only one bus handler may control a
1905 * host at any given time.
1907 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1909 unsigned long flags
;
1911 WARN_ON(!host
->claimed
);
1913 spin_lock_irqsave(&host
->lock
, flags
);
1915 WARN_ON(host
->bus_ops
);
1916 WARN_ON(host
->bus_refs
);
1918 host
->bus_ops
= ops
;
1922 spin_unlock_irqrestore(&host
->lock
, flags
);
1926 * Remove the current bus handler from a host.
1928 void mmc_detach_bus(struct mmc_host
*host
)
1930 unsigned long flags
;
1932 WARN_ON(!host
->claimed
);
1933 WARN_ON(!host
->bus_ops
);
1935 spin_lock_irqsave(&host
->lock
, flags
);
1939 spin_unlock_irqrestore(&host
->lock
, flags
);
1944 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1947 #ifdef CONFIG_MMC_DEBUG
1948 unsigned long flags
;
1949 spin_lock_irqsave(&host
->lock
, flags
);
1950 WARN_ON(host
->removed
);
1951 spin_unlock_irqrestore(&host
->lock
, flags
);
1955 * If the device is configured as wakeup, we prevent a new sleep for
1956 * 5 s to give provision for user space to consume the event.
1958 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1959 device_can_wakeup(mmc_dev(host
)))
1960 pm_wakeup_event(mmc_dev(host
), 5000);
1962 host
->detect_change
= 1;
1963 mmc_schedule_delayed_work(&host
->detect
, delay
);
1967 * mmc_detect_change - process change of state on a MMC socket
1968 * @host: host which changed state.
1969 * @delay: optional delay to wait before detection (jiffies)
1971 * MMC drivers should call this when they detect a card has been
1972 * inserted or removed. The MMC layer will confirm that any
1973 * present card is still functional, and initialize any newly
1976 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1978 _mmc_detect_change(host
, delay
, true);
1980 EXPORT_SYMBOL(mmc_detect_change
);
1982 void mmc_init_erase(struct mmc_card
*card
)
1986 if (is_power_of_2(card
->erase_size
))
1987 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1989 card
->erase_shift
= 0;
1992 * It is possible to erase an arbitrarily large area of an SD or MMC
1993 * card. That is not desirable because it can take a long time
1994 * (minutes) potentially delaying more important I/O, and also the
1995 * timeout calculations become increasingly hugely over-estimated.
1996 * Consequently, 'pref_erase' is defined as a guide to limit erases
1997 * to that size and alignment.
1999 * For SD cards that define Allocation Unit size, limit erases to one
2000 * Allocation Unit at a time.
2001 * For MMC, have a stab at ai good value and for modern cards it will
2002 * end up being 4MiB. Note that if the value is too small, it can end
2003 * up taking longer to erase. Also note, erase_size is already set to
2004 * High Capacity Erase Size if available when this function is called.
2006 if (mmc_card_sd(card
) && card
->ssr
.au
) {
2007 card
->pref_erase
= card
->ssr
.au
;
2008 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
2009 } else if (card
->erase_size
) {
2010 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
2012 card
->pref_erase
= 512 * 1024 / 512;
2014 card
->pref_erase
= 1024 * 1024 / 512;
2016 card
->pref_erase
= 2 * 1024 * 1024 / 512;
2018 card
->pref_erase
= 4 * 1024 * 1024 / 512;
2019 if (card
->pref_erase
< card
->erase_size
)
2020 card
->pref_erase
= card
->erase_size
;
2022 sz
= card
->pref_erase
% card
->erase_size
;
2024 card
->pref_erase
+= card
->erase_size
- sz
;
2027 card
->pref_erase
= 0;
2030 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
2031 unsigned int arg
, unsigned int qty
)
2033 unsigned int erase_timeout
;
2035 if (arg
== MMC_DISCARD_ARG
||
2036 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
2037 erase_timeout
= card
->ext_csd
.trim_timeout
;
2038 } else if (card
->ext_csd
.erase_group_def
& 1) {
2039 /* High Capacity Erase Group Size uses HC timeouts */
2040 if (arg
== MMC_TRIM_ARG
)
2041 erase_timeout
= card
->ext_csd
.trim_timeout
;
2043 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
2045 /* CSD Erase Group Size uses write timeout */
2046 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
2047 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
2048 unsigned int timeout_us
;
2050 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2051 if (card
->csd
.tacc_ns
< 1000000)
2052 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
2054 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
2057 * ios.clock is only a target. The real clock rate might be
2058 * less but not that much less, so fudge it by multiplying by 2.
2061 timeout_us
+= (timeout_clks
* 1000) /
2062 (card
->host
->ios
.clock
/ 1000);
2064 erase_timeout
= timeout_us
/ 1000;
2067 * Theoretically, the calculation could underflow so round up
2068 * to 1ms in that case.
2074 /* Multiplier for secure operations */
2075 if (arg
& MMC_SECURE_ARGS
) {
2076 if (arg
== MMC_SECURE_ERASE_ARG
)
2077 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
2079 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
2082 erase_timeout
*= qty
;
2085 * Ensure at least a 1 second timeout for SPI as per
2086 * 'mmc_set_data_timeout()'
2088 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
2089 erase_timeout
= 1000;
2091 return erase_timeout
;
2094 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
2098 unsigned int erase_timeout
;
2100 if (card
->ssr
.erase_timeout
) {
2101 /* Erase timeout specified in SD Status Register (SSR) */
2102 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
2103 card
->ssr
.erase_offset
;
2106 * Erase timeout not specified in SD Status Register (SSR) so
2107 * use 250ms per write block.
2109 erase_timeout
= 250 * qty
;
2112 /* Must not be less than 1 second */
2113 if (erase_timeout
< 1000)
2114 erase_timeout
= 1000;
2116 return erase_timeout
;
2119 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
2123 if (mmc_card_sd(card
))
2124 return mmc_sd_erase_timeout(card
, arg
, qty
);
2126 return mmc_mmc_erase_timeout(card
, arg
, qty
);
2129 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
2130 unsigned int to
, unsigned int arg
)
2132 struct mmc_command cmd
= {0};
2133 unsigned int qty
= 0, busy_timeout
= 0;
2134 bool use_r1b_resp
= false;
2135 unsigned long timeout
;
2138 mmc_retune_hold(card
->host
);
2141 * qty is used to calculate the erase timeout which depends on how many
2142 * erase groups (or allocation units in SD terminology) are affected.
2143 * We count erasing part of an erase group as one erase group.
2144 * For SD, the allocation units are always a power of 2. For MMC, the
2145 * erase group size is almost certainly also power of 2, but it does not
2146 * seem to insist on that in the JEDEC standard, so we fall back to
2147 * division in that case. SD may not specify an allocation unit size,
2148 * in which case the timeout is based on the number of write blocks.
2150 * Note that the timeout for secure trim 2 will only be correct if the
2151 * number of erase groups specified is the same as the total of all
2152 * preceding secure trim 1 commands. Since the power may have been
2153 * lost since the secure trim 1 commands occurred, it is generally
2154 * impossible to calculate the secure trim 2 timeout correctly.
2156 if (card
->erase_shift
)
2157 qty
+= ((to
>> card
->erase_shift
) -
2158 (from
>> card
->erase_shift
)) + 1;
2159 else if (mmc_card_sd(card
))
2160 qty
+= to
- from
+ 1;
2162 qty
+= ((to
/ card
->erase_size
) -
2163 (from
/ card
->erase_size
)) + 1;
2165 if (!mmc_card_blockaddr(card
)) {
2170 if (mmc_card_sd(card
))
2171 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2173 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2175 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2176 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2178 pr_err("mmc_erase: group start error %d, "
2179 "status %#x\n", err
, cmd
.resp
[0]);
2184 memset(&cmd
, 0, sizeof(struct mmc_command
));
2185 if (mmc_card_sd(card
))
2186 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2188 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2190 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2191 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2193 pr_err("mmc_erase: group end error %d, status %#x\n",
2199 memset(&cmd
, 0, sizeof(struct mmc_command
));
2200 cmd
.opcode
= MMC_ERASE
;
2202 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2204 * If the host controller supports busy signalling and the timeout for
2205 * the erase operation does not exceed the max_busy_timeout, we should
2206 * use R1B response. Or we need to prevent the host from doing hw busy
2207 * detection, which is done by converting to a R1 response instead.
2209 if (card
->host
->max_busy_timeout
&&
2210 busy_timeout
> card
->host
->max_busy_timeout
) {
2211 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2213 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2214 cmd
.busy_timeout
= busy_timeout
;
2215 use_r1b_resp
= true;
2218 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2220 pr_err("mmc_erase: erase error %d, status %#x\n",
2226 if (mmc_host_is_spi(card
->host
))
2230 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2233 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2236 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2238 memset(&cmd
, 0, sizeof(struct mmc_command
));
2239 cmd
.opcode
= MMC_SEND_STATUS
;
2240 cmd
.arg
= card
->rca
<< 16;
2241 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2242 /* Do not retry else we can't see errors */
2243 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2244 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2245 pr_err("error %d requesting status %#x\n",
2251 /* Timeout if the device never becomes ready for data and
2252 * never leaves the program state.
2254 if (time_after(jiffies
, timeout
)) {
2255 pr_err("%s: Card stuck in programming state! %s\n",
2256 mmc_hostname(card
->host
), __func__
);
2261 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2262 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2264 mmc_retune_release(card
->host
);
2268 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2273 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2276 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2277 * to align the erase size efficiently.
2279 if (is_power_of_2(card
->erase_size
)) {
2280 unsigned int temp
= from_new
;
2282 from_new
= round_up(temp
, card
->erase_size
);
2283 rem
= from_new
- temp
;
2290 nr_new
= round_down(nr_new
, card
->erase_size
);
2292 rem
= from_new
% card
->erase_size
;
2294 rem
= card
->erase_size
- rem
;
2302 rem
= nr_new
% card
->erase_size
;
2310 *to
= from_new
+ nr_new
;
2317 * mmc_erase - erase sectors.
2318 * @card: card to erase
2319 * @from: first sector to erase
2320 * @nr: number of sectors to erase
2321 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2323 * Caller must claim host before calling this function.
2325 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2328 unsigned int rem
, to
= from
+ nr
;
2331 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2332 !(card
->csd
.cmdclass
& CCC_ERASE
))
2335 if (!card
->erase_size
)
2338 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2341 if ((arg
& MMC_SECURE_ARGS
) &&
2342 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2345 if ((arg
& MMC_TRIM_ARGS
) &&
2346 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2349 if (arg
== MMC_SECURE_ERASE_ARG
) {
2350 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2354 if (arg
== MMC_ERASE_ARG
)
2355 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2363 /* 'from' and 'to' are inclusive */
2367 * Special case where only one erase-group fits in the timeout budget:
2368 * If the region crosses an erase-group boundary on this particular
2369 * case, we will be trimming more than one erase-group which, does not
2370 * fit in the timeout budget of the controller, so we need to split it
2371 * and call mmc_do_erase() twice if necessary. This special case is
2372 * identified by the card->eg_boundary flag.
2374 rem
= card
->erase_size
- (from
% card
->erase_size
);
2375 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2376 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2378 if ((err
) || (to
<= from
))
2382 return mmc_do_erase(card
, from
, to
, arg
);
2384 EXPORT_SYMBOL(mmc_erase
);
2386 int mmc_can_erase(struct mmc_card
*card
)
2388 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2389 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2393 EXPORT_SYMBOL(mmc_can_erase
);
2395 int mmc_can_trim(struct mmc_card
*card
)
2397 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2398 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2402 EXPORT_SYMBOL(mmc_can_trim
);
2404 int mmc_can_discard(struct mmc_card
*card
)
2407 * As there's no way to detect the discard support bit at v4.5
2408 * use the s/w feature support filed.
2410 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2414 EXPORT_SYMBOL(mmc_can_discard
);
2416 int mmc_can_sanitize(struct mmc_card
*card
)
2418 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2420 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2424 EXPORT_SYMBOL(mmc_can_sanitize
);
2426 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2428 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2429 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2433 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2435 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2438 if (!card
->erase_size
)
2440 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2444 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2446 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2449 struct mmc_host
*host
= card
->host
;
2450 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2451 unsigned int last_timeout
= 0;
2452 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2453 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2455 if (card
->erase_shift
) {
2456 max_qty
= UINT_MAX
>> card
->erase_shift
;
2457 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2458 } else if (mmc_card_sd(card
)) {
2460 min_qty
= card
->pref_erase
;
2462 max_qty
= UINT_MAX
/ card
->erase_size
;
2463 min_qty
= card
->pref_erase
/ card
->erase_size
;
2467 * We should not only use 'host->max_busy_timeout' as the limitation
2468 * when deciding the max discard sectors. We should set a balance value
2469 * to improve the erase speed, and it can not get too long timeout at
2472 * Here we set 'card->pref_erase' as the minimal discard sectors no
2473 * matter what size of 'host->max_busy_timeout', but if the
2474 * 'host->max_busy_timeout' is large enough for more discard sectors,
2475 * then we can continue to increase the max discard sectors until we
2476 * get a balance value. In cases when the 'host->max_busy_timeout'
2477 * isn't specified, use the default max erase timeout.
2481 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2482 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2484 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2487 if (timeout
< last_timeout
)
2489 last_timeout
= timeout
;
2499 * When specifying a sector range to trim, chances are we might cross
2500 * an erase-group boundary even if the amount of sectors is less than
2502 * If we can only fit one erase-group in the controller timeout budget,
2503 * we have to care that erase-group boundaries are not crossed by a
2504 * single trim operation. We flag that special case with "eg_boundary".
2505 * In all other cases we can just decrement qty and pretend that we
2506 * always touch (qty + 1) erase-groups as a simple optimization.
2509 card
->eg_boundary
= 1;
2513 /* Convert qty to sectors */
2514 if (card
->erase_shift
)
2515 max_discard
= qty
<< card
->erase_shift
;
2516 else if (mmc_card_sd(card
))
2517 max_discard
= qty
+ 1;
2519 max_discard
= qty
* card
->erase_size
;
2524 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2526 struct mmc_host
*host
= card
->host
;
2527 unsigned int max_discard
, max_trim
;
2530 * Without erase_group_def set, MMC erase timeout depends on clock
2531 * frequence which can change. In that case, the best choice is
2532 * just the preferred erase size.
2534 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2535 return card
->pref_erase
;
2537 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2538 if (mmc_can_trim(card
)) {
2539 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2540 if (max_trim
< max_discard
)
2541 max_discard
= max_trim
;
2542 } else if (max_discard
< card
->erase_size
) {
2545 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2546 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2547 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2550 EXPORT_SYMBOL(mmc_calc_max_discard
);
2552 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2554 struct mmc_command cmd
= {0};
2556 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2557 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2560 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2562 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2563 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2565 EXPORT_SYMBOL(mmc_set_blocklen
);
2567 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2570 struct mmc_command cmd
= {0};
2572 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2573 cmd
.arg
= blockcount
& 0x0000FFFF;
2576 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2577 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2579 EXPORT_SYMBOL(mmc_set_blockcount
);
2581 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2583 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2585 host
->ops
->hw_reset(host
);
2588 int mmc_hw_reset(struct mmc_host
*host
)
2596 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2601 ret
= host
->bus_ops
->reset(host
);
2605 pr_warn("%s: tried to reset card, got error %d\n",
2606 mmc_hostname(host
), ret
);
2610 EXPORT_SYMBOL(mmc_hw_reset
);
2612 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2614 host
->f_init
= freq
;
2616 #ifdef CONFIG_MMC_DEBUG
2617 pr_info("%s: %s: trying to init card at %u Hz\n",
2618 mmc_hostname(host
), __func__
, host
->f_init
);
2620 mmc_power_up(host
, host
->ocr_avail
);
2623 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2624 * do a hardware reset if possible.
2626 mmc_hw_reset_for_init(host
);
2629 * sdio_reset sends CMD52 to reset card. Since we do not know
2630 * if the card is being re-initialized, just send it. CMD52
2631 * should be ignored by SD/eMMC cards.
2632 * Skip it if we already know that we do not support SDIO commands
2634 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2639 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2640 mmc_send_if_cond(host
, host
->ocr_avail
);
2642 /* Order's important: probe SDIO, then SD, then MMC */
2643 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2644 if (!mmc_attach_sdio(host
))
2647 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2648 if (!mmc_attach_sd(host
))
2651 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2652 if (!mmc_attach_mmc(host
))
2655 mmc_power_off(host
);
2659 int _mmc_detect_card_removed(struct mmc_host
*host
)
2663 if (!host
->card
|| mmc_card_removed(host
->card
))
2666 ret
= host
->bus_ops
->alive(host
);
2669 * Card detect status and alive check may be out of sync if card is
2670 * removed slowly, when card detect switch changes while card/slot
2671 * pads are still contacted in hardware (refer to "SD Card Mechanical
2672 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2673 * detect work 200ms later for this case.
2675 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2676 mmc_detect_change(host
, msecs_to_jiffies(200));
2677 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2681 mmc_card_set_removed(host
->card
);
2682 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2688 int mmc_detect_card_removed(struct mmc_host
*host
)
2690 struct mmc_card
*card
= host
->card
;
2693 WARN_ON(!host
->claimed
);
2698 if (!mmc_card_is_removable(host
))
2701 ret
= mmc_card_removed(card
);
2703 * The card will be considered unchanged unless we have been asked to
2704 * detect a change or host requires polling to provide card detection.
2706 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2709 host
->detect_change
= 0;
2711 ret
= _mmc_detect_card_removed(host
);
2712 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2714 * Schedule a detect work as soon as possible to let a
2715 * rescan handle the card removal.
2717 cancel_delayed_work(&host
->detect
);
2718 _mmc_detect_change(host
, 0, false);
2724 EXPORT_SYMBOL(mmc_detect_card_removed
);
2726 void mmc_rescan(struct work_struct
*work
)
2728 struct mmc_host
*host
=
2729 container_of(work
, struct mmc_host
, detect
.work
);
2732 if (host
->rescan_disable
)
2735 /* If there is a non-removable card registered, only scan once */
2736 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2738 host
->rescan_entered
= 1;
2740 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2741 mmc_claim_host(host
);
2742 host
->ops
->card_event(host
);
2743 mmc_release_host(host
);
2744 host
->trigger_card_event
= false;
2750 * if there is a _removable_ card registered, check whether it is
2753 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2754 host
->bus_ops
->detect(host
);
2756 host
->detect_change
= 0;
2759 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2760 * the card is no longer present.
2765 /* if there still is a card present, stop here */
2766 if (host
->bus_ops
!= NULL
) {
2772 * Only we can add a new handler, so it's safe to
2773 * release the lock here.
2777 mmc_claim_host(host
);
2778 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2779 host
->ops
->get_cd(host
) == 0) {
2780 mmc_power_off(host
);
2781 mmc_release_host(host
);
2785 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2786 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2788 if (freqs
[i
] <= host
->f_min
)
2791 mmc_release_host(host
);
2794 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2795 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2798 void mmc_start_host(struct mmc_host
*host
)
2800 host
->f_init
= max(freqs
[0], host
->f_min
);
2801 host
->rescan_disable
= 0;
2802 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2804 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2805 mmc_claim_host(host
);
2806 mmc_power_up(host
, host
->ocr_avail
);
2807 mmc_release_host(host
);
2810 mmc_gpiod_request_cd_irq(host
);
2811 _mmc_detect_change(host
, 0, false);
2814 void mmc_stop_host(struct mmc_host
*host
)
2816 #ifdef CONFIG_MMC_DEBUG
2817 unsigned long flags
;
2818 spin_lock_irqsave(&host
->lock
, flags
);
2820 spin_unlock_irqrestore(&host
->lock
, flags
);
2822 if (host
->slot
.cd_irq
>= 0)
2823 disable_irq(host
->slot
.cd_irq
);
2825 host
->rescan_disable
= 1;
2826 cancel_delayed_work_sync(&host
->detect
);
2828 /* clear pm flags now and let card drivers set them as needed */
2832 if (host
->bus_ops
&& !host
->bus_dead
) {
2833 /* Calling bus_ops->remove() with a claimed host can deadlock */
2834 host
->bus_ops
->remove(host
);
2835 mmc_claim_host(host
);
2836 mmc_detach_bus(host
);
2837 mmc_power_off(host
);
2838 mmc_release_host(host
);
2844 mmc_claim_host(host
);
2845 mmc_power_off(host
);
2846 mmc_release_host(host
);
2849 int mmc_power_save_host(struct mmc_host
*host
)
2853 #ifdef CONFIG_MMC_DEBUG
2854 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2859 if (!host
->bus_ops
|| host
->bus_dead
) {
2864 if (host
->bus_ops
->power_save
)
2865 ret
= host
->bus_ops
->power_save(host
);
2869 mmc_power_off(host
);
2873 EXPORT_SYMBOL(mmc_power_save_host
);
2875 int mmc_power_restore_host(struct mmc_host
*host
)
2879 #ifdef CONFIG_MMC_DEBUG
2880 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2885 if (!host
->bus_ops
|| host
->bus_dead
) {
2890 mmc_power_up(host
, host
->card
->ocr
);
2891 ret
= host
->bus_ops
->power_restore(host
);
2897 EXPORT_SYMBOL(mmc_power_restore_host
);
2900 * Flush the cache to the non-volatile storage.
2902 int mmc_flush_cache(struct mmc_card
*card
)
2906 if (mmc_card_mmc(card
) &&
2907 (card
->ext_csd
.cache_size
> 0) &&
2908 (card
->ext_csd
.cache_ctrl
& 1)) {
2909 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2910 EXT_CSD_FLUSH_CACHE
, 1, 0);
2912 pr_err("%s: cache flush error %d\n",
2913 mmc_hostname(card
->host
), err
);
2918 EXPORT_SYMBOL(mmc_flush_cache
);
2920 #ifdef CONFIG_PM_SLEEP
2921 /* Do the card removal on suspend if card is assumed removeable
2922 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2925 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2926 unsigned long mode
, void *unused
)
2928 struct mmc_host
*host
= container_of(
2929 notify_block
, struct mmc_host
, pm_notify
);
2930 unsigned long flags
;
2934 case PM_HIBERNATION_PREPARE
:
2935 case PM_SUSPEND_PREPARE
:
2936 case PM_RESTORE_PREPARE
:
2937 spin_lock_irqsave(&host
->lock
, flags
);
2938 host
->rescan_disable
= 1;
2939 spin_unlock_irqrestore(&host
->lock
, flags
);
2940 cancel_delayed_work_sync(&host
->detect
);
2945 /* Validate prerequisites for suspend */
2946 if (host
->bus_ops
->pre_suspend
)
2947 err
= host
->bus_ops
->pre_suspend(host
);
2951 /* Calling bus_ops->remove() with a claimed host can deadlock */
2952 host
->bus_ops
->remove(host
);
2953 mmc_claim_host(host
);
2954 mmc_detach_bus(host
);
2955 mmc_power_off(host
);
2956 mmc_release_host(host
);
2960 case PM_POST_SUSPEND
:
2961 case PM_POST_HIBERNATION
:
2962 case PM_POST_RESTORE
:
2964 spin_lock_irqsave(&host
->lock
, flags
);
2965 host
->rescan_disable
= 0;
2966 spin_unlock_irqrestore(&host
->lock
, flags
);
2967 _mmc_detect_change(host
, 0, false);
2974 void mmc_register_pm_notifier(struct mmc_host
*host
)
2976 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2977 register_pm_notifier(&host
->pm_notify
);
2980 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2982 unregister_pm_notifier(&host
->pm_notify
);
2987 * mmc_init_context_info() - init synchronization context
2990 * Init struct context_info needed to implement asynchronous
2991 * request mechanism, used by mmc core, host driver and mmc requests
2994 void mmc_init_context_info(struct mmc_host
*host
)
2996 host
->context_info
.is_new_req
= false;
2997 host
->context_info
.is_done_rcv
= false;
2998 host
->context_info
.is_waiting_last_req
= false;
2999 init_waitqueue_head(&host
->context_info
.wait
);
3002 static int __init
mmc_init(void)
3006 ret
= mmc_register_bus();
3010 ret
= mmc_register_host_class();
3012 goto unregister_bus
;
3014 ret
= sdio_register_bus();
3016 goto unregister_host_class
;
3020 unregister_host_class
:
3021 mmc_unregister_host_class();
3023 mmc_unregister_bus();
3027 static void __exit
mmc_exit(void)
3029 sdio_unregister_bus();
3030 mmc_unregister_host_class();
3031 mmc_unregister_bus();
3034 subsys_initcall(mmc_init
);
3035 module_exit(mmc_exit
);
3037 MODULE_LICENSE("GPL");