2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax
= 515633;
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
88 unsigned int clkreg_enable
;
89 unsigned int clkreg_8bit_bus_enable
;
90 unsigned int clkreg_neg_edge_enable
;
91 unsigned int datalength_bits
;
92 unsigned int fifosize
;
93 unsigned int fifohalfsize
;
94 unsigned int data_cmd_enable
;
95 unsigned int datactrl_mask_ddrmode
;
96 unsigned int datactrl_mask_sdio
;
99 bool blksz_datactrl16
;
100 bool blksz_datactrl4
;
103 bool signal_direction
;
107 u32 busy_detect_flag
;
108 u32 busy_detect_mask
;
110 bool explicit_mclk_control
;
113 bool reversed_irq_handling
;
116 static struct variant_data variant_arm
= {
118 .fifohalfsize
= 8 * 4,
119 .datalength_bits
= 16,
120 .pwrreg_powerup
= MCI_PWR_UP
,
122 .reversed_irq_handling
= true,
125 static struct variant_data variant_arm_extended_fifo
= {
127 .fifohalfsize
= 64 * 4,
128 .datalength_bits
= 16,
129 .pwrreg_powerup
= MCI_PWR_UP
,
133 static struct variant_data variant_arm_extended_fifo_hwfc
= {
135 .fifohalfsize
= 64 * 4,
136 .clkreg_enable
= MCI_ARM_HWFCEN
,
137 .datalength_bits
= 16,
138 .pwrreg_powerup
= MCI_PWR_UP
,
142 static struct variant_data variant_u300
= {
144 .fifohalfsize
= 8 * 4,
145 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
146 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
147 .datalength_bits
= 16,
148 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
150 .pwrreg_powerup
= MCI_PWR_ON
,
152 .signal_direction
= true,
153 .pwrreg_clkgate
= true,
154 .pwrreg_nopower
= true,
157 static struct variant_data variant_nomadik
= {
159 .fifohalfsize
= 8 * 4,
160 .clkreg
= MCI_CLK_ENABLE
,
161 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
162 .datalength_bits
= 24,
163 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
166 .pwrreg_powerup
= MCI_PWR_ON
,
168 .signal_direction
= true,
169 .pwrreg_clkgate
= true,
170 .pwrreg_nopower
= true,
173 static struct variant_data variant_ux500
= {
175 .fifohalfsize
= 8 * 4,
176 .clkreg
= MCI_CLK_ENABLE
,
177 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
178 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
179 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
180 .datalength_bits
= 24,
181 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
184 .pwrreg_powerup
= MCI_PWR_ON
,
186 .signal_direction
= true,
187 .pwrreg_clkgate
= true,
189 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
190 .busy_detect_flag
= MCI_ST_CARDBUSY
,
191 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
192 .pwrreg_nopower
= true,
195 static struct variant_data variant_ux500v2
= {
197 .fifohalfsize
= 8 * 4,
198 .clkreg
= MCI_CLK_ENABLE
,
199 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
200 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
201 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
202 .datactrl_mask_ddrmode
= MCI_DPSM_ST_DDRMODE
,
203 .datalength_bits
= 24,
204 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
207 .blksz_datactrl16
= true,
208 .pwrreg_powerup
= MCI_PWR_ON
,
210 .signal_direction
= true,
211 .pwrreg_clkgate
= true,
213 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
214 .busy_detect_flag
= MCI_ST_CARDBUSY
,
215 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
216 .pwrreg_nopower
= true,
219 static struct variant_data variant_qcom
= {
221 .fifohalfsize
= 8 * 4,
222 .clkreg
= MCI_CLK_ENABLE
,
223 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
224 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
225 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
226 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
227 .data_cmd_enable
= MCI_CPSM_QCOM_DATCMD
,
228 .blksz_datactrl4
= true,
229 .datalength_bits
= 24,
230 .pwrreg_powerup
= MCI_PWR_UP
,
232 .explicit_mclk_control
= true,
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host
*mmc
)
240 struct mmci_host
*host
= mmc_priv(mmc
);
244 spin_lock_irqsave(&host
->lock
, flags
);
245 if (readl(host
->base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)
247 spin_unlock_irqrestore(&host
->lock
, flags
);
253 * Validate mmc prerequisites
255 static int mmci_validate_data(struct mmci_host
*host
,
256 struct mmc_data
*data
)
261 if (!is_power_of_2(data
->blksz
)) {
262 dev_err(mmc_dev(host
->mmc
),
263 "unsupported block size (%d bytes)\n", data
->blksz
);
270 static void mmci_reg_delay(struct mmci_host
*host
)
273 * According to the spec, at least three feedback clock cycles
274 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 * Worst delay time during card init is at 100 kHz => 30 us.
277 * Worst delay time when up and running is at 25 MHz => 120 ns.
279 if (host
->cclk
< 25000000)
286 * This must be called with host->lock held
288 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
290 if (host
->clk_reg
!= clk
) {
292 writel(clk
, host
->base
+ MMCICLOCK
);
297 * This must be called with host->lock held
299 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
301 if (host
->pwr_reg
!= pwr
) {
303 writel(pwr
, host
->base
+ MMCIPOWER
);
308 * This must be called with host->lock held
310 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
312 /* Keep busy mode in DPSM if enabled */
313 datactrl
|= host
->datactrl_reg
& host
->variant
->busy_dpsm_flag
;
315 if (host
->datactrl_reg
!= datactrl
) {
316 host
->datactrl_reg
= datactrl
;
317 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
322 * This must be called with host->lock held
324 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
326 struct variant_data
*variant
= host
->variant
;
327 u32 clk
= variant
->clkreg
;
329 /* Make sure cclk reflects the current calculated clock */
333 if (variant
->explicit_mclk_control
) {
334 host
->cclk
= host
->mclk
;
335 } else if (desired
>= host
->mclk
) {
336 clk
= MCI_CLK_BYPASS
;
337 if (variant
->st_clkdiv
)
338 clk
|= MCI_ST_UX500_NEG_EDGE
;
339 host
->cclk
= host
->mclk
;
340 } else if (variant
->st_clkdiv
) {
342 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 * => clkdiv = (mclk / f) - 2
344 * Round the divider up so we don't exceed the max
347 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
350 host
->cclk
= host
->mclk
/ (clk
+ 2);
353 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 * => clkdiv = mclk / (2 * f) - 1
356 clk
= host
->mclk
/ (2 * desired
) - 1;
359 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
362 clk
|= variant
->clkreg_enable
;
363 clk
|= MCI_CLK_ENABLE
;
364 /* This hasn't proven to be worthwhile */
365 /* clk |= MCI_CLK_PWRSAVE; */
368 /* Set actual clock for debug */
369 host
->mmc
->actual_clock
= host
->cclk
;
371 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
373 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
374 clk
|= variant
->clkreg_8bit_bus_enable
;
376 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
377 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
378 clk
|= variant
->clkreg_neg_edge_enable
;
380 mmci_write_clkreg(host
, clk
);
384 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
386 writel(0, host
->base
+ MMCICOMMAND
);
393 mmc_request_done(host
->mmc
, mrq
);
396 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
398 void __iomem
*base
= host
->base
;
400 if (host
->singleirq
) {
401 unsigned int mask0
= readl(base
+ MMCIMASK0
);
403 mask0
&= ~MCI_IRQ1MASK
;
406 writel(mask0
, base
+ MMCIMASK0
);
409 writel(mask
, base
+ MMCIMASK1
);
412 static void mmci_stop_data(struct mmci_host
*host
)
414 mmci_write_datactrlreg(host
, 0);
415 mmci_set_mask1(host
, 0);
419 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
421 unsigned int flags
= SG_MITER_ATOMIC
;
423 if (data
->flags
& MMC_DATA_READ
)
424 flags
|= SG_MITER_TO_SG
;
426 flags
|= SG_MITER_FROM_SG
;
428 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
432 * All the DMA operation mode stuff goes inside this ifdef.
433 * This assumes that you have a generic DMA device interface,
434 * no custom DMA interfaces are supported.
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host
*host
)
439 const char *rxname
, *txname
;
440 struct variant_data
*variant
= host
->variant
;
442 host
->dma_rx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "rx");
443 host
->dma_tx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "tx");
445 /* initialize pre request cookie */
446 host
->next_data
.cookie
= 1;
449 * If only an RX channel is specified, the driver will
450 * attempt to use it bidirectionally, however if it is
451 * is specified but cannot be located, DMA will be disabled.
453 if (host
->dma_rx_channel
&& !host
->dma_tx_channel
)
454 host
->dma_tx_channel
= host
->dma_rx_channel
;
456 if (host
->dma_rx_channel
)
457 rxname
= dma_chan_name(host
->dma_rx_channel
);
461 if (host
->dma_tx_channel
)
462 txname
= dma_chan_name(host
->dma_tx_channel
);
466 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
470 * Limit the maximum segment size in any SG entry according to
471 * the parameters of the DMA engine device.
473 if (host
->dma_tx_channel
) {
474 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
475 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
477 if (max_seg_size
< host
->mmc
->max_seg_size
)
478 host
->mmc
->max_seg_size
= max_seg_size
;
480 if (host
->dma_rx_channel
) {
481 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
482 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
484 if (max_seg_size
< host
->mmc
->max_seg_size
)
485 host
->mmc
->max_seg_size
= max_seg_size
;
488 if (variant
->qcom_dml
&& host
->dma_rx_channel
&& host
->dma_tx_channel
)
489 if (dml_hw_init(host
, host
->mmc
->parent
->of_node
))
490 variant
->qcom_dml
= false;
494 * This is used in or so inline it
495 * so it can be discarded.
497 static inline void mmci_dma_release(struct mmci_host
*host
)
499 if (host
->dma_rx_channel
)
500 dma_release_channel(host
->dma_rx_channel
);
501 if (host
->dma_tx_channel
)
502 dma_release_channel(host
->dma_tx_channel
);
503 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
506 static void mmci_dma_data_error(struct mmci_host
*host
)
508 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
509 dmaengine_terminate_all(host
->dma_current
);
510 host
->dma_current
= NULL
;
511 host
->dma_desc_current
= NULL
;
512 host
->data
->host_cookie
= 0;
515 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
517 struct dma_chan
*chan
;
518 enum dma_data_direction dir
;
520 if (data
->flags
& MMC_DATA_READ
) {
521 dir
= DMA_FROM_DEVICE
;
522 chan
= host
->dma_rx_channel
;
525 chan
= host
->dma_tx_channel
;
528 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
531 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
536 /* Wait up to 1ms for the DMA to complete */
538 status
= readl(host
->base
+ MMCISTATUS
);
539 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
545 * Check to see whether we still have some data left in the FIFO -
546 * this catches DMA controllers which are unable to monitor the
547 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
548 * contiguous buffers. On TX, we'll get a FIFO underrun error.
550 if (status
& MCI_RXDATAAVLBLMASK
) {
551 mmci_dma_data_error(host
);
556 if (!data
->host_cookie
)
557 mmci_dma_unmap(host
, data
);
560 * Use of DMA with scatter-gather is impossible.
561 * Give up with DMA and switch back to PIO mode.
563 if (status
& MCI_RXDATAAVLBLMASK
) {
564 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
565 mmci_dma_release(host
);
568 host
->dma_current
= NULL
;
569 host
->dma_desc_current
= NULL
;
572 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
573 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
574 struct dma_chan
**dma_chan
,
575 struct dma_async_tx_descriptor
**dma_desc
)
577 struct variant_data
*variant
= host
->variant
;
578 struct dma_slave_config conf
= {
579 .src_addr
= host
->phybase
+ MMCIFIFO
,
580 .dst_addr
= host
->phybase
+ MMCIFIFO
,
581 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
582 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
583 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
584 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
587 struct dma_chan
*chan
;
588 struct dma_device
*device
;
589 struct dma_async_tx_descriptor
*desc
;
590 enum dma_data_direction buffer_dirn
;
592 unsigned long flags
= DMA_CTRL_ACK
;
594 if (data
->flags
& MMC_DATA_READ
) {
595 conf
.direction
= DMA_DEV_TO_MEM
;
596 buffer_dirn
= DMA_FROM_DEVICE
;
597 chan
= host
->dma_rx_channel
;
599 conf
.direction
= DMA_MEM_TO_DEV
;
600 buffer_dirn
= DMA_TO_DEVICE
;
601 chan
= host
->dma_tx_channel
;
604 /* If there's no DMA channel, fall back to PIO */
608 /* If less than or equal to the fifo size, don't bother with DMA */
609 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
612 device
= chan
->device
;
613 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
617 if (host
->variant
->qcom_dml
)
618 flags
|= DMA_PREP_INTERRUPT
;
620 dmaengine_slave_config(chan
, &conf
);
621 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
622 conf
.direction
, flags
);
632 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
636 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
637 struct mmc_data
*data
)
639 /* Check if next job is already prepared. */
640 if (host
->dma_current
&& host
->dma_desc_current
)
643 /* No job were prepared thus do it now. */
644 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
645 &host
->dma_desc_current
);
648 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
649 struct mmc_data
*data
)
651 struct mmci_host_next
*nd
= &host
->next_data
;
652 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
655 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
658 struct mmc_data
*data
= host
->data
;
660 ret
= mmci_dma_prep_data(host
, host
->data
);
664 /* Okay, go for it. */
665 dev_vdbg(mmc_dev(host
->mmc
),
666 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
667 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
668 dmaengine_submit(host
->dma_desc_current
);
669 dma_async_issue_pending(host
->dma_current
);
671 if (host
->variant
->qcom_dml
)
672 dml_start_xfer(host
, data
);
674 datactrl
|= MCI_DPSM_DMAENABLE
;
676 /* Trigger the DMA transfer */
677 mmci_write_datactrlreg(host
, datactrl
);
680 * Let the MMCI say when the data is ended and it's time
681 * to fire next DMA request. When that happens, MMCI will
682 * call mmci_data_end()
684 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
685 host
->base
+ MMCIMASK0
);
689 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
691 struct mmci_host_next
*next
= &host
->next_data
;
693 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
694 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
696 host
->dma_desc_current
= next
->dma_desc
;
697 host
->dma_current
= next
->dma_chan
;
698 next
->dma_desc
= NULL
;
699 next
->dma_chan
= NULL
;
702 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
704 struct mmci_host
*host
= mmc_priv(mmc
);
705 struct mmc_data
*data
= mrq
->data
;
706 struct mmci_host_next
*nd
= &host
->next_data
;
711 BUG_ON(data
->host_cookie
);
713 if (mmci_validate_data(host
, data
))
716 if (!mmci_dma_prep_next(host
, data
))
717 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
720 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
723 struct mmci_host
*host
= mmc_priv(mmc
);
724 struct mmc_data
*data
= mrq
->data
;
726 if (!data
|| !data
->host_cookie
)
729 mmci_dma_unmap(host
, data
);
732 struct mmci_host_next
*next
= &host
->next_data
;
733 struct dma_chan
*chan
;
734 if (data
->flags
& MMC_DATA_READ
)
735 chan
= host
->dma_rx_channel
;
737 chan
= host
->dma_tx_channel
;
738 dmaengine_terminate_all(chan
);
740 if (host
->dma_desc_current
== next
->dma_desc
)
741 host
->dma_desc_current
= NULL
;
743 if (host
->dma_current
== next
->dma_chan
)
744 host
->dma_current
= NULL
;
746 next
->dma_desc
= NULL
;
747 next
->dma_chan
= NULL
;
748 data
->host_cookie
= 0;
753 /* Blank functions if the DMA engine is not available */
754 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
757 static inline void mmci_dma_setup(struct mmci_host
*host
)
761 static inline void mmci_dma_release(struct mmci_host
*host
)
765 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
769 static inline void mmci_dma_finalize(struct mmci_host
*host
,
770 struct mmc_data
*data
)
774 static inline void mmci_dma_data_error(struct mmci_host
*host
)
778 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
783 #define mmci_pre_request NULL
784 #define mmci_post_request NULL
788 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
790 struct variant_data
*variant
= host
->variant
;
791 unsigned int datactrl
, timeout
, irqmask
;
792 unsigned long long clks
;
796 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
797 data
->blksz
, data
->blocks
, data
->flags
);
800 host
->size
= data
->blksz
* data
->blocks
;
801 data
->bytes_xfered
= 0;
803 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
804 do_div(clks
, NSEC_PER_SEC
);
806 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
809 writel(timeout
, base
+ MMCIDATATIMER
);
810 writel(host
->size
, base
+ MMCIDATALENGTH
);
812 blksz_bits
= ffs(data
->blksz
) - 1;
813 BUG_ON(1 << blksz_bits
!= data
->blksz
);
815 if (variant
->blksz_datactrl16
)
816 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
817 else if (variant
->blksz_datactrl4
)
818 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 4);
820 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
822 if (data
->flags
& MMC_DATA_READ
)
823 datactrl
|= MCI_DPSM_DIRECTION
;
825 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
828 datactrl
|= variant
->datactrl_mask_sdio
;
831 * The ST Micro variant for SDIO small write transfers
832 * needs to have clock H/W flow control disabled,
833 * otherwise the transfer will not start. The threshold
834 * depends on the rate of MCLK.
836 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
838 (host
->size
<= 8 && host
->mclk
> 50000000)))
839 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
841 clk
= host
->clk_reg
| variant
->clkreg_enable
;
843 mmci_write_clkreg(host
, clk
);
846 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
847 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
848 datactrl
|= variant
->datactrl_mask_ddrmode
;
851 * Attempt to use DMA operation mode, if this
852 * should fail, fall back to PIO mode
854 if (!mmci_dma_start_data(host
, datactrl
))
857 /* IRQ mode, map the SG list for CPU reading/writing */
858 mmci_init_sg(host
, data
);
860 if (data
->flags
& MMC_DATA_READ
) {
861 irqmask
= MCI_RXFIFOHALFFULLMASK
;
864 * If we have less than the fifo 'half-full' threshold to
865 * transfer, trigger a PIO interrupt as soon as any data
868 if (host
->size
< variant
->fifohalfsize
)
869 irqmask
|= MCI_RXDATAAVLBLMASK
;
872 * We don't actually need to include "FIFO empty" here
873 * since its implicit in "FIFO half empty".
875 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
878 mmci_write_datactrlreg(host
, datactrl
);
879 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
880 mmci_set_mask1(host
, irqmask
);
884 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
886 void __iomem
*base
= host
->base
;
888 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
889 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
891 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
892 writel(0, base
+ MMCICOMMAND
);
893 mmci_reg_delay(host
);
896 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
897 if (cmd
->flags
& MMC_RSP_PRESENT
) {
898 if (cmd
->flags
& MMC_RSP_136
)
899 c
|= MCI_CPSM_LONGRSP
;
900 c
|= MCI_CPSM_RESPONSE
;
903 c
|= MCI_CPSM_INTERRUPT
;
905 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
906 c
|= host
->variant
->data_cmd_enable
;
910 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
911 writel(c
, base
+ MMCICOMMAND
);
915 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
918 /* Make sure we have data to handle */
922 /* First check for errors */
923 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
924 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
927 /* Terminate the DMA transfer */
928 if (dma_inprogress(host
)) {
929 mmci_dma_data_error(host
);
930 mmci_dma_unmap(host
, data
);
934 * Calculate how far we are into the transfer. Note that
935 * the data counter gives the number of bytes transferred
936 * on the MMC bus, not on the host side. On reads, this
937 * can be as much as a FIFO-worth of data ahead. This
938 * matters for FIFO overruns only.
940 remain
= readl(host
->base
+ MMCIDATACNT
);
941 success
= data
->blksz
* data
->blocks
- remain
;
943 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
945 if (status
& MCI_DATACRCFAIL
) {
946 /* Last block was not successful */
948 data
->error
= -EILSEQ
;
949 } else if (status
& MCI_DATATIMEOUT
) {
950 data
->error
= -ETIMEDOUT
;
951 } else if (status
& MCI_STARTBITERR
) {
952 data
->error
= -ECOMM
;
953 } else if (status
& MCI_TXUNDERRUN
) {
955 } else if (status
& MCI_RXOVERRUN
) {
956 if (success
> host
->variant
->fifosize
)
957 success
-= host
->variant
->fifosize
;
962 data
->bytes_xfered
= round_down(success
, data
->blksz
);
965 if (status
& MCI_DATABLOCKEND
)
966 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
968 if (status
& MCI_DATAEND
|| data
->error
) {
969 if (dma_inprogress(host
))
970 mmci_dma_finalize(host
, data
);
971 mmci_stop_data(host
);
974 /* The error clause is handled above, success! */
975 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
977 if (!data
->stop
|| host
->mrq
->sbc
) {
978 mmci_request_end(host
, data
->mrq
);
980 mmci_start_command(host
, data
->stop
, 0);
986 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
989 void __iomem
*base
= host
->base
;
995 sbc
= (cmd
== host
->mrq
->sbc
);
998 * We need to be one of these interrupts to be considered worth
999 * handling. Note that we tag on any latent IRQs postponed
1000 * due to waiting for busy status.
1002 if (!((status
|host
->busy_status
) &
1003 (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
)))
1007 * ST Micro variant: handle busy detection.
1009 if (host
->variant
->busy_detect
) {
1010 bool busy_resp
= !!(cmd
->flags
& MMC_RSP_BUSY
);
1012 /* We are busy with a command, return */
1013 if (host
->busy_status
&&
1014 (status
& host
->variant
->busy_detect_flag
))
1018 * We were not busy, but we now got a busy response on
1019 * something that was not an error, and we double-check
1020 * that the special busy status bit is still set before
1023 if (!host
->busy_status
&& busy_resp
&&
1024 !(status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
)) &&
1025 (readl(base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)) {
1026 /* Unmask the busy IRQ */
1027 writel(readl(base
+ MMCIMASK0
) |
1028 host
->variant
->busy_detect_mask
,
1031 * Now cache the last response status code (until
1032 * the busy bit goes low), and return.
1035 status
& (MCI_CMDSENT
|MCI_CMDRESPEND
);
1040 * At this point we are not busy with a command, we have
1041 * not received a new busy request, mask the busy IRQ and
1042 * fall through to process the IRQ.
1044 if (host
->busy_status
) {
1045 writel(readl(base
+ MMCIMASK0
) &
1046 ~host
->variant
->busy_detect_mask
,
1048 host
->busy_status
= 0;
1054 if (status
& MCI_CMDTIMEOUT
) {
1055 cmd
->error
= -ETIMEDOUT
;
1056 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1057 cmd
->error
= -EILSEQ
;
1059 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1060 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1061 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1062 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1065 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1067 /* Terminate the DMA transfer */
1068 if (dma_inprogress(host
)) {
1069 mmci_dma_data_error(host
);
1070 mmci_dma_unmap(host
, host
->data
);
1072 mmci_stop_data(host
);
1074 mmci_request_end(host
, host
->mrq
);
1076 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1077 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
1078 mmci_start_data(host
, cmd
->data
);
1082 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1084 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1087 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1090 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1091 * from the fifo range should be used
1093 if (status
& MCI_RXFIFOHALFFULL
)
1094 return host
->variant
->fifohalfsize
;
1095 else if (status
& MCI_RXDATAAVLBL
)
1101 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1103 void __iomem
*base
= host
->base
;
1105 u32 status
= readl(host
->base
+ MMCISTATUS
);
1106 int host_remain
= host
->size
;
1109 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1118 * SDIO especially may want to send something that is
1119 * not divisible by 4 (as opposed to card sectors
1120 * etc). Therefore make sure to always read the last bytes
1121 * while only doing full 32-bit reads towards the FIFO.
1123 if (unlikely(count
& 0x3)) {
1125 unsigned char buf
[4];
1126 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1127 memcpy(ptr
, buf
, count
);
1129 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1133 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1138 host_remain
-= count
;
1143 status
= readl(base
+ MMCISTATUS
);
1144 } while (status
& MCI_RXDATAAVLBL
);
1146 return ptr
- buffer
;
1149 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1151 struct variant_data
*variant
= host
->variant
;
1152 void __iomem
*base
= host
->base
;
1156 unsigned int count
, maxcnt
;
1158 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1159 variant
->fifosize
: variant
->fifohalfsize
;
1160 count
= min(remain
, maxcnt
);
1163 * SDIO especially may want to send something that is
1164 * not divisible by 4 (as opposed to card sectors
1165 * etc), and the FIFO only accept full 32-bit writes.
1166 * So compensate by adding +3 on the count, a single
1167 * byte become a 32bit write, 7 bytes will be two
1170 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1178 status
= readl(base
+ MMCISTATUS
);
1179 } while (status
& MCI_TXFIFOHALFEMPTY
);
1181 return ptr
- buffer
;
1185 * PIO data transfer IRQ handler.
1187 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1189 struct mmci_host
*host
= dev_id
;
1190 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1191 struct variant_data
*variant
= host
->variant
;
1192 void __iomem
*base
= host
->base
;
1193 unsigned long flags
;
1196 status
= readl(base
+ MMCISTATUS
);
1198 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1200 local_irq_save(flags
);
1203 unsigned int remain
, len
;
1207 * For write, we only need to test the half-empty flag
1208 * here - if the FIFO is completely empty, then by
1209 * definition it is more than half empty.
1211 * For read, check for data available.
1213 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1216 if (!sg_miter_next(sg_miter
))
1219 buffer
= sg_miter
->addr
;
1220 remain
= sg_miter
->length
;
1223 if (status
& MCI_RXACTIVE
)
1224 len
= mmci_pio_read(host
, buffer
, remain
);
1225 if (status
& MCI_TXACTIVE
)
1226 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1228 sg_miter
->consumed
= len
;
1236 status
= readl(base
+ MMCISTATUS
);
1239 sg_miter_stop(sg_miter
);
1241 local_irq_restore(flags
);
1244 * If we have less than the fifo 'half-full' threshold to transfer,
1245 * trigger a PIO interrupt as soon as any data is available.
1247 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1248 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1251 * If we run out of data, disable the data IRQs; this
1252 * prevents a race where the FIFO becomes empty before
1253 * the chip itself has disabled the data path, and
1254 * stops us racing with our data end IRQ.
1256 if (host
->size
== 0) {
1257 mmci_set_mask1(host
, 0);
1258 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1265 * Handle completion of command and data transfers.
1267 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1269 struct mmci_host
*host
= dev_id
;
1273 spin_lock(&host
->lock
);
1276 status
= readl(host
->base
+ MMCISTATUS
);
1278 if (host
->singleirq
) {
1279 if (status
& readl(host
->base
+ MMCIMASK1
))
1280 mmci_pio_irq(irq
, dev_id
);
1282 status
&= ~MCI_IRQ1MASK
;
1286 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1287 * enabled) since the HW seems to be triggering the IRQ on both
1288 * edges while monitoring DAT0 for busy completion.
1290 status
&= readl(host
->base
+ MMCIMASK0
);
1291 writel(status
, host
->base
+ MMCICLEAR
);
1293 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1295 if (host
->variant
->reversed_irq_handling
) {
1296 mmci_data_irq(host
, host
->data
, status
);
1297 mmci_cmd_irq(host
, host
->cmd
, status
);
1299 mmci_cmd_irq(host
, host
->cmd
, status
);
1300 mmci_data_irq(host
, host
->data
, status
);
1304 * Don't poll for busy completion in irq context.
1306 if (host
->variant
->busy_detect
&& host
->busy_status
)
1307 status
&= ~host
->variant
->busy_detect_flag
;
1312 spin_unlock(&host
->lock
);
1314 return IRQ_RETVAL(ret
);
1317 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1319 struct mmci_host
*host
= mmc_priv(mmc
);
1320 unsigned long flags
;
1322 WARN_ON(host
->mrq
!= NULL
);
1324 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1325 if (mrq
->cmd
->error
) {
1326 mmc_request_done(mmc
, mrq
);
1330 spin_lock_irqsave(&host
->lock
, flags
);
1335 mmci_get_next_data(host
, mrq
->data
);
1337 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1338 mmci_start_data(host
, mrq
->data
);
1341 mmci_start_command(host
, mrq
->sbc
, 0);
1343 mmci_start_command(host
, mrq
->cmd
, 0);
1345 spin_unlock_irqrestore(&host
->lock
, flags
);
1348 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1350 struct mmci_host
*host
= mmc_priv(mmc
);
1351 struct variant_data
*variant
= host
->variant
;
1353 unsigned long flags
;
1356 if (host
->plat
->ios_handler
&&
1357 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1358 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1360 switch (ios
->power_mode
) {
1362 if (!IS_ERR(mmc
->supply
.vmmc
))
1363 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1365 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1366 regulator_disable(mmc
->supply
.vqmmc
);
1367 host
->vqmmc_enabled
= false;
1372 if (!IS_ERR(mmc
->supply
.vmmc
))
1373 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1376 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1377 * and instead uses MCI_PWR_ON so apply whatever value is
1378 * configured in the variant data.
1380 pwr
|= variant
->pwrreg_powerup
;
1384 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1385 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1387 dev_err(mmc_dev(mmc
),
1388 "failed to enable vqmmc regulator\n");
1390 host
->vqmmc_enabled
= true;
1397 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1399 * The ST Micro variant has some additional bits
1400 * indicating signal direction for the signals in
1401 * the SD/MMC bus and feedback-clock usage.
1403 pwr
|= host
->pwr_reg_add
;
1405 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1406 pwr
&= ~MCI_ST_DATA74DIREN
;
1407 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1408 pwr
&= (~MCI_ST_DATA74DIREN
&
1409 ~MCI_ST_DATA31DIREN
&
1410 ~MCI_ST_DATA2DIREN
);
1413 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1414 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1418 * The ST Micro variant use the ROD bit for something
1419 * else and only has OD (Open Drain).
1426 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1427 * gating the clock, the MCI_PWR_ON bit is cleared.
1429 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1432 if (host
->variant
->explicit_mclk_control
&&
1433 ios
->clock
!= host
->clock_cache
) {
1434 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1436 dev_err(mmc_dev(host
->mmc
),
1437 "Error setting clock rate (%d)\n", ret
);
1439 host
->mclk
= clk_get_rate(host
->clk
);
1441 host
->clock_cache
= ios
->clock
;
1443 spin_lock_irqsave(&host
->lock
, flags
);
1445 mmci_set_clkreg(host
, ios
->clock
);
1446 mmci_write_pwrreg(host
, pwr
);
1447 mmci_reg_delay(host
);
1449 spin_unlock_irqrestore(&host
->lock
, flags
);
1452 static int mmci_get_cd(struct mmc_host
*mmc
)
1454 struct mmci_host
*host
= mmc_priv(mmc
);
1455 struct mmci_platform_data
*plat
= host
->plat
;
1456 unsigned int status
= mmc_gpio_get_cd(mmc
);
1458 if (status
== -ENOSYS
) {
1460 return 1; /* Assume always present */
1462 status
= plat
->status(mmc_dev(host
->mmc
));
1467 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1471 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1473 switch (ios
->signal_voltage
) {
1474 case MMC_SIGNAL_VOLTAGE_330
:
1475 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1478 case MMC_SIGNAL_VOLTAGE_180
:
1479 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1482 case MMC_SIGNAL_VOLTAGE_120
:
1483 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1489 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1495 static struct mmc_host_ops mmci_ops
= {
1496 .request
= mmci_request
,
1497 .pre_req
= mmci_pre_request
,
1498 .post_req
= mmci_post_request
,
1499 .set_ios
= mmci_set_ios
,
1500 .get_ro
= mmc_gpio_get_ro
,
1501 .get_cd
= mmci_get_cd
,
1502 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1505 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1507 struct mmci_host
*host
= mmc_priv(mmc
);
1508 int ret
= mmc_of_parse(mmc
);
1513 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1514 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1515 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1516 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1517 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1518 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1519 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1520 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1521 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1522 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1523 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1524 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1526 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1527 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1528 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1529 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1534 static int mmci_probe(struct amba_device
*dev
,
1535 const struct amba_id
*id
)
1537 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1538 struct device_node
*np
= dev
->dev
.of_node
;
1539 struct variant_data
*variant
= id
->data
;
1540 struct mmci_host
*host
;
1541 struct mmc_host
*mmc
;
1544 /* Must have platform data or Device Tree. */
1546 dev_err(&dev
->dev
, "No plat data or DT found\n");
1551 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1556 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1560 ret
= mmci_of_parse(np
, mmc
);
1564 host
= mmc_priv(mmc
);
1567 host
->hw_designer
= amba_manf(dev
);
1568 host
->hw_revision
= amba_rev(dev
);
1569 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1570 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1572 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1573 if (IS_ERR(host
->clk
)) {
1574 ret
= PTR_ERR(host
->clk
);
1578 ret
= clk_prepare_enable(host
->clk
);
1582 if (variant
->qcom_fifo
)
1583 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
1585 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
1588 host
->variant
= variant
;
1589 host
->mclk
= clk_get_rate(host
->clk
);
1591 * According to the spec, mclk is max 100 MHz,
1592 * so we try to adjust the clock down to this,
1595 if (host
->mclk
> variant
->f_max
) {
1596 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
1599 host
->mclk
= clk_get_rate(host
->clk
);
1600 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1604 host
->phybase
= dev
->res
.start
;
1605 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
1606 if (IS_ERR(host
->base
)) {
1607 ret
= PTR_ERR(host
->base
);
1612 * The ARM and ST versions of the block have slightly different
1613 * clock divider equations which means that the minimum divider
1615 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1617 if (variant
->st_clkdiv
)
1618 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1619 else if (variant
->explicit_mclk_control
)
1620 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
1622 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1624 * If no maximum operating frequency is supplied, fall back to use
1625 * the module parameter, which has a (low) default value in case it
1626 * is not specified. Either value must not exceed the clock rate into
1627 * the block, of course.
1630 mmc
->f_max
= variant
->explicit_mclk_control
?
1631 min(variant
->f_max
, mmc
->f_max
) :
1632 min(host
->mclk
, mmc
->f_max
);
1634 mmc
->f_max
= variant
->explicit_mclk_control
?
1635 fmax
: min(host
->mclk
, fmax
);
1638 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1640 /* Get regulators and the supported OCR mask */
1641 ret
= mmc_regulator_get_supply(mmc
);
1642 if (ret
== -EPROBE_DEFER
)
1645 if (!mmc
->ocr_avail
)
1646 mmc
->ocr_avail
= plat
->ocr_mask
;
1647 else if (plat
->ocr_mask
)
1648 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1650 /* DT takes precedence over platform data. */
1652 if (!plat
->cd_invert
)
1653 mmc
->caps2
|= MMC_CAP2_CD_ACTIVE_HIGH
;
1654 mmc
->caps2
|= MMC_CAP2_RO_ACTIVE_HIGH
;
1657 /* We support these capabilities. */
1658 mmc
->caps
|= MMC_CAP_CMD23
;
1661 * Enable busy detection.
1663 if (variant
->busy_detect
) {
1664 mmci_ops
.card_busy
= mmci_card_busy
;
1666 * Not all variants have a flag to enable busy detection
1667 * in the DPSM, but if they do, set it here.
1669 if (variant
->busy_dpsm_flag
)
1670 mmci_write_datactrlreg(host
,
1671 host
->variant
->busy_dpsm_flag
);
1672 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
1673 mmc
->max_busy_timeout
= 0;
1676 mmc
->ops
= &mmci_ops
;
1678 /* We support these PM capabilities. */
1679 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
1684 mmc
->max_segs
= NR_SG
;
1687 * Since only a certain number of bits are valid in the data length
1688 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1691 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1694 * Set the maximum segment size. Since we aren't doing DMA
1695 * (yet) we are only limited by the data length register.
1697 mmc
->max_seg_size
= mmc
->max_req_size
;
1700 * Block size can be up to 2048 bytes, but must be a power of two.
1702 mmc
->max_blk_size
= 1 << 11;
1705 * Limit the number of blocks transferred so that we don't overflow
1706 * the maximum request size.
1708 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1710 spin_lock_init(&host
->lock
);
1712 writel(0, host
->base
+ MMCIMASK0
);
1713 writel(0, host
->base
+ MMCIMASK1
);
1714 writel(0xfff, host
->base
+ MMCICLEAR
);
1718 * - not using DT but using a descriptor table, or
1719 * - using a table of descriptors ALONGSIDE DT, or
1720 * look up these descriptors named "cd" and "wp" right here, fail
1721 * silently of these do not exist and proceed to try platform data
1724 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0, NULL
);
1726 if (ret
== -EPROBE_DEFER
)
1728 else if (gpio_is_valid(plat
->gpio_cd
)) {
1729 ret
= mmc_gpio_request_cd(mmc
, plat
->gpio_cd
, 0);
1735 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, false, 0, NULL
);
1737 if (ret
== -EPROBE_DEFER
)
1739 else if (gpio_is_valid(plat
->gpio_wp
)) {
1740 ret
= mmc_gpio_request_ro(mmc
, plat
->gpio_wp
);
1747 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
, IRQF_SHARED
,
1748 DRIVER_NAME
" (cmd)", host
);
1753 host
->singleirq
= true;
1755 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
1756 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
1761 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1763 amba_set_drvdata(dev
, mmc
);
1765 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1766 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1767 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1768 dev
->irq
[0], dev
->irq
[1]);
1770 mmci_dma_setup(host
);
1772 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1773 pm_runtime_use_autosuspend(&dev
->dev
);
1777 pm_runtime_put(&dev
->dev
);
1781 clk_disable_unprepare(host
->clk
);
1787 static int mmci_remove(struct amba_device
*dev
)
1789 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1792 struct mmci_host
*host
= mmc_priv(mmc
);
1795 * Undo pm_runtime_put() in probe. We use the _sync
1796 * version here so that we can access the primecell.
1798 pm_runtime_get_sync(&dev
->dev
);
1800 mmc_remove_host(mmc
);
1802 writel(0, host
->base
+ MMCIMASK0
);
1803 writel(0, host
->base
+ MMCIMASK1
);
1805 writel(0, host
->base
+ MMCICOMMAND
);
1806 writel(0, host
->base
+ MMCIDATACTRL
);
1808 mmci_dma_release(host
);
1809 clk_disable_unprepare(host
->clk
);
1817 static void mmci_save(struct mmci_host
*host
)
1819 unsigned long flags
;
1821 spin_lock_irqsave(&host
->lock
, flags
);
1823 writel(0, host
->base
+ MMCIMASK0
);
1824 if (host
->variant
->pwrreg_nopower
) {
1825 writel(0, host
->base
+ MMCIDATACTRL
);
1826 writel(0, host
->base
+ MMCIPOWER
);
1827 writel(0, host
->base
+ MMCICLOCK
);
1829 mmci_reg_delay(host
);
1831 spin_unlock_irqrestore(&host
->lock
, flags
);
1834 static void mmci_restore(struct mmci_host
*host
)
1836 unsigned long flags
;
1838 spin_lock_irqsave(&host
->lock
, flags
);
1840 if (host
->variant
->pwrreg_nopower
) {
1841 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1842 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
1843 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1845 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1846 mmci_reg_delay(host
);
1848 spin_unlock_irqrestore(&host
->lock
, flags
);
1851 static int mmci_runtime_suspend(struct device
*dev
)
1853 struct amba_device
*adev
= to_amba_device(dev
);
1854 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1857 struct mmci_host
*host
= mmc_priv(mmc
);
1858 pinctrl_pm_select_sleep_state(dev
);
1860 clk_disable_unprepare(host
->clk
);
1866 static int mmci_runtime_resume(struct device
*dev
)
1868 struct amba_device
*adev
= to_amba_device(dev
);
1869 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1872 struct mmci_host
*host
= mmc_priv(mmc
);
1873 clk_prepare_enable(host
->clk
);
1875 pinctrl_pm_select_default_state(dev
);
1882 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1883 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1884 pm_runtime_force_resume
)
1885 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1888 static struct amba_id mmci_ids
[] = {
1892 .data
= &variant_arm
,
1897 .data
= &variant_arm_extended_fifo
,
1902 .data
= &variant_arm_extended_fifo_hwfc
,
1907 .data
= &variant_arm
,
1909 /* ST Micro variants */
1913 .data
= &variant_u300
,
1918 .data
= &variant_nomadik
,
1923 .data
= &variant_nomadik
,
1928 .data
= &variant_ux500
,
1933 .data
= &variant_ux500v2
,
1935 /* Qualcomm variants */
1939 .data
= &variant_qcom
,
1944 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1946 static struct amba_driver mmci_driver
= {
1948 .name
= DRIVER_NAME
,
1949 .pm
= &mmci_dev_pm_ops
,
1951 .probe
= mmci_probe
,
1952 .remove
= mmci_remove
,
1953 .id_table
= mmci_ids
,
1956 module_amba_driver(mmci_driver
);
1958 module_param(fmax
, uint
, 0444);
1960 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1961 MODULE_LICENSE("GPL");