sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blob7dfefd66df93874b1359824890b4b760275ff2c6
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
244 return se_sess;
246 EXPORT_SYMBOL(transport_init_session);
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
251 int rc;
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
272 return 0;
274 EXPORT_SYMBOL(transport_alloc_session_tags);
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
280 struct se_session *se_sess;
281 int rc;
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
304 return se_sess;
306 EXPORT_SYMBOL(transport_init_session_tags);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
328 if (se_nacl) {
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl->nacl_sess = se_sess;
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 EXPORT_SYMBOL(__transport_register_session);
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
379 unsigned long flags;
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 EXPORT_SYMBOL(transport_register_session);
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
395 struct se_session *sess;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
406 if (IS_ERR(sess))
407 return sess;
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
430 EXPORT_SYMBOL(target_alloc_session);
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 struct se_session *se_sess;
435 ssize_t len = 0;
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg->session_lock);
452 return len;
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
456 static void target_complete_nacl(struct kref *kref)
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
461 complete(&nacl->acl_free_comp);
464 void target_put_nacl(struct se_node_acl *nacl)
466 kref_put(&nacl->acl_kref, target_complete_nacl);
468 EXPORT_SYMBOL(target_put_nacl);
470 void transport_deregister_session_configfs(struct se_session *se_sess)
472 struct se_node_acl *se_nacl;
473 unsigned long flags;
475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
477 se_nacl = se_sess->se_node_acl;
478 if (se_nacl) {
479 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
480 if (!list_empty(&se_sess->sess_acl_list))
481 list_del_init(&se_sess->sess_acl_list);
483 * If the session list is empty, then clear the pointer.
484 * Otherwise, set the struct se_session pointer from the tail
485 * element of the per struct se_node_acl active session list.
487 if (list_empty(&se_nacl->acl_sess_list))
488 se_nacl->nacl_sess = NULL;
489 else {
490 se_nacl->nacl_sess = container_of(
491 se_nacl->acl_sess_list.prev,
492 struct se_session, sess_acl_list);
494 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
497 EXPORT_SYMBOL(transport_deregister_session_configfs);
499 void transport_free_session(struct se_session *se_sess)
501 struct se_node_acl *se_nacl = se_sess->se_node_acl;
503 * Drop the se_node_acl->nacl_kref obtained from within
504 * core_tpg_get_initiator_node_acl().
506 if (se_nacl) {
507 se_sess->se_node_acl = NULL;
508 target_put_nacl(se_nacl);
510 if (se_sess->sess_cmd_map) {
511 percpu_ida_destroy(&se_sess->sess_tag_pool);
512 kvfree(se_sess->sess_cmd_map);
514 kmem_cache_free(se_sess_cache, se_sess);
516 EXPORT_SYMBOL(transport_free_session);
518 void transport_deregister_session(struct se_session *se_sess)
520 struct se_portal_group *se_tpg = se_sess->se_tpg;
521 const struct target_core_fabric_ops *se_tfo;
522 struct se_node_acl *se_nacl;
523 unsigned long flags;
524 bool drop_nacl = false;
526 if (!se_tpg) {
527 transport_free_session(se_sess);
528 return;
530 se_tfo = se_tpg->se_tpg_tfo;
532 spin_lock_irqsave(&se_tpg->session_lock, flags);
533 list_del(&se_sess->sess_list);
534 se_sess->se_tpg = NULL;
535 se_sess->fabric_sess_ptr = NULL;
536 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
539 * Determine if we need to do extra work for this initiator node's
540 * struct se_node_acl if it had been previously dynamically generated.
542 se_nacl = se_sess->se_node_acl;
544 mutex_lock(&se_tpg->acl_node_mutex);
545 if (se_nacl && se_nacl->dynamic_node_acl) {
546 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
547 list_del(&se_nacl->acl_list);
548 drop_nacl = true;
551 mutex_unlock(&se_tpg->acl_node_mutex);
553 if (drop_nacl) {
554 core_tpg_wait_for_nacl_pr_ref(se_nacl);
555 core_free_device_list_for_node(se_nacl, se_tpg);
556 se_sess->se_node_acl = NULL;
557 kfree(se_nacl);
559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
560 se_tpg->se_tpg_tfo->get_fabric_name());
562 * If last kref is dropping now for an explicit NodeACL, awake sleeping
563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
564 * removal context from within transport_free_session() code.
567 transport_free_session(se_sess);
569 EXPORT_SYMBOL(transport_deregister_session);
571 static void target_remove_from_state_list(struct se_cmd *cmd)
573 struct se_device *dev = cmd->se_dev;
574 unsigned long flags;
576 if (!dev)
577 return;
579 if (cmd->transport_state & CMD_T_BUSY)
580 return;
582 spin_lock_irqsave(&dev->execute_task_lock, flags);
583 if (cmd->state_active) {
584 list_del(&cmd->state_list);
585 cmd->state_active = false;
587 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
591 bool write_pending)
593 unsigned long flags;
595 if (remove_from_lists) {
596 target_remove_from_state_list(cmd);
599 * Clear struct se_cmd->se_lun before the handoff to FE.
601 cmd->se_lun = NULL;
604 spin_lock_irqsave(&cmd->t_state_lock, flags);
605 if (write_pending)
606 cmd->t_state = TRANSPORT_WRITE_PENDING;
609 * Determine if frontend context caller is requesting the stopping of
610 * this command for frontend exceptions.
612 if (cmd->transport_state & CMD_T_STOP) {
613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
614 __func__, __LINE__, cmd->tag);
616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618 complete_all(&cmd->t_transport_stop_comp);
619 return 1;
622 cmd->transport_state &= ~CMD_T_ACTIVE;
623 if (remove_from_lists) {
625 * Some fabric modules like tcm_loop can release
626 * their internally allocated I/O reference now and
627 * struct se_cmd now.
629 * Fabric modules are expected to return '1' here if the
630 * se_cmd being passed is released at this point,
631 * or zero if not being released.
633 if (cmd->se_tfo->check_stop_free != NULL) {
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635 return cmd->se_tfo->check_stop_free(cmd);
639 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
640 return 0;
643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
645 return transport_cmd_check_stop(cmd, true, false);
648 static void transport_lun_remove_cmd(struct se_cmd *cmd)
650 struct se_lun *lun = cmd->se_lun;
652 if (!lun)
653 return;
655 if (cmpxchg(&cmd->lun_ref_active, true, false))
656 percpu_ref_put(&lun->lun_ref);
659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
661 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
663 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
664 transport_lun_remove_cmd(cmd);
666 * Allow the fabric driver to unmap any resources before
667 * releasing the descriptor via TFO->release_cmd()
669 if (remove)
670 cmd->se_tfo->aborted_task(cmd);
672 if (transport_cmd_check_stop_to_fabric(cmd))
673 return;
674 if (remove && ack_kref)
675 transport_put_cmd(cmd);
678 static void target_complete_failure_work(struct work_struct *work)
680 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
682 transport_generic_request_failure(cmd,
683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
687 * Used when asking transport to copy Sense Data from the underlying
688 * Linux/SCSI struct scsi_cmnd
690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
692 struct se_device *dev = cmd->se_dev;
694 WARN_ON(!cmd->se_lun);
696 if (!dev)
697 return NULL;
699 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
700 return NULL;
702 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
705 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
706 return cmd->sense_buffer;
709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
711 struct se_device *dev = cmd->se_dev;
712 int success = scsi_status == GOOD;
713 unsigned long flags;
715 cmd->scsi_status = scsi_status;
718 spin_lock_irqsave(&cmd->t_state_lock, flags);
719 cmd->transport_state &= ~CMD_T_BUSY;
721 if (dev && dev->transport->transport_complete) {
722 dev->transport->transport_complete(cmd,
723 cmd->t_data_sg,
724 transport_get_sense_buffer(cmd));
725 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
726 success = 1;
730 * Check for case where an explicit ABORT_TASK has been received
731 * and transport_wait_for_tasks() will be waiting for completion..
733 if (cmd->transport_state & CMD_T_ABORTED ||
734 cmd->transport_state & CMD_T_STOP) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 complete_all(&cmd->t_transport_stop_comp);
737 return;
738 } else if (!success) {
739 INIT_WORK(&cmd->work, target_complete_failure_work);
740 } else {
741 INIT_WORK(&cmd->work, target_complete_ok_work);
744 cmd->t_state = TRANSPORT_COMPLETE;
745 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
746 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748 if (cmd->se_cmd_flags & SCF_USE_CPUID)
749 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
750 else
751 queue_work(target_completion_wq, &cmd->work);
753 EXPORT_SYMBOL(target_complete_cmd);
755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
757 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
758 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
759 cmd->residual_count += cmd->data_length - length;
760 } else {
761 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
762 cmd->residual_count = cmd->data_length - length;
765 cmd->data_length = length;
768 target_complete_cmd(cmd, scsi_status);
770 EXPORT_SYMBOL(target_complete_cmd_with_length);
772 static void target_add_to_state_list(struct se_cmd *cmd)
774 struct se_device *dev = cmd->se_dev;
775 unsigned long flags;
777 spin_lock_irqsave(&dev->execute_task_lock, flags);
778 if (!cmd->state_active) {
779 list_add_tail(&cmd->state_list, &dev->state_list);
780 cmd->state_active = true;
782 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
786 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
788 static void transport_write_pending_qf(struct se_cmd *cmd);
789 static void transport_complete_qf(struct se_cmd *cmd);
791 void target_qf_do_work(struct work_struct *work)
793 struct se_device *dev = container_of(work, struct se_device,
794 qf_work_queue);
795 LIST_HEAD(qf_cmd_list);
796 struct se_cmd *cmd, *cmd_tmp;
798 spin_lock_irq(&dev->qf_cmd_lock);
799 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
800 spin_unlock_irq(&dev->qf_cmd_lock);
802 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
803 list_del(&cmd->se_qf_node);
804 atomic_dec_mb(&dev->dev_qf_count);
806 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
807 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
808 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
809 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
810 : "UNKNOWN");
812 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
813 transport_write_pending_qf(cmd);
814 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
815 transport_complete_qf(cmd);
819 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
821 switch (cmd->data_direction) {
822 case DMA_NONE:
823 return "NONE";
824 case DMA_FROM_DEVICE:
825 return "READ";
826 case DMA_TO_DEVICE:
827 return "WRITE";
828 case DMA_BIDIRECTIONAL:
829 return "BIDI";
830 default:
831 break;
834 return "UNKNOWN";
837 void transport_dump_dev_state(
838 struct se_device *dev,
839 char *b,
840 int *bl)
842 *bl += sprintf(b + *bl, "Status: ");
843 if (dev->export_count)
844 *bl += sprintf(b + *bl, "ACTIVATED");
845 else
846 *bl += sprintf(b + *bl, "DEACTIVATED");
848 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
849 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
850 dev->dev_attrib.block_size,
851 dev->dev_attrib.hw_max_sectors);
852 *bl += sprintf(b + *bl, " ");
855 void transport_dump_vpd_proto_id(
856 struct t10_vpd *vpd,
857 unsigned char *p_buf,
858 int p_buf_len)
860 unsigned char buf[VPD_TMP_BUF_SIZE];
861 int len;
863 memset(buf, 0, VPD_TMP_BUF_SIZE);
864 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
866 switch (vpd->protocol_identifier) {
867 case 0x00:
868 sprintf(buf+len, "Fibre Channel\n");
869 break;
870 case 0x10:
871 sprintf(buf+len, "Parallel SCSI\n");
872 break;
873 case 0x20:
874 sprintf(buf+len, "SSA\n");
875 break;
876 case 0x30:
877 sprintf(buf+len, "IEEE 1394\n");
878 break;
879 case 0x40:
880 sprintf(buf+len, "SCSI Remote Direct Memory Access"
881 " Protocol\n");
882 break;
883 case 0x50:
884 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
885 break;
886 case 0x60:
887 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
888 break;
889 case 0x70:
890 sprintf(buf+len, "Automation/Drive Interface Transport"
891 " Protocol\n");
892 break;
893 case 0x80:
894 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
895 break;
896 default:
897 sprintf(buf+len, "Unknown 0x%02x\n",
898 vpd->protocol_identifier);
899 break;
902 if (p_buf)
903 strncpy(p_buf, buf, p_buf_len);
904 else
905 pr_debug("%s", buf);
908 void
909 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
912 * Check if the Protocol Identifier Valid (PIV) bit is set..
914 * from spc3r23.pdf section 7.5.1
916 if (page_83[1] & 0x80) {
917 vpd->protocol_identifier = (page_83[0] & 0xf0);
918 vpd->protocol_identifier_set = 1;
919 transport_dump_vpd_proto_id(vpd, NULL, 0);
922 EXPORT_SYMBOL(transport_set_vpd_proto_id);
924 int transport_dump_vpd_assoc(
925 struct t10_vpd *vpd,
926 unsigned char *p_buf,
927 int p_buf_len)
929 unsigned char buf[VPD_TMP_BUF_SIZE];
930 int ret = 0;
931 int len;
933 memset(buf, 0, VPD_TMP_BUF_SIZE);
934 len = sprintf(buf, "T10 VPD Identifier Association: ");
936 switch (vpd->association) {
937 case 0x00:
938 sprintf(buf+len, "addressed logical unit\n");
939 break;
940 case 0x10:
941 sprintf(buf+len, "target port\n");
942 break;
943 case 0x20:
944 sprintf(buf+len, "SCSI target device\n");
945 break;
946 default:
947 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
948 ret = -EINVAL;
949 break;
952 if (p_buf)
953 strncpy(p_buf, buf, p_buf_len);
954 else
955 pr_debug("%s", buf);
957 return ret;
960 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
963 * The VPD identification association..
965 * from spc3r23.pdf Section 7.6.3.1 Table 297
967 vpd->association = (page_83[1] & 0x30);
968 return transport_dump_vpd_assoc(vpd, NULL, 0);
970 EXPORT_SYMBOL(transport_set_vpd_assoc);
972 int transport_dump_vpd_ident_type(
973 struct t10_vpd *vpd,
974 unsigned char *p_buf,
975 int p_buf_len)
977 unsigned char buf[VPD_TMP_BUF_SIZE];
978 int ret = 0;
979 int len;
981 memset(buf, 0, VPD_TMP_BUF_SIZE);
982 len = sprintf(buf, "T10 VPD Identifier Type: ");
984 switch (vpd->device_identifier_type) {
985 case 0x00:
986 sprintf(buf+len, "Vendor specific\n");
987 break;
988 case 0x01:
989 sprintf(buf+len, "T10 Vendor ID based\n");
990 break;
991 case 0x02:
992 sprintf(buf+len, "EUI-64 based\n");
993 break;
994 case 0x03:
995 sprintf(buf+len, "NAA\n");
996 break;
997 case 0x04:
998 sprintf(buf+len, "Relative target port identifier\n");
999 break;
1000 case 0x08:
1001 sprintf(buf+len, "SCSI name string\n");
1002 break;
1003 default:
1004 sprintf(buf+len, "Unsupported: 0x%02x\n",
1005 vpd->device_identifier_type);
1006 ret = -EINVAL;
1007 break;
1010 if (p_buf) {
1011 if (p_buf_len < strlen(buf)+1)
1012 return -EINVAL;
1013 strncpy(p_buf, buf, p_buf_len);
1014 } else {
1015 pr_debug("%s", buf);
1018 return ret;
1021 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1024 * The VPD identifier type..
1026 * from spc3r23.pdf Section 7.6.3.1 Table 298
1028 vpd->device_identifier_type = (page_83[1] & 0x0f);
1029 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1031 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1033 int transport_dump_vpd_ident(
1034 struct t10_vpd *vpd,
1035 unsigned char *p_buf,
1036 int p_buf_len)
1038 unsigned char buf[VPD_TMP_BUF_SIZE];
1039 int ret = 0;
1041 memset(buf, 0, VPD_TMP_BUF_SIZE);
1043 switch (vpd->device_identifier_code_set) {
1044 case 0x01: /* Binary */
1045 snprintf(buf, sizeof(buf),
1046 "T10 VPD Binary Device Identifier: %s\n",
1047 &vpd->device_identifier[0]);
1048 break;
1049 case 0x02: /* ASCII */
1050 snprintf(buf, sizeof(buf),
1051 "T10 VPD ASCII Device Identifier: %s\n",
1052 &vpd->device_identifier[0]);
1053 break;
1054 case 0x03: /* UTF-8 */
1055 snprintf(buf, sizeof(buf),
1056 "T10 VPD UTF-8 Device Identifier: %s\n",
1057 &vpd->device_identifier[0]);
1058 break;
1059 default:
1060 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1061 " 0x%02x", vpd->device_identifier_code_set);
1062 ret = -EINVAL;
1063 break;
1066 if (p_buf)
1067 strncpy(p_buf, buf, p_buf_len);
1068 else
1069 pr_debug("%s", buf);
1071 return ret;
1075 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1077 static const char hex_str[] = "0123456789abcdef";
1078 int j = 0, i = 4; /* offset to start of the identifier */
1081 * The VPD Code Set (encoding)
1083 * from spc3r23.pdf Section 7.6.3.1 Table 296
1085 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1086 switch (vpd->device_identifier_code_set) {
1087 case 0x01: /* Binary */
1088 vpd->device_identifier[j++] =
1089 hex_str[vpd->device_identifier_type];
1090 while (i < (4 + page_83[3])) {
1091 vpd->device_identifier[j++] =
1092 hex_str[(page_83[i] & 0xf0) >> 4];
1093 vpd->device_identifier[j++] =
1094 hex_str[page_83[i] & 0x0f];
1095 i++;
1097 break;
1098 case 0x02: /* ASCII */
1099 case 0x03: /* UTF-8 */
1100 while (i < (4 + page_83[3]))
1101 vpd->device_identifier[j++] = page_83[i++];
1102 break;
1103 default:
1104 break;
1107 return transport_dump_vpd_ident(vpd, NULL, 0);
1109 EXPORT_SYMBOL(transport_set_vpd_ident);
1111 static sense_reason_t
1112 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1113 unsigned int size)
1115 u32 mtl;
1117 if (!cmd->se_tfo->max_data_sg_nents)
1118 return TCM_NO_SENSE;
1120 * Check if fabric enforced maximum SGL entries per I/O descriptor
1121 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1122 * residual_count and reduce original cmd->data_length to maximum
1123 * length based on single PAGE_SIZE entry scatter-lists.
1125 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1126 if (cmd->data_length > mtl) {
1128 * If an existing CDB overflow is present, calculate new residual
1129 * based on CDB size minus fabric maximum transfer length.
1131 * If an existing CDB underflow is present, calculate new residual
1132 * based on original cmd->data_length minus fabric maximum transfer
1133 * length.
1135 * Otherwise, set the underflow residual based on cmd->data_length
1136 * minus fabric maximum transfer length.
1138 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1139 cmd->residual_count = (size - mtl);
1140 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1141 u32 orig_dl = size + cmd->residual_count;
1142 cmd->residual_count = (orig_dl - mtl);
1143 } else {
1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145 cmd->residual_count = (cmd->data_length - mtl);
1147 cmd->data_length = mtl;
1149 * Reset sbc_check_prot() calculated protection payload
1150 * length based upon the new smaller MTL.
1152 if (cmd->prot_length) {
1153 u32 sectors = (mtl / dev->dev_attrib.block_size);
1154 cmd->prot_length = dev->prot_length * sectors;
1157 return TCM_NO_SENSE;
1160 sense_reason_t
1161 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1163 struct se_device *dev = cmd->se_dev;
1165 if (cmd->unknown_data_length) {
1166 cmd->data_length = size;
1167 } else if (size != cmd->data_length) {
1168 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1169 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1170 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1171 cmd->data_length, size, cmd->t_task_cdb[0]);
1173 if (cmd->data_direction == DMA_TO_DEVICE &&
1174 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1175 pr_err("Rejecting underflow/overflow WRITE data\n");
1176 return TCM_INVALID_CDB_FIELD;
1179 * Reject READ_* or WRITE_* with overflow/underflow for
1180 * type SCF_SCSI_DATA_CDB.
1182 if (dev->dev_attrib.block_size != 512) {
1183 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1184 " CDB on non 512-byte sector setup subsystem"
1185 " plugin: %s\n", dev->transport->name);
1186 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1187 return TCM_INVALID_CDB_FIELD;
1190 * For the overflow case keep the existing fabric provided
1191 * ->data_length. Otherwise for the underflow case, reset
1192 * ->data_length to the smaller SCSI expected data transfer
1193 * length.
1195 if (size > cmd->data_length) {
1196 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1197 cmd->residual_count = (size - cmd->data_length);
1198 } else {
1199 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1200 cmd->residual_count = (cmd->data_length - size);
1201 cmd->data_length = size;
1205 return target_check_max_data_sg_nents(cmd, dev, size);
1210 * Used by fabric modules containing a local struct se_cmd within their
1211 * fabric dependent per I/O descriptor.
1213 * Preserves the value of @cmd->tag.
1215 void transport_init_se_cmd(
1216 struct se_cmd *cmd,
1217 const struct target_core_fabric_ops *tfo,
1218 struct se_session *se_sess,
1219 u32 data_length,
1220 int data_direction,
1221 int task_attr,
1222 unsigned char *sense_buffer)
1224 INIT_LIST_HEAD(&cmd->se_delayed_node);
1225 INIT_LIST_HEAD(&cmd->se_qf_node);
1226 INIT_LIST_HEAD(&cmd->se_cmd_list);
1227 INIT_LIST_HEAD(&cmd->state_list);
1228 init_completion(&cmd->t_transport_stop_comp);
1229 init_completion(&cmd->cmd_wait_comp);
1230 spin_lock_init(&cmd->t_state_lock);
1231 kref_init(&cmd->cmd_kref);
1232 cmd->transport_state = CMD_T_DEV_ACTIVE;
1234 cmd->se_tfo = tfo;
1235 cmd->se_sess = se_sess;
1236 cmd->data_length = data_length;
1237 cmd->data_direction = data_direction;
1238 cmd->sam_task_attr = task_attr;
1239 cmd->sense_buffer = sense_buffer;
1241 cmd->state_active = false;
1243 EXPORT_SYMBOL(transport_init_se_cmd);
1245 static sense_reason_t
1246 transport_check_alloc_task_attr(struct se_cmd *cmd)
1248 struct se_device *dev = cmd->se_dev;
1251 * Check if SAM Task Attribute emulation is enabled for this
1252 * struct se_device storage object
1254 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1255 return 0;
1257 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1258 pr_debug("SAM Task Attribute ACA"
1259 " emulation is not supported\n");
1260 return TCM_INVALID_CDB_FIELD;
1263 return 0;
1266 sense_reason_t
1267 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1269 struct se_device *dev = cmd->se_dev;
1270 sense_reason_t ret;
1273 * Ensure that the received CDB is less than the max (252 + 8) bytes
1274 * for VARIABLE_LENGTH_CMD
1276 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1277 pr_err("Received SCSI CDB with command_size: %d that"
1278 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1279 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1280 return TCM_INVALID_CDB_FIELD;
1283 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1284 * allocate the additional extended CDB buffer now.. Otherwise
1285 * setup the pointer from __t_task_cdb to t_task_cdb.
1287 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1288 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1289 GFP_KERNEL);
1290 if (!cmd->t_task_cdb) {
1291 pr_err("Unable to allocate cmd->t_task_cdb"
1292 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1293 scsi_command_size(cdb),
1294 (unsigned long)sizeof(cmd->__t_task_cdb));
1295 return TCM_OUT_OF_RESOURCES;
1297 } else
1298 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1300 * Copy the original CDB into cmd->
1302 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1304 trace_target_sequencer_start(cmd);
1306 ret = dev->transport->parse_cdb(cmd);
1307 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1308 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1309 cmd->se_tfo->get_fabric_name(),
1310 cmd->se_sess->se_node_acl->initiatorname,
1311 cmd->t_task_cdb[0]);
1312 if (ret)
1313 return ret;
1315 ret = transport_check_alloc_task_attr(cmd);
1316 if (ret)
1317 return ret;
1319 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1320 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1321 return 0;
1323 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1326 * Used by fabric module frontends to queue tasks directly.
1327 * May only be used from process context.
1329 int transport_handle_cdb_direct(
1330 struct se_cmd *cmd)
1332 sense_reason_t ret;
1334 if (!cmd->se_lun) {
1335 dump_stack();
1336 pr_err("cmd->se_lun is NULL\n");
1337 return -EINVAL;
1339 if (in_interrupt()) {
1340 dump_stack();
1341 pr_err("transport_generic_handle_cdb cannot be called"
1342 " from interrupt context\n");
1343 return -EINVAL;
1346 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1347 * outstanding descriptors are handled correctly during shutdown via
1348 * transport_wait_for_tasks()
1350 * Also, we don't take cmd->t_state_lock here as we only expect
1351 * this to be called for initial descriptor submission.
1353 cmd->t_state = TRANSPORT_NEW_CMD;
1354 cmd->transport_state |= CMD_T_ACTIVE;
1357 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1358 * so follow TRANSPORT_NEW_CMD processing thread context usage
1359 * and call transport_generic_request_failure() if necessary..
1361 ret = transport_generic_new_cmd(cmd);
1362 if (ret)
1363 transport_generic_request_failure(cmd, ret);
1364 return 0;
1366 EXPORT_SYMBOL(transport_handle_cdb_direct);
1368 sense_reason_t
1369 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1370 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1372 if (!sgl || !sgl_count)
1373 return 0;
1376 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1377 * scatterlists already have been set to follow what the fabric
1378 * passes for the original expected data transfer length.
1380 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1381 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1382 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1383 return TCM_INVALID_CDB_FIELD;
1386 cmd->t_data_sg = sgl;
1387 cmd->t_data_nents = sgl_count;
1388 cmd->t_bidi_data_sg = sgl_bidi;
1389 cmd->t_bidi_data_nents = sgl_bidi_count;
1391 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1392 return 0;
1396 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1397 * se_cmd + use pre-allocated SGL memory.
1399 * @se_cmd: command descriptor to submit
1400 * @se_sess: associated se_sess for endpoint
1401 * @cdb: pointer to SCSI CDB
1402 * @sense: pointer to SCSI sense buffer
1403 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1404 * @data_length: fabric expected data transfer length
1405 * @task_addr: SAM task attribute
1406 * @data_dir: DMA data direction
1407 * @flags: flags for command submission from target_sc_flags_tables
1408 * @sgl: struct scatterlist memory for unidirectional mapping
1409 * @sgl_count: scatterlist count for unidirectional mapping
1410 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1411 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1412 * @sgl_prot: struct scatterlist memory protection information
1413 * @sgl_prot_count: scatterlist count for protection information
1415 * Task tags are supported if the caller has set @se_cmd->tag.
1417 * Returns non zero to signal active I/O shutdown failure. All other
1418 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1419 * but still return zero here.
1421 * This may only be called from process context, and also currently
1422 * assumes internal allocation of fabric payload buffer by target-core.
1424 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1425 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1426 u32 data_length, int task_attr, int data_dir, int flags,
1427 struct scatterlist *sgl, u32 sgl_count,
1428 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1429 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1431 struct se_portal_group *se_tpg;
1432 sense_reason_t rc;
1433 int ret;
1435 se_tpg = se_sess->se_tpg;
1436 BUG_ON(!se_tpg);
1437 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1438 BUG_ON(in_interrupt());
1440 * Initialize se_cmd for target operation. From this point
1441 * exceptions are handled by sending exception status via
1442 * target_core_fabric_ops->queue_status() callback
1444 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1445 data_length, data_dir, task_attr, sense);
1447 if (flags & TARGET_SCF_USE_CPUID)
1448 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1449 else
1450 se_cmd->cpuid = WORK_CPU_UNBOUND;
1452 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1453 se_cmd->unknown_data_length = 1;
1455 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1456 * se_sess->sess_cmd_list. A second kref_get here is necessary
1457 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1458 * kref_put() to happen during fabric packet acknowledgement.
1460 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1461 if (ret)
1462 return ret;
1464 * Signal bidirectional data payloads to target-core
1466 if (flags & TARGET_SCF_BIDI_OP)
1467 se_cmd->se_cmd_flags |= SCF_BIDI;
1469 * Locate se_lun pointer and attach it to struct se_cmd
1471 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1472 if (rc) {
1473 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1474 target_put_sess_cmd(se_cmd);
1475 return 0;
1478 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1479 if (rc != 0) {
1480 transport_generic_request_failure(se_cmd, rc);
1481 return 0;
1485 * Save pointers for SGLs containing protection information,
1486 * if present.
1488 if (sgl_prot_count) {
1489 se_cmd->t_prot_sg = sgl_prot;
1490 se_cmd->t_prot_nents = sgl_prot_count;
1491 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1495 * When a non zero sgl_count has been passed perform SGL passthrough
1496 * mapping for pre-allocated fabric memory instead of having target
1497 * core perform an internal SGL allocation..
1499 if (sgl_count != 0) {
1500 BUG_ON(!sgl);
1503 * A work-around for tcm_loop as some userspace code via
1504 * scsi-generic do not memset their associated read buffers,
1505 * so go ahead and do that here for type non-data CDBs. Also
1506 * note that this is currently guaranteed to be a single SGL
1507 * for this case by target core in target_setup_cmd_from_cdb()
1508 * -> transport_generic_cmd_sequencer().
1510 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1511 se_cmd->data_direction == DMA_FROM_DEVICE) {
1512 unsigned char *buf = NULL;
1514 if (sgl)
1515 buf = kmap(sg_page(sgl)) + sgl->offset;
1517 if (buf) {
1518 memset(buf, 0, sgl->length);
1519 kunmap(sg_page(sgl));
1523 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1524 sgl_bidi, sgl_bidi_count);
1525 if (rc != 0) {
1526 transport_generic_request_failure(se_cmd, rc);
1527 return 0;
1532 * Check if we need to delay processing because of ALUA
1533 * Active/NonOptimized primary access state..
1535 core_alua_check_nonop_delay(se_cmd);
1537 transport_handle_cdb_direct(se_cmd);
1538 return 0;
1540 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1543 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1545 * @se_cmd: command descriptor to submit
1546 * @se_sess: associated se_sess for endpoint
1547 * @cdb: pointer to SCSI CDB
1548 * @sense: pointer to SCSI sense buffer
1549 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1550 * @data_length: fabric expected data transfer length
1551 * @task_addr: SAM task attribute
1552 * @data_dir: DMA data direction
1553 * @flags: flags for command submission from target_sc_flags_tables
1555 * Task tags are supported if the caller has set @se_cmd->tag.
1557 * Returns non zero to signal active I/O shutdown failure. All other
1558 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1559 * but still return zero here.
1561 * This may only be called from process context, and also currently
1562 * assumes internal allocation of fabric payload buffer by target-core.
1564 * It also assumes interal target core SGL memory allocation.
1566 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1567 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1568 u32 data_length, int task_attr, int data_dir, int flags)
1570 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1571 unpacked_lun, data_length, task_attr, data_dir,
1572 flags, NULL, 0, NULL, 0, NULL, 0);
1574 EXPORT_SYMBOL(target_submit_cmd);
1576 static void target_complete_tmr_failure(struct work_struct *work)
1578 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1580 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1581 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1583 transport_cmd_check_stop_to_fabric(se_cmd);
1587 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1588 * for TMR CDBs
1590 * @se_cmd: command descriptor to submit
1591 * @se_sess: associated se_sess for endpoint
1592 * @sense: pointer to SCSI sense buffer
1593 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1594 * @fabric_context: fabric context for TMR req
1595 * @tm_type: Type of TM request
1596 * @gfp: gfp type for caller
1597 * @tag: referenced task tag for TMR_ABORT_TASK
1598 * @flags: submit cmd flags
1600 * Callable from all contexts.
1603 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1604 unsigned char *sense, u64 unpacked_lun,
1605 void *fabric_tmr_ptr, unsigned char tm_type,
1606 gfp_t gfp, u64 tag, int flags)
1608 struct se_portal_group *se_tpg;
1609 int ret;
1611 se_tpg = se_sess->se_tpg;
1612 BUG_ON(!se_tpg);
1614 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1615 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1617 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1618 * allocation failure.
1620 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1621 if (ret < 0)
1622 return -ENOMEM;
1624 if (tm_type == TMR_ABORT_TASK)
1625 se_cmd->se_tmr_req->ref_task_tag = tag;
1627 /* See target_submit_cmd for commentary */
1628 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1629 if (ret) {
1630 core_tmr_release_req(se_cmd->se_tmr_req);
1631 return ret;
1634 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1635 if (ret) {
1637 * For callback during failure handling, push this work off
1638 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1640 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1641 schedule_work(&se_cmd->work);
1642 return 0;
1644 transport_generic_handle_tmr(se_cmd);
1645 return 0;
1647 EXPORT_SYMBOL(target_submit_tmr);
1650 * Handle SAM-esque emulation for generic transport request failures.
1652 void transport_generic_request_failure(struct se_cmd *cmd,
1653 sense_reason_t sense_reason)
1655 int ret = 0, post_ret = 0;
1657 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1658 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1659 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1660 cmd->se_tfo->get_cmd_state(cmd),
1661 cmd->t_state, sense_reason);
1662 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1663 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1664 (cmd->transport_state & CMD_T_STOP) != 0,
1665 (cmd->transport_state & CMD_T_SENT) != 0);
1668 * For SAM Task Attribute emulation for failed struct se_cmd
1670 transport_complete_task_attr(cmd);
1672 * Handle special case for COMPARE_AND_WRITE failure, where the
1673 * callback is expected to drop the per device ->caw_sem.
1675 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1676 cmd->transport_complete_callback)
1677 cmd->transport_complete_callback(cmd, false, &post_ret);
1679 switch (sense_reason) {
1680 case TCM_NON_EXISTENT_LUN:
1681 case TCM_UNSUPPORTED_SCSI_OPCODE:
1682 case TCM_INVALID_CDB_FIELD:
1683 case TCM_INVALID_PARAMETER_LIST:
1684 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1685 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1686 case TCM_UNKNOWN_MODE_PAGE:
1687 case TCM_WRITE_PROTECTED:
1688 case TCM_ADDRESS_OUT_OF_RANGE:
1689 case TCM_CHECK_CONDITION_ABORT_CMD:
1690 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1691 case TCM_CHECK_CONDITION_NOT_READY:
1692 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1693 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1694 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1695 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1696 break;
1697 case TCM_OUT_OF_RESOURCES:
1698 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1699 break;
1700 case TCM_RESERVATION_CONFLICT:
1702 * No SENSE Data payload for this case, set SCSI Status
1703 * and queue the response to $FABRIC_MOD.
1705 * Uses linux/include/scsi/scsi.h SAM status codes defs
1707 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1709 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1710 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1711 * CONFLICT STATUS.
1713 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1715 if (cmd->se_sess &&
1716 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1717 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1718 cmd->orig_fe_lun, 0x2C,
1719 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1721 trace_target_cmd_complete(cmd);
1722 ret = cmd->se_tfo->queue_status(cmd);
1723 if (ret == -EAGAIN || ret == -ENOMEM)
1724 goto queue_full;
1725 goto check_stop;
1726 default:
1727 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1728 cmd->t_task_cdb[0], sense_reason);
1729 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1730 break;
1733 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1734 if (ret == -EAGAIN || ret == -ENOMEM)
1735 goto queue_full;
1737 check_stop:
1738 transport_lun_remove_cmd(cmd);
1739 transport_cmd_check_stop_to_fabric(cmd);
1740 return;
1742 queue_full:
1743 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1744 transport_handle_queue_full(cmd, cmd->se_dev);
1746 EXPORT_SYMBOL(transport_generic_request_failure);
1748 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1750 sense_reason_t ret;
1752 if (!cmd->execute_cmd) {
1753 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1754 goto err;
1756 if (do_checks) {
1758 * Check for an existing UNIT ATTENTION condition after
1759 * target_handle_task_attr() has done SAM task attr
1760 * checking, and possibly have already defered execution
1761 * out to target_restart_delayed_cmds() context.
1763 ret = target_scsi3_ua_check(cmd);
1764 if (ret)
1765 goto err;
1767 ret = target_alua_state_check(cmd);
1768 if (ret)
1769 goto err;
1771 ret = target_check_reservation(cmd);
1772 if (ret) {
1773 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1774 goto err;
1778 ret = cmd->execute_cmd(cmd);
1779 if (!ret)
1780 return;
1781 err:
1782 spin_lock_irq(&cmd->t_state_lock);
1783 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1784 spin_unlock_irq(&cmd->t_state_lock);
1786 transport_generic_request_failure(cmd, ret);
1789 static int target_write_prot_action(struct se_cmd *cmd)
1791 u32 sectors;
1793 * Perform WRITE_INSERT of PI using software emulation when backend
1794 * device has PI enabled, if the transport has not already generated
1795 * PI using hardware WRITE_INSERT offload.
1797 switch (cmd->prot_op) {
1798 case TARGET_PROT_DOUT_INSERT:
1799 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1800 sbc_dif_generate(cmd);
1801 break;
1802 case TARGET_PROT_DOUT_STRIP:
1803 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1804 break;
1806 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1807 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1808 sectors, 0, cmd->t_prot_sg, 0);
1809 if (unlikely(cmd->pi_err)) {
1810 spin_lock_irq(&cmd->t_state_lock);
1811 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1812 spin_unlock_irq(&cmd->t_state_lock);
1813 transport_generic_request_failure(cmd, cmd->pi_err);
1814 return -1;
1816 break;
1817 default:
1818 break;
1821 return 0;
1824 static bool target_handle_task_attr(struct se_cmd *cmd)
1826 struct se_device *dev = cmd->se_dev;
1828 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1829 return false;
1831 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1834 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1835 * to allow the passed struct se_cmd list of tasks to the front of the list.
1837 switch (cmd->sam_task_attr) {
1838 case TCM_HEAD_TAG:
1839 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1840 cmd->t_task_cdb[0]);
1841 return false;
1842 case TCM_ORDERED_TAG:
1843 atomic_inc_mb(&dev->dev_ordered_sync);
1845 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1846 cmd->t_task_cdb[0]);
1849 * Execute an ORDERED command if no other older commands
1850 * exist that need to be completed first.
1852 if (!atomic_read(&dev->simple_cmds))
1853 return false;
1854 break;
1855 default:
1857 * For SIMPLE and UNTAGGED Task Attribute commands
1859 atomic_inc_mb(&dev->simple_cmds);
1860 break;
1863 if (atomic_read(&dev->dev_ordered_sync) == 0)
1864 return false;
1866 spin_lock(&dev->delayed_cmd_lock);
1867 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1868 spin_unlock(&dev->delayed_cmd_lock);
1870 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1871 cmd->t_task_cdb[0], cmd->sam_task_attr);
1872 return true;
1875 static int __transport_check_aborted_status(struct se_cmd *, int);
1877 void target_execute_cmd(struct se_cmd *cmd)
1880 * Determine if frontend context caller is requesting the stopping of
1881 * this command for frontend exceptions.
1883 * If the received CDB has aleady been aborted stop processing it here.
1885 spin_lock_irq(&cmd->t_state_lock);
1886 if (__transport_check_aborted_status(cmd, 1)) {
1887 spin_unlock_irq(&cmd->t_state_lock);
1888 return;
1890 if (cmd->transport_state & CMD_T_STOP) {
1891 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1892 __func__, __LINE__, cmd->tag);
1894 spin_unlock_irq(&cmd->t_state_lock);
1895 complete_all(&cmd->t_transport_stop_comp);
1896 return;
1899 cmd->t_state = TRANSPORT_PROCESSING;
1900 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1901 spin_unlock_irq(&cmd->t_state_lock);
1903 if (target_write_prot_action(cmd))
1904 return;
1906 if (target_handle_task_attr(cmd)) {
1907 spin_lock_irq(&cmd->t_state_lock);
1908 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1909 spin_unlock_irq(&cmd->t_state_lock);
1910 return;
1913 __target_execute_cmd(cmd, true);
1915 EXPORT_SYMBOL(target_execute_cmd);
1918 * Process all commands up to the last received ORDERED task attribute which
1919 * requires another blocking boundary
1921 static void target_restart_delayed_cmds(struct se_device *dev)
1923 for (;;) {
1924 struct se_cmd *cmd;
1926 spin_lock(&dev->delayed_cmd_lock);
1927 if (list_empty(&dev->delayed_cmd_list)) {
1928 spin_unlock(&dev->delayed_cmd_lock);
1929 break;
1932 cmd = list_entry(dev->delayed_cmd_list.next,
1933 struct se_cmd, se_delayed_node);
1934 list_del(&cmd->se_delayed_node);
1935 spin_unlock(&dev->delayed_cmd_lock);
1937 __target_execute_cmd(cmd, true);
1939 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1940 break;
1945 * Called from I/O completion to determine which dormant/delayed
1946 * and ordered cmds need to have their tasks added to the execution queue.
1948 static void transport_complete_task_attr(struct se_cmd *cmd)
1950 struct se_device *dev = cmd->se_dev;
1952 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1953 return;
1955 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1956 goto restart;
1958 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1959 atomic_dec_mb(&dev->simple_cmds);
1960 dev->dev_cur_ordered_id++;
1961 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1962 dev->dev_cur_ordered_id);
1963 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1964 dev->dev_cur_ordered_id++;
1965 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1966 dev->dev_cur_ordered_id);
1967 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1968 atomic_dec_mb(&dev->dev_ordered_sync);
1970 dev->dev_cur_ordered_id++;
1971 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1972 dev->dev_cur_ordered_id);
1974 restart:
1975 target_restart_delayed_cmds(dev);
1978 static void transport_complete_qf(struct se_cmd *cmd)
1980 int ret = 0;
1982 transport_complete_task_attr(cmd);
1984 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1985 trace_target_cmd_complete(cmd);
1986 ret = cmd->se_tfo->queue_status(cmd);
1987 goto out;
1990 switch (cmd->data_direction) {
1991 case DMA_FROM_DEVICE:
1992 if (cmd->scsi_status)
1993 goto queue_status;
1995 trace_target_cmd_complete(cmd);
1996 ret = cmd->se_tfo->queue_data_in(cmd);
1997 break;
1998 case DMA_TO_DEVICE:
1999 if (cmd->se_cmd_flags & SCF_BIDI) {
2000 ret = cmd->se_tfo->queue_data_in(cmd);
2001 break;
2003 /* Fall through for DMA_TO_DEVICE */
2004 case DMA_NONE:
2005 queue_status:
2006 trace_target_cmd_complete(cmd);
2007 ret = cmd->se_tfo->queue_status(cmd);
2008 break;
2009 default:
2010 break;
2013 out:
2014 if (ret < 0) {
2015 transport_handle_queue_full(cmd, cmd->se_dev);
2016 return;
2018 transport_lun_remove_cmd(cmd);
2019 transport_cmd_check_stop_to_fabric(cmd);
2022 static void transport_handle_queue_full(
2023 struct se_cmd *cmd,
2024 struct se_device *dev)
2026 spin_lock_irq(&dev->qf_cmd_lock);
2027 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2028 atomic_inc_mb(&dev->dev_qf_count);
2029 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2031 schedule_work(&cmd->se_dev->qf_work_queue);
2034 static bool target_read_prot_action(struct se_cmd *cmd)
2036 switch (cmd->prot_op) {
2037 case TARGET_PROT_DIN_STRIP:
2038 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2039 u32 sectors = cmd->data_length >>
2040 ilog2(cmd->se_dev->dev_attrib.block_size);
2042 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2043 sectors, 0, cmd->t_prot_sg,
2045 if (cmd->pi_err)
2046 return true;
2048 break;
2049 case TARGET_PROT_DIN_INSERT:
2050 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2051 break;
2053 sbc_dif_generate(cmd);
2054 break;
2055 default:
2056 break;
2059 return false;
2062 static void target_complete_ok_work(struct work_struct *work)
2064 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2065 int ret;
2068 * Check if we need to move delayed/dormant tasks from cmds on the
2069 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2070 * Attribute.
2072 transport_complete_task_attr(cmd);
2075 * Check to schedule QUEUE_FULL work, or execute an existing
2076 * cmd->transport_qf_callback()
2078 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2079 schedule_work(&cmd->se_dev->qf_work_queue);
2082 * Check if we need to send a sense buffer from
2083 * the struct se_cmd in question.
2085 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2086 WARN_ON(!cmd->scsi_status);
2087 ret = transport_send_check_condition_and_sense(
2088 cmd, 0, 1);
2089 if (ret == -EAGAIN || ret == -ENOMEM)
2090 goto queue_full;
2092 transport_lun_remove_cmd(cmd);
2093 transport_cmd_check_stop_to_fabric(cmd);
2094 return;
2097 * Check for a callback, used by amongst other things
2098 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2100 if (cmd->transport_complete_callback) {
2101 sense_reason_t rc;
2102 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2103 bool zero_dl = !(cmd->data_length);
2104 int post_ret = 0;
2106 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2107 if (!rc && !post_ret) {
2108 if (caw && zero_dl)
2109 goto queue_rsp;
2111 return;
2112 } else if (rc) {
2113 ret = transport_send_check_condition_and_sense(cmd,
2114 rc, 0);
2115 if (ret == -EAGAIN || ret == -ENOMEM)
2116 goto queue_full;
2118 transport_lun_remove_cmd(cmd);
2119 transport_cmd_check_stop_to_fabric(cmd);
2120 return;
2124 queue_rsp:
2125 switch (cmd->data_direction) {
2126 case DMA_FROM_DEVICE:
2127 if (cmd->scsi_status)
2128 goto queue_status;
2130 atomic_long_add(cmd->data_length,
2131 &cmd->se_lun->lun_stats.tx_data_octets);
2133 * Perform READ_STRIP of PI using software emulation when
2134 * backend had PI enabled, if the transport will not be
2135 * performing hardware READ_STRIP offload.
2137 if (target_read_prot_action(cmd)) {
2138 ret = transport_send_check_condition_and_sense(cmd,
2139 cmd->pi_err, 0);
2140 if (ret == -EAGAIN || ret == -ENOMEM)
2141 goto queue_full;
2143 transport_lun_remove_cmd(cmd);
2144 transport_cmd_check_stop_to_fabric(cmd);
2145 return;
2148 trace_target_cmd_complete(cmd);
2149 ret = cmd->se_tfo->queue_data_in(cmd);
2150 if (ret == -EAGAIN || ret == -ENOMEM)
2151 goto queue_full;
2152 break;
2153 case DMA_TO_DEVICE:
2154 atomic_long_add(cmd->data_length,
2155 &cmd->se_lun->lun_stats.rx_data_octets);
2157 * Check if we need to send READ payload for BIDI-COMMAND
2159 if (cmd->se_cmd_flags & SCF_BIDI) {
2160 atomic_long_add(cmd->data_length,
2161 &cmd->se_lun->lun_stats.tx_data_octets);
2162 ret = cmd->se_tfo->queue_data_in(cmd);
2163 if (ret == -EAGAIN || ret == -ENOMEM)
2164 goto queue_full;
2165 break;
2167 /* Fall through for DMA_TO_DEVICE */
2168 case DMA_NONE:
2169 queue_status:
2170 trace_target_cmd_complete(cmd);
2171 ret = cmd->se_tfo->queue_status(cmd);
2172 if (ret == -EAGAIN || ret == -ENOMEM)
2173 goto queue_full;
2174 break;
2175 default:
2176 break;
2179 transport_lun_remove_cmd(cmd);
2180 transport_cmd_check_stop_to_fabric(cmd);
2181 return;
2183 queue_full:
2184 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2185 " data_direction: %d\n", cmd, cmd->data_direction);
2186 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2187 transport_handle_queue_full(cmd, cmd->se_dev);
2190 void target_free_sgl(struct scatterlist *sgl, int nents)
2192 struct scatterlist *sg;
2193 int count;
2195 for_each_sg(sgl, sg, nents, count)
2196 __free_page(sg_page(sg));
2198 kfree(sgl);
2200 EXPORT_SYMBOL(target_free_sgl);
2202 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2205 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2206 * emulation, and free + reset pointers if necessary..
2208 if (!cmd->t_data_sg_orig)
2209 return;
2211 kfree(cmd->t_data_sg);
2212 cmd->t_data_sg = cmd->t_data_sg_orig;
2213 cmd->t_data_sg_orig = NULL;
2214 cmd->t_data_nents = cmd->t_data_nents_orig;
2215 cmd->t_data_nents_orig = 0;
2218 static inline void transport_free_pages(struct se_cmd *cmd)
2220 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2221 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2222 cmd->t_prot_sg = NULL;
2223 cmd->t_prot_nents = 0;
2226 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2228 * Release special case READ buffer payload required for
2229 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2231 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2232 target_free_sgl(cmd->t_bidi_data_sg,
2233 cmd->t_bidi_data_nents);
2234 cmd->t_bidi_data_sg = NULL;
2235 cmd->t_bidi_data_nents = 0;
2237 transport_reset_sgl_orig(cmd);
2238 return;
2240 transport_reset_sgl_orig(cmd);
2242 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2243 cmd->t_data_sg = NULL;
2244 cmd->t_data_nents = 0;
2246 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2247 cmd->t_bidi_data_sg = NULL;
2248 cmd->t_bidi_data_nents = 0;
2252 * transport_put_cmd - release a reference to a command
2253 * @cmd: command to release
2255 * This routine releases our reference to the command and frees it if possible.
2257 static int transport_put_cmd(struct se_cmd *cmd)
2259 BUG_ON(!cmd->se_tfo);
2261 * If this cmd has been setup with target_get_sess_cmd(), drop
2262 * the kref and call ->release_cmd() in kref callback.
2264 return target_put_sess_cmd(cmd);
2267 void *transport_kmap_data_sg(struct se_cmd *cmd)
2269 struct scatterlist *sg = cmd->t_data_sg;
2270 struct page **pages;
2271 int i;
2274 * We need to take into account a possible offset here for fabrics like
2275 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2276 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2278 if (!cmd->t_data_nents)
2279 return NULL;
2281 BUG_ON(!sg);
2282 if (cmd->t_data_nents == 1)
2283 return kmap(sg_page(sg)) + sg->offset;
2285 /* >1 page. use vmap */
2286 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2287 if (!pages)
2288 return NULL;
2290 /* convert sg[] to pages[] */
2291 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2292 pages[i] = sg_page(sg);
2295 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2296 kfree(pages);
2297 if (!cmd->t_data_vmap)
2298 return NULL;
2300 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2302 EXPORT_SYMBOL(transport_kmap_data_sg);
2304 void transport_kunmap_data_sg(struct se_cmd *cmd)
2306 if (!cmd->t_data_nents) {
2307 return;
2308 } else if (cmd->t_data_nents == 1) {
2309 kunmap(sg_page(cmd->t_data_sg));
2310 return;
2313 vunmap(cmd->t_data_vmap);
2314 cmd->t_data_vmap = NULL;
2316 EXPORT_SYMBOL(transport_kunmap_data_sg);
2319 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2320 bool zero_page, bool chainable)
2322 struct scatterlist *sg;
2323 struct page *page;
2324 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2325 unsigned int nalloc, nent;
2326 int i = 0;
2328 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2329 if (chainable)
2330 nalloc++;
2331 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2332 if (!sg)
2333 return -ENOMEM;
2335 sg_init_table(sg, nalloc);
2337 while (length) {
2338 u32 page_len = min_t(u32, length, PAGE_SIZE);
2339 page = alloc_page(GFP_KERNEL | zero_flag);
2340 if (!page)
2341 goto out;
2343 sg_set_page(&sg[i], page, page_len, 0);
2344 length -= page_len;
2345 i++;
2347 *sgl = sg;
2348 *nents = nent;
2349 return 0;
2351 out:
2352 while (i > 0) {
2353 i--;
2354 __free_page(sg_page(&sg[i]));
2356 kfree(sg);
2357 return -ENOMEM;
2359 EXPORT_SYMBOL(target_alloc_sgl);
2362 * Allocate any required resources to execute the command. For writes we
2363 * might not have the payload yet, so notify the fabric via a call to
2364 * ->write_pending instead. Otherwise place it on the execution queue.
2366 sense_reason_t
2367 transport_generic_new_cmd(struct se_cmd *cmd)
2369 int ret = 0;
2370 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2372 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2373 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2374 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2375 cmd->prot_length, true, false);
2376 if (ret < 0)
2377 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2381 * Determine is the TCM fabric module has already allocated physical
2382 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2383 * beforehand.
2385 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2386 cmd->data_length) {
2388 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2389 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2390 u32 bidi_length;
2392 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2393 bidi_length = cmd->t_task_nolb *
2394 cmd->se_dev->dev_attrib.block_size;
2395 else
2396 bidi_length = cmd->data_length;
2398 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2399 &cmd->t_bidi_data_nents,
2400 bidi_length, zero_flag, false);
2401 if (ret < 0)
2402 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2405 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2406 cmd->data_length, zero_flag, false);
2407 if (ret < 0)
2408 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2409 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2410 cmd->data_length) {
2412 * Special case for COMPARE_AND_WRITE with fabrics
2413 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2415 u32 caw_length = cmd->t_task_nolb *
2416 cmd->se_dev->dev_attrib.block_size;
2418 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2419 &cmd->t_bidi_data_nents,
2420 caw_length, zero_flag, false);
2421 if (ret < 0)
2422 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2425 * If this command is not a write we can execute it right here,
2426 * for write buffers we need to notify the fabric driver first
2427 * and let it call back once the write buffers are ready.
2429 target_add_to_state_list(cmd);
2430 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2431 target_execute_cmd(cmd);
2432 return 0;
2434 transport_cmd_check_stop(cmd, false, true);
2436 ret = cmd->se_tfo->write_pending(cmd);
2437 if (ret == -EAGAIN || ret == -ENOMEM)
2438 goto queue_full;
2440 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2441 WARN_ON(ret);
2443 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2445 queue_full:
2446 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2447 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2448 transport_handle_queue_full(cmd, cmd->se_dev);
2449 return 0;
2451 EXPORT_SYMBOL(transport_generic_new_cmd);
2453 static void transport_write_pending_qf(struct se_cmd *cmd)
2455 int ret;
2457 ret = cmd->se_tfo->write_pending(cmd);
2458 if (ret == -EAGAIN || ret == -ENOMEM) {
2459 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2460 cmd);
2461 transport_handle_queue_full(cmd, cmd->se_dev);
2465 static bool
2466 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2467 unsigned long *flags);
2469 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2471 unsigned long flags;
2473 spin_lock_irqsave(&cmd->t_state_lock, flags);
2474 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2475 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2478 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2480 int ret = 0;
2481 bool aborted = false, tas = false;
2483 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2484 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2485 target_wait_free_cmd(cmd, &aborted, &tas);
2487 if (!aborted || tas)
2488 ret = transport_put_cmd(cmd);
2489 } else {
2490 if (wait_for_tasks)
2491 target_wait_free_cmd(cmd, &aborted, &tas);
2493 * Handle WRITE failure case where transport_generic_new_cmd()
2494 * has already added se_cmd to state_list, but fabric has
2495 * failed command before I/O submission.
2497 if (cmd->state_active)
2498 target_remove_from_state_list(cmd);
2500 if (cmd->se_lun)
2501 transport_lun_remove_cmd(cmd);
2503 if (!aborted || tas)
2504 ret = transport_put_cmd(cmd);
2507 * If the task has been internally aborted due to TMR ABORT_TASK
2508 * or LUN_RESET, target_core_tmr.c is responsible for performing
2509 * the remaining calls to target_put_sess_cmd(), and not the
2510 * callers of this function.
2512 if (aborted) {
2513 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2514 wait_for_completion(&cmd->cmd_wait_comp);
2515 cmd->se_tfo->release_cmd(cmd);
2516 ret = 1;
2518 return ret;
2520 EXPORT_SYMBOL(transport_generic_free_cmd);
2522 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2523 * @se_cmd: command descriptor to add
2524 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2526 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2528 struct se_session *se_sess = se_cmd->se_sess;
2529 unsigned long flags;
2530 int ret = 0;
2533 * Add a second kref if the fabric caller is expecting to handle
2534 * fabric acknowledgement that requires two target_put_sess_cmd()
2535 * invocations before se_cmd descriptor release.
2537 if (ack_kref) {
2538 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2539 return -EINVAL;
2541 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2544 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2545 if (se_sess->sess_tearing_down) {
2546 ret = -ESHUTDOWN;
2547 goto out;
2549 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2550 out:
2551 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2553 if (ret && ack_kref)
2554 target_put_sess_cmd(se_cmd);
2556 return ret;
2558 EXPORT_SYMBOL(target_get_sess_cmd);
2560 static void target_free_cmd_mem(struct se_cmd *cmd)
2562 transport_free_pages(cmd);
2564 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2565 core_tmr_release_req(cmd->se_tmr_req);
2566 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2567 kfree(cmd->t_task_cdb);
2570 static void target_release_cmd_kref(struct kref *kref)
2572 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2573 struct se_session *se_sess = se_cmd->se_sess;
2574 unsigned long flags;
2575 bool fabric_stop;
2577 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2579 spin_lock(&se_cmd->t_state_lock);
2580 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2581 (se_cmd->transport_state & CMD_T_ABORTED);
2582 spin_unlock(&se_cmd->t_state_lock);
2584 if (se_cmd->cmd_wait_set || fabric_stop) {
2585 list_del_init(&se_cmd->se_cmd_list);
2586 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2587 target_free_cmd_mem(se_cmd);
2588 complete(&se_cmd->cmd_wait_comp);
2589 return;
2591 list_del_init(&se_cmd->se_cmd_list);
2592 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2594 target_free_cmd_mem(se_cmd);
2595 se_cmd->se_tfo->release_cmd(se_cmd);
2598 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2599 * @se_cmd: command descriptor to drop
2601 int target_put_sess_cmd(struct se_cmd *se_cmd)
2603 struct se_session *se_sess = se_cmd->se_sess;
2605 if (!se_sess) {
2606 target_free_cmd_mem(se_cmd);
2607 se_cmd->se_tfo->release_cmd(se_cmd);
2608 return 1;
2610 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2612 EXPORT_SYMBOL(target_put_sess_cmd);
2614 /* target_sess_cmd_list_set_waiting - Flag all commands in
2615 * sess_cmd_list to complete cmd_wait_comp. Set
2616 * sess_tearing_down so no more commands are queued.
2617 * @se_sess: session to flag
2619 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2621 struct se_cmd *se_cmd, *tmp_cmd;
2622 unsigned long flags;
2623 int rc;
2625 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2626 if (se_sess->sess_tearing_down) {
2627 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2628 return;
2630 se_sess->sess_tearing_down = 1;
2631 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2633 list_for_each_entry_safe(se_cmd, tmp_cmd,
2634 &se_sess->sess_wait_list, se_cmd_list) {
2635 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2636 if (rc) {
2637 se_cmd->cmd_wait_set = 1;
2638 spin_lock(&se_cmd->t_state_lock);
2639 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2640 spin_unlock(&se_cmd->t_state_lock);
2641 } else
2642 list_del_init(&se_cmd->se_cmd_list);
2645 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2647 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2649 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2650 * @se_sess: session to wait for active I/O
2652 void target_wait_for_sess_cmds(struct se_session *se_sess)
2654 struct se_cmd *se_cmd, *tmp_cmd;
2655 unsigned long flags;
2656 bool tas;
2658 list_for_each_entry_safe(se_cmd, tmp_cmd,
2659 &se_sess->sess_wait_list, se_cmd_list) {
2660 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2661 " %d\n", se_cmd, se_cmd->t_state,
2662 se_cmd->se_tfo->get_cmd_state(se_cmd));
2664 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2665 tas = (se_cmd->transport_state & CMD_T_TAS);
2666 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2668 if (!target_put_sess_cmd(se_cmd)) {
2669 if (tas)
2670 target_put_sess_cmd(se_cmd);
2673 wait_for_completion(&se_cmd->cmd_wait_comp);
2674 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2675 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2676 se_cmd->se_tfo->get_cmd_state(se_cmd));
2678 se_cmd->se_tfo->release_cmd(se_cmd);
2681 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2682 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2683 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2686 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2688 void transport_clear_lun_ref(struct se_lun *lun)
2690 percpu_ref_kill(&lun->lun_ref);
2691 wait_for_completion(&lun->lun_ref_comp);
2694 static bool
2695 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2696 bool *aborted, bool *tas, unsigned long *flags)
2697 __releases(&cmd->t_state_lock)
2698 __acquires(&cmd->t_state_lock)
2701 assert_spin_locked(&cmd->t_state_lock);
2702 WARN_ON_ONCE(!irqs_disabled());
2704 if (fabric_stop)
2705 cmd->transport_state |= CMD_T_FABRIC_STOP;
2707 if (cmd->transport_state & CMD_T_ABORTED)
2708 *aborted = true;
2710 if (cmd->transport_state & CMD_T_TAS)
2711 *tas = true;
2713 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2714 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2715 return false;
2717 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2718 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2719 return false;
2721 if (!(cmd->transport_state & CMD_T_ACTIVE))
2722 return false;
2724 if (fabric_stop && *aborted)
2725 return false;
2727 cmd->transport_state |= CMD_T_STOP;
2729 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2730 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2731 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2733 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2735 wait_for_completion(&cmd->t_transport_stop_comp);
2737 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2738 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2740 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2741 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2743 return true;
2747 * transport_wait_for_tasks - wait for completion to occur
2748 * @cmd: command to wait
2750 * Called from frontend fabric context to wait for storage engine
2751 * to pause and/or release frontend generated struct se_cmd.
2753 bool transport_wait_for_tasks(struct se_cmd *cmd)
2755 unsigned long flags;
2756 bool ret, aborted = false, tas = false;
2758 spin_lock_irqsave(&cmd->t_state_lock, flags);
2759 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2760 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2762 return ret;
2764 EXPORT_SYMBOL(transport_wait_for_tasks);
2766 struct sense_info {
2767 u8 key;
2768 u8 asc;
2769 u8 ascq;
2770 bool add_sector_info;
2773 static const struct sense_info sense_info_table[] = {
2774 [TCM_NO_SENSE] = {
2775 .key = NOT_READY
2777 [TCM_NON_EXISTENT_LUN] = {
2778 .key = ILLEGAL_REQUEST,
2779 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2781 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2782 .key = ILLEGAL_REQUEST,
2783 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2785 [TCM_SECTOR_COUNT_TOO_MANY] = {
2786 .key = ILLEGAL_REQUEST,
2787 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2789 [TCM_UNKNOWN_MODE_PAGE] = {
2790 .key = ILLEGAL_REQUEST,
2791 .asc = 0x24, /* INVALID FIELD IN CDB */
2793 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2794 .key = ABORTED_COMMAND,
2795 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2796 .ascq = 0x03,
2798 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2799 .key = ABORTED_COMMAND,
2800 .asc = 0x0c, /* WRITE ERROR */
2801 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2803 [TCM_INVALID_CDB_FIELD] = {
2804 .key = ILLEGAL_REQUEST,
2805 .asc = 0x24, /* INVALID FIELD IN CDB */
2807 [TCM_INVALID_PARAMETER_LIST] = {
2808 .key = ILLEGAL_REQUEST,
2809 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2811 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2812 .key = ILLEGAL_REQUEST,
2813 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2815 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2816 .key = ILLEGAL_REQUEST,
2817 .asc = 0x0c, /* WRITE ERROR */
2818 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2820 [TCM_SERVICE_CRC_ERROR] = {
2821 .key = ABORTED_COMMAND,
2822 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2823 .ascq = 0x05, /* N/A */
2825 [TCM_SNACK_REJECTED] = {
2826 .key = ABORTED_COMMAND,
2827 .asc = 0x11, /* READ ERROR */
2828 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2830 [TCM_WRITE_PROTECTED] = {
2831 .key = DATA_PROTECT,
2832 .asc = 0x27, /* WRITE PROTECTED */
2834 [TCM_ADDRESS_OUT_OF_RANGE] = {
2835 .key = ILLEGAL_REQUEST,
2836 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2838 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2839 .key = UNIT_ATTENTION,
2841 [TCM_CHECK_CONDITION_NOT_READY] = {
2842 .key = NOT_READY,
2844 [TCM_MISCOMPARE_VERIFY] = {
2845 .key = MISCOMPARE,
2846 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2847 .ascq = 0x00,
2849 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2850 .key = ABORTED_COMMAND,
2851 .asc = 0x10,
2852 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2853 .add_sector_info = true,
2855 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2856 .key = ABORTED_COMMAND,
2857 .asc = 0x10,
2858 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2859 .add_sector_info = true,
2861 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2862 .key = ABORTED_COMMAND,
2863 .asc = 0x10,
2864 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2865 .add_sector_info = true,
2867 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2868 .key = COPY_ABORTED,
2869 .asc = 0x0d,
2870 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2873 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2875 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2876 * Solaris initiators. Returning NOT READY instead means the
2877 * operations will be retried a finite number of times and we
2878 * can survive intermittent errors.
2880 .key = NOT_READY,
2881 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2885 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2887 const struct sense_info *si;
2888 u8 *buffer = cmd->sense_buffer;
2889 int r = (__force int)reason;
2890 u8 asc, ascq;
2891 bool desc_format = target_sense_desc_format(cmd->se_dev);
2893 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2894 si = &sense_info_table[r];
2895 else
2896 si = &sense_info_table[(__force int)
2897 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2899 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2900 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2901 WARN_ON_ONCE(asc == 0);
2902 } else if (si->asc == 0) {
2903 WARN_ON_ONCE(cmd->scsi_asc == 0);
2904 asc = cmd->scsi_asc;
2905 ascq = cmd->scsi_ascq;
2906 } else {
2907 asc = si->asc;
2908 ascq = si->ascq;
2911 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2912 if (si->add_sector_info)
2913 return scsi_set_sense_information(buffer,
2914 cmd->scsi_sense_length,
2915 cmd->bad_sector);
2917 return 0;
2921 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2922 sense_reason_t reason, int from_transport)
2924 unsigned long flags;
2926 spin_lock_irqsave(&cmd->t_state_lock, flags);
2927 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2928 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2929 return 0;
2931 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2932 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2934 if (!from_transport) {
2935 int rc;
2937 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2938 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2939 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2940 rc = translate_sense_reason(cmd, reason);
2941 if (rc)
2942 return rc;
2945 trace_target_cmd_complete(cmd);
2946 return cmd->se_tfo->queue_status(cmd);
2948 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2950 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2951 __releases(&cmd->t_state_lock)
2952 __acquires(&cmd->t_state_lock)
2954 assert_spin_locked(&cmd->t_state_lock);
2955 WARN_ON_ONCE(!irqs_disabled());
2957 if (!(cmd->transport_state & CMD_T_ABORTED))
2958 return 0;
2960 * If cmd has been aborted but either no status is to be sent or it has
2961 * already been sent, just return
2963 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2964 if (send_status)
2965 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2966 return 1;
2969 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2970 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2972 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2973 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2974 trace_target_cmd_complete(cmd);
2976 spin_unlock_irq(&cmd->t_state_lock);
2977 cmd->se_tfo->queue_status(cmd);
2978 spin_lock_irq(&cmd->t_state_lock);
2980 return 1;
2983 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2985 int ret;
2987 spin_lock_irq(&cmd->t_state_lock);
2988 ret = __transport_check_aborted_status(cmd, send_status);
2989 spin_unlock_irq(&cmd->t_state_lock);
2991 return ret;
2993 EXPORT_SYMBOL(transport_check_aborted_status);
2995 void transport_send_task_abort(struct se_cmd *cmd)
2997 unsigned long flags;
2999 spin_lock_irqsave(&cmd->t_state_lock, flags);
3000 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3001 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3002 return;
3004 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3007 * If there are still expected incoming fabric WRITEs, we wait
3008 * until until they have completed before sending a TASK_ABORTED
3009 * response. This response with TASK_ABORTED status will be
3010 * queued back to fabric module by transport_check_aborted_status().
3012 if (cmd->data_direction == DMA_TO_DEVICE) {
3013 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3014 spin_lock_irqsave(&cmd->t_state_lock, flags);
3015 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3016 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3017 goto send_abort;
3019 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3020 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3021 return;
3024 send_abort:
3025 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3027 transport_lun_remove_cmd(cmd);
3029 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3030 cmd->t_task_cdb[0], cmd->tag);
3032 trace_target_cmd_complete(cmd);
3033 cmd->se_tfo->queue_status(cmd);
3036 static void target_tmr_work(struct work_struct *work)
3038 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3039 struct se_device *dev = cmd->se_dev;
3040 struct se_tmr_req *tmr = cmd->se_tmr_req;
3041 unsigned long flags;
3042 int ret;
3044 spin_lock_irqsave(&cmd->t_state_lock, flags);
3045 if (cmd->transport_state & CMD_T_ABORTED) {
3046 tmr->response = TMR_FUNCTION_REJECTED;
3047 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3048 goto check_stop;
3050 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3052 switch (tmr->function) {
3053 case TMR_ABORT_TASK:
3054 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3055 break;
3056 case TMR_ABORT_TASK_SET:
3057 case TMR_CLEAR_ACA:
3058 case TMR_CLEAR_TASK_SET:
3059 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3060 break;
3061 case TMR_LUN_RESET:
3062 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3063 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3064 TMR_FUNCTION_REJECTED;
3065 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3066 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3067 cmd->orig_fe_lun, 0x29,
3068 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3070 break;
3071 case TMR_TARGET_WARM_RESET:
3072 tmr->response = TMR_FUNCTION_REJECTED;
3073 break;
3074 case TMR_TARGET_COLD_RESET:
3075 tmr->response = TMR_FUNCTION_REJECTED;
3076 break;
3077 default:
3078 pr_err("Uknown TMR function: 0x%02x.\n",
3079 tmr->function);
3080 tmr->response = TMR_FUNCTION_REJECTED;
3081 break;
3084 spin_lock_irqsave(&cmd->t_state_lock, flags);
3085 if (cmd->transport_state & CMD_T_ABORTED) {
3086 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3087 goto check_stop;
3089 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3090 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3092 cmd->se_tfo->queue_tm_rsp(cmd);
3094 check_stop:
3095 transport_cmd_check_stop_to_fabric(cmd);
3098 int transport_generic_handle_tmr(
3099 struct se_cmd *cmd)
3101 unsigned long flags;
3103 spin_lock_irqsave(&cmd->t_state_lock, flags);
3104 cmd->transport_state |= CMD_T_ACTIVE;
3105 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3107 INIT_WORK(&cmd->work, target_tmr_work);
3108 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3109 return 0;
3111 EXPORT_SYMBOL(transport_generic_handle_tmr);
3113 bool
3114 target_check_wce(struct se_device *dev)
3116 bool wce = false;
3118 if (dev->transport->get_write_cache)
3119 wce = dev->transport->get_write_cache(dev);
3120 else if (dev->dev_attrib.emulate_write_cache > 0)
3121 wce = true;
3123 return wce;
3126 bool
3127 target_check_fua(struct se_device *dev)
3129 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;