2 * linux/drivers/video/cyber2000fb.c
4 * Copyright (C) 1998-2002 Russell King
6 * MIPS and 50xx clock support
7 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9 * 32 bit support, text color and panning fixes for modes != 8 bit
10 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
20 * Note that we now use the new fbcon fix, var and cmap scheme. We do
21 * still have to check which console is the currently displayed one
22 * however, especially for the colourmap stuff.
24 * We also use the new hotplug PCI subsystem. I'm not sure if there
25 * are any such cards, but I'm erring on the side of caution. We don't
26 * want to go pop just because someone does have one.
28 * Note that this doesn't work fully in the case of multiple CyberPro
29 * cards with grabbers. We currently can only attach to the first
30 * CyberPro card found.
32 * When we're in truecolour mode, we power down the LUT RAM as a power
33 * saving feature. Also, when we enter any of the powersaving modes
34 * (except soft blanking) we power down the RAMDACs. This saves about
35 * 1W, which is roughly 8% of the power consumption of a NetWinder
36 * (which, incidentally, is about the same saving as a 2.5in hard disk
37 * entering standby mode.)
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
44 #include <linux/slab.h>
45 #include <linux/delay.h>
47 #include <linux/pci.h>
48 #include <linux/init.h>
50 #include <linux/i2c.h>
51 #include <linux/i2c-algo-bit.h>
53 #include <asm/pgtable.h>
56 #include <asm/mach-types.h>
59 #include "cyber2000fb.h"
63 struct display_switch
*dispsw
;
64 struct display
*display
;
65 unsigned char __iomem
*region
;
66 unsigned char __iomem
*regs
;
79 } palette
[NR_PALETTE
];
86 * RAMDAC control register is both of these or'ed together
89 u_char ramdac_powerdown
;
91 u32 pseudo_palette
[16];
93 spinlock_t reg_b0_lock
;
95 #ifdef CONFIG_FB_CYBER2000_DDC
97 struct i2c_adapter ddc_adapter
;
98 struct i2c_algo_bit_data ddc_algo
;
101 #ifdef CONFIG_FB_CYBER2000_I2C
102 struct i2c_adapter i2c_adapter
;
103 struct i2c_algo_bit_data i2c_algo
;
107 static char *default_font
= "Acorn8x8";
108 module_param(default_font
, charp
, 0);
109 MODULE_PARM_DESC(default_font
, "Default font name");
112 * Our access methods.
114 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
115 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
116 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
118 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
121 cyber2000_crtcw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
123 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3d4, cfb
);
127 cyber2000_grphw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
129 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3ce, cfb
);
132 static inline unsigned int
133 cyber2000_grphr(unsigned int reg
, struct cfb_info
*cfb
)
135 cyber2000fb_writeb(reg
, 0x3ce, cfb
);
136 return cyber2000fb_readb(0x3cf, cfb
);
140 cyber2000_attrw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
142 cyber2000fb_readb(0x3da, cfb
);
143 cyber2000fb_writeb(reg
, 0x3c0, cfb
);
144 cyber2000fb_readb(0x3c1, cfb
);
145 cyber2000fb_writeb(val
, 0x3c0, cfb
);
149 cyber2000_seqw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
151 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3c4, cfb
);
154 /* -------------------- Hardware specific routines ------------------------- */
157 * Hardware Cyber2000 Acceleration
160 cyber2000fb_fillrect(struct fb_info
*info
, const struct fb_fillrect
*rect
)
162 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
163 unsigned long dst
, col
;
165 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
166 cfb_fillrect(info
, rect
);
170 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
171 cyber2000fb_writew(rect
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
172 cyber2000fb_writew(rect
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
175 if (cfb
->fb
.var
.bits_per_pixel
> 8)
176 col
= ((u32
*)cfb
->fb
.pseudo_palette
)[col
];
177 cyber2000fb_writel(col
, CO_REG_FGCOLOUR
, cfb
);
179 dst
= rect
->dx
+ rect
->dy
* cfb
->fb
.var
.xres_virtual
;
180 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
181 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
185 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
186 cyber2000fb_writeb(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
187 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL
, CO_REG_CMD_L
, cfb
);
188 cyber2000fb_writew(CO_CMD_H_BLITTER
, CO_REG_CMD_H
, cfb
);
192 cyber2000fb_copyarea(struct fb_info
*info
, const struct fb_copyarea
*region
)
194 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
195 unsigned int cmd
= CO_CMD_L_PATTERN_FGCOL
;
196 unsigned long src
, dst
;
198 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
199 cfb_copyarea(info
, region
);
203 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
204 cyber2000fb_writew(region
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
205 cyber2000fb_writew(region
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
207 src
= region
->sx
+ region
->sy
* cfb
->fb
.var
.xres_virtual
;
208 dst
= region
->dx
+ region
->dy
* cfb
->fb
.var
.xres_virtual
;
210 if (region
->sx
< region
->dx
) {
211 src
+= region
->width
- 1;
212 dst
+= region
->width
- 1;
213 cmd
|= CO_CMD_L_INC_LEFT
;
216 if (region
->sy
< region
->dy
) {
217 src
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
218 dst
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
219 cmd
|= CO_CMD_L_INC_UP
;
222 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
223 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
227 cyber2000fb_writel(src
, CO_REG_SRC1_PTR
, cfb
);
228 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
229 cyber2000fb_writew(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
230 cyber2000fb_writew(cmd
, CO_REG_CMD_L
, cfb
);
231 cyber2000fb_writew(CO_CMD_H_FGSRCMAP
| CO_CMD_H_BLITTER
,
236 cyber2000fb_imageblit(struct fb_info
*info
, const struct fb_image
*image
)
238 cfb_imageblit(info
, image
);
242 static int cyber2000fb_sync(struct fb_info
*info
)
244 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
247 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
))
250 while (cyber2000fb_readb(CO_REG_CONTROL
, cfb
) & CO_CTRL_BUSY
) {
252 debug_printf("accel_wait timed out\n");
253 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
262 * ===========================================================================
265 static inline u32
convert_bitfield(u_int val
, struct fb_bitfield
*bf
)
267 u_int mask
= (1 << bf
->length
) - 1;
269 return (val
>> (16 - bf
->length
) & mask
) << bf
->offset
;
273 * Set a single color register. Return != 0 for invalid regno.
276 cyber2000fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
277 u_int transp
, struct fb_info
*info
)
279 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
280 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
284 switch (cfb
->fb
.fix
.visual
) {
291 * pixel --/--+--/--> red lut --> red dac
293 * +--/--> green lut --> green dac
295 * +--/--> blue lut --> blue dac
297 case FB_VISUAL_PSEUDOCOLOR
:
298 if (regno
>= NR_PALETTE
)
305 cfb
->palette
[regno
].red
= red
;
306 cfb
->palette
[regno
].green
= green
;
307 cfb
->palette
[regno
].blue
= blue
;
309 cyber2000fb_writeb(regno
, 0x3c8, cfb
);
310 cyber2000fb_writeb(red
, 0x3c9, cfb
);
311 cyber2000fb_writeb(green
, 0x3c9, cfb
);
312 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
318 * pixel --/--+--/--> red lut --> red dac
320 * +--/--> green lut --> green dac
322 * +--/--> blue lut --> blue dac
323 * n = bpp, rl = red length, gl = green length, bl = blue length
325 case FB_VISUAL_DIRECTCOLOR
:
330 if (var
->green
.length
== 6 && regno
< 64) {
331 cfb
->palette
[regno
<< 2].green
= green
;
334 * The 6 bits of the green component are applied
335 * to the high 6 bits of the LUT.
337 cyber2000fb_writeb(regno
<< 2, 0x3c8, cfb
);
338 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].red
,
340 cyber2000fb_writeb(green
, 0x3c9, cfb
);
341 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].blue
,
344 green
= cfb
->palette
[regno
<< 3].green
;
349 if (var
->green
.length
>= 5 && regno
< 32) {
350 cfb
->palette
[regno
<< 3].red
= red
;
351 cfb
->palette
[regno
<< 3].green
= green
;
352 cfb
->palette
[regno
<< 3].blue
= blue
;
355 * The 5 bits of each colour component are
356 * applied to the high 5 bits of the LUT.
358 cyber2000fb_writeb(regno
<< 3, 0x3c8, cfb
);
359 cyber2000fb_writeb(red
, 0x3c9, cfb
);
360 cyber2000fb_writeb(green
, 0x3c9, cfb
);
361 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
365 if (var
->green
.length
== 4 && regno
< 16) {
366 cfb
->palette
[regno
<< 4].red
= red
;
367 cfb
->palette
[regno
<< 4].green
= green
;
368 cfb
->palette
[regno
<< 4].blue
= blue
;
371 * The 5 bits of each colour component are
372 * applied to the high 5 bits of the LUT.
374 cyber2000fb_writeb(regno
<< 4, 0x3c8, cfb
);
375 cyber2000fb_writeb(red
, 0x3c9, cfb
);
376 cyber2000fb_writeb(green
, 0x3c9, cfb
);
377 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
382 * Since this is only used for the first 16 colours, we
383 * don't have to care about overflowing for regno >= 32
385 pseudo_val
= regno
<< var
->red
.offset
|
386 regno
<< var
->green
.offset
|
387 regno
<< var
->blue
.offset
;
393 * pixel --/--+--/--> red dac
398 * n = bpp, rl = red length, gl = green length, bl = blue length
400 case FB_VISUAL_TRUECOLOR
:
401 pseudo_val
= convert_bitfield(transp
^ 0xffff, &var
->transp
);
402 pseudo_val
|= convert_bitfield(red
, &var
->red
);
403 pseudo_val
|= convert_bitfield(green
, &var
->green
);
404 pseudo_val
|= convert_bitfield(blue
, &var
->blue
);
410 * Now set our pseudo palette for the CFB16/24/32 drivers.
413 ((u32
*)cfb
->fb
.pseudo_palette
)[regno
] = pseudo_val
;
438 static const u_char crtc_idx
[] = {
439 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
441 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
444 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info
*cfb
)
447 unsigned int val
= cfb
->ramdac_ctrl
| cfb
->ramdac_powerdown
;
449 cyber2000fb_writeb(0x56, 0x3ce, cfb
);
450 i
= cyber2000fb_readb(0x3cf, cfb
);
451 cyber2000fb_writeb(i
| 4, 0x3cf, cfb
);
452 cyber2000fb_writeb(val
, 0x3c6, cfb
);
453 cyber2000fb_writeb(i
, 0x3cf, cfb
);
454 /* prevent card lock-up observed on x86 with CyberPro 2000 */
455 cyber2000fb_readb(0x3cf, cfb
);
458 static void cyber2000fb_set_timing(struct cfb_info
*cfb
, struct par_info
*hw
)
465 for (i
= 0; i
< NR_PALETTE
; i
++) {
466 cyber2000fb_writeb(i
, 0x3c8, cfb
);
467 cyber2000fb_writeb(0, 0x3c9, cfb
);
468 cyber2000fb_writeb(0, 0x3c9, cfb
);
469 cyber2000fb_writeb(0, 0x3c9, cfb
);
472 cyber2000fb_writeb(0xef, 0x3c2, cfb
);
473 cyber2000_crtcw(0x11, 0x0b, cfb
);
474 cyber2000_attrw(0x11, 0x00, cfb
);
476 cyber2000_seqw(0x00, 0x01, cfb
);
477 cyber2000_seqw(0x01, 0x01, cfb
);
478 cyber2000_seqw(0x02, 0x0f, cfb
);
479 cyber2000_seqw(0x03, 0x00, cfb
);
480 cyber2000_seqw(0x04, 0x0e, cfb
);
481 cyber2000_seqw(0x00, 0x03, cfb
);
483 for (i
= 0; i
< sizeof(crtc_idx
); i
++)
484 cyber2000_crtcw(crtc_idx
[i
], hw
->crtc
[i
], cfb
);
486 for (i
= 0x0a; i
< 0x10; i
++)
487 cyber2000_crtcw(i
, 0, cfb
);
489 cyber2000_grphw(EXT_CRT_VRTOFL
, hw
->crtc_ofl
, cfb
);
490 cyber2000_grphw(0x00, 0x00, cfb
);
491 cyber2000_grphw(0x01, 0x00, cfb
);
492 cyber2000_grphw(0x02, 0x00, cfb
);
493 cyber2000_grphw(0x03, 0x00, cfb
);
494 cyber2000_grphw(0x04, 0x00, cfb
);
495 cyber2000_grphw(0x05, 0x60, cfb
);
496 cyber2000_grphw(0x06, 0x05, cfb
);
497 cyber2000_grphw(0x07, 0x0f, cfb
);
498 cyber2000_grphw(0x08, 0xff, cfb
);
500 /* Attribute controller registers */
501 for (i
= 0; i
< 16; i
++)
502 cyber2000_attrw(i
, i
, cfb
);
504 cyber2000_attrw(0x10, 0x01, cfb
);
505 cyber2000_attrw(0x11, 0x00, cfb
);
506 cyber2000_attrw(0x12, 0x0f, cfb
);
507 cyber2000_attrw(0x13, 0x00, cfb
);
508 cyber2000_attrw(0x14, 0x00, cfb
);
511 spin_lock(&cfb
->reg_b0_lock
);
512 cyber2000_grphw(EXT_DCLK_MULT
, hw
->clock_mult
, cfb
);
513 cyber2000_grphw(EXT_DCLK_DIV
, hw
->clock_div
, cfb
);
514 cyber2000_grphw(EXT_MCLK_MULT
, cfb
->mclk_mult
, cfb
);
515 cyber2000_grphw(EXT_MCLK_DIV
, cfb
->mclk_div
, cfb
);
516 cyber2000_grphw(0x90, 0x01, cfb
);
517 cyber2000_grphw(0xb9, 0x80, cfb
);
518 cyber2000_grphw(0xb9, 0x00, cfb
);
519 spin_unlock(&cfb
->reg_b0_lock
);
521 cfb
->ramdac_ctrl
= hw
->ramdac
;
522 cyber2000fb_write_ramdac_ctrl(cfb
);
524 cyber2000fb_writeb(0x20, 0x3c0, cfb
);
525 cyber2000fb_writeb(0xff, 0x3c6, cfb
);
527 cyber2000_grphw(0x14, hw
->fetch
, cfb
);
528 cyber2000_grphw(0x15, ((hw
->fetch
>> 8) & 0x03) |
529 ((hw
->pitch
>> 4) & 0x30), cfb
);
530 cyber2000_grphw(EXT_SEQ_MISC
, hw
->extseqmisc
, cfb
);
533 * Set up accelerator registers
535 cyber2000fb_writew(hw
->width
, CO_REG_SRC_WIDTH
, cfb
);
536 cyber2000fb_writew(hw
->width
, CO_REG_DEST_WIDTH
, cfb
);
537 cyber2000fb_writeb(hw
->co_pixfmt
, CO_REG_PIXFMT
, cfb
);
541 cyber2000fb_update_start(struct cfb_info
*cfb
, struct fb_var_screeninfo
*var
)
543 u_int base
= var
->yoffset
* var
->xres_virtual
+ var
->xoffset
;
545 base
*= var
->bits_per_pixel
;
548 * Convert to bytes and shift two extra bits because DAC
549 * can only start on 4 byte aligned data.
556 cyber2000_grphw(0x10, base
>> 16 | 0x10, cfb
);
557 cyber2000_crtcw(0x0c, base
>> 8, cfb
);
558 cyber2000_crtcw(0x0d, base
, cfb
);
564 cyber2000fb_decode_crtc(struct par_info
*hw
, struct cfb_info
*cfb
,
565 struct fb_var_screeninfo
*var
)
567 u_int Htotal
, Hblankend
, Hsyncend
;
568 u_int Vtotal
, Vdispend
, Vblankstart
, Vblankend
, Vsyncstart
, Vsyncend
;
569 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
571 hw
->crtc
[13] = hw
->pitch
;
576 Htotal
= var
->xres
+ var
->right_margin
+
577 var
->hsync_len
+ var
->left_margin
;
582 hw
->crtc
[0] = (Htotal
>> 3) - 5;
583 hw
->crtc
[1] = (var
->xres
>> 3) - 1;
584 hw
->crtc
[2] = var
->xres
>> 3;
585 hw
->crtc
[4] = (var
->xres
+ var
->right_margin
) >> 3;
587 Hblankend
= (Htotal
- 4 * 8) >> 3;
589 hw
->crtc
[3] = ENCODE_BIT(Hblankend
, 0, 0x1f, 0) |
590 ENCODE_BIT(1, 0, 0x01, 7);
592 Hsyncend
= (var
->xres
+ var
->right_margin
+ var
->hsync_len
) >> 3;
594 hw
->crtc
[5] = ENCODE_BIT(Hsyncend
, 0, 0x1f, 0) |
595 ENCODE_BIT(Hblankend
, 5, 0x01, 7);
597 Vdispend
= var
->yres
- 1;
598 Vsyncstart
= var
->yres
+ var
->lower_margin
;
599 Vsyncend
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
;
600 Vtotal
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
+
601 var
->upper_margin
- 2;
606 Vblankstart
= var
->yres
+ 6;
607 Vblankend
= Vtotal
- 10;
609 hw
->crtc
[6] = Vtotal
;
610 hw
->crtc
[7] = ENCODE_BIT(Vtotal
, 8, 0x01, 0) |
611 ENCODE_BIT(Vdispend
, 8, 0x01, 1) |
612 ENCODE_BIT(Vsyncstart
, 8, 0x01, 2) |
613 ENCODE_BIT(Vblankstart
, 8, 0x01, 3) |
614 ENCODE_BIT(1, 0, 0x01, 4) |
615 ENCODE_BIT(Vtotal
, 9, 0x01, 5) |
616 ENCODE_BIT(Vdispend
, 9, 0x01, 6) |
617 ENCODE_BIT(Vsyncstart
, 9, 0x01, 7);
618 hw
->crtc
[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
619 ENCODE_BIT(Vblankstart
, 9, 0x01, 5) |
620 ENCODE_BIT(1, 0, 0x01, 6);
621 hw
->crtc
[10] = Vsyncstart
;
622 hw
->crtc
[11] = ENCODE_BIT(Vsyncend
, 0, 0x0f, 0) |
623 ENCODE_BIT(1, 0, 0x01, 7);
624 hw
->crtc
[12] = Vdispend
;
625 hw
->crtc
[15] = Vblankstart
;
626 hw
->crtc
[16] = Vblankend
;
630 * overflow - graphics reg 0x11
631 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
632 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
635 ENCODE_BIT(Vtotal
, 10, 0x01, 0) |
636 ENCODE_BIT(Vdispend
, 10, 0x01, 1) |
637 ENCODE_BIT(Vsyncstart
, 10, 0x01, 2) |
638 ENCODE_BIT(Vblankstart
, 10, 0x01, 3) |
639 EXT_CRT_VRTOFL_LINECOMP10
;
641 /* woody: set the interlaced bit... */
642 /* FIXME: what about doublescan? */
643 if ((var
->vmode
& FB_VMODE_MASK
) == FB_VMODE_INTERLACED
)
644 hw
->crtc_ofl
|= EXT_CRT_VRTOFL_INTERLACE
;
650 * The following was discovered by a good monitor, bit twiddling, theorising
651 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
654 * fclock = fpll / div2
655 * fpll = fref * mult / div1
657 * fref = 14.318MHz (69842ps)
659 * div1 = (reg0xb1.5:0 + 1)
660 * div2 = 2^(reg0xb1.7:6)
661 * fpll should be between 115 and 260 MHz
662 * (8696ps and 3846ps)
665 cyber2000fb_decode_clock(struct par_info
*hw
, struct cfb_info
*cfb
,
666 struct fb_var_screeninfo
*var
)
668 u_long pll_ps
= var
->pixclock
;
669 const u_long ref_ps
= cfb
->ref_ps
;
670 u_int div2
, t_div1
, best_div1
, best_mult
;
676 * find div2 such that 115MHz < fpll < 260MHz
679 for (div2
= 0; div2
< 4; div2
++) {
682 new_pll
= pll_ps
/ cfb
->divisors
[div2
];
683 if (8696 > new_pll
&& new_pll
> 3846) {
694 * Given pll_ps and ref_ps, find:
695 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
696 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
697 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
699 best_diff
= 0x7fffffff;
702 for (t_div1
= 2; t_div1
< 32; t_div1
+= 1) {
703 u_int rr
, t_mult
, t_pll_ps
;
707 * Find the multiplier for this divisor
709 rr
= ref_ps
* t_div1
;
710 t_mult
= (rr
+ pll_ps
/ 2) / pll_ps
;
713 * Is the multiplier within the correct range?
715 if (t_mult
> 256 || t_mult
< 2)
719 * Calculate the actual clock period from this multiplier
720 * and divisor, and estimate the error.
722 t_pll_ps
= (rr
+ t_mult
/ 2) / t_mult
;
723 diff
= pll_ps
- t_pll_ps
;
727 if (diff
< best_diff
) {
734 * If we hit an exact value, there is no point in continuing.
744 hw
->clock_mult
= best_mult
- 1;
745 hw
->clock_div
= div2
<< 6 | (best_div1
- 1);
747 vco
= ref_ps
* best_div1
/ best_mult
;
748 if ((ref_ps
== 40690) && (vco
< 5556))
749 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
750 hw
->clock_div
|= EXT_DCLK_DIV_VFSEL
;
756 * Set the User Defined Part of the Display
759 cyber2000fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
761 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
766 var
->transp
.msb_right
= 0;
767 var
->red
.msb_right
= 0;
768 var
->green
.msb_right
= 0;
769 var
->blue
.msb_right
= 0;
770 var
->transp
.offset
= 0;
771 var
->transp
.length
= 0;
773 switch (var
->bits_per_pixel
) {
774 case 8: /* PSEUDOCOLOUR, 256 */
777 var
->green
.offset
= 0;
778 var
->green
.length
= 8;
779 var
->blue
.offset
= 0;
780 var
->blue
.length
= 8;
783 case 16:/* DIRECTCOLOUR, 64k or 32k */
784 switch (var
->green
.length
) {
785 case 6: /* RGB565, 64k */
786 var
->red
.offset
= 11;
788 var
->green
.offset
= 5;
789 var
->green
.length
= 6;
790 var
->blue
.offset
= 0;
791 var
->blue
.length
= 5;
795 case 5: /* RGB555, 32k */
796 var
->red
.offset
= 10;
798 var
->green
.offset
= 5;
799 var
->green
.length
= 5;
800 var
->blue
.offset
= 0;
801 var
->blue
.length
= 5;
804 case 4: /* RGB444, 4k + transparency? */
805 var
->transp
.offset
= 12;
806 var
->transp
.length
= 4;
809 var
->green
.offset
= 4;
810 var
->green
.length
= 4;
811 var
->blue
.offset
= 0;
812 var
->blue
.length
= 4;
817 case 24:/* TRUECOLOUR, 16m */
818 var
->red
.offset
= 16;
820 var
->green
.offset
= 8;
821 var
->green
.length
= 8;
822 var
->blue
.offset
= 0;
823 var
->blue
.length
= 8;
826 case 32:/* TRUECOLOUR, 16m */
827 var
->transp
.offset
= 24;
828 var
->transp
.length
= 8;
829 var
->red
.offset
= 16;
831 var
->green
.offset
= 8;
832 var
->green
.length
= 8;
833 var
->blue
.offset
= 0;
834 var
->blue
.length
= 8;
841 mem
= var
->xres_virtual
* var
->yres_virtual
* (var
->bits_per_pixel
/ 8);
842 if (mem
> cfb
->fb
.fix
.smem_len
)
843 var
->yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
844 (var
->bits_per_pixel
* var
->xres_virtual
);
846 if (var
->yres
> var
->yres_virtual
)
847 var
->yres
= var
->yres_virtual
;
848 if (var
->xres
> var
->xres_virtual
)
849 var
->xres
= var
->xres_virtual
;
851 err
= cyber2000fb_decode_clock(&hw
, cfb
, var
);
855 err
= cyber2000fb_decode_crtc(&hw
, cfb
, var
);
862 static int cyber2000fb_set_par(struct fb_info
*info
)
864 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
865 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
869 hw
.width
= var
->xres_virtual
;
870 hw
.ramdac
= RAMDAC_VREFEN
| RAMDAC_DAC8BIT
;
872 switch (var
->bits_per_pixel
) {
874 hw
.co_pixfmt
= CO_PIXFMT_8BPP
;
875 hw
.pitch
= hw
.width
>> 3;
876 hw
.extseqmisc
= EXT_SEQ_MISC_8
;
880 hw
.co_pixfmt
= CO_PIXFMT_16BPP
;
881 hw
.pitch
= hw
.width
>> 2;
883 switch (var
->green
.length
) {
884 case 6: /* RGB565, 64k */
885 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB565
;
887 case 5: /* RGB555, 32k */
888 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB555
;
890 case 4: /* RGB444, 4k + transparency? */
891 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB444
;
898 case 24:/* TRUECOLOUR, 16m */
899 hw
.co_pixfmt
= CO_PIXFMT_24BPP
;
901 hw
.pitch
= hw
.width
>> 3;
902 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
903 hw
.extseqmisc
= EXT_SEQ_MISC_24_RGB888
;
906 case 32:/* TRUECOLOUR, 16m */
907 hw
.co_pixfmt
= CO_PIXFMT_32BPP
;
908 hw
.pitch
= hw
.width
>> 1;
909 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
910 hw
.extseqmisc
= EXT_SEQ_MISC_32
;
918 * Sigh, this is absolutely disgusting, but caused by
919 * the way the fbcon developers want to separate out
920 * the "checking" and the "setting" of the video mode.
922 * If the mode is not suitable for the hardware here,
923 * we can't prevent it being set by returning an error.
925 * In theory, since NetWinders contain just one VGA card,
926 * we should never end up hitting this problem.
928 BUG_ON(cyber2000fb_decode_clock(&hw
, cfb
, var
) != 0);
929 BUG_ON(cyber2000fb_decode_crtc(&hw
, cfb
, var
) != 0);
933 if (!(cfb
->mem_ctl2
& MEM_CTL2_64BIT
))
937 cfb
->fb
.fix
.line_length
= var
->xres_virtual
* var
->bits_per_pixel
/ 8;
940 * Same here - if the size of the video mode exceeds the
941 * available RAM, we can't prevent this mode being set.
943 * In theory, since NetWinders contain just one VGA card,
944 * we should never end up hitting this problem.
946 mem
= cfb
->fb
.fix
.line_length
* var
->yres_virtual
;
947 BUG_ON(mem
> cfb
->fb
.fix
.smem_len
);
950 * 8bpp displays are always pseudo colour. 16bpp and above
951 * are direct colour or true colour, depending on whether
952 * the RAMDAC palettes are bypassed. (Direct colour has
953 * palettes, true colour does not.)
955 if (var
->bits_per_pixel
== 8)
956 cfb
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
957 else if (hw
.ramdac
& RAMDAC_BYPASS
)
958 cfb
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
960 cfb
->fb
.fix
.visual
= FB_VISUAL_DIRECTCOLOR
;
962 cyber2000fb_set_timing(cfb
, &hw
);
963 cyber2000fb_update_start(cfb
, var
);
969 * Pan or Wrap the Display
972 cyber2000fb_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
974 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
976 if (cyber2000fb_update_start(cfb
, var
))
979 cfb
->fb
.var
.xoffset
= var
->xoffset
;
980 cfb
->fb
.var
.yoffset
= var
->yoffset
;
982 if (var
->vmode
& FB_VMODE_YWRAP
) {
983 cfb
->fb
.var
.vmode
|= FB_VMODE_YWRAP
;
985 cfb
->fb
.var
.vmode
&= ~FB_VMODE_YWRAP
;
992 * (Un)Blank the display.
994 * Blank the screen if blank_mode != 0, else unblank. If
995 * blank == NULL then the caller blanks by setting the CLUT
996 * (Color Look Up Table) to all black. Return 0 if blanking
997 * succeeded, != 0 if un-/blanking failed due to e.g. a
998 * video mode which doesn't support it. Implements VESA
999 * suspend and powerdown modes on hardware that supports
1000 * disabling hsync/vsync:
1001 * blank_mode == 2: suspend vsync
1002 * blank_mode == 3: suspend hsync
1003 * blank_mode == 4: powerdown
1005 * wms...Enable VESA DMPS compatible powerdown mode
1006 * run "setterm -powersave powerdown" to take advantage
1008 static int cyber2000fb_blank(int blank
, struct fb_info
*info
)
1010 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
1011 unsigned int sync
= 0;
1015 case FB_BLANK_POWERDOWN
: /* powerdown - both sync lines down */
1016 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_0
;
1018 case FB_BLANK_HSYNC_SUSPEND
: /* hsync off */
1019 sync
= EXT_SYNC_CTL_VS_NORMAL
| EXT_SYNC_CTL_HS_0
;
1021 case FB_BLANK_VSYNC_SUSPEND
: /* vsync off */
1022 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_NORMAL
;
1024 case FB_BLANK_NORMAL
: /* soft blank */
1025 default: /* unblank */
1029 cyber2000_grphw(EXT_SYNC_CTL
, sync
, cfb
);
1032 /* turn on ramdacs */
1033 cfb
->ramdac_powerdown
&= ~(RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1035 cyber2000fb_write_ramdac_ctrl(cfb
);
1039 * Soft blank/unblank the display.
1041 if (blank
) { /* soft blank */
1042 for (i
= 0; i
< NR_PALETTE
; i
++) {
1043 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1044 cyber2000fb_writeb(0, 0x3c9, cfb
);
1045 cyber2000fb_writeb(0, 0x3c9, cfb
);
1046 cyber2000fb_writeb(0, 0x3c9, cfb
);
1048 } else { /* unblank */
1049 for (i
= 0; i
< NR_PALETTE
; i
++) {
1050 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1051 cyber2000fb_writeb(cfb
->palette
[i
].red
, 0x3c9, cfb
);
1052 cyber2000fb_writeb(cfb
->palette
[i
].green
, 0x3c9, cfb
);
1053 cyber2000fb_writeb(cfb
->palette
[i
].blue
, 0x3c9, cfb
);
1058 /* turn off ramdacs */
1059 cfb
->ramdac_powerdown
|= RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1061 cyber2000fb_write_ramdac_ctrl(cfb
);
1067 static struct fb_ops cyber2000fb_ops
= {
1068 .owner
= THIS_MODULE
,
1069 .fb_check_var
= cyber2000fb_check_var
,
1070 .fb_set_par
= cyber2000fb_set_par
,
1071 .fb_setcolreg
= cyber2000fb_setcolreg
,
1072 .fb_blank
= cyber2000fb_blank
,
1073 .fb_pan_display
= cyber2000fb_pan_display
,
1074 .fb_fillrect
= cyber2000fb_fillrect
,
1075 .fb_copyarea
= cyber2000fb_copyarea
,
1076 .fb_imageblit
= cyber2000fb_imageblit
,
1077 .fb_sync
= cyber2000fb_sync
,
1081 * This is the only "static" reference to the internal data structures
1082 * of this driver. It is here solely at the moment to support the other
1083 * CyberPro modules external to this driver.
1085 static struct cfb_info
*int_cfb_info
;
1088 * Enable access to the extended registers
1090 void cyber2000fb_enable_extregs(struct cfb_info
*cfb
)
1092 cfb
->func_use_count
+= 1;
1094 if (cfb
->func_use_count
== 1) {
1097 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1098 old
|= EXT_FUNC_CTL_EXTREGENBL
;
1099 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1102 EXPORT_SYMBOL(cyber2000fb_enable_extregs
);
1105 * Disable access to the extended registers
1107 void cyber2000fb_disable_extregs(struct cfb_info
*cfb
)
1109 if (cfb
->func_use_count
== 1) {
1112 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1113 old
&= ~EXT_FUNC_CTL_EXTREGENBL
;
1114 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1117 if (cfb
->func_use_count
== 0)
1118 printk(KERN_ERR
"disable_extregs: count = 0\n");
1120 cfb
->func_use_count
-= 1;
1122 EXPORT_SYMBOL(cyber2000fb_disable_extregs
);
1125 * Attach a capture/tv driver to the core CyberX0X0 driver.
1127 int cyber2000fb_attach(struct cyberpro_info
*info
, int idx
)
1129 if (int_cfb_info
!= NULL
) {
1130 info
->dev
= int_cfb_info
->fb
.device
;
1131 #ifdef CONFIG_FB_CYBER2000_I2C
1132 info
->i2c
= &int_cfb_info
->i2c_adapter
;
1136 info
->regs
= int_cfb_info
->regs
;
1137 info
->irq
= int_cfb_info
->irq
;
1138 info
->fb
= int_cfb_info
->fb
.screen_base
;
1139 info
->fb_size
= int_cfb_info
->fb
.fix
.smem_len
;
1140 info
->info
= int_cfb_info
;
1142 strlcpy(info
->dev_name
, int_cfb_info
->fb
.fix
.id
,
1143 sizeof(info
->dev_name
));
1146 return int_cfb_info
!= NULL
;
1148 EXPORT_SYMBOL(cyber2000fb_attach
);
1151 * Detach a capture/tv driver from the core CyberX0X0 driver.
1153 void cyber2000fb_detach(int idx
)
1156 EXPORT_SYMBOL(cyber2000fb_detach
);
1158 #ifdef CONFIG_FB_CYBER2000_DDC
1160 #define DDC_REG 0xb0
1161 #define DDC_SCL_OUT (1 << 0)
1162 #define DDC_SDA_OUT (1 << 4)
1163 #define DDC_SCL_IN (1 << 2)
1164 #define DDC_SDA_IN (1 << 6)
1166 static void cyber2000fb_enable_ddc(struct cfb_info
*cfb
)
1168 spin_lock(&cfb
->reg_b0_lock
);
1169 cyber2000fb_writew(0x1bf, 0x3ce, cfb
);
1172 static void cyber2000fb_disable_ddc(struct cfb_info
*cfb
)
1174 cyber2000fb_writew(0x0bf, 0x3ce, cfb
);
1175 spin_unlock(&cfb
->reg_b0_lock
);
1179 static void cyber2000fb_ddc_setscl(void *data
, int val
)
1181 struct cfb_info
*cfb
= data
;
1184 cyber2000fb_enable_ddc(cfb
);
1185 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1186 if (!val
) /* bit is inverted */
1189 reg
&= ~DDC_SCL_OUT
;
1190 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1191 cyber2000fb_disable_ddc(cfb
);
1194 static void cyber2000fb_ddc_setsda(void *data
, int val
)
1196 struct cfb_info
*cfb
= data
;
1199 cyber2000fb_enable_ddc(cfb
);
1200 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1201 if (!val
) /* bit is inverted */
1204 reg
&= ~DDC_SDA_OUT
;
1205 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1206 cyber2000fb_disable_ddc(cfb
);
1209 static int cyber2000fb_ddc_getscl(void *data
)
1211 struct cfb_info
*cfb
= data
;
1214 cyber2000fb_enable_ddc(cfb
);
1215 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SCL_IN
);
1216 cyber2000fb_disable_ddc(cfb
);
1221 static int cyber2000fb_ddc_getsda(void *data
)
1223 struct cfb_info
*cfb
= data
;
1226 cyber2000fb_enable_ddc(cfb
);
1227 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SDA_IN
);
1228 cyber2000fb_disable_ddc(cfb
);
1233 static int cyber2000fb_setup_ddc_bus(struct cfb_info
*cfb
)
1235 strlcpy(cfb
->ddc_adapter
.name
, cfb
->fb
.fix
.id
,
1236 sizeof(cfb
->ddc_adapter
.name
));
1237 cfb
->ddc_adapter
.owner
= THIS_MODULE
;
1238 cfb
->ddc_adapter
.class = I2C_CLASS_DDC
;
1239 cfb
->ddc_adapter
.algo_data
= &cfb
->ddc_algo
;
1240 cfb
->ddc_adapter
.dev
.parent
= cfb
->fb
.device
;
1241 cfb
->ddc_algo
.setsda
= cyber2000fb_ddc_setsda
;
1242 cfb
->ddc_algo
.setscl
= cyber2000fb_ddc_setscl
;
1243 cfb
->ddc_algo
.getsda
= cyber2000fb_ddc_getsda
;
1244 cfb
->ddc_algo
.getscl
= cyber2000fb_ddc_getscl
;
1245 cfb
->ddc_algo
.udelay
= 10;
1246 cfb
->ddc_algo
.timeout
= 20;
1247 cfb
->ddc_algo
.data
= cfb
;
1249 i2c_set_adapdata(&cfb
->ddc_adapter
, cfb
);
1251 return i2c_bit_add_bus(&cfb
->ddc_adapter
);
1253 #endif /* CONFIG_FB_CYBER2000_DDC */
1255 #ifdef CONFIG_FB_CYBER2000_I2C
1256 static void cyber2000fb_i2c_setsda(void *data
, int state
)
1258 struct cfb_info
*cfb
= data
;
1259 unsigned int latch2
;
1261 spin_lock(&cfb
->reg_b0_lock
);
1262 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1263 latch2
&= EXT_LATCH2_I2C_CLKEN
;
1265 latch2
|= EXT_LATCH2_I2C_DATEN
;
1266 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1267 spin_unlock(&cfb
->reg_b0_lock
);
1270 static void cyber2000fb_i2c_setscl(void *data
, int state
)
1272 struct cfb_info
*cfb
= data
;
1273 unsigned int latch2
;
1275 spin_lock(&cfb
->reg_b0_lock
);
1276 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1277 latch2
&= EXT_LATCH2_I2C_DATEN
;
1279 latch2
|= EXT_LATCH2_I2C_CLKEN
;
1280 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1281 spin_unlock(&cfb
->reg_b0_lock
);
1284 static int cyber2000fb_i2c_getsda(void *data
)
1286 struct cfb_info
*cfb
= data
;
1289 spin_lock(&cfb
->reg_b0_lock
);
1290 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_DAT
);
1291 spin_unlock(&cfb
->reg_b0_lock
);
1296 static int cyber2000fb_i2c_getscl(void *data
)
1298 struct cfb_info
*cfb
= data
;
1301 spin_lock(&cfb
->reg_b0_lock
);
1302 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_CLK
);
1303 spin_unlock(&cfb
->reg_b0_lock
);
1308 static int cyber2000fb_i2c_register(struct cfb_info
*cfb
)
1310 strlcpy(cfb
->i2c_adapter
.name
, cfb
->fb
.fix
.id
,
1311 sizeof(cfb
->i2c_adapter
.name
));
1312 cfb
->i2c_adapter
.owner
= THIS_MODULE
;
1313 cfb
->i2c_adapter
.algo_data
= &cfb
->i2c_algo
;
1314 cfb
->i2c_adapter
.dev
.parent
= cfb
->fb
.device
;
1315 cfb
->i2c_algo
.setsda
= cyber2000fb_i2c_setsda
;
1316 cfb
->i2c_algo
.setscl
= cyber2000fb_i2c_setscl
;
1317 cfb
->i2c_algo
.getsda
= cyber2000fb_i2c_getsda
;
1318 cfb
->i2c_algo
.getscl
= cyber2000fb_i2c_getscl
;
1319 cfb
->i2c_algo
.udelay
= 5;
1320 cfb
->i2c_algo
.timeout
= msecs_to_jiffies(100);
1321 cfb
->i2c_algo
.data
= cfb
;
1323 return i2c_bit_add_bus(&cfb
->i2c_adapter
);
1326 static void cyber2000fb_i2c_unregister(struct cfb_info
*cfb
)
1328 i2c_del_adapter(&cfb
->i2c_adapter
);
1331 #define cyber2000fb_i2c_register(cfb) (0)
1332 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1336 * These parameters give
1337 * 640x480, hsync 31.5kHz, vsync 60Hz
1339 static struct fb_videomode cyber2000fb_default_mode
= {
1350 .sync
= FB_SYNC_COMP_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
1351 .vmode
= FB_VMODE_NONINTERLACED
1354 static char igs_regs
[] = {
1358 EXT_SEG_WRITE_PTR
, 0,
1359 EXT_SEG_READ_PTR
, 0,
1360 EXT_BIU_MISC
, EXT_BIU_MISC_LIN_ENABLE
|
1361 EXT_BIU_MISC_COP_ENABLE
|
1362 EXT_BIU_MISC_COP_BFC
,
1365 CURS_H_START
+ 1, 0,
1368 CURS_V_START
+ 1, 0,
1371 EXT_ATTRIB_CTL
, EXT_ATTRIB_CTL_EXT
,
1372 EXT_OVERSCAN_RED
, 0,
1373 EXT_OVERSCAN_GREEN
, 0,
1374 EXT_OVERSCAN_BLUE
, 0,
1376 /* some of these are questionable when we have a BIOS */
1377 EXT_MEM_CTL0
, EXT_MEM_CTL0_7CLK
|
1378 EXT_MEM_CTL0_RAS_1
|
1379 EXT_MEM_CTL0_MULTCAS
,
1380 EXT_HIDDEN_CTL1
, 0x30,
1382 EXT_FIFO_CTL
+ 1, 0x17,
1384 EXT_HIDDEN_CTL4
, 0xc8
1388 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1389 * ensure that we're using the correct PLL (5XXX's may be
1390 * programmed to use an additional set of PLLs.)
1392 static void cyberpro_init_hw(struct cfb_info
*cfb
)
1396 for (i
= 0; i
< sizeof(igs_regs
); i
+= 2)
1397 cyber2000_grphw(igs_regs
[i
], igs_regs
[i
+ 1], cfb
);
1399 if (cfb
->id
== ID_CYBERPRO_5000
) {
1401 cyber2000fb_writeb(0xba, 0x3ce, cfb
);
1402 val
= cyber2000fb_readb(0x3cf, cfb
) & 0x80;
1403 cyber2000fb_writeb(val
, 0x3cf, cfb
);
1407 static struct cfb_info
*cyberpro_alloc_fb_info(unsigned int id
, char *name
)
1409 struct cfb_info
*cfb
;
1411 cfb
= kzalloc(sizeof(struct cfb_info
), GFP_KERNEL
);
1418 if (id
== ID_CYBERPRO_5000
)
1419 cfb
->ref_ps
= 40690; /* 24.576 MHz */
1421 cfb
->ref_ps
= 69842; /* 14.31818 MHz (69841?) */
1423 cfb
->divisors
[0] = 1;
1424 cfb
->divisors
[1] = 2;
1425 cfb
->divisors
[2] = 4;
1427 if (id
== ID_CYBERPRO_2000
)
1428 cfb
->divisors
[3] = 8;
1430 cfb
->divisors
[3] = 6;
1432 strcpy(cfb
->fb
.fix
.id
, name
);
1434 cfb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1435 cfb
->fb
.fix
.type_aux
= 0;
1436 cfb
->fb
.fix
.xpanstep
= 0;
1437 cfb
->fb
.fix
.ypanstep
= 1;
1438 cfb
->fb
.fix
.ywrapstep
= 0;
1442 cfb
->fb
.fix
.accel
= 0;
1445 case ID_CYBERPRO_2000
:
1446 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2000
;
1449 case ID_CYBERPRO_2010
:
1450 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2010
;
1453 case ID_CYBERPRO_5000
:
1454 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER5000
;
1458 cfb
->fb
.var
.nonstd
= 0;
1459 cfb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1460 cfb
->fb
.var
.height
= -1;
1461 cfb
->fb
.var
.width
= -1;
1462 cfb
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1464 cfb
->fb
.fbops
= &cyber2000fb_ops
;
1465 cfb
->fb
.flags
= FBINFO_DEFAULT
| FBINFO_HWACCEL_YPAN
;
1466 cfb
->fb
.pseudo_palette
= cfb
->pseudo_palette
;
1468 spin_lock_init(&cfb
->reg_b0_lock
);
1470 fb_alloc_cmap(&cfb
->fb
.cmap
, NR_PALETTE
, 0);
1475 static void cyberpro_free_fb_info(struct cfb_info
*cfb
)
1479 * Free the colourmap
1481 fb_alloc_cmap(&cfb
->fb
.cmap
, 0, 0);
1488 * Parse Cyber2000fb options. Usage:
1489 * video=cyber2000:font:fontname
1492 static int cyber2000fb_setup(char *options
)
1496 if (!options
|| !*options
)
1499 while ((opt
= strsep(&options
, ",")) != NULL
) {
1503 if (strncmp(opt
, "font:", 5) == 0) {
1504 static char default_font_storage
[40];
1506 strlcpy(default_font_storage
, opt
+ 5,
1507 sizeof(default_font_storage
));
1508 default_font
= default_font_storage
;
1512 printk(KERN_ERR
"CyberPro20x0: unknown parameter: %s\n", opt
);
1519 * The CyberPro chips can be placed on many different bus types.
1520 * This probe function is common to all bus types. The bus-specific
1521 * probe function is expected to have:
1522 * - enabled access to the linear memory region
1523 * - memory mapped access to the registers
1524 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1526 static int cyberpro_common_probe(struct cfb_info
*cfb
)
1529 u_int h_sync
, v_sync
;
1532 cyberpro_init_hw(cfb
);
1535 * Get the video RAM size and width from the VGA register.
1536 * This should have been already initialised by the BIOS,
1537 * but if it's garbage, claim default 1MB VRAM (woody)
1539 cfb
->mem_ctl1
= cyber2000_grphr(EXT_MEM_CTL1
, cfb
);
1540 cfb
->mem_ctl2
= cyber2000_grphr(EXT_MEM_CTL2
, cfb
);
1543 * Determine the size of the memory.
1545 switch (cfb
->mem_ctl2
& MEM_CTL2_SIZE_MASK
) {
1546 case MEM_CTL2_SIZE_4MB
:
1547 smem_size
= 0x00400000;
1549 case MEM_CTL2_SIZE_2MB
:
1550 smem_size
= 0x00200000;
1552 case MEM_CTL2_SIZE_1MB
:
1553 smem_size
= 0x00100000;
1556 smem_size
= 0x00100000;
1560 cfb
->fb
.fix
.smem_len
= smem_size
;
1561 cfb
->fb
.fix
.mmio_len
= MMIO_SIZE
;
1562 cfb
->fb
.screen_base
= cfb
->region
;
1564 #ifdef CONFIG_FB_CYBER2000_DDC
1565 if (cyber2000fb_setup_ddc_bus(cfb
) == 0)
1566 cfb
->ddc_registered
= true;
1570 if (!fb_find_mode(&cfb
->fb
.var
, &cfb
->fb
, NULL
, NULL
, 0,
1571 &cyber2000fb_default_mode
, 8)) {
1572 printk(KERN_ERR
"%s: no valid mode found\n", cfb
->fb
.fix
.id
);
1576 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
1577 (cfb
->fb
.var
.bits_per_pixel
* cfb
->fb
.var
.xres_virtual
);
1579 if (cfb
->fb
.var
.yres_virtual
< cfb
->fb
.var
.yres
)
1580 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.var
.yres
;
1582 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1585 * Calculate the hsync and vsync frequencies. Note that
1586 * we split the 1e12 constant up so that we can preserve
1587 * the precision and fit the results into 32-bit registers.
1588 * (1953125000 * 512 = 1e12)
1590 h_sync
= 1953125000 / cfb
->fb
.var
.pixclock
;
1591 h_sync
= h_sync
* 512 / (cfb
->fb
.var
.xres
+ cfb
->fb
.var
.left_margin
+
1592 cfb
->fb
.var
.right_margin
+ cfb
->fb
.var
.hsync_len
);
1593 v_sync
= h_sync
/ (cfb
->fb
.var
.yres
+ cfb
->fb
.var
.upper_margin
+
1594 cfb
->fb
.var
.lower_margin
+ cfb
->fb
.var
.vsync_len
);
1596 printk(KERN_INFO
"%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1597 cfb
->fb
.fix
.id
, cfb
->fb
.fix
.smem_len
>> 10,
1598 cfb
->fb
.var
.xres
, cfb
->fb
.var
.yres
,
1599 h_sync
/ 1000, h_sync
% 1000, v_sync
);
1601 err
= cyber2000fb_i2c_register(cfb
);
1605 err
= register_framebuffer(&cfb
->fb
);
1607 cyber2000fb_i2c_unregister(cfb
);
1610 #ifdef CONFIG_FB_CYBER2000_DDC
1611 if (err
&& cfb
->ddc_registered
)
1612 i2c_del_adapter(&cfb
->ddc_adapter
);
1617 static void cyberpro_common_remove(struct cfb_info
*cfb
)
1619 unregister_framebuffer(&cfb
->fb
);
1620 #ifdef CONFIG_FB_CYBER2000_DDC
1621 if (cfb
->ddc_registered
)
1622 i2c_del_adapter(&cfb
->ddc_adapter
);
1624 cyber2000fb_i2c_unregister(cfb
);
1627 static void cyberpro_common_resume(struct cfb_info
*cfb
)
1629 cyberpro_init_hw(cfb
);
1632 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1634 cyber2000_grphw(EXT_MEM_CTL1
, cfb
->mem_ctl1
, cfb
);
1635 cyber2000_grphw(EXT_MEM_CTL2
, cfb
->mem_ctl2
, cfb
);
1638 * Restore the old video mode and the palette.
1639 * We also need to tell fbcon to redraw the console.
1641 cyber2000fb_set_par(&cfb
->fb
);
1645 * PCI specific support.
1649 * We need to wake up the CyberPro, and make sure its in linear memory
1650 * mode. Unfortunately, this is specific to the platform and card that
1651 * we are running on.
1653 * On x86 and ARM, should we be initialising the CyberPro first via the
1654 * IO registers, and then the MMIO registers to catch all cases? Can we
1655 * end up in the situation where the chip is in MMIO mode, but not awake
1658 static int cyberpro_pci_enable_mmio(struct cfb_info
*cfb
)
1662 #if defined(__sparc_v9__)
1663 #error "You lose, consult DaveM."
1664 #elif defined(__sparc__)
1666 * SPARC does not have an "outb" instruction, so we generate
1667 * I/O cycles storing into a reserved memory space at
1668 * physical address 0x3000000
1670 unsigned char __iomem
*iop
;
1672 iop
= ioremap(0x3000000, 0x5000);
1674 printk(KERN_ERR
"iga5000: cannot map I/O\n");
1678 writeb(0x18, iop
+ 0x46e8);
1679 writeb(0x01, iop
+ 0x102);
1680 writeb(0x08, iop
+ 0x46e8);
1681 writeb(EXT_BIU_MISC
, iop
+ 0x3ce);
1682 writeb(EXT_BIU_MISC_LIN_ENABLE
, iop
+ 0x3cf);
1687 * Most other machine types are "normal", so
1688 * we use the standard IO-based wakeup.
1693 outb(EXT_BIU_MISC
, 0x3ce);
1694 outb(EXT_BIU_MISC_LIN_ENABLE
, 0x3cf);
1698 * Allow the CyberPro to accept PCI burst accesses
1700 if (cfb
->id
== ID_CYBERPRO_2010
) {
1701 printk(KERN_INFO
"%s: NOT enabling PCI bursts\n",
1704 val
= cyber2000_grphr(EXT_BUS_CTL
, cfb
);
1705 if (!(val
& EXT_BUS_CTL_PCIBURST_WRITE
)) {
1706 printk(KERN_INFO
"%s: enabling PCI bursts\n",
1709 val
|= EXT_BUS_CTL_PCIBURST_WRITE
;
1711 if (cfb
->id
== ID_CYBERPRO_5000
)
1712 val
|= EXT_BUS_CTL_PCIBURST_READ
;
1714 cyber2000_grphw(EXT_BUS_CTL
, val
, cfb
);
1721 static int cyberpro_pci_probe(struct pci_dev
*dev
,
1722 const struct pci_device_id
*id
)
1724 struct cfb_info
*cfb
;
1728 sprintf(name
, "CyberPro%4X", id
->device
);
1730 err
= pci_enable_device(dev
);
1735 cfb
= cyberpro_alloc_fb_info(id
->driver_data
, name
);
1737 goto failed_release
;
1739 err
= pci_request_regions(dev
, cfb
->fb
.fix
.id
);
1741 goto failed_regions
;
1743 cfb
->irq
= dev
->irq
;
1744 cfb
->region
= pci_ioremap_bar(dev
, 0);
1747 goto failed_ioremap
;
1750 cfb
->regs
= cfb
->region
+ MMIO_OFFSET
;
1751 cfb
->fb
.device
= &dev
->dev
;
1752 cfb
->fb
.fix
.mmio_start
= pci_resource_start(dev
, 0) + MMIO_OFFSET
;
1753 cfb
->fb
.fix
.smem_start
= pci_resource_start(dev
, 0);
1756 * Bring up the hardware. This is expected to enable access
1757 * to the linear memory region, and allow access to the memory
1758 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1761 err
= cyberpro_pci_enable_mmio(cfb
);
1766 * Use MCLK from BIOS. FIXME: what about hotplug?
1768 cfb
->mclk_mult
= cyber2000_grphr(EXT_MCLK_MULT
, cfb
);
1769 cfb
->mclk_div
= cyber2000_grphr(EXT_MCLK_DIV
, cfb
);
1773 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1775 if (machine_is_netwinder()) {
1776 cfb
->mclk_mult
= 0xdb;
1777 cfb
->mclk_div
= 0x54;
1781 err
= cyberpro_common_probe(cfb
);
1788 pci_set_drvdata(dev
, cfb
);
1789 if (int_cfb_info
== NULL
)
1795 iounmap(cfb
->region
);
1797 pci_release_regions(dev
);
1799 cyberpro_free_fb_info(cfb
);
1804 static void cyberpro_pci_remove(struct pci_dev
*dev
)
1806 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1809 cyberpro_common_remove(cfb
);
1810 iounmap(cfb
->region
);
1811 cyberpro_free_fb_info(cfb
);
1813 if (cfb
== int_cfb_info
)
1814 int_cfb_info
= NULL
;
1816 pci_release_regions(dev
);
1820 static int cyberpro_pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
1826 * Re-initialise the CyberPro hardware
1828 static int cyberpro_pci_resume(struct pci_dev
*dev
)
1830 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1833 cyberpro_pci_enable_mmio(cfb
);
1834 cyberpro_common_resume(cfb
);
1840 static struct pci_device_id cyberpro_pci_table
[] = {
1842 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1843 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1845 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2000
,
1846 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2000
},
1847 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2010
,
1848 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2010
},
1849 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_5000
,
1850 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_5000
},
1854 MODULE_DEVICE_TABLE(pci
, cyberpro_pci_table
);
1856 static struct pci_driver cyberpro_driver
= {
1858 .probe
= cyberpro_pci_probe
,
1859 .remove
= cyberpro_pci_remove
,
1860 .suspend
= cyberpro_pci_suspend
,
1861 .resume
= cyberpro_pci_resume
,
1862 .id_table
= cyberpro_pci_table
1867 * I don't think we can use the "module_init" stuff here because
1868 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1869 * around module_init.
1871 * Tony: "module_init" is now required
1873 static int __init
cyber2000fb_init(void)
1878 char *option
= NULL
;
1880 if (fb_get_options("cyber2000fb", &option
))
1882 cyber2000fb_setup(option
);
1885 err
= pci_register_driver(&cyberpro_driver
);
1889 return ret
? err
: 0;
1891 module_init(cyber2000fb_init
);
1893 static void __exit
cyberpro_exit(void)
1895 pci_unregister_driver(&cyberpro_driver
);
1897 module_exit(cyberpro_exit
);
1899 MODULE_AUTHOR("Russell King");
1900 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1901 MODULE_LICENSE("GPL");