4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
69 #define DRIVER_NAME "sh_mmcif"
70 #define DRIVER_VERSION "2010-04-28"
73 #define CMD_MASK 0x3f000000
74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN (1 << 20)
79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH (1 << 5)
94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
100 #define CMD_CTRL_BREAK (1 << 0)
103 #define BLOCK_SIZE_MASK 0x0000ffff
106 #define INT_CCSDE (1 << 29)
107 #define INT_CMD12DRE (1 << 26)
108 #define INT_CMD12RBE (1 << 25)
109 #define INT_CMD12CRE (1 << 24)
110 #define INT_DTRANE (1 << 23)
111 #define INT_BUFRE (1 << 22)
112 #define INT_BUFWEN (1 << 21)
113 #define INT_BUFREN (1 << 20)
114 #define INT_CCSRCV (1 << 19)
115 #define INT_RBSYE (1 << 17)
116 #define INT_CRSPE (1 << 16)
117 #define INT_CMDVIO (1 << 15)
118 #define INT_BUFVIO (1 << 14)
119 #define INT_WDATERR (1 << 11)
120 #define INT_RDATERR (1 << 10)
121 #define INT_RIDXERR (1 << 9)
122 #define INT_RSPERR (1 << 8)
123 #define INT_CCSTO (1 << 5)
124 #define INT_CRCSTO (1 << 4)
125 #define INT_WDATTO (1 << 3)
126 #define INT_RDATTO (1 << 2)
127 #define INT_RBSYTO (1 << 1)
128 #define INT_RSPTO (1 << 0)
129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
141 #define MASK_ALL 0x00000000
142 #define MASK_MCCSDE (1 << 29)
143 #define MASK_MCMD12DRE (1 << 26)
144 #define MASK_MCMD12RBE (1 << 25)
145 #define MASK_MCMD12CRE (1 << 24)
146 #define MASK_MDTRANE (1 << 23)
147 #define MASK_MBUFRE (1 << 22)
148 #define MASK_MBUFWEN (1 << 21)
149 #define MASK_MBUFREN (1 << 20)
150 #define MASK_MCCSRCV (1 << 19)
151 #define MASK_MRBSYE (1 << 17)
152 #define MASK_MCRSPE (1 << 16)
153 #define MASK_MCMDVIO (1 << 15)
154 #define MASK_MBUFVIO (1 << 14)
155 #define MASK_MWDATERR (1 << 11)
156 #define MASK_MRDATERR (1 << 10)
157 #define MASK_MRIDXERR (1 << 9)
158 #define MASK_MRSPERR (1 << 8)
159 #define MASK_MCCSTO (1 << 5)
160 #define MASK_MCRCSTO (1 << 4)
161 #define MASK_MWDATTO (1 << 3)
162 #define MASK_MRDATTO (1 << 2)
163 #define MASK_MRBSYTO (1 << 1)
164 #define MASK_MRSPTO (1 << 0)
166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
177 #define STS1_CMDSEQ (1 << 31)
180 #define STS2_CRCSTE (1 << 31)
181 #define STS2_CRC16E (1 << 30)
182 #define STS2_AC12CRCE (1 << 29)
183 #define STS2_RSPCRC7E (1 << 28)
184 #define STS2_CRCSTEBE (1 << 27)
185 #define STS2_RDATEBE (1 << 26)
186 #define STS2_AC12REBE (1 << 25)
187 #define STS2_RSPEBE (1 << 24)
188 #define STS2_AC12IDXE (1 << 23)
189 #define STS2_RSPIDXE (1 << 22)
190 #define STS2_CCSTO (1 << 15)
191 #define STS2_RDATTO (1 << 14)
192 #define STS2_DATBSYTO (1 << 13)
193 #define STS2_CRCSTTO (1 << 12)
194 #define STS2_AC12BSYTO (1 << 11)
195 #define STS2_RSPBSYTO (1 << 10)
196 #define STS2_AC12RSPTO (1 << 9)
197 #define STS2_RSPTO (1 << 8)
198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207 #define CLKDEV_INIT 400000 /* 400 KHz */
209 enum sh_mmcif_state
{
216 enum sh_mmcif_wait_for
{
217 MMCIF_WAIT_FOR_REQUEST
,
219 MMCIF_WAIT_FOR_MREAD
,
220 MMCIF_WAIT_FOR_MWRITE
,
222 MMCIF_WAIT_FOR_WRITE
,
223 MMCIF_WAIT_FOR_READ_END
,
224 MMCIF_WAIT_FOR_WRITE_END
,
229 * difference for each SoC
231 struct sh_mmcif_host
{
232 struct mmc_host
*mmc
;
233 struct mmc_request
*mrq
;
234 struct platform_device
*pd
;
237 unsigned char timing
;
243 spinlock_t lock
; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state
;
245 enum sh_mmcif_wait_for wait_for
;
246 struct delayed_work timeout_work
;
251 bool ccs_enable
; /* Command Completion Signal support */
252 bool clk_ctrl2_enable
;
253 struct mutex thread_lock
;
254 u32 clkdiv_map
; /* see CE_CLK_CTRL::CLKDIV */
257 struct dma_chan
*chan_rx
;
258 struct dma_chan
*chan_tx
;
259 struct completion dma_complete
;
263 static const struct of_device_id sh_mmcif_of_match
[] = {
264 { .compatible
= "renesas,sh-mmcif" },
267 MODULE_DEVICE_TABLE(of
, sh_mmcif_of_match
);
269 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
272 unsigned int reg
, u32 val
)
274 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
277 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
278 unsigned int reg
, u32 val
)
280 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
283 static void sh_mmcif_dma_complete(void *arg
)
285 struct sh_mmcif_host
*host
= arg
;
286 struct mmc_request
*mrq
= host
->mrq
;
287 struct device
*dev
= sh_mmcif_host_to_dev(host
);
289 dev_dbg(dev
, "Command completed\n");
291 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
295 complete(&host
->dma_complete
);
298 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
300 struct mmc_data
*data
= host
->mrq
->data
;
301 struct scatterlist
*sg
= data
->sg
;
302 struct dma_async_tx_descriptor
*desc
= NULL
;
303 struct dma_chan
*chan
= host
->chan_rx
;
304 struct device
*dev
= sh_mmcif_host_to_dev(host
);
305 dma_cookie_t cookie
= -EINVAL
;
308 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
311 host
->dma_active
= true;
312 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
313 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
317 desc
->callback
= sh_mmcif_dma_complete
;
318 desc
->callback_param
= host
;
319 cookie
= dmaengine_submit(desc
);
320 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
321 dma_async_issue_pending(chan
);
323 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
324 __func__
, data
->sg_len
, ret
, cookie
);
327 /* DMA failed, fall back to PIO */
330 host
->chan_rx
= NULL
;
331 host
->dma_active
= false;
332 dma_release_channel(chan
);
333 /* Free the Tx channel too */
334 chan
= host
->chan_tx
;
336 host
->chan_tx
= NULL
;
337 dma_release_channel(chan
);
340 "DMA failed: %d, falling back to PIO\n", ret
);
341 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
344 dev_dbg(dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
345 desc
, cookie
, data
->sg_len
);
348 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
350 struct mmc_data
*data
= host
->mrq
->data
;
351 struct scatterlist
*sg
= data
->sg
;
352 struct dma_async_tx_descriptor
*desc
= NULL
;
353 struct dma_chan
*chan
= host
->chan_tx
;
354 struct device
*dev
= sh_mmcif_host_to_dev(host
);
355 dma_cookie_t cookie
= -EINVAL
;
358 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
361 host
->dma_active
= true;
362 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
363 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
367 desc
->callback
= sh_mmcif_dma_complete
;
368 desc
->callback_param
= host
;
369 cookie
= dmaengine_submit(desc
);
370 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
371 dma_async_issue_pending(chan
);
373 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
374 __func__
, data
->sg_len
, ret
, cookie
);
377 /* DMA failed, fall back to PIO */
380 host
->chan_tx
= NULL
;
381 host
->dma_active
= false;
382 dma_release_channel(chan
);
383 /* Free the Rx channel too */
384 chan
= host
->chan_rx
;
386 host
->chan_rx
= NULL
;
387 dma_release_channel(chan
);
390 "DMA failed: %d, falling back to PIO\n", ret
);
391 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
394 dev_dbg(dev
, "%s(): desc %p, cookie %d\n", __func__
,
398 static struct dma_chan
*
399 sh_mmcif_request_dma_pdata(struct sh_mmcif_host
*host
, uintptr_t slave_id
)
404 dma_cap_set(DMA_SLAVE
, mask
);
408 return dma_request_channel(mask
, shdma_chan_filter
, (void *)slave_id
);
411 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host
*host
,
412 struct dma_chan
*chan
,
413 enum dma_transfer_direction direction
)
415 struct resource
*res
;
416 struct dma_slave_config cfg
= { 0, };
418 res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
419 cfg
.direction
= direction
;
421 if (direction
== DMA_DEV_TO_MEM
) {
422 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
423 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
425 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
426 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
429 return dmaengine_slave_config(chan
, &cfg
);
432 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
)
434 struct device
*dev
= sh_mmcif_host_to_dev(host
);
435 host
->dma_active
= false;
437 /* We can only either use DMA for both Tx and Rx or not use it at all */
438 if (IS_ENABLED(CONFIG_SUPERH
) && dev
->platform_data
) {
439 struct sh_mmcif_plat_data
*pdata
= dev
->platform_data
;
441 host
->chan_tx
= sh_mmcif_request_dma_pdata(host
,
443 host
->chan_rx
= sh_mmcif_request_dma_pdata(host
,
446 host
->chan_tx
= dma_request_slave_channel(dev
, "tx");
447 host
->chan_rx
= dma_request_slave_channel(dev
, "rx");
449 dev_dbg(dev
, "%s: got channel TX %p RX %p\n", __func__
, host
->chan_tx
,
452 if (!host
->chan_tx
|| !host
->chan_rx
||
453 sh_mmcif_dma_slave_config(host
, host
->chan_tx
, DMA_MEM_TO_DEV
) ||
454 sh_mmcif_dma_slave_config(host
, host
->chan_rx
, DMA_DEV_TO_MEM
))
461 dma_release_channel(host
->chan_tx
);
463 dma_release_channel(host
->chan_rx
);
464 host
->chan_tx
= host
->chan_rx
= NULL
;
467 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
469 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
470 /* Descriptors are freed automatically */
472 struct dma_chan
*chan
= host
->chan_tx
;
473 host
->chan_tx
= NULL
;
474 dma_release_channel(chan
);
477 struct dma_chan
*chan
= host
->chan_rx
;
478 host
->chan_rx
= NULL
;
479 dma_release_channel(chan
);
482 host
->dma_active
= false;
485 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
487 struct device
*dev
= sh_mmcif_host_to_dev(host
);
488 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
489 bool sup_pclk
= p
? p
->sup_pclk
: false;
490 unsigned int current_clk
= clk_get_rate(host
->clk
);
493 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
494 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
499 if (host
->clkdiv_map
) {
500 unsigned int freq
, best_freq
, myclk
, div
, diff_min
, diff
;
506 for (i
= 31; i
>= 0; i
--) {
507 if (!((1 << i
) & host
->clkdiv_map
))
511 * clk = parent_freq / div
512 * -> parent_freq = clk x div
516 freq
= clk_round_rate(host
->clk
, clk
* div
);
518 diff
= (myclk
> clk
) ? myclk
- clk
: clk
- myclk
;
520 if (diff
<= diff_min
) {
527 dev_dbg(dev
, "clk %u/%u (%u, 0x%x)\n",
528 (best_freq
/ (1 << (clkdiv
+ 1))), clk
,
531 clk_set_rate(host
->clk
, best_freq
);
532 clkdiv
= clkdiv
<< 16;
533 } else if (sup_pclk
&& clk
== current_clk
) {
534 clkdiv
= CLK_SUP_PCLK
;
536 clkdiv
= (fls(DIV_ROUND_UP(current_clk
, clk
) - 1) - 1) << 16;
539 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
& clkdiv
);
540 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
543 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
547 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
549 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
550 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
551 if (host
->ccs_enable
)
553 if (host
->clk_ctrl2_enable
)
554 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
555 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
556 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
558 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
561 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
563 struct device
*dev
= sh_mmcif_host_to_dev(host
);
567 host
->sd_error
= false;
569 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
570 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
571 dev_dbg(dev
, "ERR HOST_STS1 = %08x\n", state1
);
572 dev_dbg(dev
, "ERR HOST_STS2 = %08x\n", state2
);
574 if (state1
& STS1_CMDSEQ
) {
575 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
576 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
577 for (timeout
= 10000; timeout
; timeout
--) {
578 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
585 "Forced end of command sequence timeout err\n");
588 sh_mmcif_sync_reset(host
);
589 dev_dbg(dev
, "Forced end of command sequence\n");
593 if (state2
& STS2_CRC_ERR
) {
594 dev_err(dev
, " CRC error: state %u, wait %u\n",
595 host
->state
, host
->wait_for
);
597 } else if (state2
& STS2_TIMEOUT_ERR
) {
598 dev_err(dev
, " Timeout: state %u, wait %u\n",
599 host
->state
, host
->wait_for
);
602 dev_dbg(dev
, " End/Index error: state %u, wait %u\n",
603 host
->state
, host
->wait_for
);
609 static bool sh_mmcif_next_block(struct sh_mmcif_host
*host
, u32
*p
)
611 struct mmc_data
*data
= host
->mrq
->data
;
613 host
->sg_blkidx
+= host
->blocksize
;
615 /* data->sg->length must be a multiple of host->blocksize? */
616 BUG_ON(host
->sg_blkidx
> data
->sg
->length
);
618 if (host
->sg_blkidx
== data
->sg
->length
) {
620 if (++host
->sg_idx
< data
->sg_len
)
621 host
->pio_ptr
= sg_virt(++data
->sg
);
626 return host
->sg_idx
!= data
->sg_len
;
629 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
630 struct mmc_request
*mrq
)
632 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
633 BLOCK_SIZE_MASK
) + 3;
635 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
637 /* buf read enable */
638 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
641 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
643 struct device
*dev
= sh_mmcif_host_to_dev(host
);
644 struct mmc_data
*data
= host
->mrq
->data
;
645 u32
*p
= sg_virt(data
->sg
);
648 if (host
->sd_error
) {
649 data
->error
= sh_mmcif_error_manage(host
);
650 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
654 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
655 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
657 /* buffer read end */
658 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
659 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
664 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
665 struct mmc_request
*mrq
)
667 struct mmc_data
*data
= mrq
->data
;
669 if (!data
->sg_len
|| !data
->sg
->length
)
672 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
675 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
678 host
->pio_ptr
= sg_virt(data
->sg
);
680 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
683 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
685 struct device
*dev
= sh_mmcif_host_to_dev(host
);
686 struct mmc_data
*data
= host
->mrq
->data
;
687 u32
*p
= host
->pio_ptr
;
690 if (host
->sd_error
) {
691 data
->error
= sh_mmcif_error_manage(host
);
692 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
696 BUG_ON(!data
->sg
->length
);
698 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
699 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
701 if (!sh_mmcif_next_block(host
, p
))
704 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
709 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
710 struct mmc_request
*mrq
)
712 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
713 BLOCK_SIZE_MASK
) + 3;
715 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
717 /* buf write enable */
718 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
721 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
723 struct device
*dev
= sh_mmcif_host_to_dev(host
);
724 struct mmc_data
*data
= host
->mrq
->data
;
725 u32
*p
= sg_virt(data
->sg
);
728 if (host
->sd_error
) {
729 data
->error
= sh_mmcif_error_manage(host
);
730 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
734 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
735 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
737 /* buffer write end */
738 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
739 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
744 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
745 struct mmc_request
*mrq
)
747 struct mmc_data
*data
= mrq
->data
;
749 if (!data
->sg_len
|| !data
->sg
->length
)
752 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
755 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
758 host
->pio_ptr
= sg_virt(data
->sg
);
760 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
763 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
765 struct device
*dev
= sh_mmcif_host_to_dev(host
);
766 struct mmc_data
*data
= host
->mrq
->data
;
767 u32
*p
= host
->pio_ptr
;
770 if (host
->sd_error
) {
771 data
->error
= sh_mmcif_error_manage(host
);
772 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
776 BUG_ON(!data
->sg
->length
);
778 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
779 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
781 if (!sh_mmcif_next_block(host
, p
))
784 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
789 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
790 struct mmc_command
*cmd
)
792 if (cmd
->flags
& MMC_RSP_136
) {
793 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
794 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
795 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
796 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
798 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
801 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
802 struct mmc_command
*cmd
)
804 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
807 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
808 struct mmc_request
*mrq
)
810 struct device
*dev
= sh_mmcif_host_to_dev(host
);
811 struct mmc_data
*data
= mrq
->data
;
812 struct mmc_command
*cmd
= mrq
->cmd
;
813 u32 opc
= cmd
->opcode
;
816 /* Response Type check */
817 switch (mmc_resp_type(cmd
)) {
819 tmp
|= CMD_SET_RTYP_NO
;
823 tmp
|= CMD_SET_RTYP_6B
;
826 tmp
|= CMD_SET_RBSY
| CMD_SET_RTYP_6B
;
829 tmp
|= CMD_SET_RTYP_17B
;
832 dev_err(dev
, "Unsupported response type.\n");
839 switch (host
->bus_width
) {
840 case MMC_BUS_WIDTH_1
:
841 tmp
|= CMD_SET_DATW_1
;
843 case MMC_BUS_WIDTH_4
:
844 tmp
|= CMD_SET_DATW_4
;
846 case MMC_BUS_WIDTH_8
:
847 tmp
|= CMD_SET_DATW_8
;
850 dev_err(dev
, "Unsupported bus width.\n");
853 switch (host
->timing
) {
854 case MMC_TIMING_MMC_DDR52
:
856 * MMC core will only set this timing, if the host
857 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
858 * capability. MMCIF implementations with this
859 * capability, e.g. sh73a0, will have to set it
860 * in their platform data.
867 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
870 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
871 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
872 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
875 /* RIDXC[1:0] check bits */
876 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
877 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
878 tmp
|= CMD_SET_RIDXC_BITS
;
879 /* RCRC7C[1:0] check bits */
880 if (opc
== MMC_SEND_OP_COND
)
881 tmp
|= CMD_SET_CRC7C_BITS
;
882 /* RCRC7C[1:0] internal CRC7 */
883 if (opc
== MMC_ALL_SEND_CID
||
884 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
885 tmp
|= CMD_SET_CRC7C_INTERNAL
;
887 return (opc
<< 24) | tmp
;
890 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
891 struct mmc_request
*mrq
, u32 opc
)
893 struct device
*dev
= sh_mmcif_host_to_dev(host
);
896 case MMC_READ_MULTIPLE_BLOCK
:
897 sh_mmcif_multi_read(host
, mrq
);
899 case MMC_WRITE_MULTIPLE_BLOCK
:
900 sh_mmcif_multi_write(host
, mrq
);
902 case MMC_WRITE_BLOCK
:
903 sh_mmcif_single_write(host
, mrq
);
905 case MMC_READ_SINGLE_BLOCK
:
906 case MMC_SEND_EXT_CSD
:
907 sh_mmcif_single_read(host
, mrq
);
910 dev_err(dev
, "Unsupported CMD%d\n", opc
);
915 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
916 struct mmc_request
*mrq
)
918 struct mmc_command
*cmd
= mrq
->cmd
;
919 u32 opc
= cmd
->opcode
;
923 if (cmd
->flags
& MMC_RSP_BUSY
)
924 mask
= MASK_START_CMD
| MASK_MRBSYE
;
926 mask
= MASK_START_CMD
| MASK_MCRSPE
;
928 if (host
->ccs_enable
)
932 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
933 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
936 opc
= sh_mmcif_set_cmd(host
, mrq
);
938 if (host
->ccs_enable
)
939 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
941 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
942 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
944 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
946 spin_lock_irqsave(&host
->lock
, flags
);
947 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
949 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
950 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
951 spin_unlock_irqrestore(&host
->lock
, flags
);
954 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
955 struct mmc_request
*mrq
)
957 struct device
*dev
= sh_mmcif_host_to_dev(host
);
959 switch (mrq
->cmd
->opcode
) {
960 case MMC_READ_MULTIPLE_BLOCK
:
961 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
963 case MMC_WRITE_MULTIPLE_BLOCK
:
964 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
967 dev_err(dev
, "unsupported stop cmd\n");
968 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
972 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
975 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
977 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
978 struct device
*dev
= sh_mmcif_host_to_dev(host
);
981 spin_lock_irqsave(&host
->lock
, flags
);
982 if (host
->state
!= STATE_IDLE
) {
983 dev_dbg(dev
, "%s() rejected, state %u\n",
984 __func__
, host
->state
);
985 spin_unlock_irqrestore(&host
->lock
, flags
);
986 mrq
->cmd
->error
= -EAGAIN
;
987 mmc_request_done(mmc
, mrq
);
991 host
->state
= STATE_REQUEST
;
992 spin_unlock_irqrestore(&host
->lock
, flags
);
996 sh_mmcif_start_cmd(host
, mrq
);
999 static void sh_mmcif_clk_setup(struct sh_mmcif_host
*host
)
1001 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1003 if (host
->mmc
->f_max
) {
1004 unsigned int f_max
, f_min
= 0, f_min_old
;
1006 f_max
= host
->mmc
->f_max
;
1007 for (f_min_old
= f_max
; f_min_old
> 2;) {
1008 f_min
= clk_round_rate(host
->clk
, f_min_old
/ 2);
1009 if (f_min
== f_min_old
)
1015 * This driver assumes this SoC is R-Car Gen2 or later
1017 host
->clkdiv_map
= 0x3ff;
1019 host
->mmc
->f_max
= f_max
/ (1 << ffs(host
->clkdiv_map
));
1020 host
->mmc
->f_min
= f_min
/ (1 << fls(host
->clkdiv_map
));
1022 unsigned int clk
= clk_get_rate(host
->clk
);
1024 host
->mmc
->f_max
= clk
/ 2;
1025 host
->mmc
->f_min
= clk
/ 512;
1028 dev_dbg(dev
, "clk max/min = %d/%d\n",
1029 host
->mmc
->f_max
, host
->mmc
->f_min
);
1032 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1034 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1035 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1036 unsigned long flags
;
1038 spin_lock_irqsave(&host
->lock
, flags
);
1039 if (host
->state
!= STATE_IDLE
) {
1040 dev_dbg(dev
, "%s() rejected, state %u\n",
1041 __func__
, host
->state
);
1042 spin_unlock_irqrestore(&host
->lock
, flags
);
1046 host
->state
= STATE_IOS
;
1047 spin_unlock_irqrestore(&host
->lock
, flags
);
1049 switch (ios
->power_mode
) {
1051 if (!IS_ERR(mmc
->supply
.vmmc
))
1052 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1054 clk_prepare_enable(host
->clk
);
1055 pm_runtime_get_sync(dev
);
1056 sh_mmcif_sync_reset(host
);
1057 sh_mmcif_request_dma(host
);
1062 if (!IS_ERR(mmc
->supply
.vmmc
))
1063 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1065 sh_mmcif_clock_control(host
, 0);
1066 sh_mmcif_release_dma(host
);
1067 pm_runtime_put(dev
);
1068 clk_disable_unprepare(host
->clk
);
1069 host
->power
= false;
1073 sh_mmcif_clock_control(host
, ios
->clock
);
1077 host
->timing
= ios
->timing
;
1078 host
->bus_width
= ios
->bus_width
;
1079 host
->state
= STATE_IDLE
;
1082 static int sh_mmcif_get_cd(struct mmc_host
*mmc
)
1084 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1085 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1086 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
1087 int ret
= mmc_gpio_get_cd(mmc
);
1092 if (!p
|| !p
->get_cd
)
1095 return p
->get_cd(host
->pd
);
1098 static struct mmc_host_ops sh_mmcif_ops
= {
1099 .request
= sh_mmcif_request
,
1100 .set_ios
= sh_mmcif_set_ios
,
1101 .get_cd
= sh_mmcif_get_cd
,
1104 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1106 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1107 struct mmc_data
*data
= host
->mrq
->data
;
1108 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1111 if (host
->sd_error
) {
1112 switch (cmd
->opcode
) {
1113 case MMC_ALL_SEND_CID
:
1114 case MMC_SELECT_CARD
:
1116 cmd
->error
= -ETIMEDOUT
;
1119 cmd
->error
= sh_mmcif_error_manage(host
);
1122 dev_dbg(dev
, "CMD%d error %d\n",
1123 cmd
->opcode
, cmd
->error
);
1124 host
->sd_error
= false;
1127 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1132 sh_mmcif_get_response(host
, cmd
);
1138 * Completion can be signalled from DMA callback and error, so, have to
1139 * reset here, before setting .dma_active
1141 init_completion(&host
->dma_complete
);
1143 if (data
->flags
& MMC_DATA_READ
) {
1145 sh_mmcif_start_dma_rx(host
);
1148 sh_mmcif_start_dma_tx(host
);
1151 if (!host
->dma_active
) {
1152 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1153 return !data
->error
;
1156 /* Running in the IRQ thread, can sleep */
1157 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1160 if (data
->flags
& MMC_DATA_READ
)
1161 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1162 data
->sg
, data
->sg_len
,
1165 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1166 data
->sg
, data
->sg_len
,
1169 if (host
->sd_error
) {
1170 dev_err(host
->mmc
->parent
,
1171 "Error IRQ while waiting for DMA completion!\n");
1172 /* Woken up by an error IRQ: abort DMA */
1173 data
->error
= sh_mmcif_error_manage(host
);
1175 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1176 data
->error
= -ETIMEDOUT
;
1177 } else if (time
< 0) {
1178 dev_err(host
->mmc
->parent
,
1179 "wait_for_completion_...() error %ld!\n", time
);
1182 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1183 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1184 host
->dma_active
= false;
1187 data
->bytes_xfered
= 0;
1189 if (data
->flags
& MMC_DATA_READ
)
1190 dmaengine_terminate_all(host
->chan_rx
);
1192 dmaengine_terminate_all(host
->chan_tx
);
1198 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1200 struct sh_mmcif_host
*host
= dev_id
;
1201 struct mmc_request
*mrq
;
1202 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1204 unsigned long flags
;
1207 spin_lock_irqsave(&host
->lock
, flags
);
1208 wait_work
= host
->wait_for
;
1209 spin_unlock_irqrestore(&host
->lock
, flags
);
1211 cancel_delayed_work_sync(&host
->timeout_work
);
1213 mutex_lock(&host
->thread_lock
);
1217 dev_dbg(dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1218 host
->state
, host
->wait_for
);
1219 mutex_unlock(&host
->thread_lock
);
1224 * All handlers return true, if processing continues, and false, if the
1225 * request has to be completed - successfully or not
1227 switch (wait_work
) {
1228 case MMCIF_WAIT_FOR_REQUEST
:
1229 /* We're too late, the timeout has already kicked in */
1230 mutex_unlock(&host
->thread_lock
);
1232 case MMCIF_WAIT_FOR_CMD
:
1233 /* Wait for data? */
1234 wait
= sh_mmcif_end_cmd(host
);
1236 case MMCIF_WAIT_FOR_MREAD
:
1237 /* Wait for more data? */
1238 wait
= sh_mmcif_mread_block(host
);
1240 case MMCIF_WAIT_FOR_READ
:
1241 /* Wait for data end? */
1242 wait
= sh_mmcif_read_block(host
);
1244 case MMCIF_WAIT_FOR_MWRITE
:
1245 /* Wait data to write? */
1246 wait
= sh_mmcif_mwrite_block(host
);
1248 case MMCIF_WAIT_FOR_WRITE
:
1249 /* Wait for data end? */
1250 wait
= sh_mmcif_write_block(host
);
1252 case MMCIF_WAIT_FOR_STOP
:
1253 if (host
->sd_error
) {
1254 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1255 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1258 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1259 mrq
->stop
->error
= 0;
1261 case MMCIF_WAIT_FOR_READ_END
:
1262 case MMCIF_WAIT_FOR_WRITE_END
:
1263 if (host
->sd_error
) {
1264 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1265 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1273 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1274 /* Wait for more data */
1275 mutex_unlock(&host
->thread_lock
);
1279 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1280 struct mmc_data
*data
= mrq
->data
;
1281 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1282 data
->bytes_xfered
=
1283 data
->blocks
* data
->blksz
;
1285 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1286 sh_mmcif_stop_cmd(host
, mrq
);
1287 if (!mrq
->stop
->error
) {
1288 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1289 mutex_unlock(&host
->thread_lock
);
1295 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1296 host
->state
= STATE_IDLE
;
1298 mmc_request_done(host
->mmc
, mrq
);
1300 mutex_unlock(&host
->thread_lock
);
1305 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1307 struct sh_mmcif_host
*host
= dev_id
;
1308 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1311 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1312 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1313 if (host
->ccs_enable
)
1314 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1316 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1317 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1319 if (state
& ~MASK_CLEAN
)
1320 dev_dbg(dev
, "IRQ state = 0x%08x incompletely cleared\n",
1323 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1324 host
->sd_error
= true;
1325 dev_dbg(dev
, "int err state = 0x%08x\n", state
);
1327 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1329 dev_dbg(dev
, "NULL IRQ state = 0x%08x\n", state
);
1330 if (!host
->dma_active
)
1331 return IRQ_WAKE_THREAD
;
1332 else if (host
->sd_error
)
1333 sh_mmcif_dma_complete(host
);
1335 dev_dbg(dev
, "Unexpected IRQ 0x%x\n", state
);
1341 static void sh_mmcif_timeout_work(struct work_struct
*work
)
1343 struct delayed_work
*d
= to_delayed_work(work
);
1344 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1345 struct mmc_request
*mrq
= host
->mrq
;
1346 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1347 unsigned long flags
;
1350 /* Don't run after mmc_remove_host() */
1353 spin_lock_irqsave(&host
->lock
, flags
);
1354 if (host
->state
== STATE_IDLE
) {
1355 spin_unlock_irqrestore(&host
->lock
, flags
);
1359 dev_err(dev
, "Timeout waiting for %u on CMD%u\n",
1360 host
->wait_for
, mrq
->cmd
->opcode
);
1362 host
->state
= STATE_TIMEOUT
;
1363 spin_unlock_irqrestore(&host
->lock
, flags
);
1366 * Handle races with cancel_delayed_work(), unless
1367 * cancel_delayed_work_sync() is used
1369 switch (host
->wait_for
) {
1370 case MMCIF_WAIT_FOR_CMD
:
1371 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1373 case MMCIF_WAIT_FOR_STOP
:
1374 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1376 case MMCIF_WAIT_FOR_MREAD
:
1377 case MMCIF_WAIT_FOR_MWRITE
:
1378 case MMCIF_WAIT_FOR_READ
:
1379 case MMCIF_WAIT_FOR_WRITE
:
1380 case MMCIF_WAIT_FOR_READ_END
:
1381 case MMCIF_WAIT_FOR_WRITE_END
:
1382 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1388 host
->state
= STATE_IDLE
;
1389 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1391 mmc_request_done(host
->mmc
, mrq
);
1394 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1396 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1397 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1398 struct mmc_host
*mmc
= host
->mmc
;
1400 mmc_regulator_get_supply(mmc
);
1405 if (!mmc
->ocr_avail
)
1406 mmc
->ocr_avail
= pd
->ocr
;
1408 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1411 static int sh_mmcif_probe(struct platform_device
*pdev
)
1413 int ret
= 0, irq
[2];
1414 struct mmc_host
*mmc
;
1415 struct sh_mmcif_host
*host
;
1416 struct device
*dev
= &pdev
->dev
;
1417 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1418 struct resource
*res
;
1422 irq
[0] = platform_get_irq(pdev
, 0);
1423 irq
[1] = platform_get_irq(pdev
, 1);
1425 dev_err(dev
, "Get irq error\n");
1429 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1430 reg
= devm_ioremap_resource(dev
, res
);
1432 return PTR_ERR(reg
);
1434 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), dev
);
1438 ret
= mmc_of_parse(mmc
);
1442 host
= mmc_priv(mmc
);
1445 host
->timeout
= msecs_to_jiffies(10000);
1446 host
->ccs_enable
= !pd
|| !pd
->ccs_unsupported
;
1447 host
->clk_ctrl2_enable
= pd
&& pd
->clk_ctrl2_present
;
1451 spin_lock_init(&host
->lock
);
1453 mmc
->ops
= &sh_mmcif_ops
;
1454 sh_mmcif_init_ocr(host
);
1456 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1457 mmc
->caps2
|= MMC_CAP2_NO_SD
| MMC_CAP2_NO_SDIO
;
1458 mmc
->max_busy_timeout
= 10000;
1461 mmc
->caps
|= pd
->caps
;
1463 mmc
->max_blk_size
= 512;
1464 mmc
->max_req_size
= PAGE_SIZE
* mmc
->max_segs
;
1465 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1466 mmc
->max_seg_size
= mmc
->max_req_size
;
1468 platform_set_drvdata(pdev
, host
);
1470 host
->clk
= devm_clk_get(dev
, NULL
);
1471 if (IS_ERR(host
->clk
)) {
1472 ret
= PTR_ERR(host
->clk
);
1473 dev_err(dev
, "cannot get clock: %d\n", ret
);
1477 ret
= clk_prepare_enable(host
->clk
);
1481 sh_mmcif_clk_setup(host
);
1483 pm_runtime_enable(dev
);
1484 host
->power
= false;
1486 ret
= pm_runtime_get_sync(dev
);
1490 INIT_DELAYED_WORK(&host
->timeout_work
, sh_mmcif_timeout_work
);
1492 sh_mmcif_sync_reset(host
);
1493 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1495 name
= irq
[1] < 0 ? dev_name(dev
) : "sh_mmc:error";
1496 ret
= devm_request_threaded_irq(dev
, irq
[0], sh_mmcif_intr
,
1497 sh_mmcif_irqt
, 0, name
, host
);
1499 dev_err(dev
, "request_irq error (%s)\n", name
);
1503 ret
= devm_request_threaded_irq(dev
, irq
[1],
1504 sh_mmcif_intr
, sh_mmcif_irqt
,
1505 0, "sh_mmc:int", host
);
1507 dev_err(dev
, "request_irq error (sh_mmc:int)\n");
1512 if (pd
&& pd
->use_cd_gpio
) {
1513 ret
= mmc_gpio_request_cd(mmc
, pd
->cd_gpio
, 0);
1518 mutex_init(&host
->thread_lock
);
1520 ret
= mmc_add_host(mmc
);
1524 dev_pm_qos_expose_latency_limit(dev
, 100);
1526 dev_info(dev
, "Chip version 0x%04x, clock rate %luMHz\n",
1527 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0xffff,
1528 clk_get_rate(host
->clk
) / 1000000UL);
1530 pm_runtime_put(dev
);
1531 clk_disable_unprepare(host
->clk
);
1535 clk_disable_unprepare(host
->clk
);
1536 pm_runtime_put_sync(dev
);
1537 pm_runtime_disable(dev
);
1543 static int sh_mmcif_remove(struct platform_device
*pdev
)
1545 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1548 clk_prepare_enable(host
->clk
);
1549 pm_runtime_get_sync(&pdev
->dev
);
1551 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1553 mmc_remove_host(host
->mmc
);
1554 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1557 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1558 * mmc_remove_host() call above. But swapping order doesn't help either
1559 * (a query on the linux-mmc mailing list didn't bring any replies).
1561 cancel_delayed_work_sync(&host
->timeout_work
);
1563 clk_disable_unprepare(host
->clk
);
1564 mmc_free_host(host
->mmc
);
1565 pm_runtime_put_sync(&pdev
->dev
);
1566 pm_runtime_disable(&pdev
->dev
);
1571 #ifdef CONFIG_PM_SLEEP
1572 static int sh_mmcif_suspend(struct device
*dev
)
1574 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1576 pm_runtime_get_sync(dev
);
1577 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1578 pm_runtime_put(dev
);
1583 static int sh_mmcif_resume(struct device
*dev
)
1589 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1590 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend
, sh_mmcif_resume
)
1593 static struct platform_driver sh_mmcif_driver
= {
1594 .probe
= sh_mmcif_probe
,
1595 .remove
= sh_mmcif_remove
,
1597 .name
= DRIVER_NAME
,
1598 .pm
= &sh_mmcif_dev_pm_ops
,
1599 .of_match_table
= sh_mmcif_of_match
,
1603 module_platform_driver(sh_mmcif_driver
);
1605 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1606 MODULE_LICENSE("GPL");
1607 MODULE_ALIAS("platform:" DRIVER_NAME
);
1608 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");