sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / rtc / rtc-mxc.c
blob359876a88ac860c06304bc9738f42f1ce406c044
1 /*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
42 #define RTC_ENABLE_BIT (1 << 7)
44 #define MAX_PIE_NUM 9
45 #define MAX_PIE_FREQ 512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
58 #define MXC_RTC_TIME 0
59 #define MXC_RTC_ALARM 1
61 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
75 enum imx_rtc_type {
76 IMX1_RTC,
77 IMX21_RTC,
80 struct rtc_plat_data {
81 struct rtc_device *rtc;
82 void __iomem *ioaddr;
83 int irq;
84 struct clk *clk_ref;
85 struct clk *clk_ipg;
86 struct rtc_time g_rtc_alarm;
87 enum imx_rtc_type devtype;
90 static const struct platform_device_id imx_rtc_devtype[] = {
92 .name = "imx1-rtc",
93 .driver_data = IMX1_RTC,
94 }, {
95 .name = "imx21-rtc",
96 .driver_data = IMX21_RTC,
97 }, {
98 /* sentinel */
101 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
103 #ifdef CONFIG_OF
104 static const struct of_device_id imx_rtc_dt_ids[] = {
105 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
106 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
109 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
110 #endif
112 static inline int is_imx1_rtc(struct rtc_plat_data *data)
114 return data->devtype == IMX1_RTC;
118 * This function is used to obtain the RTC time or the alarm value in
119 * second.
121 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
123 struct platform_device *pdev = to_platform_device(dev);
124 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
125 void __iomem *ioaddr = pdata->ioaddr;
126 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
128 switch (time_alarm) {
129 case MXC_RTC_TIME:
130 day = readw(ioaddr + RTC_DAYR);
131 hr_min = readw(ioaddr + RTC_HOURMIN);
132 sec = readw(ioaddr + RTC_SECOND);
133 break;
134 case MXC_RTC_ALARM:
135 day = readw(ioaddr + RTC_DAYALARM);
136 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
137 sec = readw(ioaddr + RTC_ALRM_SEC);
138 break;
141 hr = hr_min >> 8;
142 min = hr_min & 0xff;
144 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
148 * This function sets the RTC alarm value or the time value.
150 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
152 u32 tod, day, hr, min, sec, temp;
153 struct platform_device *pdev = to_platform_device(dev);
154 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
155 void __iomem *ioaddr = pdata->ioaddr;
157 day = div_s64_rem(time, 86400, &tod);
159 /* time is within a day now */
160 hr = tod / 3600;
161 tod -= hr * 3600;
163 /* time is within an hour now */
164 min = tod / 60;
165 sec = tod - min * 60;
167 temp = (hr << 8) + min;
169 switch (time_alarm) {
170 case MXC_RTC_TIME:
171 writew(day, ioaddr + RTC_DAYR);
172 writew(sec, ioaddr + RTC_SECOND);
173 writew(temp, ioaddr + RTC_HOURMIN);
174 break;
175 case MXC_RTC_ALARM:
176 writew(day, ioaddr + RTC_DAYALARM);
177 writew(sec, ioaddr + RTC_ALRM_SEC);
178 writew(temp, ioaddr + RTC_ALRM_HM);
179 break;
184 * This function updates the RTC alarm registers and then clears all the
185 * interrupt status bits.
187 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
189 time64_t time;
190 struct platform_device *pdev = to_platform_device(dev);
191 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
192 void __iomem *ioaddr = pdata->ioaddr;
194 time = rtc_tm_to_time64(alrm);
196 /* clear all the interrupt status bits */
197 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
198 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202 unsigned int enabled)
204 struct platform_device *pdev = to_platform_device(dev);
205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 void __iomem *ioaddr = pdata->ioaddr;
207 u32 reg;
209 spin_lock_irq(&pdata->rtc->irq_lock);
210 reg = readw(ioaddr + RTC_RTCIENR);
212 if (enabled)
213 reg |= bit;
214 else
215 reg &= ~bit;
217 writew(reg, ioaddr + RTC_RTCIENR);
218 spin_unlock_irq(&pdata->rtc->irq_lock);
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
224 struct platform_device *pdev = dev_id;
225 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226 void __iomem *ioaddr = pdata->ioaddr;
227 unsigned long flags;
228 u32 status;
229 u32 events = 0;
231 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233 /* clear interrupt sources */
234 writew(status, ioaddr + RTC_RTCISR);
236 /* update irq data & counter */
237 if (status & RTC_ALM_BIT) {
238 events |= (RTC_AF | RTC_IRQF);
239 /* RTC alarm should be one-shot */
240 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
243 if (status & PIT_ALL_ON)
244 events |= (RTC_PF | RTC_IRQF);
246 rtc_update_irq(pdata->rtc, 1, events);
247 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
249 return IRQ_HANDLED;
253 * Clear all interrupts and release the IRQ
255 static void mxc_rtc_release(struct device *dev)
257 struct platform_device *pdev = to_platform_device(dev);
258 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
259 void __iomem *ioaddr = pdata->ioaddr;
261 spin_lock_irq(&pdata->rtc->irq_lock);
263 /* Disable all rtc interrupts */
264 writew(0, ioaddr + RTC_RTCIENR);
266 /* Clear all interrupt status */
267 writew(0xffffffff, ioaddr + RTC_RTCISR);
269 spin_unlock_irq(&pdata->rtc->irq_lock);
272 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
274 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
275 return 0;
279 * This function reads the current RTC time into tm in Gregorian date.
281 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
283 time64_t val;
285 /* Avoid roll-over from reading the different registers */
286 do {
287 val = get_alarm_or_time(dev, MXC_RTC_TIME);
288 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
290 rtc_time64_to_tm(val, tm);
292 return 0;
296 * This function sets the internal RTC time based on tm in Gregorian date.
298 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
300 struct platform_device *pdev = to_platform_device(dev);
301 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
304 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
306 if (is_imx1_rtc(pdata)) {
307 struct rtc_time tm;
309 rtc_time64_to_tm(time, &tm);
310 tm.tm_year = 70;
311 time = rtc_tm_to_time64(&tm);
314 /* Avoid roll-over from reading the different registers */
315 do {
316 set_alarm_or_time(dev, MXC_RTC_TIME, time);
317 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
319 return 0;
323 * This function reads the current alarm value into the passed in 'alrm'
324 * argument. It updates the alrm's pending field value based on the whether
325 * an alarm interrupt occurs or not.
327 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
329 struct platform_device *pdev = to_platform_device(dev);
330 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
331 void __iomem *ioaddr = pdata->ioaddr;
333 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
334 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
336 return 0;
340 * This function sets the RTC alarm based on passed in alrm.
342 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
344 struct platform_device *pdev = to_platform_device(dev);
345 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
347 rtc_update_alarm(dev, &alrm->time);
349 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
350 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
352 return 0;
355 /* RTC layer */
356 static struct rtc_class_ops mxc_rtc_ops = {
357 .release = mxc_rtc_release,
358 .read_time = mxc_rtc_read_time,
359 .set_mmss64 = mxc_rtc_set_mmss,
360 .read_alarm = mxc_rtc_read_alarm,
361 .set_alarm = mxc_rtc_set_alarm,
362 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
365 static int mxc_rtc_probe(struct platform_device *pdev)
367 struct resource *res;
368 struct rtc_device *rtc;
369 struct rtc_plat_data *pdata = NULL;
370 u32 reg;
371 unsigned long rate;
372 int ret;
373 const struct of_device_id *of_id;
375 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
376 if (!pdata)
377 return -ENOMEM;
379 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
380 if (of_id)
381 pdata->devtype = (enum imx_rtc_type)of_id->data;
382 else
383 pdata->devtype = pdev->id_entry->driver_data;
385 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
386 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
387 if (IS_ERR(pdata->ioaddr))
388 return PTR_ERR(pdata->ioaddr);
390 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
391 if (IS_ERR(pdata->clk_ipg)) {
392 dev_err(&pdev->dev, "unable to get ipg clock!\n");
393 return PTR_ERR(pdata->clk_ipg);
396 ret = clk_prepare_enable(pdata->clk_ipg);
397 if (ret)
398 return ret;
400 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
401 if (IS_ERR(pdata->clk_ref)) {
402 dev_err(&pdev->dev, "unable to get ref clock!\n");
403 ret = PTR_ERR(pdata->clk_ref);
404 goto exit_put_clk_ipg;
407 ret = clk_prepare_enable(pdata->clk_ref);
408 if (ret)
409 goto exit_put_clk_ipg;
411 rate = clk_get_rate(pdata->clk_ref);
413 if (rate == 32768)
414 reg = RTC_INPUT_CLK_32768HZ;
415 else if (rate == 32000)
416 reg = RTC_INPUT_CLK_32000HZ;
417 else if (rate == 38400)
418 reg = RTC_INPUT_CLK_38400HZ;
419 else {
420 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
421 ret = -EINVAL;
422 goto exit_put_clk_ref;
425 reg |= RTC_ENABLE_BIT;
426 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
427 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
428 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
429 ret = -EIO;
430 goto exit_put_clk_ref;
433 platform_set_drvdata(pdev, pdata);
435 /* Configure and enable the RTC */
436 pdata->irq = platform_get_irq(pdev, 0);
438 if (pdata->irq >= 0 &&
439 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
440 IRQF_SHARED, pdev->name, pdev) < 0) {
441 dev_warn(&pdev->dev, "interrupt not available.\n");
442 pdata->irq = -1;
445 if (pdata->irq >= 0)
446 device_init_wakeup(&pdev->dev, 1);
448 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
449 THIS_MODULE);
450 if (IS_ERR(rtc)) {
451 ret = PTR_ERR(rtc);
452 goto exit_put_clk_ref;
455 pdata->rtc = rtc;
457 return 0;
459 exit_put_clk_ref:
460 clk_disable_unprepare(pdata->clk_ref);
461 exit_put_clk_ipg:
462 clk_disable_unprepare(pdata->clk_ipg);
464 return ret;
467 static int mxc_rtc_remove(struct platform_device *pdev)
469 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
471 clk_disable_unprepare(pdata->clk_ref);
472 clk_disable_unprepare(pdata->clk_ipg);
474 return 0;
477 #ifdef CONFIG_PM_SLEEP
478 static int mxc_rtc_suspend(struct device *dev)
480 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
482 if (device_may_wakeup(dev))
483 enable_irq_wake(pdata->irq);
485 return 0;
488 static int mxc_rtc_resume(struct device *dev)
490 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
492 if (device_may_wakeup(dev))
493 disable_irq_wake(pdata->irq);
495 return 0;
497 #endif
499 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
501 static struct platform_driver mxc_rtc_driver = {
502 .driver = {
503 .name = "mxc_rtc",
504 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
505 .pm = &mxc_rtc_pm_ops,
507 .id_table = imx_rtc_devtype,
508 .probe = mxc_rtc_probe,
509 .remove = mxc_rtc_remove,
512 module_platform_driver(mxc_rtc_driver)
514 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
515 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
516 MODULE_LICENSE("GPL");