2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
61 #include <linux/acpi.h>
63 #include "amba-pl011.h"
67 #define SERIAL_AMBA_MAJOR 204
68 #define SERIAL_AMBA_MINOR 64
69 #define SERIAL_AMBA_NR UART_NR
71 #define AMBA_ISR_PASS_LIMIT 256
73 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX (1 << 16)
76 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
77 [REG_DR
] = UART01x_DR
,
78 [REG_FR
] = UART01x_FR
,
79 [REG_LCRH_RX
] = UART011_LCRH
,
80 [REG_LCRH_TX
] = UART011_LCRH
,
81 [REG_IBRD
] = UART011_IBRD
,
82 [REG_FBRD
] = UART011_FBRD
,
83 [REG_CR
] = UART011_CR
,
84 [REG_IFLS
] = UART011_IFLS
,
85 [REG_IMSC
] = UART011_IMSC
,
86 [REG_RIS
] = UART011_RIS
,
87 [REG_MIS
] = UART011_MIS
,
88 [REG_ICR
] = UART011_ICR
,
89 [REG_DMACR
] = UART011_DMACR
,
92 /* There is by now at least one vendor with differing details, so handle it */
94 const u16
*reg_offset
;
103 bool cts_event_workaround
;
107 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
110 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
112 return amba_rev(dev
) < 3 ? 16 : 32;
115 static struct vendor_data vendor_arm
= {
116 .reg_offset
= pl011_std_offsets
,
117 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
118 .fr_busy
= UART01x_FR_BUSY
,
119 .fr_dsr
= UART01x_FR_DSR
,
120 .fr_cts
= UART01x_FR_CTS
,
121 .fr_ri
= UART011_FR_RI
,
122 .oversampling
= false,
123 .dma_threshold
= false,
124 .cts_event_workaround
= false,
125 .always_enabled
= false,
126 .fixed_options
= false,
127 .get_fifosize
= get_fifosize_arm
,
130 static struct vendor_data vendor_sbsa
= {
131 .reg_offset
= pl011_std_offsets
,
132 .fr_busy
= UART01x_FR_BUSY
,
133 .fr_dsr
= UART01x_FR_DSR
,
134 .fr_cts
= UART01x_FR_CTS
,
135 .fr_ri
= UART011_FR_RI
,
137 .oversampling
= false,
138 .dma_threshold
= false,
139 .cts_event_workaround
= false,
140 .always_enabled
= true,
141 .fixed_options
= true,
144 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
145 [REG_DR
] = UART01x_DR
,
146 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
147 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
148 [REG_FR
] = UART01x_FR
,
149 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
150 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
151 [REG_IBRD
] = UART011_IBRD
,
152 [REG_FBRD
] = UART011_FBRD
,
153 [REG_CR
] = UART011_CR
,
154 [REG_IFLS
] = UART011_IFLS
,
155 [REG_IMSC
] = UART011_IMSC
,
156 [REG_RIS
] = UART011_RIS
,
157 [REG_MIS
] = UART011_MIS
,
158 [REG_ICR
] = UART011_ICR
,
159 [REG_DMACR
] = UART011_DMACR
,
160 [REG_ST_XFCR
] = ST_UART011_XFCR
,
161 [REG_ST_XON1
] = ST_UART011_XON1
,
162 [REG_ST_XON2
] = ST_UART011_XON2
,
163 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
164 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
165 [REG_ST_ITCR
] = ST_UART011_ITCR
,
166 [REG_ST_ITIP
] = ST_UART011_ITIP
,
167 [REG_ST_ABCR
] = ST_UART011_ABCR
,
168 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
171 static unsigned int get_fifosize_st(struct amba_device
*dev
)
176 static struct vendor_data vendor_st
= {
177 .reg_offset
= pl011_st_offsets
,
178 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
179 .fr_busy
= UART01x_FR_BUSY
,
180 .fr_dsr
= UART01x_FR_DSR
,
181 .fr_cts
= UART01x_FR_CTS
,
182 .fr_ri
= UART011_FR_RI
,
183 .oversampling
= true,
184 .dma_threshold
= true,
185 .cts_event_workaround
= true,
186 .always_enabled
= false,
187 .fixed_options
= false,
188 .get_fifosize
= get_fifosize_st
,
191 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
192 [REG_DR
] = ZX_UART011_DR
,
193 [REG_FR
] = ZX_UART011_FR
,
194 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
195 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
196 [REG_IBRD
] = ZX_UART011_IBRD
,
197 [REG_FBRD
] = ZX_UART011_FBRD
,
198 [REG_CR
] = ZX_UART011_CR
,
199 [REG_IFLS
] = ZX_UART011_IFLS
,
200 [REG_IMSC
] = ZX_UART011_IMSC
,
201 [REG_RIS
] = ZX_UART011_RIS
,
202 [REG_MIS
] = ZX_UART011_MIS
,
203 [REG_ICR
] = ZX_UART011_ICR
,
204 [REG_DMACR
] = ZX_UART011_DMACR
,
207 static unsigned int get_fifosize_zte(struct amba_device
*dev
)
212 static struct vendor_data vendor_zte
= {
213 .reg_offset
= pl011_zte_offsets
,
215 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
216 .fr_busy
= ZX_UART01x_FR_BUSY
,
217 .fr_dsr
= ZX_UART01x_FR_DSR
,
218 .fr_cts
= ZX_UART01x_FR_CTS
,
219 .fr_ri
= ZX_UART011_FR_RI
,
220 .get_fifosize
= get_fifosize_zte
,
223 /* Deals with DMA transactions */
226 struct scatterlist sg
;
230 struct pl011_dmarx_data
{
231 struct dma_chan
*chan
;
232 struct completion complete
;
234 struct pl011_sgbuf sgbuf_a
;
235 struct pl011_sgbuf sgbuf_b
;
238 struct timer_list timer
;
239 unsigned int last_residue
;
240 unsigned long last_jiffies
;
242 unsigned int poll_rate
;
243 unsigned int poll_timeout
;
246 struct pl011_dmatx_data
{
247 struct dma_chan
*chan
;
248 struct scatterlist sg
;
254 * We wrap our port structure around the generic uart_port.
256 struct uart_amba_port
{
257 struct uart_port port
;
258 const u16
*reg_offset
;
260 const struct vendor_data
*vendor
;
261 unsigned int dmacr
; /* dma control reg */
262 unsigned int im
; /* interrupt mask */
263 unsigned int old_status
;
264 unsigned int fifosize
; /* vendor-specific */
265 unsigned int old_cr
; /* state during shutdown */
267 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
269 #ifdef CONFIG_DMA_ENGINE
273 struct pl011_dmarx_data dmarx
;
274 struct pl011_dmatx_data dmatx
;
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
282 return uap
->reg_offset
[reg
];
285 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
288 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
290 return (uap
->port
.iotype
== UPIO_MEM32
) ?
291 readl_relaxed(addr
) : readw_relaxed(addr
);
294 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
297 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
299 if (uap
->port
.iotype
== UPIO_MEM32
)
300 writel_relaxed(val
, addr
);
302 writew_relaxed(val
, addr
);
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
310 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
313 unsigned int ch
, flag
, max_count
= 256;
316 while (max_count
--) {
317 status
= pl011_read(uap
, REG_FR
);
318 if (status
& UART01x_FR_RXFE
)
321 /* Take chars from the FIFO and update status */
322 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
324 uap
->port
.icount
.rx
++;
327 if (unlikely(ch
& UART_DR_ERROR
)) {
328 if (ch
& UART011_DR_BE
) {
329 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
330 uap
->port
.icount
.brk
++;
331 if (uart_handle_break(&uap
->port
))
333 } else if (ch
& UART011_DR_PE
)
334 uap
->port
.icount
.parity
++;
335 else if (ch
& UART011_DR_FE
)
336 uap
->port
.icount
.frame
++;
337 if (ch
& UART011_DR_OE
)
338 uap
->port
.icount
.overrun
++;
340 ch
&= uap
->port
.read_status_mask
;
342 if (ch
& UART011_DR_BE
)
344 else if (ch
& UART011_DR_PE
)
346 else if (ch
& UART011_DR_FE
)
350 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
353 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
361 * All the DMA operation mode stuff goes inside this ifdef.
362 * This assumes that you have a generic DMA device interface,
363 * no custom DMA interfaces are supported.
365 #ifdef CONFIG_DMA_ENGINE
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
369 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
370 enum dma_data_direction dir
)
374 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
375 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
379 sg_init_table(&sg
->sg
, 1);
380 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
381 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
382 sg_dma_address(&sg
->sg
) = dma_addr
;
383 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
388 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
389 enum dma_data_direction dir
)
392 dma_free_coherent(chan
->device
->dev
,
393 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
394 sg_dma_address(&sg
->sg
));
398 static void pl011_dma_probe(struct uart_amba_port
*uap
)
400 /* DMA is the sole user of the platform data right now */
401 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
402 struct device
*dev
= uap
->port
.dev
;
403 struct dma_slave_config tx_conf
= {
404 .dst_addr
= uap
->port
.mapbase
+
405 pl011_reg_to_offset(uap
, REG_DR
),
406 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
407 .direction
= DMA_MEM_TO_DEV
,
408 .dst_maxburst
= uap
->fifosize
>> 1,
411 struct dma_chan
*chan
;
414 uap
->dma_probed
= true;
415 chan
= dma_request_slave_channel_reason(dev
, "tx");
417 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
418 uap
->dma_probed
= false;
422 /* We need platform data */
423 if (!plat
|| !plat
->dma_filter
) {
424 dev_info(uap
->port
.dev
, "no DMA platform data\n");
428 /* Try to acquire a generic DMA engine slave TX channel */
430 dma_cap_set(DMA_SLAVE
, mask
);
432 chan
= dma_request_channel(mask
, plat
->dma_filter
,
435 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
440 dmaengine_slave_config(chan
, &tx_conf
);
441 uap
->dmatx
.chan
= chan
;
443 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
444 dma_chan_name(uap
->dmatx
.chan
));
446 /* Optionally make use of an RX channel as well */
447 chan
= dma_request_slave_channel(dev
, "rx");
449 if (!chan
&& plat
&& plat
->dma_rx_param
) {
450 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
453 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
459 struct dma_slave_config rx_conf
= {
460 .src_addr
= uap
->port
.mapbase
+
461 pl011_reg_to_offset(uap
, REG_DR
),
462 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
463 .direction
= DMA_DEV_TO_MEM
,
464 .src_maxburst
= uap
->fifosize
>> 2,
467 struct dma_slave_caps caps
;
470 * Some DMA controllers provide information on their capabilities.
471 * If the controller does, check for suitable residue processing
472 * otherwise assime all is well.
474 if (0 == dma_get_slave_caps(chan
, &caps
)) {
475 if (caps
.residue_granularity
==
476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
477 dma_release_channel(chan
);
478 dev_info(uap
->port
.dev
,
479 "RX DMA disabled - no residue processing\n");
483 dmaengine_slave_config(chan
, &rx_conf
);
484 uap
->dmarx
.chan
= chan
;
486 uap
->dmarx
.auto_poll_rate
= false;
487 if (plat
&& plat
->dma_rx_poll_enable
) {
488 /* Set poll rate if specified. */
489 if (plat
->dma_rx_poll_rate
) {
490 uap
->dmarx
.auto_poll_rate
= false;
491 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
494 * 100 ms defaults to poll rate if not
495 * specified. This will be adjusted with
496 * the baud rate at set_termios.
498 uap
->dmarx
.auto_poll_rate
= true;
499 uap
->dmarx
.poll_rate
= 100;
501 /* 3 secs defaults poll_timeout if not specified. */
502 if (plat
->dma_rx_poll_timeout
)
503 uap
->dmarx
.poll_timeout
=
504 plat
->dma_rx_poll_timeout
;
506 uap
->dmarx
.poll_timeout
= 3000;
507 } else if (!plat
&& dev
->of_node
) {
508 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
509 dev
->of_node
, "auto-poll");
510 if (uap
->dmarx
.auto_poll_rate
) {
513 if (0 == of_property_read_u32(dev
->of_node
,
515 uap
->dmarx
.poll_rate
= x
;
517 uap
->dmarx
.poll_rate
= 100;
518 if (0 == of_property_read_u32(dev
->of_node
,
519 "poll-timeout-ms", &x
))
520 uap
->dmarx
.poll_timeout
= x
;
522 uap
->dmarx
.poll_timeout
= 3000;
525 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
526 dma_chan_name(uap
->dmarx
.chan
));
530 static void pl011_dma_remove(struct uart_amba_port
*uap
)
533 dma_release_channel(uap
->dmatx
.chan
);
535 dma_release_channel(uap
->dmarx
.chan
);
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
540 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
543 * The current DMA TX buffer has been sent.
544 * Try to queue up another DMA buffer.
546 static void pl011_dma_tx_callback(void *data
)
548 struct uart_amba_port
*uap
= data
;
549 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
553 spin_lock_irqsave(&uap
->port
.lock
, flags
);
554 if (uap
->dmatx
.queued
)
555 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
559 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
560 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
563 * If TX DMA was disabled, it means that we've stopped the DMA for
564 * some reason (eg, XOFF received, or we want to send an X-char.)
566 * Note: we need to be careful here of a potential race between DMA
567 * and the rest of the driver - if the driver disables TX DMA while
568 * a TX buffer completing, we must update the tx queued status to
569 * get further refills (hence we check dmacr).
571 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
572 uart_circ_empty(&uap
->port
.state
->xmit
)) {
573 uap
->dmatx
.queued
= false;
574 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
578 if (pl011_dma_tx_refill(uap
) <= 0)
580 * We didn't queue a DMA buffer for some reason, but we
581 * have data pending to be sent. Re-enable the TX IRQ.
583 pl011_start_tx_pio(uap
);
585 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
589 * Try to refill the TX DMA buffer.
590 * Locking: called with port lock held and IRQs disabled.
592 * 1 if we queued up a TX DMA buffer.
593 * 0 if we didn't want to handle this by DMA
596 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
598 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
599 struct dma_chan
*chan
= dmatx
->chan
;
600 struct dma_device
*dma_dev
= chan
->device
;
601 struct dma_async_tx_descriptor
*desc
;
602 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
606 * Try to avoid the overhead involved in using DMA if the
607 * transaction fits in the first half of the FIFO, by using
608 * the standard interrupt handling. This ensures that we
609 * issue a uart_write_wakeup() at the appropriate time.
611 count
= uart_circ_chars_pending(xmit
);
612 if (count
< (uap
->fifosize
>> 1)) {
613 uap
->dmatx
.queued
= false;
618 * Bodge: don't send the last character by DMA, as this
619 * will prevent XON from notifying us to restart DMA.
623 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 if (count
> PL011_DMA_BUFFER_SIZE
)
625 count
= PL011_DMA_BUFFER_SIZE
;
627 if (xmit
->tail
< xmit
->head
)
628 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
630 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
635 second
= count
- first
;
637 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
639 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
642 dmatx
->sg
.length
= count
;
644 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
645 uap
->dmatx
.queued
= false;
646 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
650 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
651 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
653 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
654 uap
->dmatx
.queued
= false;
656 * If DMA cannot be used right now, we complete this
657 * transaction via IRQ and let the TTY layer retry.
659 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
663 /* Some data to go along to the callback */
664 desc
->callback
= pl011_dma_tx_callback
;
665 desc
->callback_param
= uap
;
667 /* All errors should happen at prepare time */
668 dmaengine_submit(desc
);
670 /* Fire the DMA transaction */
671 dma_dev
->device_issue_pending(chan
);
673 uap
->dmacr
|= UART011_TXDMAE
;
674 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
675 uap
->dmatx
.queued
= true;
678 * Now we know that DMA will fire, so advance the ring buffer
679 * with the stuff we just dispatched.
681 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
682 uap
->port
.icount
.tx
+= count
;
684 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
685 uart_write_wakeup(&uap
->port
);
691 * We received a transmit interrupt without a pending X-char but with
692 * pending characters.
693 * Locking: called with port lock held and IRQs disabled.
695 * false if we want to use PIO to transmit
696 * true if we queued a DMA buffer
698 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
700 if (!uap
->using_tx_dma
)
704 * If we already have a TX buffer queued, but received a
705 * TX interrupt, it will be because we've just sent an X-char.
706 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
708 if (uap
->dmatx
.queued
) {
709 uap
->dmacr
|= UART011_TXDMAE
;
710 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
711 uap
->im
&= ~UART011_TXIM
;
712 pl011_write(uap
->im
, uap
, REG_IMSC
);
717 * We don't have a TX buffer queued, so try to queue one.
718 * If we successfully queued a buffer, mask the TX IRQ.
720 if (pl011_dma_tx_refill(uap
) > 0) {
721 uap
->im
&= ~UART011_TXIM
;
722 pl011_write(uap
->im
, uap
, REG_IMSC
);
729 * Stop the DMA transmit (eg, due to received XOFF).
730 * Locking: called with port lock held and IRQs disabled.
732 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
734 if (uap
->dmatx
.queued
) {
735 uap
->dmacr
&= ~UART011_TXDMAE
;
736 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
741 * Try to start a DMA transmit, or in the case of an XON/OFF
742 * character queued for send, try to get that character out ASAP.
743 * Locking: called with port lock held and IRQs disabled.
745 * false if we want the TX IRQ to be enabled
746 * true if we have a buffer queued
748 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
752 if (!uap
->using_tx_dma
)
755 if (!uap
->port
.x_char
) {
756 /* no X-char, try to push chars out in DMA mode */
759 if (!uap
->dmatx
.queued
) {
760 if (pl011_dma_tx_refill(uap
) > 0) {
761 uap
->im
&= ~UART011_TXIM
;
762 pl011_write(uap
->im
, uap
, REG_IMSC
);
765 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
766 uap
->dmacr
|= UART011_TXDMAE
;
767 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
773 * We have an X-char to send. Disable DMA to prevent it loading
774 * the TX fifo, and then see if we can stuff it into the FIFO.
777 uap
->dmacr
&= ~UART011_TXDMAE
;
778 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
780 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
782 * No space in the FIFO, so enable the transmit interrupt
783 * so we know when there is space. Note that once we've
784 * loaded the character, we should just re-enable DMA.
789 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
790 uap
->port
.icount
.tx
++;
791 uap
->port
.x_char
= 0;
793 /* Success - restore the DMA state */
795 pl011_write(dmacr
, uap
, REG_DMACR
);
801 * Flush the transmit buffer.
802 * Locking: called with port lock held and IRQs disabled.
804 static void pl011_dma_flush_buffer(struct uart_port
*port
)
805 __releases(&uap
->port
.lock
)
806 __acquires(&uap
->port
.lock
)
808 struct uart_amba_port
*uap
=
809 container_of(port
, struct uart_amba_port
, port
);
811 if (!uap
->using_tx_dma
)
814 /* Avoid deadlock with the DMA engine callback */
815 spin_unlock(&uap
->port
.lock
);
816 dmaengine_terminate_all(uap
->dmatx
.chan
);
817 spin_lock(&uap
->port
.lock
);
818 if (uap
->dmatx
.queued
) {
819 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
821 uap
->dmatx
.queued
= false;
822 uap
->dmacr
&= ~UART011_TXDMAE
;
823 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
827 static void pl011_dma_rx_callback(void *data
);
829 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
831 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
832 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
833 struct dma_async_tx_descriptor
*desc
;
834 struct pl011_sgbuf
*sgbuf
;
839 /* Start the RX DMA job */
840 sgbuf
= uap
->dmarx
.use_buf_b
?
841 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
842 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
844 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
846 * If the DMA engine is busy and cannot prepare a
847 * channel, no big deal, the driver will fall back
848 * to interrupt mode as a result of this error code.
851 uap
->dmarx
.running
= false;
852 dmaengine_terminate_all(rxchan
);
856 /* Some data to go along to the callback */
857 desc
->callback
= pl011_dma_rx_callback
;
858 desc
->callback_param
= uap
;
859 dmarx
->cookie
= dmaengine_submit(desc
);
860 dma_async_issue_pending(rxchan
);
862 uap
->dmacr
|= UART011_RXDMAE
;
863 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
864 uap
->dmarx
.running
= true;
866 uap
->im
&= ~UART011_RXIM
;
867 pl011_write(uap
->im
, uap
, REG_IMSC
);
873 * This is called when either the DMA job is complete, or
874 * the FIFO timeout interrupt occurred. This must be called
875 * with the port spinlock uap->port.lock held.
877 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
878 u32 pending
, bool use_buf_b
,
881 struct tty_port
*port
= &uap
->port
.state
->port
;
882 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
883 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
885 u32 fifotaken
= 0; /* only used for vdbg() */
887 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
890 if (uap
->dmarx
.poll_rate
) {
891 /* The data can be taken by polling */
892 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
893 /* Recalculate the pending size */
894 if (pending
>= dmataken
)
898 /* Pick the remain data from the DMA */
902 * First take all chars in the DMA pipe, then look in the FIFO.
903 * Note that tty_insert_flip_buf() tries to take as many chars
906 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
909 uap
->port
.icount
.rx
+= dma_count
;
910 if (dma_count
< pending
)
911 dev_warn(uap
->port
.dev
,
912 "couldn't insert all characters (TTY is full?)\n");
915 /* Reset the last_residue for Rx DMA poll */
916 if (uap
->dmarx
.poll_rate
)
917 dmarx
->last_residue
= sgbuf
->sg
.length
;
920 * Only continue with trying to read the FIFO if all DMA chars have
923 if (dma_count
== pending
&& readfifo
) {
924 /* Clear any error flags */
925 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
926 UART011_FEIS
, uap
, REG_ICR
);
929 * If we read all the DMA'd characters, and we had an
930 * incomplete buffer, that could be due to an rx error, or
931 * maybe we just timed out. Read any pending chars and check
934 * Error conditions will only occur in the FIFO, these will
935 * trigger an immediate interrupt and stop the DMA job, so we
936 * will always find the error in the FIFO, never in the DMA
939 fifotaken
= pl011_fifo_to_tty(uap
);
942 spin_unlock(&uap
->port
.lock
);
943 dev_vdbg(uap
->port
.dev
,
944 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
945 dma_count
, fifotaken
);
946 tty_flip_buffer_push(port
);
947 spin_lock(&uap
->port
.lock
);
950 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
952 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
953 struct dma_chan
*rxchan
= dmarx
->chan
;
954 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
955 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
957 struct dma_tx_state state
;
958 enum dma_status dmastat
;
961 * Pause the transfer so we can trust the current counter,
962 * do this before we pause the PL011 block, else we may
965 if (dmaengine_pause(rxchan
))
966 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
967 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
968 dmarx
->cookie
, &state
);
969 if (dmastat
!= DMA_PAUSED
)
970 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
972 /* Disable RX DMA - incoming data will wait in the FIFO */
973 uap
->dmacr
&= ~UART011_RXDMAE
;
974 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
975 uap
->dmarx
.running
= false;
977 pending
= sgbuf
->sg
.length
- state
.residue
;
978 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
979 /* Then we terminate the transfer - we now know our residue */
980 dmaengine_terminate_all(rxchan
);
983 * This will take the chars we have so far and insert
984 * into the framework.
986 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
988 /* Switch buffer & re-trigger DMA job */
989 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
990 if (pl011_dma_rx_trigger_dma(uap
)) {
991 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
992 "fall back to interrupt mode\n");
993 uap
->im
|= UART011_RXIM
;
994 pl011_write(uap
->im
, uap
, REG_IMSC
);
998 static void pl011_dma_rx_callback(void *data
)
1000 struct uart_amba_port
*uap
= data
;
1001 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1002 struct dma_chan
*rxchan
= dmarx
->chan
;
1003 bool lastbuf
= dmarx
->use_buf_b
;
1004 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
1005 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
1007 struct dma_tx_state state
;
1011 * This completion interrupt occurs typically when the
1012 * RX buffer is totally stuffed but no timeout has yet
1013 * occurred. When that happens, we just want the RX
1014 * routine to flush out the secondary DMA buffer while
1015 * we immediately trigger the next DMA job.
1017 spin_lock_irq(&uap
->port
.lock
);
1019 * Rx data can be taken by the UART interrupts during
1020 * the DMA irq handler. So we check the residue here.
1022 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1023 pending
= sgbuf
->sg
.length
- state
.residue
;
1024 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
1025 /* Then we terminate the transfer - we now know our residue */
1026 dmaengine_terminate_all(rxchan
);
1028 uap
->dmarx
.running
= false;
1029 dmarx
->use_buf_b
= !lastbuf
;
1030 ret
= pl011_dma_rx_trigger_dma(uap
);
1032 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1033 spin_unlock_irq(&uap
->port
.lock
);
1035 * Do this check after we picked the DMA chars so we don't
1036 * get some IRQ immediately from RX.
1039 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1040 "fall back to interrupt mode\n");
1041 uap
->im
|= UART011_RXIM
;
1042 pl011_write(uap
->im
, uap
, REG_IMSC
);
1047 * Stop accepting received characters, when we're shutting down or
1048 * suspending this port.
1049 * Locking: called with port lock held and IRQs disabled.
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1053 /* FIXME. Just disable the DMA enable */
1054 uap
->dmacr
&= ~UART011_RXDMAE
;
1055 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1059 * Timer handler for Rx DMA polling.
1060 * Every polling, It checks the residue in the dma buffer and transfer
1061 * data to the tty. Also, last_residue is updated for the next polling.
1063 static void pl011_dma_rx_poll(unsigned long args
)
1065 struct uart_amba_port
*uap
= (struct uart_amba_port
*)args
;
1066 struct tty_port
*port
= &uap
->port
.state
->port
;
1067 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1068 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1069 unsigned long flags
= 0;
1070 unsigned int dmataken
= 0;
1071 unsigned int size
= 0;
1072 struct pl011_sgbuf
*sgbuf
;
1074 struct dma_tx_state state
;
1076 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1077 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1078 if (likely(state
.residue
< dmarx
->last_residue
)) {
1079 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1080 size
= dmarx
->last_residue
- state
.residue
;
1081 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1083 if (dma_count
== size
)
1084 dmarx
->last_residue
= state
.residue
;
1085 dmarx
->last_jiffies
= jiffies
;
1087 tty_flip_buffer_push(port
);
1090 * If no data is received in poll_timeout, the driver will fall back
1091 * to interrupt mode. We will retrigger DMA at the first interrupt.
1093 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1094 > uap
->dmarx
.poll_timeout
) {
1096 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1097 pl011_dma_rx_stop(uap
);
1098 uap
->im
|= UART011_RXIM
;
1099 pl011_write(uap
->im
, uap
, REG_IMSC
);
1100 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1102 uap
->dmarx
.running
= false;
1103 dmaengine_terminate_all(rxchan
);
1104 del_timer(&uap
->dmarx
.timer
);
1106 mod_timer(&uap
->dmarx
.timer
,
1107 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1111 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1115 if (!uap
->dma_probed
)
1116 pl011_dma_probe(uap
);
1118 if (!uap
->dmatx
.chan
)
1121 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1122 if (!uap
->dmatx
.buf
) {
1123 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1124 uap
->port
.fifosize
= uap
->fifosize
;
1128 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1130 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1131 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1132 uap
->using_tx_dma
= true;
1134 if (!uap
->dmarx
.chan
)
1137 /* Allocate and map DMA RX buffers */
1138 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1141 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1142 "RX buffer A", ret
);
1146 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1149 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1150 "RX buffer B", ret
);
1151 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1156 uap
->using_rx_dma
= true;
1159 /* Turn on DMA error (RX/TX will be enabled on demand) */
1160 uap
->dmacr
|= UART011_DMAONERR
;
1161 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1164 * ST Micro variants has some specific dma burst threshold
1165 * compensation. Set this to 16 bytes, so burst will only
1166 * be issued above/below 16 bytes.
1168 if (uap
->vendor
->dma_threshold
)
1169 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1172 if (uap
->using_rx_dma
) {
1173 if (pl011_dma_rx_trigger_dma(uap
))
1174 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1175 "RX DMA job, fall back to interrupt mode\n");
1176 if (uap
->dmarx
.poll_rate
) {
1177 init_timer(&(uap
->dmarx
.timer
));
1178 uap
->dmarx
.timer
.function
= pl011_dma_rx_poll
;
1179 uap
->dmarx
.timer
.data
= (unsigned long)uap
;
1180 mod_timer(&uap
->dmarx
.timer
,
1182 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1183 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1184 uap
->dmarx
.last_jiffies
= jiffies
;
1189 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1191 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1194 /* Disable RX and TX DMA */
1195 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
1198 spin_lock_irq(&uap
->port
.lock
);
1199 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1200 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1201 spin_unlock_irq(&uap
->port
.lock
);
1203 if (uap
->using_tx_dma
) {
1204 /* In theory, this should already be done by pl011_dma_flush_buffer */
1205 dmaengine_terminate_all(uap
->dmatx
.chan
);
1206 if (uap
->dmatx
.queued
) {
1207 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1209 uap
->dmatx
.queued
= false;
1212 kfree(uap
->dmatx
.buf
);
1213 uap
->using_tx_dma
= false;
1216 if (uap
->using_rx_dma
) {
1217 dmaengine_terminate_all(uap
->dmarx
.chan
);
1218 /* Clean up the RX DMA */
1219 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1220 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1221 if (uap
->dmarx
.poll_rate
)
1222 del_timer_sync(&uap
->dmarx
.timer
);
1223 uap
->using_rx_dma
= false;
1227 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1229 return uap
->using_rx_dma
;
1232 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1234 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1238 /* Blank functions if the DMA engine is not available */
1239 static inline void pl011_dma_probe(struct uart_amba_port
*uap
)
1243 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1247 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1251 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1255 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1260 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1264 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1269 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1273 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1277 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1282 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1287 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1292 #define pl011_dma_flush_buffer NULL
1295 static void pl011_stop_tx(struct uart_port
*port
)
1297 struct uart_amba_port
*uap
=
1298 container_of(port
, struct uart_amba_port
, port
);
1300 uap
->im
&= ~UART011_TXIM
;
1301 pl011_write(uap
->im
, uap
, REG_IMSC
);
1302 pl011_dma_tx_stop(uap
);
1305 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1307 /* Start TX with programmed I/O only (no DMA) */
1308 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1310 uap
->im
|= UART011_TXIM
;
1311 pl011_write(uap
->im
, uap
, REG_IMSC
);
1312 pl011_tx_chars(uap
, false);
1315 static void pl011_start_tx(struct uart_port
*port
)
1317 struct uart_amba_port
*uap
=
1318 container_of(port
, struct uart_amba_port
, port
);
1320 if (!pl011_dma_tx_start(uap
))
1321 pl011_start_tx_pio(uap
);
1324 static void pl011_stop_rx(struct uart_port
*port
)
1326 struct uart_amba_port
*uap
=
1327 container_of(port
, struct uart_amba_port
, port
);
1329 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1330 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1331 pl011_write(uap
->im
, uap
, REG_IMSC
);
1333 pl011_dma_rx_stop(uap
);
1336 static void pl011_enable_ms(struct uart_port
*port
)
1338 struct uart_amba_port
*uap
=
1339 container_of(port
, struct uart_amba_port
, port
);
1341 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1342 pl011_write(uap
->im
, uap
, REG_IMSC
);
1345 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1346 __releases(&uap
->port
.lock
)
1347 __acquires(&uap
->port
.lock
)
1349 pl011_fifo_to_tty(uap
);
1351 spin_unlock(&uap
->port
.lock
);
1352 tty_flip_buffer_push(&uap
->port
.state
->port
);
1354 * If we were temporarily out of DMA mode for a while,
1355 * attempt to switch back to DMA mode again.
1357 if (pl011_dma_rx_available(uap
)) {
1358 if (pl011_dma_rx_trigger_dma(uap
)) {
1359 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1360 "fall back to interrupt mode again\n");
1361 uap
->im
|= UART011_RXIM
;
1362 pl011_write(uap
->im
, uap
, REG_IMSC
);
1364 #ifdef CONFIG_DMA_ENGINE
1365 /* Start Rx DMA poll */
1366 if (uap
->dmarx
.poll_rate
) {
1367 uap
->dmarx
.last_jiffies
= jiffies
;
1368 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1369 mod_timer(&uap
->dmarx
.timer
,
1371 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1376 spin_lock(&uap
->port
.lock
);
1379 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1382 if (unlikely(!from_irq
) &&
1383 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1384 return false; /* unable to transmit character */
1386 pl011_write(c
, uap
, REG_DR
);
1387 uap
->port
.icount
.tx
++;
1392 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1394 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1395 int count
= uap
->fifosize
>> 1;
1397 if (uap
->port
.x_char
) {
1398 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1400 uap
->port
.x_char
= 0;
1403 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1404 pl011_stop_tx(&uap
->port
);
1408 /* If we are using DMA mode, try to send some characters. */
1409 if (pl011_dma_tx_irq(uap
))
1413 if (likely(from_irq
) && count
-- == 0)
1416 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1419 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1420 } while (!uart_circ_empty(xmit
));
1422 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1423 uart_write_wakeup(&uap
->port
);
1425 if (uart_circ_empty(xmit
))
1426 pl011_stop_tx(&uap
->port
);
1429 static void pl011_modem_status(struct uart_amba_port
*uap
)
1431 unsigned int status
, delta
;
1433 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1435 delta
= status
^ uap
->old_status
;
1436 uap
->old_status
= status
;
1441 if (delta
& UART01x_FR_DCD
)
1442 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1444 if (delta
& uap
->vendor
->fr_dsr
)
1445 uap
->port
.icount
.dsr
++;
1447 if (delta
& uap
->vendor
->fr_cts
)
1448 uart_handle_cts_change(&uap
->port
,
1449 status
& uap
->vendor
->fr_cts
);
1451 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1454 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1456 unsigned int dummy_read
;
1458 if (!uap
->vendor
->cts_event_workaround
)
1461 /* workaround to make sure that all bits are unlocked.. */
1462 pl011_write(0x00, uap
, REG_ICR
);
1465 * WA: introduce 26ns(1 uart clk) delay before W1C;
1466 * single apb access will incur 2 pclk(133.12Mhz) delay,
1467 * so add 2 dummy reads
1469 dummy_read
= pl011_read(uap
, REG_ICR
);
1470 dummy_read
= pl011_read(uap
, REG_ICR
);
1473 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1475 struct uart_amba_port
*uap
= dev_id
;
1476 unsigned long flags
;
1477 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1481 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1482 imsc
= pl011_read(uap
, REG_IMSC
);
1483 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1486 check_apply_cts_event_workaround(uap
);
1488 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1492 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1493 if (pl011_dma_rx_running(uap
))
1494 pl011_dma_rx_irq(uap
);
1496 pl011_rx_chars(uap
);
1498 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1499 UART011_CTSMIS
|UART011_RIMIS
))
1500 pl011_modem_status(uap
);
1501 if (status
& UART011_TXIS
)
1502 pl011_tx_chars(uap
, true);
1504 if (pass_counter
-- == 0)
1507 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1508 } while (status
!= 0);
1512 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1514 return IRQ_RETVAL(handled
);
1517 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1519 struct uart_amba_port
*uap
=
1520 container_of(port
, struct uart_amba_port
, port
);
1521 unsigned int status
= pl011_read(uap
, REG_FR
);
1522 return status
& (uap
->vendor
->fr_busy
| UART01x_FR_TXFF
) ?
1526 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1528 struct uart_amba_port
*uap
=
1529 container_of(port
, struct uart_amba_port
, port
);
1530 unsigned int result
= 0;
1531 unsigned int status
= pl011_read(uap
, REG_FR
);
1533 #define TIOCMBIT(uartbit, tiocmbit) \
1534 if (status & uartbit) \
1537 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1538 TIOCMBIT(uap
->vendor
->fr_dsr
, TIOCM_DSR
);
1539 TIOCMBIT(uap
->vendor
->fr_cts
, TIOCM_CTS
);
1540 TIOCMBIT(uap
->vendor
->fr_ri
, TIOCM_RNG
);
1545 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1547 struct uart_amba_port
*uap
=
1548 container_of(port
, struct uart_amba_port
, port
);
1551 cr
= pl011_read(uap
, REG_CR
);
1553 #define TIOCMBIT(tiocmbit, uartbit) \
1554 if (mctrl & tiocmbit) \
1559 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1560 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1561 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1562 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1563 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1566 /* We need to disable auto-RTS if we want to turn RTS off */
1567 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1571 pl011_write(cr
, uap
, REG_CR
);
1574 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1576 struct uart_amba_port
*uap
=
1577 container_of(port
, struct uart_amba_port
, port
);
1578 unsigned long flags
;
1581 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1582 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1583 if (break_state
== -1)
1584 lcr_h
|= UART01x_LCRH_BRK
;
1586 lcr_h
&= ~UART01x_LCRH_BRK
;
1587 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1588 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1591 #ifdef CONFIG_CONSOLE_POLL
1593 static void pl011_quiesce_irqs(struct uart_port
*port
)
1595 struct uart_amba_port
*uap
=
1596 container_of(port
, struct uart_amba_port
, port
);
1598 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1600 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1601 * we simply mask it. start_tx() will unmask it.
1603 * Note we can race with start_tx(), and if the race happens, the
1604 * polling user might get another interrupt just after we clear it.
1605 * But it should be OK and can happen even w/o the race, e.g.
1606 * controller immediately got some new data and raised the IRQ.
1608 * And whoever uses polling routines assumes that it manages the device
1609 * (including tx queue), so we're also fine with start_tx()'s caller
1612 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1616 static int pl011_get_poll_char(struct uart_port
*port
)
1618 struct uart_amba_port
*uap
=
1619 container_of(port
, struct uart_amba_port
, port
);
1620 unsigned int status
;
1623 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1626 pl011_quiesce_irqs(port
);
1628 status
= pl011_read(uap
, REG_FR
);
1629 if (status
& UART01x_FR_RXFE
)
1630 return NO_POLL_CHAR
;
1632 return pl011_read(uap
, REG_DR
);
1635 static void pl011_put_poll_char(struct uart_port
*port
,
1638 struct uart_amba_port
*uap
=
1639 container_of(port
, struct uart_amba_port
, port
);
1641 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1644 pl011_write(ch
, uap
, REG_DR
);
1647 #endif /* CONFIG_CONSOLE_POLL */
1649 static int pl011_hwinit(struct uart_port
*port
)
1651 struct uart_amba_port
*uap
=
1652 container_of(port
, struct uart_amba_port
, port
);
1655 /* Optionaly enable pins to be muxed in and configured */
1656 pinctrl_pm_select_default_state(port
->dev
);
1659 * Try to enable the clock producer.
1661 retval
= clk_prepare_enable(uap
->clk
);
1665 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1667 /* Clear pending error and receive interrupts */
1668 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1669 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1673 * Save interrupts enable mask, and enable RX interrupts in case if
1674 * the interrupt is used for NMI entry.
1676 uap
->im
= pl011_read(uap
, REG_IMSC
);
1677 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1679 if (dev_get_platdata(uap
->port
.dev
)) {
1680 struct amba_pl011_data
*plat
;
1682 plat
= dev_get_platdata(uap
->port
.dev
);
1689 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1691 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1692 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1695 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1697 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1698 if (pl011_split_lcrh(uap
)) {
1701 * Wait 10 PCLKs before writing LCRH_TX register,
1702 * to get this delay write read only register 10 times
1704 for (i
= 0; i
< 10; ++i
)
1705 pl011_write(0xff, uap
, REG_MIS
);
1706 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1710 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1712 pl011_write(uap
->im
, uap
, REG_IMSC
);
1714 return request_irq(uap
->port
.irq
, pl011_int
, 0, "uart-pl011", uap
);
1718 * Enable interrupts, only timeouts when using DMA
1719 * if initial RX DMA job failed, start in interrupt mode
1722 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1724 spin_lock_irq(&uap
->port
.lock
);
1726 /* Clear out any spuriously appearing RX interrupts */
1727 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1728 uap
->im
= UART011_RTIM
;
1729 if (!pl011_dma_rx_running(uap
))
1730 uap
->im
|= UART011_RXIM
;
1731 pl011_write(uap
->im
, uap
, REG_IMSC
);
1732 spin_unlock_irq(&uap
->port
.lock
);
1735 static int pl011_startup(struct uart_port
*port
)
1737 struct uart_amba_port
*uap
=
1738 container_of(port
, struct uart_amba_port
, port
);
1742 retval
= pl011_hwinit(port
);
1746 retval
= pl011_allocate_irq(uap
);
1750 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1752 spin_lock_irq(&uap
->port
.lock
);
1754 /* restore RTS and DTR */
1755 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1756 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1757 pl011_write(cr
, uap
, REG_CR
);
1759 spin_unlock_irq(&uap
->port
.lock
);
1762 * initialise the old status of the modem signals
1764 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1767 pl011_dma_startup(uap
);
1769 pl011_enable_interrupts(uap
);
1774 clk_disable_unprepare(uap
->clk
);
1778 static int sbsa_uart_startup(struct uart_port
*port
)
1780 struct uart_amba_port
*uap
=
1781 container_of(port
, struct uart_amba_port
, port
);
1784 retval
= pl011_hwinit(port
);
1788 retval
= pl011_allocate_irq(uap
);
1792 /* The SBSA UART does not support any modem status lines. */
1793 uap
->old_status
= 0;
1795 pl011_enable_interrupts(uap
);
1800 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1805 val
= pl011_read(uap
, lcrh
);
1806 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1807 pl011_write(val
, uap
, lcrh
);
1811 * disable the port. It should not disable RTS and DTR.
1812 * Also RTS and DTR state should be preserved to restore
1813 * it during startup().
1815 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1819 uap
->autorts
= false;
1820 spin_lock_irq(&uap
->port
.lock
);
1821 cr
= pl011_read(uap
, REG_CR
);
1823 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1824 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1825 pl011_write(cr
, uap
, REG_CR
);
1826 spin_unlock_irq(&uap
->port
.lock
);
1829 * disable break condition and fifos
1831 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1832 if (pl011_split_lcrh(uap
))
1833 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1836 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1838 spin_lock_irq(&uap
->port
.lock
);
1840 /* mask all interrupts and clear all pending ones */
1842 pl011_write(uap
->im
, uap
, REG_IMSC
);
1843 pl011_write(0xffff, uap
, REG_ICR
);
1845 spin_unlock_irq(&uap
->port
.lock
);
1848 static void pl011_shutdown(struct uart_port
*port
)
1850 struct uart_amba_port
*uap
=
1851 container_of(port
, struct uart_amba_port
, port
);
1853 pl011_disable_interrupts(uap
);
1855 pl011_dma_shutdown(uap
);
1857 free_irq(uap
->port
.irq
, uap
);
1859 pl011_disable_uart(uap
);
1862 * Shut down the clock producer
1864 clk_disable_unprepare(uap
->clk
);
1865 /* Optionally let pins go into sleep states */
1866 pinctrl_pm_select_sleep_state(port
->dev
);
1868 if (dev_get_platdata(uap
->port
.dev
)) {
1869 struct amba_pl011_data
*plat
;
1871 plat
= dev_get_platdata(uap
->port
.dev
);
1876 if (uap
->port
.ops
->flush_buffer
)
1877 uap
->port
.ops
->flush_buffer(port
);
1880 static void sbsa_uart_shutdown(struct uart_port
*port
)
1882 struct uart_amba_port
*uap
=
1883 container_of(port
, struct uart_amba_port
, port
);
1885 pl011_disable_interrupts(uap
);
1887 free_irq(uap
->port
.irq
, uap
);
1889 if (uap
->port
.ops
->flush_buffer
)
1890 uap
->port
.ops
->flush_buffer(port
);
1894 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1896 port
->read_status_mask
= UART011_DR_OE
| 255;
1897 if (termios
->c_iflag
& INPCK
)
1898 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1899 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1900 port
->read_status_mask
|= UART011_DR_BE
;
1903 * Characters to ignore
1905 port
->ignore_status_mask
= 0;
1906 if (termios
->c_iflag
& IGNPAR
)
1907 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1908 if (termios
->c_iflag
& IGNBRK
) {
1909 port
->ignore_status_mask
|= UART011_DR_BE
;
1911 * If we're ignoring parity and break indicators,
1912 * ignore overruns too (for real raw support).
1914 if (termios
->c_iflag
& IGNPAR
)
1915 port
->ignore_status_mask
|= UART011_DR_OE
;
1919 * Ignore all characters if CREAD is not set.
1921 if ((termios
->c_cflag
& CREAD
) == 0)
1922 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1926 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1927 struct ktermios
*old
)
1929 struct uart_amba_port
*uap
=
1930 container_of(port
, struct uart_amba_port
, port
);
1931 unsigned int lcr_h
, old_cr
;
1932 unsigned long flags
;
1933 unsigned int baud
, quot
, clkdiv
;
1935 if (uap
->vendor
->oversampling
)
1941 * Ask the core to calculate the divisor for us.
1943 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1944 port
->uartclk
/ clkdiv
);
1945 #ifdef CONFIG_DMA_ENGINE
1947 * Adjust RX DMA polling rate with baud rate if not specified.
1949 if (uap
->dmarx
.auto_poll_rate
)
1950 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1953 if (baud
> port
->uartclk
/16)
1954 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1956 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1958 switch (termios
->c_cflag
& CSIZE
) {
1960 lcr_h
= UART01x_LCRH_WLEN_5
;
1963 lcr_h
= UART01x_LCRH_WLEN_6
;
1966 lcr_h
= UART01x_LCRH_WLEN_7
;
1969 lcr_h
= UART01x_LCRH_WLEN_8
;
1972 if (termios
->c_cflag
& CSTOPB
)
1973 lcr_h
|= UART01x_LCRH_STP2
;
1974 if (termios
->c_cflag
& PARENB
) {
1975 lcr_h
|= UART01x_LCRH_PEN
;
1976 if (!(termios
->c_cflag
& PARODD
))
1977 lcr_h
|= UART01x_LCRH_EPS
;
1978 if (termios
->c_cflag
& CMSPAR
)
1979 lcr_h
|= UART011_LCRH_SPS
;
1981 if (uap
->fifosize
> 1)
1982 lcr_h
|= UART01x_LCRH_FEN
;
1984 spin_lock_irqsave(&port
->lock
, flags
);
1987 * Update the per-port timeout.
1989 uart_update_timeout(port
, termios
->c_cflag
, baud
);
1991 pl011_setup_status_masks(port
, termios
);
1993 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
1994 pl011_enable_ms(port
);
1996 /* first, disable everything */
1997 old_cr
= pl011_read(uap
, REG_CR
);
1998 pl011_write(0, uap
, REG_CR
);
2000 if (termios
->c_cflag
& CRTSCTS
) {
2001 if (old_cr
& UART011_CR_RTS
)
2002 old_cr
|= UART011_CR_RTSEN
;
2004 old_cr
|= UART011_CR_CTSEN
;
2005 uap
->autorts
= true;
2007 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
2008 uap
->autorts
= false;
2011 if (uap
->vendor
->oversampling
) {
2012 if (baud
> port
->uartclk
/ 16)
2013 old_cr
|= ST_UART011_CR_OVSFACT
;
2015 old_cr
&= ~ST_UART011_CR_OVSFACT
;
2019 * Workaround for the ST Micro oversampling variants to
2020 * increase the bitrate slightly, by lowering the divisor,
2021 * to avoid delayed sampling of start bit at high speeds,
2022 * else we see data corruption.
2024 if (uap
->vendor
->oversampling
) {
2025 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
2027 else if ((baud
> 3250000) && (quot
> 2))
2031 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2032 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2035 * ----------v----------v----------v----------v-----
2036 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2037 * REG_FBRD & REG_IBRD.
2038 * ----------^----------^----------^----------^-----
2040 pl011_write_lcr_h(uap
, lcr_h
);
2041 pl011_write(old_cr
, uap
, REG_CR
);
2043 spin_unlock_irqrestore(&port
->lock
, flags
);
2047 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2048 struct ktermios
*old
)
2050 struct uart_amba_port
*uap
=
2051 container_of(port
, struct uart_amba_port
, port
);
2052 unsigned long flags
;
2054 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2056 /* The SBSA UART only supports 8n1 without hardware flow control. */
2057 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2058 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2059 termios
->c_cflag
|= CS8
| CLOCAL
;
2061 spin_lock_irqsave(&port
->lock
, flags
);
2062 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2063 pl011_setup_status_masks(port
, termios
);
2064 spin_unlock_irqrestore(&port
->lock
, flags
);
2067 static const char *pl011_type(struct uart_port
*port
)
2069 struct uart_amba_port
*uap
=
2070 container_of(port
, struct uart_amba_port
, port
);
2071 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2075 * Release the memory region(s) being used by 'port'
2077 static void pl011_release_port(struct uart_port
*port
)
2079 release_mem_region(port
->mapbase
, SZ_4K
);
2083 * Request the memory region(s) being used by 'port'
2085 static int pl011_request_port(struct uart_port
*port
)
2087 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2088 != NULL
? 0 : -EBUSY
;
2092 * Configure/autoconfigure the port.
2094 static void pl011_config_port(struct uart_port
*port
, int flags
)
2096 if (flags
& UART_CONFIG_TYPE
) {
2097 port
->type
= PORT_AMBA
;
2098 pl011_request_port(port
);
2103 * verify the new serial_struct (for TIOCSSERIAL).
2105 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2108 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2110 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2112 if (ser
->baud_base
< 9600)
2117 static struct uart_ops amba_pl011_pops
= {
2118 .tx_empty
= pl011_tx_empty
,
2119 .set_mctrl
= pl011_set_mctrl
,
2120 .get_mctrl
= pl011_get_mctrl
,
2121 .stop_tx
= pl011_stop_tx
,
2122 .start_tx
= pl011_start_tx
,
2123 .stop_rx
= pl011_stop_rx
,
2124 .enable_ms
= pl011_enable_ms
,
2125 .break_ctl
= pl011_break_ctl
,
2126 .startup
= pl011_startup
,
2127 .shutdown
= pl011_shutdown
,
2128 .flush_buffer
= pl011_dma_flush_buffer
,
2129 .set_termios
= pl011_set_termios
,
2131 .release_port
= pl011_release_port
,
2132 .request_port
= pl011_request_port
,
2133 .config_port
= pl011_config_port
,
2134 .verify_port
= pl011_verify_port
,
2135 #ifdef CONFIG_CONSOLE_POLL
2136 .poll_init
= pl011_hwinit
,
2137 .poll_get_char
= pl011_get_poll_char
,
2138 .poll_put_char
= pl011_put_poll_char
,
2142 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2146 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2151 static const struct uart_ops sbsa_uart_pops
= {
2152 .tx_empty
= pl011_tx_empty
,
2153 .set_mctrl
= sbsa_uart_set_mctrl
,
2154 .get_mctrl
= sbsa_uart_get_mctrl
,
2155 .stop_tx
= pl011_stop_tx
,
2156 .start_tx
= pl011_start_tx
,
2157 .stop_rx
= pl011_stop_rx
,
2158 .startup
= sbsa_uart_startup
,
2159 .shutdown
= sbsa_uart_shutdown
,
2160 .set_termios
= sbsa_uart_set_termios
,
2162 .release_port
= pl011_release_port
,
2163 .request_port
= pl011_request_port
,
2164 .config_port
= pl011_config_port
,
2165 .verify_port
= pl011_verify_port
,
2166 #ifdef CONFIG_CONSOLE_POLL
2167 .poll_init
= pl011_hwinit
,
2168 .poll_get_char
= pl011_get_poll_char
,
2169 .poll_put_char
= pl011_put_poll_char
,
2173 static struct uart_amba_port
*amba_ports
[UART_NR
];
2175 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2177 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2179 struct uart_amba_port
*uap
=
2180 container_of(port
, struct uart_amba_port
, port
);
2182 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2184 pl011_write(ch
, uap
, REG_DR
);
2188 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2190 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2191 unsigned int old_cr
= 0, new_cr
;
2192 unsigned long flags
;
2195 clk_enable(uap
->clk
);
2197 local_irq_save(flags
);
2198 if (uap
->port
.sysrq
)
2200 else if (oops_in_progress
)
2201 locked
= spin_trylock(&uap
->port
.lock
);
2203 spin_lock(&uap
->port
.lock
);
2206 * First save the CR then disable the interrupts
2208 if (!uap
->vendor
->always_enabled
) {
2209 old_cr
= pl011_read(uap
, REG_CR
);
2210 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2211 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2212 pl011_write(new_cr
, uap
, REG_CR
);
2215 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2218 * Finally, wait for transmitter to become empty
2219 * and restore the TCR
2221 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
2223 if (!uap
->vendor
->always_enabled
)
2224 pl011_write(old_cr
, uap
, REG_CR
);
2227 spin_unlock(&uap
->port
.lock
);
2228 local_irq_restore(flags
);
2230 clk_disable(uap
->clk
);
2234 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2235 int *parity
, int *bits
)
2237 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2238 unsigned int lcr_h
, ibrd
, fbrd
;
2240 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2243 if (lcr_h
& UART01x_LCRH_PEN
) {
2244 if (lcr_h
& UART01x_LCRH_EPS
)
2250 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2255 ibrd
= pl011_read(uap
, REG_IBRD
);
2256 fbrd
= pl011_read(uap
, REG_FBRD
);
2258 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2260 if (uap
->vendor
->oversampling
) {
2261 if (pl011_read(uap
, REG_CR
)
2262 & ST_UART011_CR_OVSFACT
)
2268 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2270 struct uart_amba_port
*uap
;
2278 * Check whether an invalid uart number has been specified, and
2279 * if so, search for the first available port that does have
2282 if (co
->index
>= UART_NR
)
2284 uap
= amba_ports
[co
->index
];
2288 /* Allow pins to be muxed in and configured */
2289 pinctrl_pm_select_default_state(uap
->port
.dev
);
2291 ret
= clk_prepare(uap
->clk
);
2295 if (dev_get_platdata(uap
->port
.dev
)) {
2296 struct amba_pl011_data
*plat
;
2298 plat
= dev_get_platdata(uap
->port
.dev
);
2303 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2305 if (uap
->vendor
->fixed_options
) {
2306 baud
= uap
->fixed_baud
;
2309 uart_parse_options(options
,
2310 &baud
, &parity
, &bits
, &flow
);
2312 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2315 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2319 * pl011_console_match - non-standard console matching
2320 * @co: registering console
2321 * @name: name from console command line
2322 * @idx: index from console command line
2323 * @options: ptr to option string from console command line
2325 * Only attempts to match console command lines of the form:
2326 * console=pl011,mmio|mmio32,<addr>[,<options>]
2327 * console=pl011,0x<addr>[,<options>]
2328 * This form is used to register an initial earlycon boot console and
2329 * replace it with the amba_console at pl011 driver init.
2331 * Performs console setup for a match (as required by interface)
2332 * If no <options> are specified, then assume the h/w is already setup.
2334 * Returns 0 if console matches; otherwise non-zero to use default matching
2336 static int __init
pl011_console_match(struct console
*co
, char *name
, int idx
,
2339 unsigned char iotype
;
2340 resource_size_t addr
;
2343 if (strcmp(name
, "pl011") != 0)
2346 if (uart_parse_earlycon(options
, &iotype
, &addr
, &options
))
2349 if (iotype
!= UPIO_MEM
&& iotype
!= UPIO_MEM32
)
2352 /* try to match the port specified on the command line */
2353 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2354 struct uart_port
*port
;
2359 port
= &amba_ports
[i
]->port
;
2361 if (port
->mapbase
!= addr
)
2366 return pl011_console_setup(co
, options
);
2372 static struct uart_driver amba_reg
;
2373 static struct console amba_console
= {
2375 .write
= pl011_console_write
,
2376 .device
= uart_console_device
,
2377 .setup
= pl011_console_setup
,
2378 .match
= pl011_console_match
,
2379 .flags
= CON_PRINTBUFFER
,
2384 #define AMBA_CONSOLE (&amba_console)
2386 static void pl011_putc(struct uart_port
*port
, int c
)
2388 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2390 if (port
->iotype
== UPIO_MEM32
)
2391 writel(c
, port
->membase
+ UART01x_DR
);
2393 writeb(c
, port
->membase
+ UART01x_DR
);
2394 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2398 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2400 struct earlycon_device
*dev
= con
->data
;
2402 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2405 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2408 if (!device
->port
.membase
)
2411 device
->con
->write
= pl011_early_write
;
2414 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2415 OF_EARLYCON_DECLARE(pl011
, "arm,sbsa-uart", pl011_early_console_setup
);
2418 #define AMBA_CONSOLE NULL
2421 static struct uart_driver amba_reg
= {
2422 .owner
= THIS_MODULE
,
2423 .driver_name
= "ttyAMA",
2424 .dev_name
= "ttyAMA",
2425 .major
= SERIAL_AMBA_MAJOR
,
2426 .minor
= SERIAL_AMBA_MINOR
,
2428 .cons
= AMBA_CONSOLE
,
2431 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2433 struct device_node
*np
;
2434 static bool seen_dev_with_alias
= false;
2435 static bool seen_dev_without_alias
= false;
2438 if (!IS_ENABLED(CONFIG_OF
))
2445 ret
= of_alias_get_id(np
, "serial");
2447 seen_dev_without_alias
= true;
2450 seen_dev_with_alias
= true;
2451 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2452 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2457 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2458 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2463 /* unregisters the driver also if no more ports are left */
2464 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2469 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2470 if (amba_ports
[i
] == uap
)
2471 amba_ports
[i
] = NULL
;
2472 else if (amba_ports
[i
])
2475 pl011_dma_remove(uap
);
2477 uart_unregister_driver(&amba_reg
);
2480 static int pl011_find_free_port(void)
2484 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2485 if (amba_ports
[i
] == NULL
)
2491 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2492 struct resource
*mmiobase
, int index
)
2496 base
= devm_ioremap_resource(dev
, mmiobase
);
2498 return PTR_ERR(base
);
2500 index
= pl011_probe_dt_alias(index
, dev
);
2503 uap
->port
.dev
= dev
;
2504 uap
->port
.mapbase
= mmiobase
->start
;
2505 uap
->port
.membase
= base
;
2506 uap
->port
.fifosize
= uap
->fifosize
;
2507 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2508 uap
->port
.line
= index
;
2510 amba_ports
[index
] = uap
;
2515 static int pl011_register_port(struct uart_amba_port
*uap
)
2519 /* Ensure interrupts from this UART are masked and cleared */
2520 pl011_write(0, uap
, REG_IMSC
);
2521 pl011_write(0xffff, uap
, REG_ICR
);
2523 if (!amba_reg
.state
) {
2524 ret
= uart_register_driver(&amba_reg
);
2526 dev_err(uap
->port
.dev
,
2527 "Failed to register AMBA-PL011 driver\n");
2532 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2534 pl011_unregister_port(uap
);
2539 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2541 struct uart_amba_port
*uap
;
2542 struct vendor_data
*vendor
= id
->data
;
2545 portnr
= pl011_find_free_port();
2549 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2554 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2555 if (IS_ERR(uap
->clk
))
2556 return PTR_ERR(uap
->clk
);
2558 uap
->reg_offset
= vendor
->reg_offset
;
2559 uap
->vendor
= vendor
;
2560 uap
->fifosize
= vendor
->get_fifosize(dev
);
2561 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2562 uap
->port
.irq
= dev
->irq
[0];
2563 uap
->port
.ops
= &amba_pl011_pops
;
2565 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2567 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2571 amba_set_drvdata(dev
, uap
);
2573 return pl011_register_port(uap
);
2576 static int pl011_remove(struct amba_device
*dev
)
2578 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2580 uart_remove_one_port(&amba_reg
, &uap
->port
);
2581 pl011_unregister_port(uap
);
2585 #ifdef CONFIG_PM_SLEEP
2586 static int pl011_suspend(struct device
*dev
)
2588 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2593 return uart_suspend_port(&amba_reg
, &uap
->port
);
2596 static int pl011_resume(struct device
*dev
)
2598 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2603 return uart_resume_port(&amba_reg
, &uap
->port
);
2607 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2609 static int sbsa_uart_probe(struct platform_device
*pdev
)
2611 struct uart_amba_port
*uap
;
2617 * Check the mandatory baud rate parameter in the DT node early
2618 * so that we can easily exit with the error.
2620 if (pdev
->dev
.of_node
) {
2621 struct device_node
*np
= pdev
->dev
.of_node
;
2623 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2630 portnr
= pl011_find_free_port();
2634 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2639 ret
= platform_get_irq(pdev
, 0);
2641 if (ret
!= -EPROBE_DEFER
)
2642 dev_err(&pdev
->dev
, "cannot obtain irq\n");
2645 uap
->port
.irq
= ret
;
2647 uap
->reg_offset
= vendor_sbsa
.reg_offset
;
2648 uap
->vendor
= &vendor_sbsa
;
2650 uap
->port
.iotype
= vendor_sbsa
.access_32b
? UPIO_MEM32
: UPIO_MEM
;
2651 uap
->port
.ops
= &sbsa_uart_pops
;
2652 uap
->fixed_baud
= baudrate
;
2654 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2656 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2658 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2662 platform_set_drvdata(pdev
, uap
);
2664 return pl011_register_port(uap
);
2667 static int sbsa_uart_remove(struct platform_device
*pdev
)
2669 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2671 uart_remove_one_port(&amba_reg
, &uap
->port
);
2672 pl011_unregister_port(uap
);
2676 static const struct of_device_id sbsa_uart_of_match
[] = {
2677 { .compatible
= "arm,sbsa-uart", },
2680 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2682 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2686 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2688 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2689 .probe
= sbsa_uart_probe
,
2690 .remove
= sbsa_uart_remove
,
2692 .name
= "sbsa-uart",
2693 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2694 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2698 static struct amba_id pl011_ids
[] = {
2702 .data
= &vendor_arm
,
2710 .id
= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2712 .data
= &vendor_zte
,
2717 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2719 static struct amba_driver pl011_driver
= {
2721 .name
= "uart-pl011",
2722 .pm
= &pl011_dev_pm_ops
,
2724 .id_table
= pl011_ids
,
2725 .probe
= pl011_probe
,
2726 .remove
= pl011_remove
,
2729 static int __init
pl011_init(void)
2731 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2733 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2734 pr_warn("could not register SBSA UART platform driver\n");
2735 return amba_driver_register(&pl011_driver
);
2738 static void __exit
pl011_exit(void)
2740 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2741 amba_driver_unregister(&pl011_driver
);
2745 * While this can be a module, if builtin it's most likely the console
2746 * So let's leave module_exit but move module_init to an earlier place
2748 arch_initcall(pl011_init
);
2749 module_exit(pl011_exit
);
2751 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2752 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2753 MODULE_LICENSE("GPL");